1
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
3
|
Kofoed RH, Aubert I. Focused ultrasound gene delivery for the treatment of neurological disorders. Trends Mol Med 2024; 30:263-277. [PMID: 38216449 DOI: 10.1016/j.molmed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
The transformative potential of gene therapy has been demonstrated in humans. However, there is an unmet need for non-invasive targeted gene delivery and regulation in the treatment of brain disorders. Transcranial focused ultrasound (FUS) has gained tremendous momentum to address these challenges. FUS non-invasively modulates brain cells and their environment, and is a powerful tool to facilitate gene delivery across the blood-brain barrier (BBB) with millimeter precision and promptly regulate transgene expression. This review highlights technical aspects of FUS-mediated gene therapies for the central nervous system (CNS) and lessons learned from discoveries in other organs. Understanding the possibilities and remaining obstacles of FUS-mediated gene therapy will be necessary to harness remarkable technologies and create life-changing treatments for neurological disorders.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
5
|
Feroze RA, Kopechek J, Zhu J, Chen X, Villanueva FS. Ultrasound-Induced Microbubble Cavitation for Targeted Delivery of MiR-29b Mimic to Treat Cardiac Fibrosis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2573-2580. [PMID: 37749011 DOI: 10.1016/j.ultrasmedbio.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Cardiac fibrosis contributes to adverse ventricular remodeling and is associated with loss of miR-29b. Overexpression of miR-29b via plasmid or intravenous injection of microRNA mimic has blunted fibrosis, but these are inefficient and non-targeted delivery strategies. In this study, we tested the hypothesis that delivery of microRNA-29b (miR-29b) using ultrasound-targeted microbubble cavitation (UTMC) of miR-29b-loaded microbubbles would attenuate cardiac fibrosis and preserve left ventricular (LV) function. METHODS Lipid microbubbles were loaded with miR-29b mimic (miR-29b-MB) or negative control (NC) mimic (NC-MB), placed with cardiac fibroblasts (CFs) and treated with pulsed ultrasound. Cells were harvested to measure downstream fibrotic mediators. Mice received angiotensin II (ANG II) infusion causing afterload increase and direct ANG II-induced cardiac fibrosis. UTMC of miRNA-loaded microbubbles was administered to the heart at days 0, 3 and 7. Serial echocardiography was performed, and hearts were harvested on day 10. RESULTS UTMC treatment of CFs with miR-29b-MB increased miR-29b and decreased fibrotic transcripts compared with NC-MB treatment. In vivo UTMC + NC-MB led to increased LV mass, reduction in cardiac function and increase in fibrotic markers, demonstrating ANGI II-induced adverse cardiac remodeling. Mice treated with UTMC + miR-29b-MB had preservation of cardiac function, downregulation of cardiac fibrillin and trends of lower COL1A1, COL1A2 and COL3 mRNA and decreased cardiac α-smooth muscle protein. CONCLUSION UTMC-mediated delivery of miR-29b mimic blunts expression of fibrosis markers and preserves LV function in ANG II-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Rafey A Feroze
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Kopechek
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Jianhui Zhu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, Li J, Jiao X, Guo E, Yu Y, Sun L, Tian H. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater 2023; 164:604-625. [PMID: 37080445 DOI: 10.1016/j.actbio.2023.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: : Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peian Cai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiarou Li
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yixiu Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
7
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
8
|
Rudakovskaya PG, Barmin RA, Kuzmin PS, Fedotkina EP, Sencha AN, Gorin DA. Microbubbles Stabilized by Protein Shell: From Pioneering Ultrasound Contrast Agents to Advanced Theranostic Systems. Pharmaceutics 2022; 14:1236. [PMID: 35745808 PMCID: PMC9227336 DOI: 10.3390/pharmaceutics14061236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasound is a widely-used imaging modality in clinics as a low-cost, non-invasive, non-radiative procedure allowing therapists faster decision-making. Microbubbles have been used as ultrasound contrast agents for decades, while recent attention has been attracted to consider them as stimuli-responsive drug delivery systems. Pioneering microbubbles were Albunex with a protein shell composed of human serum albumin, which entered clinical practice in 1993. However, current research expanded the set of proteins for a microbubble shell beyond albumin and applications of protein microbubbles beyond ultrasound imaging. Hence, this review summarizes all-known protein microbubbles over decades with a critical evaluation of formulations and applications to optimize the safety (low toxicity and high biocompatibility) as well as imaging efficiency. We provide a comprehensive overview of (1) proteins involved in microbubble formulation, (2) peculiarities of preparation of protein stabilized microbubbles with consideration of large-scale production, (3) key chemical factors of stabilization and functionalization of protein-shelled microbubbles, and (4) biomedical applications beyond ultrasound imaging (multimodal imaging, drug/gene delivery with attention to anticancer treatment, antibacterial activity, biosensing). Presented critical evaluation of the current state-of-the-art for protein microbubbles should focus the field on relevant strategies in microbubble formulation and application for short-term clinical translation. Thus, a protein bubble-based platform is very perspective for theranostic application in clinics.
Collapse
Affiliation(s)
- Polina G. Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Roman A. Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Pavel S. Kuzmin
- Institute of Materials for Modern Energy and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Elena P. Fedotkina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Alexander N. Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Dmitry A. Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| |
Collapse
|
9
|
Zhou J, Niu C, Huang B, Chen S, Yu C, Cao S, Pei W, Guo R. Platelet Membrane Biomimetic Nanoparticles Combined With UTMD to Improve the Stability of Atherosclerotic Plaques. Front Chem 2022; 10:868063. [PMID: 35350774 PMCID: PMC8958035 DOI: 10.3389/fchem.2022.868063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Although research on the treatment of atherosclerosis has progressed recently, challenges remain in developing more effective, safer and transformative strategies for the treatment of atherosclerosis. Nanomaterials have recently played a unique role in many fields, including atherosclerosis treatment. Platelets are common component in the blood. Due to their inherent properties, platelets can target and adhere to atherosclerotic plaques. Ultrasound-targeted microbubble destruction (UTMD) shows great prospects in promoting the efficiency of drug delivery in treating solid tumors. In this study, we explored the possibility that UTMD assists platelet biomimetic rapamycin (RAP)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (RAP@PLT NPs) in the treatment of atherosclerosis. The biomimetic nano-formulations exhibit better targeting ability to plaques when administered in vivo. Targeted destruction of Sonovue™ in the aortic area further improved the efficiency of targeting plaques. Moreover, the progression of atherosclerotic plaques was inhibited, and the stability of plaques was improved. Together, our study established a novel strategy for targeted delivery of nanoparticles in atherosclerotic plaques, by combining the advantages of the ultrasonic cavitation effect and biomimicking nanoparticles in drug delivery.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Caigui Yu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Sheng Cao, ; Wenjing Pei, ; Ruiqiang Guo,
| | - Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Sheng Cao, ; Wenjing Pei, ; Ruiqiang Guo,
| | - Ruiqiang Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Sheng Cao, ; Wenjing Pei, ; Ruiqiang Guo,
| |
Collapse
|
10
|
Winkler SL, Urbisci AE, Best TM. Sustained acoustic medicine for the treatment of musculoskeletal injuries: a systematic review and meta-analysis. BMC Sports Sci Med Rehabil 2021; 13:159. [PMID: 34922606 PMCID: PMC8684070 DOI: 10.1186/s13102-021-00383-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Musculoskeletal injuries account for 10 million work-limited days per year and often lead to both acute and/or chronic pain, and increased chances of re-injury or permanent disability. Conservative treatment options include various modalities, nonsteroidal anti-inflammatory drugs, and physical rehabilitation programs. Sustained Acoustic Medicine is an emerging prescription home-use mechanotransductive device to stimulate cellular proliferation, increase microstreaming and cavitation in situ, and to increase tissue profusion and permeability. This research aims to summarize the clinical evidence on Sustained Acoustic Medicine and measurable outcomes in the literature. METHODS A systematic literature review was conducted using PubMed, EBSCOhost, Academic Search Complete, Google Scholar and ClinicalTrials.gov to identify studies evaluating the effects of Sustained Acoustic Medicine on the musculoskeletal system of humans. Articles identified were selected based on inclusion criteria and scored on the Downs and Black checklist. Study design, clinical outcomes and primary findings were extracted from included studies for synthesis and meta-analysis statistics. RESULTS A total of three hundred and seventy-two participants (372) were included in the thirteen clinical research studies reviewed including five (5) level I, four (4) level II and four (4) level IV studies. Sixty-seven (67) participants with neck and back myofascial pain and injury, one hundred and fifty-six (156) participants with moderate to severe knee pain and radiographically confirmed knee osteoarthritis (Kellgren-Lawrence grade II/III), and one hundred forty-nine (149) participants with generalized soft-tissue injury of the elbow, shoulder, back and ankle with limited function. Primary outcomes included daily change in pain intensity, change in Western Ontario McMaster Osteoarthritis Questionnaire, change in Global Rate of Change, and functional outcome measures including dynamometry, grip strength, range-of-motion, and diathermic heating (temperature measurement). CONCLUSION Sustained Acoustic Medicine treatment provides tissue heating and tissue recovery, improved patient function and reduction of pain. When patients failed to respond to physical therapy, Sustained Acoustic Medicine proved to be a useful adjunct to facilitate healing and return to work. As a non-invasive and non-narcotic treatment option with an excellent safety profile, Sustained Acoustic Medicine may be considered a good therapeutic option for practitioners.
Collapse
Affiliation(s)
| | | | - Thomas M Best
- UHealth Sports Medicine Institute, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
11
|
Pepe GJ, Albrecht ED. Novel Technologies for Target Delivery of Therapeutics to the Placenta during Pregnancy: A Review. Genes (Basel) 2021; 12:1255. [PMID: 34440429 PMCID: PMC8392549 DOI: 10.3390/genes12081255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uterine spiral artery remodeling is essential for placental perfusion and fetal growth and, when impaired, results in placental ischemia and pregnancy complications, e.g., fetal growth restriction, preeclampsia, premature birth. Despite the high incidence of adverse pregnancies, current treatment options are limited. Accordingly, research has shifted to the development of gene therapy technologies that provide targeted delivery of "payloads" to the placenta while limiting maternal and fetal exposure. This review describes the current strategies, including placental targeting peptide-bound liposomes, nanoparticle or adenovirus constructs decorated with specific peptide sequences and placental gene promoters delivered via maternal IV injection, directly into the placenta or the uterine artery, as well as noninvasive site-selective targeting of regulating genes conjugated with microbubbles via contrast-enhanced ultrasound. The review also provides a perspective on the effectiveness of these technologies in various animal models and their practicability and potential use for targeted placental delivery of therapeutics and genes in adverse human pregnancies affected by placental dysfunction.
Collapse
Affiliation(s)
- Gerald J. Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Eugene D. Albrecht
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Zhao Z, Lin X, Zhang L, Liu X, Wang Q, Shi Y, Cui G, Cai H, Chen Y, Li Y, Hu A, Zhang Z, Liu J, Xie H, Zheng T, Liang X, Shuai X, Chen Y, Sun D. Lipidated Methotrexate Microbubbles: A Promising Rheumatoid Arthritis Theranostic Medicine Manipulated via Ultrasonic Irradiation. J Biomed Nanotechnol 2021; 17:1293-1304. [PMID: 34446133 DOI: 10.1166/jbn.2021.3105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
De novo designed lipidated methotrexate was synthesized and self-assembled into microbubbles for targeted rheumatoid arthritis theranostic treatment. Controlled lipidatedmethotrexate delivery was achieved by ultrasound-targetedmicrobubble destruction technique. Methotrexate was dissociated inflammatory microenvironment of synovial cavity, owing to representive low pH and enriched leucocyte esterase. We first manipulated methotrexate controlled release with RAW 264.7 cell line in vitro and further verified with rheumatoid arthritis rabbits in vivo. Results showed that lipidated methotrexate microbubbles precisely affected infection focus and significantly enhanced rheumatoid arthritis curative effect comparing with dissociative methotrexate. This study indicates that lipidated methotrexate microbubbles might be considered as a promising rheumatoid arthritis theranostics medicine.
Collapse
Affiliation(s)
- Zhuofei Zhao
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Xiaona Lin
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Lulu Zhang
- Department of Ultrasonography, Peking University Third Hospital, Beijing, 100191, China
| | - Xia Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Qingwen Wang
- Department of Rheumatology, Peking University Shenzhen Hospital, Institute of Immune and Inflammatory Diseases, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Guanghui Cui
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Huali Cai
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yan Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yongbin Li
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Azhen Hu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Zhuxia Zhang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Jun Liu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Haiqin Xie
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Tingting Zheng
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Xiaolong Liang
- Department of Ultrasonography, Peking University Third Hospital, Beijing, 100191, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Desheng Sun
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| |
Collapse
|
13
|
Anderson CD, Walton CB, Shohet RV. A Comparison of Focused and Unfocused Ultrasound for Microbubble-Mediated Gene Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1785-1800. [PMID: 33812691 PMCID: PMC8169610 DOI: 10.1016/j.ultrasmedbio.2021.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 05/05/2023]
Abstract
We compared focused and unfocused ultrasound-targeted microbubble destruction (UTMD) for delivery of reporter plasmids to the liver and heart in mice. Optimal hepatic expression was seen with double-depth targeting at 5 and 13 mm in vivo, incorporating a low pulse repetition frequency and short pulse duration. Reporter expression was similar, but the transfection patterns were distinct, with intense foci of transfection using focused UTMD (F-UTMD). We then compared both approaches for cardiac delivery and found 10-fold stronger levels of reporter expression for F-UTMD and observed small areas of intense luciferase expression in the left ventricle. Non-linear contrast imaging of the liver before and after insonation also showed a substantially greater change in signal intensity for F-UTMD, suggesting distinct cavitation mechanisms for both approaches. Overall, similar levels of hepatic transgene expression were observed, but cardiac-directed F-UTMD was substantially more effective. Focused ultrasound presents a new frontier in UTMD-directed gene therapy.
Collapse
Affiliation(s)
- Cynthia D Anderson
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Chad B Walton
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA.
| |
Collapse
|
14
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Rostami M, Sobhani Nasab A, Fasihi-Ramandi M, Badiei A, Rahimi-Nasrabadi M, Ahmadi F. The ZnFe 2O 4@mZnO–N/RGO nano-composite as a carrier and an intelligent releaser drug with dual pH- and ultrasound-triggered control. NEW J CHEM 2021. [DOI: 10.1039/d0nj04758a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Graphical design of the synergistic of nano-carriers for targeted controlled anti-cancer Cur drug delivery and their interactions with site-specific cancer cells and tumor tissues in order to enhance the selectivity of cancer therapy.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Ali Sobhani Nasab
- Social Determinants of Health (SDH) Research Center
- Kashan University of Medical Sciences
- Kashan
- Iran
- Core Research Lab
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center
- Systems Biology and Poisoning Institute
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center
- Systems Biology and Poisoning Institute
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | - Farhad Ahmadi
- Physiology Research center, Faculty of Medicine, Iran University of Medical Sciences
- Tehran
- Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy-International Campus, Iran University of Medical Sciences
- Iran
| |
Collapse
|
16
|
Xue Q, Wang R, Wang L, Xiong B, Li L, Qian J, Hao L, Wang Z, Liu D, Deng C, Rong S, Yao Y, Jiang Y, Zhu Q, Huang J. Downregulating the P2X3 receptor in the carotid body to reduce blood pressure via acoustic gene delivery in canines. Transl Res 2021; 227:30-41. [PMID: 32554072 DOI: 10.1016/j.trsl.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 01/26/2023]
Abstract
The purinergic P2X3 receptor in the carotid body (CB) is considered a new target for treating hypertension, although approaches for targeted regulating P2X3 receptor expression are lacking. Here, we explored the feasibility of targeted P2X3 receptor down-regulation in CBs by localized low-intensity focused ultrasound (LIFU)-mediated gene delivery to reduce the blood pressure. Thirty-two Kunming canines were randomly assigned to the treatment group (n = 14), negative control group (n = 10), LIFU + cationic microbubbles group (n = 4), and LIFU-only group (n = 4). Plasmid-loaded cationic microbubbles were injected and bilateral CBs were irradiated with a LIFU-based transducer. Flow cytometry showed that 33.15% of transfected cells expressed the green fluorescent protein reporter gene. T7 endonuclease I assays showed an insertion-deletion rate of 8.30%. The P2X3 receptor mRNA- and protein-expression levels in CBs decreased by 56.31% and 45.10%, respectively, in the treatment group. Mean systolic (152.5 ± 3.0 vs 138.0 ± 2.9 mm Hg, P = 0.003) and diastolic (97.8 ± 1.5 vs 87.2 ± 2.3 mm Hg, P= 0.002) blood pressures reduced on day 14 in the treatment group, compared with the baseline values, whereas no effects were observed with LIFU treatment or cationic microbubbles injection alone. Canines treated with this strategy exhibited no local or systemic adverse events. Thus, LIFU-mediated gene delivery to CBs successfully modulated CB function and reduced blood pressure in a canine model, suggesting a new possibility for treating hypertension and further clinical translation.
Collapse
Affiliation(s)
- Qian Xue
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, China
| | - Dichuan Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changming Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Que Zhu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Salih M, Ali SM, Jena N, Ananthasubramaniam K. Review of ultrasound contrast agents in current clinical practice with special focus on DEFINITY ® in cardiac imaging. Future Cardiol 2020; 17:197-214. [PMID: 32897099 DOI: 10.2217/fca-2020-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Echocardiography is the most widely used noninvasive modality to evaluate the structure and function of the cardiac muscle in daily practice. However, up to 15-20% of echocardiograms are considered suboptimal. To enable accurate assessment of cardiac function and wall motion abnormality, the use of ultrasound microbubble contrast has shown substantial benefits in cases of salvaging nondiagnostic studies and enhancing the diagnostic accuracy in daily practice. DEFINITY® is a perflutren based, lipid shelled microbubble contrast agent, which is US FDA approved for left ventricular opacification. The basis of ultrasound microbubbles, its development, and the clinical role of DEFINITY (characteristics, indications and case examples, side effect profile and existing evidence) is the subject of discussion in this review.
Collapse
Affiliation(s)
- Mohammed Salih
- Department of Medicine, St Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA
| | - Syed Musadiq Ali
- Department Of Cardiology, Beth Israel Deaconess Hospital, Boston, MA 02215, USA
| | - Nihar Jena
- Department of Medicine, St Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA
| | | |
Collapse
|
18
|
Yi L, Chen Y, Jin Q, Deng C, Wu Y, Li H, Liu T, Li Y, Yang Y, Wang J, Lv Q, Zhang L, Xie M. Antagomir-155 Attenuates Acute Cardiac Rejection Using Ultrasound Targeted Microbubbles Destruction. Adv Healthc Mater 2020; 9:e2000189. [PMID: 32548962 DOI: 10.1002/adhm.202000189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Antagomir-155 is an artificial inhibitor of miRNA-155, which is expected to be a promising therapeutic target to attenuate acute cardiac rejection (ACR). However, its vulnerability of being degraded by endogenous nuclease and potential off-target effect make the authors seek for a more suitable way to delivery it. In attribution of efficiency and safety, ultrasound targeted microbubbles destruction (UTMD) turns out to be an appropriate method to deliver gene to target tissues. Here, cationic microbubbles to deliver antagomir-155 downregulating miRNA-155 in murine allograft hearts triggered by UTMD are synthesized. The viability of this therapy is verified by fluorescent microscopy. The biodistribution of antagomir-155 is analyzed by optical imaging system. The results show antagomir-155 delivered by UTMD which significantly decreases the levels of miR-155. Also, this therapy downregulates the expression of cytokines and inflammation infiltration. And allograft survival time is significantly prolonged. Therefore, antagomir-loaded microbubbles trigged by UTMD may provide a novel platform for ACR target treatment.
Collapse
Affiliation(s)
- Luyang Yi
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yihan Chen
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Qiaofeng Jin
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Cheng Deng
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Ya Wu
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Huiling Li
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Tianshu Liu
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yuman Li
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yali Yang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Jing Wang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Qing Lv
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Li Zhang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Mingxing Xie
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| |
Collapse
|
19
|
LncRNA-ATB in cancers: what do we know so far? Mol Biol Rep 2020; 47:4077-4086. [PMID: 32248383 DOI: 10.1007/s11033-020-05415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
Cancer-related deaths did not apparently decrease in the past decades despite aggressive treatments. It's reported that cancer will become the leading cause of death worldwide in the twenty-first century. Increasing evidence has revealed that lncRNAs will emerge as promising cancer biomarkers or therapeutic targets in cancer treatment. LncRNA-ATB, a long noncoding RNA activated by TGF-β, was found to be abnormally expressed in certain cancers and participate in the development and progression of tumors. In addition, aberrant lncRNA-ATB expression was also associated with clinical characteristics of tumors. The purpose of this review is to summarize functions and underlying mechanisms of lncRNA-ATB in tumors, and discuss whether lncRNA-ATB can be a biomarker and therapeutic target in cancers.
Collapse
|
20
|
Guha A, Shaharyar MA, Ali KA, Roy SK, Kuotsu K. Smart and Intelligent Stimuli Responsive Materials: An Innovative Step in Drug Delivery System. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212711906666190723142057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background:
In the field of drug delivery, smart and intelligent approaches have gained
significant attention among researchers in order to improve the efficacy of conventional dosage forms.
Material science has played a key role in developing these intelligent systems that can deliver therapeutic
cargo on-demand. Stimuli responsive material based drug delivery systems have emerged as
one of the most promising innovative tools for site-specific delivery. Several endogenous and exogenous
stimuli have been exploited to devise “stimuli-responsive” materials for targeted drug delivery.
Methods:
For better understanding, these novel systems have been broadly classified into two categories:
Internally Regulated Systems (pH, ionic strength, glucose, enzymes, and endogenous receptors)
and Externally Regulated Systems (Light, magnetic field, electric field, ultrasound, and temperature).
This review has followed a systematic approach through separately describing the design, development,
and applications of each stimuli-responsive system in a constructive manner.
Results:
The development includes synthesis and characterization of each system, which has been discussed
in a structured manner. From advantages to drawbacks, a detailed description has been included
for each smart stimuli responsive material. For a complete review in this niche area of drug delivery,
a wide range of therapeutic applications including recent advancement of these smart materials
have been incorporated.
Conclusion:
From the current scenario to future development, a precise overview of each type of system
has been discussed in this article. In summary, it is expected that researchers working in this novel
area will be highly benefited from this scientific review.
Collapse
Affiliation(s)
- Arijit Guha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Md. Adil Shaharyar
- Bengal School of Technology, Sugandha, Hooghly, West Bengal-712102, India
| | - Kazi Asraf Ali
- Bengal School of Technology, Sugandha, Hooghly, West Bengal-712102, India
| | - Sanjit Kr. Roy
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
21
|
Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2020; 25:401-412. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on 'multi-modal' therapies involving light and sound.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Ronald A Roy
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Kopechek JA, McTiernan CF, Chen X, Zhu J, Mburu M, Feroze R, Whitehurst DA, Lavery L, Cyriac J, Villanueva FS. Ultrasound and Microbubble-targeted Delivery of a microRNA Inhibitor to the Heart Suppresses Cardiac Hypertrophy and Preserves Cardiac Function. Am J Cancer Res 2019; 9:7088-7098. [PMID: 31660088 PMCID: PMC6815962 DOI: 10.7150/thno.34895] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRs) are dysregulated in pathological left ventricular hypertrophy. AntimiR inhibition of miR-23a suppressed hypertension-induced cardiac hypertrophy in preclinical models, but clinical translation is limited by a lack of cardiac-targeted delivery systems. Ultrasound-targeted microbubble cavitation (UTMC) utilizes microbubbles as nucleic acid carriers to target delivery of molecular therapeutics to the heart. The objective of this study was to evaluate the efficacy of UTMC targeted delivery of antimiR-23a to the hearts of mice for suppression of hypertension-induced cardiac hypertrophy. Methods: Cationic lipid microbubbles were loaded with 300 pmol negative control antimiR (NC) or antimiR-23a. Mice received continuous phenylephrine infusion via implanted osmotic minipumps, then UTMC treatments with intravenously injected antimiR-loaded microbubbles 0, 3, and 7 days later. At 2 weeks, hearts were harvested and miR-23a levels were measured. Left ventricular (LV) mass and function were assessed with echocardiography. Results: UTMC treatment with antimiR-23a decreased cardiac miR-23a levels by 41 ± 8% compared to UTMC + antimiR-NC controls (p < 0.01). Furthermore, LV mass after 1 week of phenylephrine treatment was 17 ± 10% lower following UTMC + antimiR-23a treatment compared to UTMC + antimiR-NC controls (p = 0.02). At 2 weeks, fractional shortening was 23% higher in the UTMC + antimiR-23a mice compared to UTMC + antimiR-NC controls (p < 0.01). Conclusions: UTMC is an effective technique for targeted functional delivery of antimiRs to the heart causing suppression of cardiac hypertrophy and preservation of systolic function. This approach could represent a revolutionary therapy for patients suffering from pathological cardiac hypertrophy and other cardiovascular conditions.
Collapse
|
23
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|
24
|
Babischkin JS, Aberdeen GW, Lindner JR, Bonagura TW, Pepe GJ, Albrecht ED. Vascular Endothelial Growth Factor Delivery to Placental Basal Plate Promotes Uterine Artery Remodeling in the Primate. Endocrinology 2019; 160:1492-1505. [PMID: 31002314 PMCID: PMC6542484 DOI: 10.1210/en.2019-00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Extravillous trophoblast (EVT) uterine artery remodeling (UAR) promotes placental blood flow, but UAR regulation is unproven. Elevating estradiol (E2) in early baboon pregnancy suppressed UAR and EVT vascular endothelial growth factor (VEGF) expression, but this did not prove that VEGF mediated this process. Therefore, our primate model of prematurely elevating E2 and contrast-enhanced ultrasound cavitation of microbubble (MB) carriers was used to deliver VEGF DNA to the placental basal plate (PBP) to establish the role of VEGF in UAR. Baboons were treated on days 25 to 59 of gestation (term, 184 days) with E2 alone or with E2 plus VEGF DNA-conjugated MBs briefly infused via a maternal peripheral vein on days 25, 35, 45, and 55. At each of these times an ultrasound beam was directed to the PBP to collapse the MBs and release VEGF DNA. VEGF DNA-labeled MBs per contrast agent was localized in the PBP but not the fetus. Remodeling of uterine arteries >25 µm in diameter on day 60 was 75% lower (P < 0.001) in E2-treated (7% ± 2%) than in untreated baboons (30% ± 4%) and was restored to normal by E2/VEGF. VEGF protein levels (signals/nuclear area) within the PBP were twofold lower (P < 0.01) in E2-treated (4.2 ± 0.9) than in untreated (9.8 ± 2.8) baboons and restored to normal by E2/VEGF (11.9 ± 1.6), substantiating VEGF transfection. Thus, VEGF gene delivery selectively to the PBP prevented the decrease in UAR elicited by prematurely elevating E2 levels, establishing the role of VEGF in regulating UAR in vivo during primate pregnancy.
Collapse
Affiliation(s)
- Jeffery S Babischkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Graham W Aberdeen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | | | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Correspondence: Eugene D. Albrecht, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Bressler Research Laboratories 11-019, 655 West Baltimore Street, Baltimore, Maryland 21201. E-mail:
| |
Collapse
|
25
|
Do HD, Couillaud BM, Doan BT, Corvis Y, Mignet N. Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Adv Drug Deliv Rev 2019; 138:3-17. [PMID: 30321618 DOI: 10.1016/j.addr.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Nucleic acids (NAs) have been considered as promising therapeutic agents for various types of diseases. However, their clinical applications still face many limitations due to their charge, high molecular weight, instability in biological environment and low levels of transfection. To overcome these drawbacks, therapeutic NAs should be carried in a stable nanocarrier, which can be viral or non-viral vectors, and released at specific target site. Various controllable gene release strategies are currently being evaluated with interesting results. Endogenous stimuli-responsive systems, for example pH-, redox reaction-, enzymatic-triggered approaches have been widely studied based on the physiological differences between pathological and normal tissues. Meanwhile, exogenous triggered release strategies require the use of externally non-invasive physical triggering signals such as light, heat, magnetic field and ultrasound. Compared to internal triggered strategies, external triggered gene release is time and site specifically controllable through active management of outside stimuli. The signal induces changes in the stability of the delivery system or some specific reactions which lead to endosomal escape and/or gene release. In the present review, the mechanisms and examples of exogenous triggered gene release approaches are detailed. Challenges and perspectives of such gene delivery systems are also discussed.
Collapse
|
26
|
Yuan H, Hu H, Sun J, Shi M, Yu H, Li C, Sun YU, Yang Z, Hoffman RM. Ultrasound Microbubble Delivery Targeting Intraplaque Neovascularization Inhibits Atherosclerotic Plaque in an APOE-deficient Mouse Model. In Vivo 2018; 32:1025-1032. [PMID: 30150423 DOI: 10.21873/invivo.11342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIM Intraplaque neovascularization is often associated with plaque formation, development and instability, and clinical symptoms in atherosclerosis. The aim of the present study was to investigate a new strategy for treating athrosclerosis by ultrasound-targeted microbubble delivery (UTMD) targeting intraplaque neovascularization in an APOE-deficient mouse model of atherosclerosis. MATERIALS AND METHODS A mouse model of atherosclerosis was induced by feeding Apoe-/- mice a hypercholesterolemic diet and was verified with hematoxylin and eosin staining and intercellular adhesion molecule 1 (ICAM-1) expression. Targeted microbubbles (MB) were prepared by conjugating microbubbles with biotinylated antibody to ICAM1 (MBi) or with both biotinylated anti-ICAM1 and the angiogenesis inhibitor Endostar (MBie). The targeted microbubbles were analyzed with epifluorescence microscopy and flow cytometry. The animals with induced atherosclerotic plaques received MBi or MBie followed by UTMD treatment. Endostar treatment alone was given to other animals for comparison. Morphological assessment of atherosclerotic plaques was performed after treatment. The expression of angiogenesis marker CD31 was detected by immunohistochemical analysis. RESULTS Atherosclerotic plaques developed in the entire aorta with significant intraplaque ICAM-1 expression in the APOE-deficient mice following a 30-week hypercholesterolemic diet. Microbubbles were successfully conjugated with anti-ICAM-1 and Endostar, with a conjugation rate of 98.3% and 63.5%, respectively. UTMD with MBie significantly reduced the area of atherosclerotic plaque as compared to the model control (p<0.05). Treatment with Endostar and UTMD with MBie significantly reduced CD31 expression compared with the model control group (p<0.01). Greater significant inhibitory effect on CD31 expression was found in the group treated with UTMD and MBie compared to the Endostar- and UTMD with MBi groups (p<0.01). CONCLUSION UTMD targeting intraplaque neovascularization was found to inhibit atherosclerotic plaque in a mouse model of atherosclerosis, suggesting the potential of microbubble-mediated ultrasound technology in aiding drug delivery for atherosclerosis treatment.
Collapse
Affiliation(s)
- Hong Yuan
- Yuhang District First People's Hospital, Hangzhou, P.R. China
| | - Haiqiang Hu
- Yuhang District First People's Hospital, Hangzhou, P.R. China
| | - Jindong Sun
- Yuhang District First People's Hospital, Hangzhou, P.R. China
| | - Mingjuan Shi
- Yuhang District First People's Hospital, Hangzhou, P.R. China
| | - Huamin Yu
- Yuhang District First People's Hospital, Hangzhou, P.R. China
| | - Cairong Li
- Medical College of Hangzhou Normal University, Hangzhou, P.R. China
| | - Y U Sun
- Origin Biosciences Inc., Nanjing, P.R. China
| | - Zhijian Yang
- Origin Biosciences Inc., Nanjing, P.R. China.,AntiCancer, Inc., San Diego, CA, U.S.A
| | | |
Collapse
|
27
|
Izadifar Z, Babyn P, Chapman D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0391-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, Kutty S, Leong-Poi H, Lindner JR, Main ML, Mathias W, Park MM, Senior R, Villanueva F. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr 2018; 31:241-274. [DOI: 10.1016/j.echo.2017.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
|
30
|
Jiang N, Chen Q, Cao S, Hu B, Wang YJ, Zhou Q, Guo RQ. Ultrasound‑targeted microbubbles combined with a peptide nucleic acid binding nuclear localization signal mediate transfection of exogenous genes by improving cytoplasmic and nuclear import. Mol Med Rep 2017; 16:8819-8825. [PMID: 28990051 PMCID: PMC5779960 DOI: 10.3892/mmr.2017.7681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022] Open
Abstract
The development of an efficient delivery system is critical for the successful treatment of cardiovascular diseases using non-viral gene therapies. Cytoplasmic and nuclear membrane barriers reduce delivery efficiency by impeding the transfection of foreign genes. Thus, a gene delivery system capable of transporting exogenous genes may improve gene therapy. The present study used a novel strategy involving ultrasound-targeted microbubbles and peptide nucleic acid (PNA)-binding nuclear localization signals (NLS). Ultrasound-targeted microbubble destruction (UTMD) and PNA-binding NLS were used to improve the cytoplasmic and nuclear importation of the plasmid, respectively. Experiments were performed using antibody-targeted microbubbles (AT-MCB) that specifically recognize the SV40T antigen receptor expressed on the membranes of 293T cells, resulting in the localization of ultrasound microbubbles to 293T cell membranes. Furthermore, PNA containing NLS was inserted into the enhanced green fluorescent protein (EGFP)-N3 plasmid DNA (NLS-PNA-DNA), which increased nuclear localization. The nuclear import and gene expression efficiency of the AT-MCB with PNA-binding NLS were compared with AT-MCB alone or a PNA-binding NLS. The effect of the AT-MCB containing PNA-binding NLS on transfection was investigated. The ultrasound and AT-MCB delivery significantly enhanced the cytoplasmic intake of exogenous genes and maintained high cell viability. The nuclear import and gene expression of combined microbubble- and PNA-transfected cells were significantly greater compared with cells that were transfected with AT-MCB or DNA with only PNA-binding NLS. The quantity of EGFP-N3 plasmids in the nuclei was increased by >5.0-fold compared with control microbubbles (CMCB) and NLS-free plasmids. The gene expression was ~1.7-fold greater compared with NLS-free plasmids and 1.3-fold greater compared with control microbubbles. In conclusion, UTMD combined with AT-MCB and a PNA-binding NLS plasmid significantly improved transfection efficiency by increasing cytoplasmic and nuclear DNA import. This method is a promising strategy for the noninvasive and effective delivery of target genes or drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui-Qiang Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
31
|
Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017; 261:246-262. [DOI: 10.1016/j.jconrel.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
32
|
Mullick Chowdhury S, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer. Ultrasonography 2017; 36:171-184. [PMID: 28607323 PMCID: PMC5494871 DOI: 10.14366/usg.17021] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jürgen K. Willmann
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Tang H, Zheng Y, Chen Y. Materials Chemistry of Nanoultrasonic Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604105. [PMID: 27991697 DOI: 10.1002/adma.201604105] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Indexed: 06/06/2023]
Abstract
As a special cross-disciplinary research frontier, nanoultrasonic biomedicine refers to the design and synthesis of nanomaterials to solve some critical issues of ultrasound (US)-based biomedicine. The concept of nanoultrasonic biomedicine can also overcome the drawbacks of traditional microbubbles and promote the generation of novel US-based contrast agents or synergistic agents for US theranostics. Here, we discuss the recent developments of material chemistry in advancing the nanoultrasonic biomedicine for diverse US-based bio-applications. We initially introduce the design principles of novel nanoplatforms for serving the nanoultrasonic biomedicine, from the viewpoint of synthetic material chemistry. Based on these principles and diverse US-based bio-application backgrounds, the representative proof-of-concept paradigms on this topic are clarified in detail, including nanodroplet vaporization for intelligent/responsive US imaging, multifunctional nano-contrast agents for US-based multi-modality imaging, activatable synergistic agents for US-based therapy, US-triggered on-demand drug releasing, US-enhanced gene transfection, US-based synergistic therapy on combating the cancer and potential toxicity issue of screening various nanosystems suitable for nanoultrasonic biomedicine. It is highly expected that this novel nanoultrasonic biomedicine and corresponding high performance in US imaging and therapy can significantly promote the generation of new sub-discipline of US-based biomedicine by rationally integrating material chemistry and theranostic nanomedicine with clinical US-based biomedicine.
Collapse
Affiliation(s)
- Hailin Tang
- Department of Diagnostic Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated, Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
34
|
Wang X, Wang W, Yu L, Tang Y, Cao J, Chen Y. Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J Mater Chem B 2017; 5:4579-4586. [PMID: 32264301 DOI: 10.1039/c7tb00938k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesoporous silica nanocrystals have been developed as sonosensitizers for efficient dynamic therapy of tumors.
Collapse
Affiliation(s)
- Xi Wang
- Zhongshan Hospital Fudan University
- Department of ultrasound
- 180 Feng-lin Road
- Shanghai
- P. R. China
| | - Wenping Wang
- Zhongshan Hospital Fudan University
- Department of ultrasound
- 180 Feng-lin Road
- Shanghai
- P. R. China
| | - Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Yang Tang
- Shanghai Institute of Medical Imaging
- Shanghai
- P. R. China
| | - Jiaying Cao
- Zhongshan Hospital Fudan University
- Department of ultrasound
- 180 Feng-lin Road
- Shanghai
- P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| |
Collapse
|
35
|
|
36
|
Abstract
Ultrasound targeted microbubble destruction (UTMD) is a novel technique that is used to deliver a gene or other bioactive substance to organs of living animals in a noninvasive manner. Plasmid DNA binding with cationic liposome into nanoparticles are assembled into the shell of microbubbles, which are circulated by intravenous injection. Intermittent bursts of ultrasound with low frequency and high mechanical index destroys the microbubbles and releases the nanoparticles into targeted organ to transfect local organ cells. Cell-specific promoters can be used to further enhance cell specificity. Here we describe UTMD applied to cardiac gene delivery.
Collapse
Affiliation(s)
- Shuyuan Chen
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA.
| |
Collapse
|
37
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
38
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
39
|
Fu L, Ke HT. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biol Med 2016; 13:313-324. [PMID: 27807499 PMCID: PMC5069833 DOI: 10.20892/j.issn.2095-3941.2016.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Lei Fu
- Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng-Te Ke
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
Ultrasound-targeted microbubble destruction in gene therapy: A new tool to cure human diseases. Genes Dis 2016; 4:64-74. [PMID: 30258909 PMCID: PMC6136600 DOI: 10.1016/j.gendis.2016.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023] Open
Abstract
Human gene therapy has made significant advances in less than two decades. Within this short period of time, gene therapy has proceeded from the conceptual stage to technology development and laboratory research, and finally to clinical trials for the treatment of a variety of deadly diseases. Cardiovascular disease, cancer, and stroke are leading causes of death worldwide. Despite advances in medical, interventional, radiation and surgical treatments, the mortality rate remains high, and the need for novel therapies is great. Gene therapy provides an efficient approach to disease treatment. Notable advances in gene therapy have been made for genetic disorders, including severe combined immune deficiency, chronic granulomatus disorder, hemophilia and blindness, as well as for acquired diseases, including cancer and neurodegenerative and cardiovascular diseases. However, lack of an efficient delivery system to target cells as well as the difficulty of sustained expression of transgenes has hindered advancements in gene therapy. Ultrasound targeted microbubble destruction (UTMD) is a promising approach for target-specific gene delivery, and it has been successfully investigated for the treatment of many diseases in the past decade. In this paper, we review UTMD-mediated gene delivery for the treatment of cardiovascular diseases, cancer and stroke.
Collapse
|
41
|
Kopechek JA, Carson AR, McTiernan CF, Chen X, Klein EC, Villanueva FS. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound. PLoS One 2016; 11:e0159751. [PMID: 27471848 PMCID: PMC4966949 DOI: 10.1371/journal.pone.0159751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/07/2016] [Indexed: 01/29/2023] Open
Abstract
RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.
Collapse
Affiliation(s)
- Jonathan A. Kopechek
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Dept. of Bioengineering, University of Louisville, Louisville, KY, United States of America
| | - Andrew R. Carson
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Charles F. McTiernan
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xucai Chen
- Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Edwin C. Klein
- Dept. of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | |
Collapse
|
42
|
Liu Y, Yan J, Santangelo PJ, Prausnitz MR. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure. J Control Release 2016; 234:1-9. [PMID: 27165808 DOI: 10.1016/j.jconrel.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes.
Collapse
Affiliation(s)
- Ying Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Jing Yan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
43
|
Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M, O'Brien WD, Cheng J. Targeted Ultrasound-Assisted Cancer-Selective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angew Chem Int Ed Engl 2016; 55:5452-6. [PMID: 27010510 PMCID: PMC4918225 DOI: 10.1002/anie.201509601] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Metabolic sugar labeling followed by the use of reagent-free click chemistry is an established technique for in vitro cell targeting. However, selective metabolic labeling of the target tissues in vivo remains a challenge to overcome, which has prohibited the use of this technique for targeted in vivo applications. Herein, we report the use of targeted ultrasound pulses to induce the release of tetraacetyl N-azidoacetylmannosamine (Ac4 ManAz) from microbubbles (MBs) and its metabolic expression in the cancer area. Ac4 ManAz-loaded MBs showed great stability under physiological conditions, but rapidly collapsed in the presence of tumor-localized ultrasound pulses. The released Ac4 ManAz from MBs was able to label 4T1 tumor cells with azido groups and significantly improved the tumor accumulation of dibenzocyclooctyne (DBCO)-Cy5 by subsequent click chemistry. We demonstrated for the first time that Ac4 ManAz-loaded MBs coupled with the use of targeted ultrasound could be a simple but powerful tool for in vivo cancer-selective labeling and targeted cancer therapies.
Collapse
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - Marianne Gauthier
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jamie R Kelly
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ming Xu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - William D O'Brien
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
44
|
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16:815-26. [DOI: 10.1517/14712598.2016.1169268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Schlegel P, Huditz R, Meinhardt E, Rapti K, Geis N, Most P, Katus HA, Müller OJ, Bekeredjian R, Raake PW. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model. Hum Gene Ther Methods 2016; 27:71-8. [DOI: 10.1089/hgtb.2015.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philipp Schlegel
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Regina Huditz
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Eric Meinhardt
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Kleopatra Rapti
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Nicolas Geis
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hugo A. Katus
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Philip W. Raake
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M, O'Brien WD, Cheng J. Targeted Ultrasound‐Assisted Cancer‐Selective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| | - Marianne Gauthier
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jamie R. Kelly
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Rita J. Miller
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Ming Xu
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| | - William D. O'Brien
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| |
Collapse
|
47
|
Huynh E, Rajora MA, Zheng G. Multimodal micro, nano, and size conversion ultrasound agents for imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:796-813. [PMID: 27006001 DOI: 10.1002/wnan.1398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 12/20/2022]
Abstract
Ultrasound (US) is one of the most commonly used clinical imaging techniques. However, the use of US and US-based intravenous agents extends far beyond imaging. In particular, there has been a surge in the fabrication of multimodality US contrast agents and theranostic US agents for cancer imaging and therapy. The unique interaction of US waves with microscale and nanoscale agents has attracted much attention in the development of contrast agents and drug-delivery vehicles. The dimensions of the agent not only dictate how it behaves in vivo, but also how it interacts with US for imaging and drug delivery. Furthermore, these agents are also unique due to their ability to convert from the nanoscale to the microscale and vice versa, having imaging and therapeutic utility in both dimensions. Here, we review multimodality and multifunctional US-based agents, according to their size, and also highlight recent developments in size conversion US agents. WIREs Nanomed Nanobiotechnol 2016, 8:796-813. doi: 10.1002/wnan.1398 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Elizabeth Huynh
- Princess Margaret Cancer Center and Techna Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Maneesha A Rajora
- Princess Margaret Cancer Center and Techna Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Center and Techna Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer 2016; 138:1328-36. [PMID: 26044706 DOI: 10.1002/ijc.29626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 12/26/2022]
Abstract
The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area.
Collapse
Affiliation(s)
- Wan-Shun Wen
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China
| | - Zhi-Min Yuan
- Cervical Disease Clinic, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, China
| | - Shi-Jie Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jiang Xu
- Department of Rehabilitation, the Affiliated Huai'an Hospital of Xuzhou Medical College and the Second People's Hospital of Huai'an, Huai'an, China
| | - Dong-Tang Yuan
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
49
|
Meng M, Gao J, Wu C, Zhou X, Zang X, Lin X, Liu H, Wang C, Su H, Liu K, Wang Y, Xue X, Wu J. Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of rabbit with VX2 liver tumor. Tumour Biol 2016; 37:8673-80. [PMID: 26738862 PMCID: PMC4990606 DOI: 10.1007/s13277-015-4525-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/26/2015] [Indexed: 01/11/2023] Open
Abstract
A new class of multifunctional nanobubble using poly(lactic-co-glycolic acid) (PLGA) has been developed as ultrasound imaging contrast agents, doxorubicin carriers, and enhancers of ultrasound-mediated drug delivery. The doxorubicin nanobubble (DOX-NB) wrapping carbon tetrafluoride gas was prepared with double emulsion method. We evaluated the enhanced ultrasonic function of the DOX-NB in vivo; its antitumor function was confirmed. The diameter of the prepared bubble was 500 nm, and the potential was −23 mV. The drug loading and encapsulation efficiency of the bubble were 78.6 and 7.4 %, respectively. Therefore, the DOX-NB greatly enhanced ultrasound imaging in vivo. Ultrasound combined with DOX-NB had significant antitumor effect. Compared with other groups, the tumor growth rate and the proliferation index were the lowest while the survival rate and apoptosis index were the highest.
Collapse
Affiliation(s)
- Mingming Meng
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Jie Gao
- The Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Chongchong Wu
- The Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xuan Zhou
- The Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Zang
- The Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiangchun Lin
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Hong Liu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Canghai Wang
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Hui Su
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Kuiliang Liu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Yadan Wang
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Xinying Xue
- The Department of Special Medical Treatment, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China.
| | - Jing Wu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China.
| |
Collapse
|
50
|
Microbubbles and Ultrasound: Therapeutic Applications in Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:309-30. [PMID: 26486345 DOI: 10.1007/978-3-319-22536-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN) remains one of the most common causes of end-stage renal disease. Current therapeutic strategies aiming at optimization of serum glucose and blood pressure are beneficial in early stage DN, but are unable to fully prevent disease progression. With the limitations of current medical therapies and the shortage of available donor organs for kidney transplantation, the need for novel therapies to address DN complications and prevent progression towards end-stage renal failure is crucial. The development of ultrasound technology for non-invasive and targeted in-vivo gene delivery using high power ultrasound and carrier microbubbles offers great therapeutic potential for the prevention and treatment of DN. The promising results from preclinical studies of ultrasound-mediated gene delivery (UMGD) in several DN animal models suggest that UMGD offers a unique, non-invasive platform for gene- and cell-based therapies targeted against DN with strong clinical translation potential.
Collapse
|