1
|
Cao J, Goossens P, Martin-Lorenzo M, Dewez F, Claes BSR, Biessen EAL, Heeren RMA, Balluff B. Atheroma-Specific Lipids in ldlr-/- and apoe-/- Mice Using 2D and 3D Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1825-1832. [PMID: 32872786 PMCID: PMC7472746 DOI: 10.1021/jasms.0c00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is the major contributor to cardiovascular diseases. It is a spatially and temporally complex inflammatory disease, in which intravascular accumulation of a plethora of lipids is considered to play a crucial role. To date, both the composition and local distribution of the involved lipids have not been thoroughly mapped yet. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) enables analyzing and visualizing hundreds of lipid molecules within the plaque while preserving each lipid's specific location. In this study, we aim to identify and verify aortic plaque-specific lipids with high-spatial-resolution 2D and 3D MALDI-MSI common to high-fat-diet-fed low-density lipoprotein receptor deficient (ldlr-/-) mice and chow-fed apolipoprotein E deficient (apoe-/-) mice, the two most widely used animal models for atherosclerosis. A total of 11 lipids were found to be significantly and specifically colocalized to the plaques in both mouse models. These were identified and belong to one sphingomyelin (SM), three lysophosphatidic acids (LPA), four lysophosphatidylcholines (LPC), two lysophosphatidylethanolamines (LPE), and one lysophosphatidylinositol (LPI). While these lysolipids and SM 34:0;2 were characteristic of the atherosclerotic aorta plaque itself, LPI 18:0 was mainly localized in the necrotic core of the plaque.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Pieter Goossens
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Immunology Department, IIS-Fundacion
Jimenez Diaz-UAM, 28040 Madrid, Spain
| | - Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Mass Spectrometry Laboratory (MSLab),
University of Liège, B-4000 Liège,
Belgium
| | - Britt S. R. Claes
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Erik A. L. Biessen
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| |
Collapse
|
2
|
Signalling by lysophosphatidate and its health implications. Essays Biochem 2020; 64:547-563. [DOI: 10.1042/ebc20190088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
AbstractExtracellular lysophosphatidate (LPA) signalling is regulated by the balance of LPA formation by autotaxin (ATX) versus LPA degradation by lipid phosphate phosphatases (LPP) and by the relative expressions of six G-protein-coupled LPA receptors. These receptors increase cell proliferation, migration, survival and angiogenesis. Acute inflammation produced by tissue damage stimulates ATX production and LPA signalling as a component of wound healing. If inflammation does not resolve, LPA signalling becomes maladaptive in conditions including arthritis, neurologic pain, obesity and cancers. Furthermore, LPA signalling through LPA1 receptors promotes fibrosis in skin, liver, kidneys and lungs. LPA also promotes the spread of tumours to other organs (metastasis) and the pro-survival properties of LPA explain why LPA counteracts the effects of chemotherapeutic agents and radiotherapy. ATX is secreted in response to radiation-induced DNA damage during cancer treatments and this together with increased LPA1 receptor expression leads to radiation-induced fibrosis. The anti-inflammatory agent, dexamethasone, decreases levels of inflammatory cytokines/chemokines. This is linked to a coordinated decrease in the production of ATX and LPA1/2 receptors and increased LPA degradation through LPP1. These effects explain why dexamethasone attenuates radiation-induced fibrosis. Increased LPA signalling is also associated with cardiovascular disease including atherosclerosis and deranged LPA signalling is associated with pregnancy complications including preeclampsia and intrahepatic cholestasis of pregnancy. LPA contributes to chronic inflammation because it stimulates the secretion of inflammatory cytokines/chemokines, which increase further ATX production and LPA signalling. Attenuating maladaptive LPA signalling provides a novel means of treating inflammatory diseases that underlie so many important medical conditions.
Collapse
|
3
|
Kurano M, Kano K, Dohi T, Matsumoto H, Igarashi K, Nishikawa M, Ohkawa R, Ikeda H, Miyauchi K, Daida H, Aoki J, Yatomi Y. Different origins of lysophospholipid mediators between coronary and peripheral arteries in acute coronary syndrome. J Lipid Res 2016; 58:433-442. [PMID: 28007846 DOI: 10.1194/jlr.p071803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acids (LysoPAs) and lysophosphatidylserine (LysoPS) are emerging lipid mediators proposed to be involved in the pathogenesis of acute coronary syndrome (ACS). In this study, we attempted to elucidate how LysoPA and LysoPS become elevated in ACS using human blood samples collected simultaneously from culprit coronary arteries and peripheral arteries in ACS subjects. We found that: 1) the plasma LysoPA, LysoPS, and lysophosphatidylglycerol levels were not different, while the lysophosphatidylcholine (LysoPC), lysophosphatidylinositol, and lysophosphatidylethanolamine (LysoPE) levels were significantly lower in the culprit coronary arteries; 2) the serum autotaxin (ATX) level was lower and the serum phosphatidylserine-specific phospholipase A1 (PS-PLA1) level was higher in the culprit coronary arteries; 3) the LysoPE and ATX levels were significant explanatory factors for the mainly elevated species of LysoPA, except for 22:6 LysoPA, in the peripheral arteries, while the LysoPC and LysoPE levels, but not the ATX level, were explanatory factors in the culprit coronary arteries; and 4) 18:0 and 18:1 LysoPS were significantly correlated with PS-PLA1 only in the culprit coronary arteries. In conclusion, the origins of LysoPA and LysoPS might differ between culprit coronary arteries and peripheral arteries, and substrates for ATX, such as LysoPC and LysoPE, might be important for the generation of LysoPA in ACS.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Corporation (JST)
| | - Kuniyuki Kano
- CREST, Japan Science and Technology Corporation (JST).,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirotaka Matsumoto
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Kanagawa, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Corporation (JST)
| | - Ryunosuke Ohkawa
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Corporation (JST).,Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Junken Aoki
- CREST, Japan Science and Technology Corporation (JST).,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan .,CREST, Japan Science and Technology Corporation (JST).,Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Patients with risk factors have higher plasma levels of lysophosphatidic acid: a promising surrogate marker for blood platelet activation. Blood Coagul Fibrinolysis 2015; 25:322-5. [PMID: 24346355 DOI: 10.1097/mbc.0000000000000034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although basic medical studies have shown that lysophosphatidic acid (LPA) has an important relationship to activated blood platelets, we know little about this from clinical experience. This pilot study examined plasma LPA levels in patients with a risk of thrombotic events and evaluated the effects of aspirin on plasma LPA levels. In this basically cross-sectional study, we recruited 1352 patients with either hypertension or hyperlipidemia and 670 controls without any risk factors. Patients with risk factors had significantly higher plasma LPA levels than controls, the mean of LPA = 3.12 ± 2.24 vs. 2.57 ± 1.96 μmol/l, P < 0.001. The patients who had been taking aspirin had relatively lower plasma LPA levels compared with those who did not take aspirin, χ = 43.8, odds ratio (OR) [95% confidence interval (CI)] = 2.76 (2.03-3.75). For the hypertension group, χ = 23.1, OR (95% CI) = 3.44 (2.03-5.82), P < 0.001; for the hyperlipidemia group, χ = 22.9, OR (95% CI) = 2.53 (1.72-3.74), P < 0.001. Patients with a risk factor had higher plasma LPA levels compared with controls. Administration of aspirin may decrease elevated plasma LPA levels. This pilot clinical observation indicates that plasma LPA is worth to be studied further.
Collapse
|
5
|
Kurano M, Dohi T, Nojiri T, Kobayashi T, Hirowatari Y, Inoue A, Kano K, Matsumoto H, Igarashi K, Nishikawa M, Miyauchi K, Daida H, Ikeda H, Aoki J, Yatomi Y. Blood levels of serotonin are specifically correlated with plasma lysophosphatidylserine among the glycero-lysophospholipids. BBA CLINICAL 2015; 4:92-8. [PMID: 26675681 PMCID: PMC4661731 DOI: 10.1016/j.bbacli.2015.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/01/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
Backgrounds Glycero-lysophospholipids (glycero-LPLs), which are known to exert potent biological activities, have been demonstrated to be secreted from activated platelets in vitro; however, their association with platelet activation in vivo has not been yet elucidated. In this study, we investigated the correlations between the blood levels of each glycero-LPL and serotonin, a biomarker of platelet activation, in human subjects to elucidate the involvement of platelet activation in glycero-LPLs in vivo. Methods and Results We measured the plasma serotonin levels in 141 consecutive patients undergoing coronary angiography (acute coronary syndrome, n = 38; stable angina pectoris, n = 71; angiographically normal coronary arteries, n = 32) and investigated the correlations between the plasma levels of serotonin and glycero-LPLs. The results revealed the existence of a specific and significant association between the plasma serotonin and plasma lysophosphatidylserine (LysoPS) levels. On the contrary, regular aspirin intake failed to affect the plasma LysoPS levels despite the fact that the plasma lysophosphatidic acid, lysophosphatidylethanolamine, lysophosphatidylglycerol, and lysophosphatidylinositol levels were lower in those who had taken aspirin regularly. Conclusion We found a specific positive correlation between the blood levels of serotonin and LysoPS, a new lipid mediator. Thus, LysoPS might be specifically involved in strong platelet activation, which is associated with the release of serotonin. General Significance Our present results suggest the possible involvement of LysoPS in the pathogenesis of atherosclerotic diseases. A significant positive correlation between the plasma serotonin and lysophosphatidylserine was observed. Regular intake of aspirin had no influence on plasma lysophosphatidylserine. PS-PLA1 was correlated with lysophosphatidylserine only in acute coronary syndrome.
Collapse
Key Words
- ACS, acute coronary syndrome
- Acute coronary syndrome
- Aspirin
- Glycero-LPL, glycero-lysophospholipid
- Glycero-lysophospholipids
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- LPL, lysophospholipid
- LysoPA, lysophosphatidic acids
- LysoPC, lysophosphatidylcholine
- LysoPE, lysophosphatidylethanolamine
- LysoPG, lysophosphatidylglycerol
- LysoPI, lysophosphatidylinositol
- LysoPS, lysophosphatidylserine
- Lysophosphatidylserine
- NCA, angiographically normal coronary arteries
- PS, phosphatidylserine
- PS-PLA1, phosphatidylserine-specific phospholipase A1;
- SAP, stable angina pectoris
- Serotonin
Collapse
Affiliation(s)
- Makoto Kurano
- The University of Tokyo, Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
- CREST, Japan Science and Technology Corporation (JST), Japan
| | - Tomotaka Dohi
- Juntendo University School of Medicine, Department of Cardiovascular Medicine, Japan
| | - Takahiro Nojiri
- The University of Tokyo Hospital, Department of Clinical Laboratory, Tokyo, Japan
| | - Tamaki Kobayashi
- The University of Tokyo Hospital, Department of Clinical Laboratory, Tokyo, Japan
| | - Yuji Hirowatari
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
- Saitama Prefectural University, Laboratory Science, Department of Health Science, Saitama, Japan
| | - Asuka Inoue
- Tohoku University, Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Miyagi, Japan
- PRESTO, Japan Science and Technology Corporation (JST), Japan
| | - Kuniyuki Kano
- CREST, Japan Science and Technology Corporation (JST), Japan
- Tohoku University, Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Miyagi, Japan
| | - Hirotaka Matsumoto
- Tohoku University, Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Miyagi, Japan
| | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Masako Nishikawa
- The University of Tokyo, Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
- CREST, Japan Science and Technology Corporation (JST), Japan
| | - Katsumi Miyauchi
- Juntendo University School of Medicine, Department of Cardiovascular Medicine, Japan
| | - Hiroyuki Daida
- Juntendo University School of Medicine, Department of Cardiovascular Medicine, Japan
| | - Hitoshi Ikeda
- The University of Tokyo, Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
- CREST, Japan Science and Technology Corporation (JST), Japan
- The University of Tokyo Hospital, Department of Clinical Laboratory, Tokyo, Japan
| | - Junken Aoki
- CREST, Japan Science and Technology Corporation (JST), Japan
- Tohoku University, Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Miyagi, Japan
| | - Yutaka Yatomi
- The University of Tokyo, Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
- CREST, Japan Science and Technology Corporation (JST), Japan
- The University of Tokyo Hospital, Department of Clinical Laboratory, Tokyo, Japan
- Corresponding author at: The University of Tokyo, Department of Clinical Laboratory Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.The University of TokyoDepartment of Clinical Laboratory MedicineGraduate School of Medicine7-3-1 HongoBunkyo-kuTokyo113-8655Japan
| |
Collapse
|
6
|
Martin-Lorenzo M, Balluff B, Maroto AS, Carreira RJ, van Zeijl RJM, Gonzalez-Calero L, de la Cuesta F, Barderas MG, Lopez-Almodovar LF, Padial LR, McDonnell LA, Vivanco F, Alvarez-Llamas G. Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology. J Proteomics 2015; 126:245-51. [PMID: 26079611 DOI: 10.1016/j.jprot.2015.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/22/2022]
Abstract
The molecular anatomy of healthy and atherosclerotic tissue is pursued here to identify ongoing molecular changes in atherosclerosis development. Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. Mass spectrometry imaging (MSI) is a novel unexplored ex vivo imaging approach in CVD able to provide in-tissue molecular maps. A rabbit model of early atherosclerosis was developed and high-spatial-resolution MALDI-MSI was applied to comparatively analyze histologically-based arterial regions of interest from control and early atherosclerotic aortas. Specific protocols were applied to identify lipids and proteins significantly altered in response to atherosclerosis. Observed protein alterations were confirmed by immunohistochemistry in rabbit tissue, and additionally in human aortas. Molecular features specifically defining different arterial regions were identified. Localized in the intima, increased expression of SFA and lysolipids and intimal spatial organization showing accumulation of PI, PG and SM point to endothelial dysfunction and triggered inflammatory response. TG, PA, SM and PE-Cer were identified specifically located in calcified regions. Thymosin β4 (TMSB4X) protein was upregulated in intima versus media layer and also in response to atherosclerosis. This overexpression and localization was confirmed in human aortas. In conclusion, molecular histology by MS Imaging identifies spatial organization of arterial tissue in response to atherosclerosis.
Collapse
Affiliation(s)
- Marta Martin-Lorenzo
- Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, REDinREN, Madrid, Spain
| | - Benjamin Balluff
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aroa S Maroto
- Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, REDinREN, Madrid, Spain
| | - Ricardo J Carreira
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rene J M van Zeijl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fernando Vivanco
- Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, REDinREN, Madrid, Spain; Department of Biochemistry and Molecular Biology I, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
7
|
Kurano M, Suzuki A, Inoue A, Tokuhara Y, Kano K, Matsumoto H, Igarashi K, Ohkawa R, Nakamura K, Dohi T, Miyauchi K, Daida H, Tsukamoto K, Ikeda H, Aoki J, Yatomi Y. Possible Involvement of Minor Lysophospholipids in the Increase in Plasma Lysophosphatidic Acid in Acute Coronary Syndrome. Arterioscler Thromb Vasc Biol 2015; 35:463-70. [DOI: 10.1161/atvbaha.114.304748] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Makoto Kurano
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Akiko Suzuki
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Asuka Inoue
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Yasunori Tokuhara
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kuniyuki Kano
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hirotaka Matsumoto
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Koji Igarashi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Ryunosuke Ohkawa
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kazuhiro Nakamura
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Tomotaka Dohi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Katsumi Miyauchi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hiroyuki Daida
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kazuhisa Tsukamoto
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hitoshi Ikeda
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Junken Aoki
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Yutaka Yatomi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| |
Collapse
|
8
|
Lysophosphatidic acid increases the electrophysiological instability of adult rabbit ventricular myocardium by augmenting L-type calcium current. PLoS One 2012; 7:e45862. [PMID: 23029283 PMCID: PMC3448719 DOI: 10.1371/journal.pone.0045862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/22/2012] [Indexed: 01/17/2023] Open
Abstract
Lysophosphatidic acid (LPA) has diverse actions on the cardiovascular system and is widely reported to modulate multiple ion currents in some cell types. However, little is known about its electrophysiological effects on cardiac myocytes. This study investigated whether LPA has electrophysiological effects on isolated rabbit myocardial preparations. The results indicate that LPA prolongs action potential duration at 90% repolarization (APD90) in a concentration- and frequency-dependent manner in isolated rabbit ventricular myocytes. The application of extracellular LPA significantly increases the coefficient of APD90 variability. LPA increased L-type calcium current (ICa,L) density without altering its activation or deactivation properties. In contrast, LPA has no effect on two other ventricular repolarizing currents, the transient outward potassium current (Ito) and the delayed rectifier potassium current (IK). In arterially perfused rabbit left ventricular wedge preparations, the monophasic action potential duration, QT interval, and Tpeak-end are prolonged by LPA. LPA treatment also significantly increases the incidence of ventricular tachycardia induced by S1S2 stimulation. Notably, the effects of LPA on action potentials and ICa,L are PTX-sensitive, suggesting LPA action requires a Gi-type G protein. In conclusion, LPA prolongs APD and increases electrophysiological instability in isolated rabbit myocardial preparations by increasing ICa,L in a Gi protein-dependent manner.
Collapse
|
9
|
Dohi T, Miyauchi K, Ohkawa R, Nakamura K, Kishimoto T, Miyazaki T, Nishino A, Nakajima N, Yaginuma K, Tamura H, Kojima T, Yokoyama K, Kurata T, Shimada K, Yatomi Y, Daida H. Increased circulating plasma lysophosphatidic acid in patients with acute coronary syndrome. Clin Chim Acta 2011; 413:207-12. [PMID: 21983165 DOI: 10.1016/j.cca.2011.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND The platelet activator lysophosphatidic acid (LPA) has recently been identified as an ingredient in oxidized LDL and it has been isolated from atherosclerotic plaques. The lysophospholipase D activity of autotaxin produces LPA extracellularly from lysophosphatidylcholine (LPC). The present study determines whether circulating LPA is associated with acute coronary syndrome (ACS). METHODS We enrolled 141 consecutive patients (age, 62.6±3.8 y; male, 69.2%) with ACS (n=38), stable angina pectoris (SAP; n=72) or angiographically normal coronary arteries (NCA; n=31). The relationships between LPA and other established biomarkers were examined. Concentrations of plasma LPA were determined using an enzymatic assay. RESULTS Concentrations of LPA significantly correlated with LPC (r=0.549), autotaxin (r=0.370) and LDL-C (r=0.307) (all p<0.01). Lysophosphatidic acid concentrations were significantly higher in patients with ACS than with SAP and NCA (p<0.01), but did not significantly differ between patients with SAP and NCA. Multivariate logistic regression analyses revealed that the highest LPA tertile was independently associated with ACS (odds ratio 1.99, 95% CI: 1.18-3.39, p=0.02). CONCLUSIONS The present study demonstrated that increased circulating plasma LPA concentrations are significantly associated with ACS.
Collapse
Affiliation(s)
- Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Danne O, Möckel M. Choline in acute coronary syndrome: an emerging biomarker with implications for the integrated assessment of plaque vulnerability. Expert Rev Mol Diagn 2010; 10:159-71. [PMID: 20214535 DOI: 10.1586/erm.10.2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Whole-blood choline, plasma choline and serum choline are emerging biomarkers in acute coronary syndrome related to coronary plaque instability with platelet thrombus formation and ischemia. Whole-blood choline is an early predictor for cardiac events, which adds to troponins, natriuretic peptides and inflammatory markers. Serum choline is highly predictive for myocardial infarction and discriminates high- from low-risk subgroups in troponin-positive patients. Choline is a candidate marker to aid decision making in the emergency room in the upcoming era of sensitive troponin tests and the growing need to differentiate between ischemic and nonischemic etiologies of troponin elevations. The integrated approach of in vitro choline measurement in combination with advanced techniques of in vivo choline imaging represents a novel future strategy for detecting vulnerable plaques. This paper provides an up-to-date review of choline in acute coronary syndrome including key aspects of pathophysiology, analytical methods, clinical studies and implications for the integrated assessment of plaque vulnerability.
Collapse
Affiliation(s)
- Oliver Danne
- Department of Medicine, Internal Intensive Care and Nephrology, Charité - Universitätsmedizin Berlin/Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
11
|
Li ZG, Yu ZC, Wang DZ, Ju WP, Zhan X, Wu QZ, Wu XJ, Cong HM, Man HH. Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular diseases. Neurol Res 2008; 30:366-9. [PMID: 18544253 DOI: 10.1179/174313208x300369] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND PURPOSE Lysophosphatidic acid (LPA) is released from activated platelets. Acetylsalicylate (aspirin) is the most commonly used antiplatelet drug. The purpose of this study is to observe whether treatment with acetylsalicylate decreases the LPA level in patients with ischemic cerebrovascular diseases. METHODS We performed a study examining LPA level in fresh plasma in cases and controls enrolled in the LPA and Stroke Prevention Study. Level of LPA was assayed by measuring its inorganic phosphorus after separation by chromatography. RESULTS An elevated LPA level was seen in cases (n = 254) with ischemic cerebrovascular disease (3.11+/- 1.55 micromol/l) compared with 136 healthy controls (1.77 +/- 1.04 micromol/l) (p < 0.001). Administration of aspirin (100 mg q.d.) for 1 month significantly lowered LPA level in patients (n = 142) (2.41 +/- 1.03 mu mol/l) compared with that before taking acetylsalicylate (4.06 +/- 1.03 micromol/l) (p < 0.001). However, the LPA level in patients (n = 36) who stopped acetylsalicylate after taking it for 1 month was re-elevated. Before and after taking acetylsalicylate for 1 month, their LPA levels were 4.23 +/- 1.15 and 1.93 +/- 0.85 micromol/l, respectively. After 1 month withdrawal, level was 3.90 +/- 1.09 micromol/l (p < 0.001 compared that before taking acetylsalicylate). CONCLUSION Our findings support a close association between increased plasma LPA level and platelet activation. Acetylsalicylate could decrease plasma LPA levels, which may be used as a mechanism for acetylsalicylate in the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Zhen-Guang Li
- Department of Neurology, Wendeng Central Hospital, Weifang Medical College, Weifang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Danne O, Lueders C, Storm C, Frei U, Möckel M. Whole blood choline and plasma choline in acute coronary syndromes: prognostic and pathophysiological implications. Clin Chim Acta 2007; 383:103-9. [PMID: 17553478 DOI: 10.1016/j.cca.2007.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 05/01/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Whole blood choline (WBCHO) and plasma choline (PLCHO) concentrations increase rapidly after stimulation of phospholipase D in acute coronary syndromes (ACS). Early risk-stratification was analyzed in 217 patients with suspected ACS and a negative admission troponin T (<0.03 microg/L). METHODS WBCHO and PLCHO were measured using high-performance-liquid-chromatography mass spectrometry. Major cardiac events (MACE) were defined as cardiac death/arrest, coronary intervention or myocardial infarction (MI). RESULTS WBCHO (> or = 28.2 micromol/L) was predictive for MACE (hazard ratio [HR] 2.7; p<0.001), cardiac death/arrest (HR 4.2; p=0.015), heart failure (HR 2.8; p=0.003), coronary intervention (HR 2.1; p=0.01) and MI (HR 8.4; p=0.002) after 30 days. PLCHO (> or = 25.0 micromol/L) was predictive for MACE (HR 2.6; p=0.005), cardiac death/arrest (HR 15.7; p<0.001), heart failure (HR 6.0; p<0.001) but not for coronary intervention and MI. WBCHO and PLCHO were predictive for MACE in multivariate analysis (Odds ratio [OR] 2.7, p=0.009 and OR 3.3, p=0.03) independently of age, gender, prior MI, coronary risk factors and ECG. CONCLUSIONS WBCHO and PLCHO are significant and independent predictors of major cardiac events in admission troponin T negative acute coronary syndromes. Both are predictive for events related to tissue ischemia and WBCHO is capable of detecting risks associated with coronary plaque instability.
Collapse
Affiliation(s)
- Oliver Danne
- Department of Medicine, Internal Intensive Care and Nephrology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
13
|
Kaneyuki U, Ueda S, Yamagishi SI, Kato S, Fujimura T, Shibata R, Hayashida A, Yoshimura J, Kojiro M, Oshima K, Okuda S. Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation. Vascul Pharmacol 2007; 46:286-92. [PMID: 17178255 DOI: 10.1016/j.vph.2006.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA), a product generated during oxidative modification of low-density lipoprotein (LDL) and a major lipid extracted from human atherosclerotic plaques, has been shown to elicit smooth muscle cell (SMC) proliferation and inflammation, thereby being involved in atherogenesis. Recently, statins, an inhibitor of 3-hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase, have been reported to reduce the risk of cardiovascular events and slows the progression of atherosclerosis, at least partly, via pleiotropic effects. However, the effect of statin on the LPA-signaling in SMCs remains to be elucidated. In this study, we investigated whether and how pitavastatin could inhibit the LPA-induced proliferation and monocyte chemoattractant protein-1 (MCP-1) expression in cultured human aortic SMCs. LPA dose-dependently increased intracellular reactive oxygen species (ROS) generation in SMCs, which was blocked by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase or pitavastatin. The anti-oxidative property of pitavastatin was prevented by simultaneous treatment of geranylgeranyl pyrophosphate. Furthermore, overexpression of dominant negative Rac-1 mutant was found to inhibit the LPA-induced ROS generation in SMCs. LPA induced Rac-1 activation in SMCs, which was suppressed by pitavastatin or LPA receptor antagonist. Pitavastatin, DPI, and an anti-oxidant N-acetylcysteine inhibited the LPA-induced proliferation and MCP-1 gene expression in SMCs. These results suggest that pitavastatin could block the LPA-induced proliferation and MCP-1 expression in SMCs by suppressing Rac-1-mediated NADPH oxidase-dependent ROS generation. Our present study provides a novel beneficial aspect of pitavastatin; pitavastatin may act as a blocker of the LPA-signaling in SMCs.
Collapse
MESH Headings
- Antioxidants/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemokine CCL2/metabolism
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Lysophospholipids/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Quinolines/pharmacology
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Lysophosphatidic Acid/drug effects
- Signal Transduction/drug effects
- Transfection
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Utako Kaneyuki
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rosengren B, Jönsson-Rylander AC, Peilot H, Camejo G, Hurt-Camejo E. Distinctiveness of secretory phospholipase A2 group IIA and V suggesting unique roles in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1301-8. [PMID: 17070102 DOI: 10.1016/j.bbalip.2006.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 01/26/2023]
Abstract
Clinical observations strongly support an association of circulating levels of secretory phospholipases A(2) (sPLA(2)) in atherosclerotic cardiovascular disease (ACVD). Two modes of action can provide causal support for these statistical correlations. One is the action of the enzymes on circulating lipoproteins and the other is direct action on the lipoproteins once in the arterial extracellular intima. In this review we discuss results suggesting a distinct profile of characteristics related to localization, action on plasma lipoproteins and interaction with arterial proteoglycans for sPLA(2)-IIA and sPLA(2)-V. The differences observed indicate that these enzymes may contribute to atherosclerosis through dissimilar pathways. Furthermore, we comment on recent animal studies from our laboratory indicating that the expression of type V enzyme is up-regulated by genetically and nutritionally-induced dyslipidemias but not the group type IIA enzyme, which is well known to be up-regulated by acute inflammation. The results suggest that if similar up-regulation occurs in humans in response to hyperlipidemia, it may create a distinctive link between the group V enzyme and the disease.
Collapse
|
15
|
Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W, Tigyi G, Miller DD. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Fatty Alcohol Phosphates as Lysophosphatidic Acid Receptor Ligands, Activators of PPARγ, and Inhibitors of Autotaxin†. J Med Chem 2005; 48:4919-30. [PMID: 16033271 DOI: 10.1021/jm049609r] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that fatty alcohol phosphates (FAP) represent a minimal pharmacophore required to interact with lysophosphatidic acid (LPA) receptors. To improve the activity of the first-generation saturated FAP series, a structure-activity relationship (SAR) study was carried out that includes modifications to the headgroup and alkyl side chain of the FAP pharmacophore. A series of unsaturated (C(10)-C(18)) FAP, headgroup-modified hydrolytically stable saturated (C(10)-C(18)) alkyl phosphonates, and saturated and unsaturated (C(10)-C(18)) thiophosphate analogues were synthesized and evaluated for activity in RH7777 cells transfected with individual LPA(1)(-3) receptors, in PC-3 cells and in human platelets that endogenously express all three isoforms. In this series we identified several LPA(1)- and LPA(3)-selective antagonists with IC(50) values in the nanomolar range. Oleoyl-thiophosphate (15g) was shown to be a pan-agonist, whereas tetradecyl-phosphonate (16c) was identified as a pan-antagonist. These compounds were also tested for the ability to activate the transcription factor PPARgamma, an intracellular receptor for LPA, in CV1 cells transfected with the PPRE-Acox-Rluc reporter gene. All the FAP tested, along with the previously reported LPA GPCR antagonists dioctanoyl glycerol pyrophosphate (2), Ki16425 (6), and the agonist OMPT (3), were activators of PPARgamma. The pan-agonist oleoyl-thiophosphate (15g) and pan-antagonist tetradecyl-phosphonate (16c) mimicked LPA in inhibiting autotaxin, a secreted lysophospholipase D that produces LPA in biological fluids.
Collapse
Affiliation(s)
- Gangadhar G Durgam
- Department of Pharmaceutical Sciences, College of Pharmacy and Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Room 227C, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang C, Baker DL, Yasuda S, Makarova N, Balazs L, Johnson LR, Marathe GK, McIntyre TM, Xu Y, Prestwich GD, Byun HS, Bittman R, Tigyi G. Lysophosphatidic acid induces neointima formation through PPARgamma activation. ACTA ACUST UNITED AC 2004; 199:763-74. [PMID: 15007093 PMCID: PMC2212723 DOI: 10.1084/jem.20031619] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor–like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)γ antagonist GW9662 and mimicked by PPARγ agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine. In contrast, stearoyl-oxovaleryl phosphatidylcholine, a PPARα agonist and polypeptide epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor failed to elicit neointima. The structure-activity relationship for neointima induction by LPA analogs in vivo is identical to that of PPARγ activation in vitro and disparate from that of LPA G protein–coupled receptor activation. Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662. These results suggest that selected LPA analogs are important novel endogenous PPARγ ligands capable of mediating vascular remodeling and that activation of the nuclear transcription factor PPARγ is both necessary and sufficient for neointima formation by components of oxidized low density lipoprotein.
Collapse
MESH Headings
- Analysis of Variance
- Anilides/pharmacology
- Animals
- Arteriosclerosis/chemically induced
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Calmodulin-Binding Proteins/metabolism
- Carotid Artery Diseases/chemically induced
- Cells, Cultured
- DNA Primers
- Disease Models, Animal
- Growth Substances/metabolism
- Ligands
- Lipoproteins, LDL/metabolism
- Lysophospholipids/toxicity
- Male
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rosiglitazone
- Structure-Activity Relationship
- Thiazolidinediones/toxicity
- Time Factors
- Transcription Factors/agonists
- Transcription Factors/antagonists & inhibitors
Collapse
Affiliation(s)
- Chunxiang Zhang
- University of Tennessee Health Science Center, Vascular Biology Center of Excellence, Memphis 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|