1
|
Xiao X, Yang L, Xiao L, Li Y, Chang X, Han X, Tang W, Zhu Y. Inhibiting arachidonic acid generation mitigates aging-induced hyperinsulinemia and insulin resistance in mice. Clin Nutr 2024; 43:1725-1735. [PMID: 38843581 DOI: 10.1016/j.clnu.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Aging-related type 2 diabetes (T2DM) is characterized by hyperinsulinemia, insulin resistance, and β-cell dysfunction. However, the underlying molecular mechanisms remain to be unclear. METHODS We conducted non-targeted metabolomics to compare human serum samples from young adults (YA), elderly adults (EA), and elderly adults with diabetes (EA + DM) of Chinese population. Adult mice and aged mice were intragastrically administered with varespladib every day for two weeks and metabolic characteristics were monitored. Serum levels of arachidonic acid, insulin, and C-peptide, as well as serum activity of secretory phospholipase A2 (sPLA2) were detected in mice. Mouse islet perfusion assays were used to assess insulin secretion ability. Phosphorylated AKT levels were measured to evaluate insulin sensitivities of peripheral tissues in mice. RESULTS Non-targeted metabolomics analysis of human serum samples revealed differential metabolic signatures among the YA, EA, and EA + DM groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant enhancement of arachidonic acid metabolism and glycerophospholipid metabolism in the EA group compared with the YA group. Further analysis identified two metabolic fluxes that favored the accumulation of arachidonic acid in the elderly. Increased levels of arachidonic acid were also confirmed in aged mice with hyperinsulinemia and insulin resistance, together with subsequent glucose intolerance. Conversely, inhibiting the generation of arachidonic acid with varespladib, an inhibitor of sPLA2, reduced aging-associated diabetes by improving hyperinsulinemia and hepatic insulin resistance in aged mice but not in adult mice. Islet perfusion assays also showed that varespladib treatment suppressed the enhanced insulin secretion observed in aged islets. CONCLUSIONS Collectively, our findings uncover that arachidonic acid serves as a metabolic hub in Chinese elderly population. Our results also suggest that arachidonic acid plays a fundamental role in regulating β-cell function during aging and point to a novel therapy for aging-associated diabetes.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Longxuan Yang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China
| | - Lei Xiao
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, China.
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
2
|
Panasenko OM, Ivanov VA, Mikhalchik EV, Gorudko IV, Grigorieva DV, Basyreva LY, Shmeleva EV, Gusev SA, Kostevich VA, Gorbunov NP, Sokolov AV. Methylglyoxal-Modified Human Serum Albumin Binds to Leukocyte Myeloperoxidase and Inhibits its Enzymatic Activity. Antioxidants (Basel) 2022; 11:2263. [PMID: 36421449 PMCID: PMC9686918 DOI: 10.3390/antiox11112263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.
Collapse
Affiliation(s)
- Oleg M. Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Medical Biophysics of the Institute for Translative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor A. Ivanov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Elena V. Mikhalchik
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Liliya Yu. Basyreva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Sergey A. Gusev
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Valeria A. Kostevich
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Alexey V. Sokolov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
3
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Abstract
During the past few years, there has been a substantial increase in the understanding of innate immunity. Dendritic cells are emerging as key players in the orchestration of this early phase of immune responses, with a role that will translate into the subsequent type of adaptive immune response against infection. Here we provide an overview of dendritic cell differentiation and function, with particular emphasis on those features unique to the immune defense of the peritoneal cavity and in the context of peritoneal dialysis-associated immune responses. The reader is referred to the primary references included in the accompanying list for specific details in this fascinating field.
Collapse
Affiliation(s)
- Michelle L. McCully
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Joaquín Madrenas
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Amplification of the COX/TXS/TP receptor pathway enhances uridine diphosphate-induced contraction by advanced glycation end products in rat carotid arteries. Pflugers Arch 2019; 471:1505-1517. [PMID: 31736003 DOI: 10.1007/s00424-019-02330-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) play a pivotal role in vascular functions under various pathophysiological conditions. Although uridine diphosphate (UDP) is an important extracellular nucleotide, the relationship between AGEs and UDP regarding their effect on vascular functions remains unclear. Therefore, we investigated the effects of AGE-bovine serum albumin (AGE-BSA) on UDP-mediated responses in rat thoracic aorta and carotid arteries. In rat thoracic aorta, UDP-induced relaxation was observed and this relaxation was similar between control (1.0 v/v% PBS) and AGE-BSA-treated (0.1 mg/mL for 60 min) groups. In contrast, contraction but not relaxation was obtained following UDP application to carotid arteries with and without endothelia; contraction was greater in the AGE-BSA-treated group than in the control group. The difference in UDP-induced contraction between the two groups was not abolished by the use of a nitric oxide synthase (NOS) inhibitor, whereas it was abolished by the use of cyclooxygenase (COX), thromboxane synthase (TXS), and thromboxane-prostanoid (TP) receptor antagonist. Further, the difference in UDP-induced contraction was not abolished by the use of a cPLA2 inhibitor, whereas it was abolished by the use of an iPLA2 inhibitor. UDP increased TXA2 release in both groups, and its level was similar in both groups. Moreover, the release of PGE2, PGF2α, and PGI2 was similar among the groups. Under NOS inhibition, TP receptor agonist-induced contraction increased in the AGE-BSA-treated group (vs. control group). In conclusion, the increase in UDP-induced carotid arterial contraction by AGE-BSA can be attributed to an increase in the COX/TXS/TP receptor pathway, particularly, TP receptor signaling.
Collapse
|
7
|
Dilaveris P, Antoniou CK, Manolakou P, Tsiamis E, Gatzoulis K, Tousoulis D. Biomarkers Associated with Atrial Fibrosis and Remodeling. Curr Med Chem 2019; 26:780-802. [PMID: 28925871 DOI: 10.2174/0929867324666170918122502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.
Collapse
Affiliation(s)
- Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Tsiamis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Liu C, Liu B, Liu L, Zhang EL, Sun BD, Xu G, Chen J, Gao YQ. Arachidonic Acid Metabolism Pathway Is Not Only Dominant in Metabolic Modulation but Associated With Phenotypic Variation After Acute Hypoxia Exposure. Front Physiol 2018; 9:236. [PMID: 29615930 PMCID: PMC5864929 DOI: 10.3389/fphys.2018.00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background: The modulation of arachidonic acid (AA) metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS) model. Methods: Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and RNA sequencing were separately performed for metabolomic and transcriptomic profiling, respectively. Influential modules comprising essential metabolites and genes were identified by weighted gene co-expression network analysis (WGCNA) after integrating metabolic information with phenotypic and transcriptomic datasets, respectively. Results: Enrolled subjects exhibited diverse response manners to hypoxia. Combined with obviously altered heart rate, oxygen saturation, hemoglobin, and Lake Louise Score (LLS), metabolomic profiling detected that 36 metabolites were highly related to clinical features in hypoxia responses, out of which 27 were upregulated and nine were downregulated, and could be mapped to AA metabolism pathway significantly. Integrated analysis of metabolomic and transcriptomic data revealed that these dominant molecules showed remarkable association with genes in gas transport incapacitation and disorders of hemoglobin metabolism pathways, such as ALAS2, HEMGN. After detailed description of AA metabolism pathway, we found that the molecules of 15-d-PGJ2, PGA2, PGE2, 12-O-3-OH-LTB4, LTD4, LTE4 were significantly up-regulated after hypoxia stimuli, and increased in those with poor response manner to hypoxia particularly. Further analysis in another cohort showed that genes in AA metabolism pathway such as PTGES, PTGS1, GGT1, TBAS1 et al. were excessively elevated in subjects in maladaptation to hypoxia. Conclusion: This is the first study to construct the map of AA metabolism pathway in response to hypoxia and reveal the crosstalk between phenotypic variation under hypoxia and the AA metabolism pathway. These findings may improve our understanding of the advanced pathophysiological mechanisms in acute hypoxic diseases and provide new insights into critical roles of the AA metabolism pathway in the development and prevention of these diseases.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.,The 12th Hospital of Chinese People's Liberation Army, Kashi, China
| | - Lu Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bind-da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| |
Collapse
|
9
|
Aral CA, Nalbantoğlu Ö, Nur BG, Altunsoy M, Aral K. Metabolic control and periodontal treatment decreases elevated oxidative stress in the early phases of type 1 diabetes onset. Arch Oral Biol 2017. [PMID: 28628802 DOI: 10.1016/j.archoralbio.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recently, increasing concern has been focused on the contribution of oxidative stress in the pathology of periodontal disease and diabetes mellitus. Firstly, the present study aimed to analyze gingival crevicular fluid (GCF), salivary, and serum oxidative status in children with type 1 diabetes mellitus (T1DM) at diagnosis and systemically healthy children with and without gingivitis. Additionally, the diabetic patients were reevaluated after diabetes and periodontal treatment. DESIGN The study groups were composed of 32 T1DM patients at diagnosis, and age- and gender-matched thirty-six systemically healthy children with (G) and without (H) gingivitis. The diabetic patients who took insulin therapy (1.5 units/kg/day totally) and periodontal treatment (oral hygiene education with professional scaling) were reevaluated after 3 months. The levels of total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were recorded. RESULTS GCF, salivary, and serum OSI were elevated in group T1DM compared to the other groups at baseline (p<0.05), and decreased in group T1DM at reevaluation compared to baseline (p<0.05). GCF OSI was positively correlated with periodontal clinical parameters (p<0.05). Glycated hemoglobin was positively correlated with GCF TOS (r=0.302, p=0.007), GCF OSI (r=0.346, p=0.002), salivary TOS (r=0.326, p=0.046), and serum TOS (r=0.239, p=0.044). CONCLUSION The instability in the oxidative status that accompanies diabetes may be considered a significant pathogenic factor of diabetes-related periodontal inflammation.
Collapse
Affiliation(s)
- Cüneyt A Aral
- Division of Periodontology, Malatya Oral and Dental Health Hospital, The Turkish Ministry of Health, Malatya, Turkey.
| | - Özlem Nalbantoğlu
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey
| | - Bilge G Nur
- Division of Pediatric Dentistry, Private Practice, İzmir, Turkey
| | - Mustafa Altunsoy
- Division of Pediatric Dentistry, Private Practice, İzmir, Turkey
| | - Kübra Aral
- Division of Periodontology, Malatya Oral and Dental Health Hospital, The Turkish Ministry of Health, Malatya, Turkey
| |
Collapse
|
10
|
The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs. Toxicol Appl Pharmacol 2017; 323:44-52. [DOI: 10.1016/j.taap.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022]
|
11
|
Souabni H, Wien F, Bizouarn T, Houée-Levin C, Réfrégiers M, Baciou L. The physicochemical properties of membranes correlate with the NADPH oxidase activity. Biochim Biophys Acta Gen Subj 2016; 1861:3520-3530. [PMID: 27378459 DOI: 10.1016/j.bbagen.2016.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Phagocytes kill ingested microbes by exposure to high concentrations of toxic reactive species generated by NADPH-oxidases. This membrane-bound electron-transferring enzyme is tightly regulated by cellular signaling cascades. So far, molecular and biophysical studies of the NADPH-oxidase were performed over limited temperature ranges, which weaken our understanding of immune response or inflammatory events. In this work, we have inspected the influence of temperature and lipid membrane properties on the NADPH-oxidase activity using a system free of cell complexity. METHODS We have extended the experimental conditions of the accepted model for NADPH-oxidase activity, the so-called cell-free assay, to a large temperature range (10-40°C) using different membrane compositions (subcellular compartments or liposomes). RESULTS A remarkable increase of superoxide production rate was observed with rising temperature. Synchrotron radiation circular dichroism data showed that this is not correlated with protein secondary structure changes. When lipid bilayers are in fluid phase, Arrhenius plots of the oxidase activity showed linear relationships with small activation energy (Ea), while when in solid phase, high Ea was found. The sterol content modulates kinetic and thermodynamic parameters. CONCLUSION High temperature promotes the rate of superoxide production. The key element of this enhancement is related to membrane properties such as thickness and viscosity and not to protein structural changes. Membrane viscosity that can be driven by sterols is a paramount parameter of Ea of NADPH oxidase activity. The membrane bilayer state modulated by its sterol content may be considered locally as an enzyme regulator. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Hager Souabni
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Frank Wien
- Synchrotron SOLEIL, Campus Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Chantal Houée-Levin
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | | | - Laura Baciou
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
12
|
Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 2016; 26:1-8. [PMID: 26719220 DOI: 10.1016/j.numecd.2015.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
AIMS To review the significance of a new type of neutrophil cell death (NETosis) in diabetes and cardiometabolic diseases. DATA SYNTHESIS Diabetes and the metabolic syndrome are characterized by activation of the innate immune system. In this framework, neutrophils are front line defences against infections, but can also turn deleterious if abnormally stimulated. NETosis refers to a type of cell death whereby neutrophils release nuclear material and granule enzymes that together form the NETs (neutrophil extracellular traps). As NETs entrap bacteria, NETosis is instrumental to the clearance of microorganisms, but an exaggerated NETosis response can also lead to tissue damage in several pathological conditions. In diabetes, the finely tuned balance of NETosis required to protect the human body from microorganisms yet avoiding self-damage seems to be lost. In fact, in vitro induction of NETosis and circulating concentrations of NET-associated proteins appear to be enhanced in diabetic patients. Furthermore, NETs contribute to endothelial damage, thrombosis, and ischemia/reperfusion injury, making it a novel player in the pathobiology of cardiovascular disease. Though the cellular events taking place during NETosis have been described and directly visualized, its molecular machinery is still incompletely understood. Protein kinase C (PKC) and NADPH oxidase (NOX) are two important targets to counter NETosis in the setting of diabetes. CONCLUSIONS NETosis appears to be part of an abnormal response to damage in diabetes that, in turn, can promote or aggravate end-organ complications. We suggest that this will be a hot topic of investigation in diabetology in the near future.
Collapse
Affiliation(s)
- G P Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| | - L Menegazzo
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - V Scattolini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - M Gintoli
- Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - M Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
13
|
Boshuizen M, Leopold JH, Zakharkina T, Knobel HH, Weda H, Nijsen TME, Vink TJ, Sterk PJ, Schultz MJ, Bos LDJ. Levels of cytokines in broncho-alveolar lavage fluid, but not in plasma, are associated with levels of markers of lipid peroxidation in breath of ventilated ICU patients. J Breath Res 2015; 9:036010. [DOI: 10.1088/1752-7155/9/3/036010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Abstract
Periodontitis is a common, chronic, inflammatory disease in which the supporting apparatus of the teeth is gradually destroyed, resulting in tooth mobility and tooth loss. Susceptibility to periodontitis is increased approximately three-fold in people with diabetes. Hyperglycemia leads to exacerbated tissue destruction and the clinical signs of periodontitis. There is evidence to support a two-way relationship between periodontitis and diabetes; not only does diabetes increase the risk for periodontitis, but periodontitis is associated with compromised glycemic control. Cooperation between health care teams would benefit the treatment of patients with diabetes and periodontitis.
Collapse
Affiliation(s)
- Philip M Preshaw
- School of Dental Sciences, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK.
| | | |
Collapse
|
15
|
Zhang Q, Li G, Liu T. Receptor for advanced glycation end products (RAGE): Novel biomarker and therapeutic target for atrial fibrillation. Int J Cardiol 2013; 168:4802-4. [PMID: 23886524 DOI: 10.1016/j.ijcard.2013.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
16
|
Michelis R, Kristal B, Zeitun T, Shapiro G, Fridman Y, Geron R, Sela S. Albumin oxidation leads to neutrophil activation in vitro and inaccurate measurement of serum albumin in patients with diabetic nephropathy. Free Radic Biol Med 2013; 60:49-55. [PMID: 23429046 DOI: 10.1016/j.freeradbiomed.2013.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 01/25/2013] [Accepted: 02/09/2013] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that oxidative modifications of serum albumin lead to underestimation of albumin concentrations using conventional assays. In addition, oxidation of serum albumin may cause neutrophil activation and further oxidation of albumin, which may result in a series of reciprocal cyclical processes. Because hypoalbuminemia, systemic inflammation, and oxidative stress are common in diabetic nephropathy patients, the aim of this study was to show that albumin modifications and neutrophil activation underlie these reciprocal systemic processes. Blood samples from a cohort of 19 patients with diabetic nephropathy and 15 healthy controls were used for albumin separation. An oxidation-dependent "albumin detection index," representing the detection efficacy of the universal bromocresol green assay, was determined for each subject. This index was correlated with serum albumin levels, various markers of oxidative stress or inflammation, and kidney function. Activation of separated neutrophils by glycoxidized albumin was assessed by the release of neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase (MPO). The albumin detection index of diabetic nephropathy patients was significantly lower compared to that of controls, correlating positively with serum levels of albumin and kidney function and negatively with albumin glycoxidation and inflammatory markers. Glycoxidized albumin had a direct role in neutrophil activation, resulting in NGAL and MPO release. The hypoalbuminemia observed in patients with diabetic nephropathy partially results from underestimation of modified/oxidized albumin using the bromocresol green assay. However, modified or oxidized albumin may lead to a cycle of accelerated oxidative stress and inflammation involving neutrophil activation. We suggest that the albumin detection index, a new marker of oxidative stress, may also serve as a biomarker of diabetic nephropathy severity and its progression.
Collapse
Affiliation(s)
- Regina Michelis
- Eliachar Research Laboratory, Western Galilee Hospital, Nahariya 22100, Israel.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gradinaru D, Borsa C, Ionescu C, Margina D. Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics 2013; 92:313-22. [PMID: 23587667 DOI: 10.1016/j.jprot.2013.03.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED We aimed to explore the association of advanced oxidation and advanced glycation of proteins, and their interrelations with endothelial nitric oxide synthesis, oxidative stress, metabolic profile as well as other atherosclerotic risk markers in prediabetic and diabetic elderly subjects. Advanced glycation end products (AGEs), advanced oxidation protein products (AOPPs), low-density lipoprotein susceptibility to oxidation (oxLDL) and nitric oxide metabolic pathway products (NOx) were assessed in subjects with impaired fasting glucose (prediabetes, IFG; n=90), and type 2 diabetes mellitus (T2DM, n=95) versus control subjects (n=88). Higher levels of AOPPs, AGEs, oxLDL, NOx, atherosclerosis risk markers, and insulin resistance were pointed out in IFG and T2DM groups compared with control. Strong positive associations (p<0.01) of AGEs with fasting glucose and HbA1c were found in both hyperglycemic groups, whereas AOPPs were significantly correlated (p<0.01) only in T2DM. In T2DM, AGEs and AOPPs significantly (p<0.01) correlated with insulin resistance index HOMA-IR, oxLDL and small LDL particle size (TG/HDL-C), and positively with NOx. Direct associations of AGEs and AOPPs with TC/HDL-C and oxLDL/HDL-C, and AGEs-AOPPs interrelations (p<0.01) were identified in IFG and T2DM groups. AGEs and AOPPs in combination with oxLDL and NOx could be important biomarkers for evaluating the association between diabetes and atherosclerotic disorders in aging diabetic patients. BIOLOGICAL SIGNIFICANCE In the present study we have made an attempt to approach the biological and clinical significance of the oxidative and glycoxidative protein damage, in subjects with prediabetes and type-2 diabetes mellitus. AGEs and AOPPs in combination with oxLDL and NOx appear to be important biomarkers for evaluating the association between diabetes and atherosclerotic disorders in aging diabetic patients. More importantly, this cluster of biomarkers that links the short term, "real time" metabolic impairment parameters (NOx, serum glucose, HOMA-IR, serum lipid profile) and the "metabolic memory" markers resulting from the long-term hyperglycemia and hyperlipidemia-induced oxidative stress (HbA1c, AGEs, AOPPs and oxLDL), could be valuable in predicting not only vascular complications in T2DM, but also the onset of diabetes, hence enabling therapeutic interventions from the early stages of diabetes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Ana Aslan - National Institute of Gerontology and Geriatrics, Bucharest, Romania; Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania.
| | | | | | | |
Collapse
|
18
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
19
|
Marchetti E, Monaco A, Procaccini L, Mummolo S, Gatto R, Tetè S, Baldini A, Tecco S, Marzo G. Periodontal disease: the influence of metabolic syndrome. Nutr Metab (Lond) 2012; 9:88. [PMID: 23009606 PMCID: PMC3499456 DOI: 10.1186/1743-7075-9-88] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 08/27/2012] [Indexed: 01/11/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that include obesity, impaired glucose tolerance or diabetes, hyperinsulinemia, hypertension, and dyslipidemia. Recently, more attention has been reserved to the correlation between periodontitis and systemic health. MetS is characterized by oxidative stress, a condition in which the equilibrium between the production and the inactivation of reactive oxygen species (ROS) becomes disrupted. ROS have an essential role in a variety of physiological systems, but under a condition of oxidative stress, they contribute to cellular dysfunction and damage. Oxidative stress may act as a common link to explain the relationship between each component of MetS and periodontitis. All those conditions show increased serum levels of products derived from oxidative damage, promoting a proinflammatory state. Moreover, adipocytokines, produced by the fat cells of fat tissue, might modulate the balance between oxidant and antioxidant activities. An increased caloric intake involves a higher metabolic activity, which results in an increased production of ROS, inducing insulin resistance. At the same time, obese patients require more insulin to maintain blood glucose homeostasis – a state known as hyperinsulinemia, a condition that can evolve into type 2 diabetes. Oxidation products can increase neutrophil adhesion and chemotaxis, thus favoring oxidative damage. Hyperglycemia and an oxidizing state promote the genesis of advanced glycation end-products, which could also be implicated in the degeneration and damage of periodontal tissue. Thus, MetS, the whole of interconnected factors, presents systemic and local manifestations, such as cardiovascular disease and periodontitis, related by a common factor known as oxidative stress.
Collapse
Affiliation(s)
- Enrico Marchetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annalisa Monaco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Procaccini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Mummolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Tetè
- Department of Oral Science, Nano and Biotechnology, University of Chieti, Chieti, Italy
| | - Alberto Baldini
- Department of Oral Science, University of Tor Vergata, Rome, Italy
| | - Simona Tecco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppe Marzo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Tranchida F, Tchiakpe L, Rakotoniaina Z, Deyris V, Ravion O, Hiol A. Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats. J Zhejiang Univ Sci B 2012; 13:307-17. [PMID: 22467372 DOI: 10.1631/jzus.b1100090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As the consumption of fructose and saturated fatty acids (FAs) has greatly increased in western diets and is linked with an increased risk of metabolic syndrome, the aim of this study was to investigate the effects of a moderate (10 weeks) and a prolonged (30 weeks) high fructose and saturated fatty acid (HFS) diet on plasma FA composition in rats. The effects of a few weeks of HFS diet had already been described, but in this paper we tried to establish whether these effects persist or if they are modified after 10 or 30 weeks. We hypothesized that the plasma FA profile would be altered between 10 and 30 weeks of the HFS diet. Rats fed with either the HFS or a standard diet were tested after 10 weeks and again after 30 weeks. After 10 weeks of feeding, HFS-fed rats developed the metabolic syndrome, as manifested by an increase in fasting insulinemia, total cholesterol and triglyceride levels, as well as by impaired glucose tolerance. Furthermore, the plasma FA profile of the HFS group showed higher proportions of monounsaturated FAs like palmitoleic acid [16:1(n-7)] and oleic acid [18:1(n-9)], whereas the proportions of some polyunsaturated n-6 FAs, such as linoleic acid [18:2(n-6)] and arachidonic acid [20:4(n-6)], were lower than those in the control group. After 30 weeks of the HFS diet, we observed changes mainly in the levels of 16:1(n-7) (decreased) and 20:4(n-6) (increased). Together, our results suggest that an HFS diet could lead to an adaptive response of the plasma FA profile over time, in association with the development of the metabolic syndrome.
Collapse
Affiliation(s)
- Fabrice Tranchida
- Institute of Molecular Sciences of Marseilles, iSm2 UMR 7313, CNRS, Aix-Marseille University, 13397 Marseilles Cedex 20, France
| | | | | | | | | | | |
Collapse
|
21
|
Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, Taylor R. Periodontitis and diabetes: a two-way relationship. Diabetologia 2012; 55:21-31. [PMID: 22057194 PMCID: PMC3228943 DOI: 10.1007/s00125-011-2342-y] [Citation(s) in RCA: 896] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022]
Abstract
Periodontitis is a common chronic inflammatory disease characterised by destruction of the supporting structures of the teeth (the periodontal ligament and alveolar bone). It is highly prevalent (severe periodontitis affects 10-15% of adults) and has multiple negative impacts on quality of life. Epidemiological data confirm that diabetes is a major risk factor for periodontitis; susceptibility to periodontitis is increased by approximately threefold in people with diabetes. There is a clear relationship between degree of hyperglycaemia and severity of periodontitis. The mechanisms that underpin the links between these two conditions are not completely understood, but involve aspects of immune functioning, neutrophil activity, and cytokine biology. There is emerging evidence to support the existence of a two-way relationship between diabetes and periodontitis, with diabetes increasing the risk for periodontitis, and periodontal inflammation negatively affecting glycaemic control. Incidences of macroalbuminuria and end-stage renal disease are increased twofold and threefold, respectively, in diabetic individuals who also have severe periodontitis compared to diabetic individuals without severe periodontitis. Furthermore, the risk of cardiorenal mortality (ischaemic heart disease and diabetic nephropathy combined) is three times higher in diabetic people with severe periodontitis than in diabetic people without severe periodontitis. Treatment of periodontitis is associated with HbA(1c) reductions of approximately 0.4%. Oral and periodontal health should be promoted as integral components of diabetes management.
Collapse
Affiliation(s)
- P M Preshaw
- School of Dental Sciences and Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4BW, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chang JB, Chu NF, Syu JT, Hsieh AT, Hung YR. Advanced glycation end products (AGEs) in relation to atherosclerotic lipid profiles in middle-aged and elderly diabetic patients. Lipids Health Dis 2011; 10:228. [PMID: 22142413 PMCID: PMC3293095 DOI: 10.1186/1476-511x-10-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/06/2011] [Indexed: 01/30/2023] Open
Abstract
Objectives To evaluate the association between AGEs and atherosclerotic lipid profiles among aging diabetic patients in Taiwan. Design and Methods After age and gender matching, we selected 207 diabetic subjects and 174 diabetic subjects with proteinuria. Lipid profiles, including total cholesterol (TC), triglycerides (TG), high density cholesterol-lipoprotein (HDL-C) and low density lipoprotein-cholesterol (LDL-C) were measured using standard methods. AGEs were measured with the immunoassay method. Results In general, males were heavier; however, females had higher AGEs, fasting glucose (GLU), TC, HDL-C and LDL-C levels than males, and had higher TC/HDL-C, LDL-C/HDL-C, and TG/HDL-C ratios compared to males. AGEs were more strongly correlated with TG levels and TCL/LDL-C, LDL-C/HDL-C and TG/HDL-C ratios when compared to glucose or hemoglobin A1c. Subjects had higher AGEs levels (≧ 2.0 AU) with more adverse lipid profiles. Conclusion AGEs seem to be a good biomarker to evaluate the association between diabetes and atherosclerotic disorders in aging diabetes.
Collapse
Affiliation(s)
- Jin-Biou Chang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu City, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem 2011; 361:289-96. [DOI: 10.1007/s11010-011-1114-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
24
|
Raposeiras-Roubín S, Rodiño-Janeiro BK, Grigorian-Shamagian L, Seoane-Blanco A, Moure-González M, Varela-Román A, Álvarez E, González-Juanatey JR. Evidence for a role of advanced glycation end products in atrial fibrillation. Int J Cardiol 2011; 157:397-402. [PMID: 21652096 DOI: 10.1016/j.ijcard.2011.05.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/28/2011] [Accepted: 05/13/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND Recent studies suggested that advanced glycation end-products (AGEs) and their receptor (RAGE) interaction may be promoted by inflammation and oxidative stress. These processes could also contribute to the pathogenesis of atrial fibrillation (AF), but their roles remain poorly defined. We studied the association of AGE-RAGE axis with AF in diabetic and non-diabetic patients, since the axis appears to play a key role in the process. METHODS Ninety-seven consecutive outpatients were included in this transversal study. Fifty-nine patients were in sinus rhythm (SR) and 38 in permanent AF. Plasma fluorescent AGEs and soluble RAGE (sRAGE) were measured and comparisons between patients with and without AF were performed. A multivariate logistic regression analysis was made to define the independent factors associated with AF. RESULTS Fluorescent AGEs and sRAGE were higher in AF group (74.9 ± 25.6 vs. 61.8 ± 20.1a.u. for fluorescent AGEs, p=0.006; 1714.2 ± 1105.5 vs. 996.1 ± 820.7 pg/mL for sRAGE, p=0.001). These differences were specially marked in non-diabetic patients. Both AGEs and sRAGE directly correlated with left atrial dimensions (r=0.496; r=0.536 for atrial area and r=0.491; r=0.511 for atrial volume, for fluorescent AGEs and sRAGE, respectively, p<0.001). In a multivariate analysis, fluorescent AGEs and sRAGE resulted as markers of AF independent of left atrial distension, diabetes and other confounding variables. CONCLUSIONS AGEs and sRAGE plasma levels were higher in patients with AF, independently of diabetes mellitus, and they positively correlated with atrial dimensions, indicating a role for the AGE-RAGE axis in the arrhythmogenic structural atrial remodelling.
Collapse
|
25
|
Sima C, Rhourida K, Van Dyke TE, Gyurko R. Type 1 diabetes predisposes to enhanced gingival leukocyte margination and macromolecule extravasation in vivo. J Periodontal Res 2011; 45:748-56. [PMID: 20682016 DOI: 10.1111/j.1600-0765.2010.01295.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetes predisposes to periodontal disease. However, the cellular and molecular mechanisms linking the two conditions are not clear. The impact of chronic hyperglycemia on leukocyte margination and macromolecule extravasation was determined in gingival vessels in vivo. MATERIALS AND METHODS Gingival intravital microscopy was employed to measure extravasation of fluorescein isothiocyanate (FITC)-dextran in diabetic Akita and healthy wild-type (WT) mice. Rhodamine 6G and FITC-LY6G were injected for nonspecific and polymorphonuclear-specific leukocyte labeling, respectively. Surface expression of leukocyte adhesion molecules was determined with flow cytometry and western blotting. RESULTS Vascular permeability was significantly increased in Akita gingival vessels compared with WT [permeability index (PI): WT, 0.75 ± 0.05; Akita, 1.1 ± 0.03: p < 0.05). Wild-type gingival vessels reached comparable permeability 2 h after intragingival injection of tumor necrosis factor α (TNFα), used here as positive control (PI, 1.17 ± 0.16). The number of rolling leukocytes was significantly elevated in diabetic gingiva (WT, 25 ± 3.7 cells/min; Akita, 42 ± 8.5 cells/min; p < 0.03). Similar rolling cell counts were obtained in WT after intragingival injection of TNFα (10 ng TNFα, 47 ± 1.3 cells/min; 100 ng TNFα, 57.5 ± 5.85 cells/min). The number of leukocytes firmly attached to the endothelium was similar in WT and Akita mice. Leukocyte cell-surface expression of P-selectin glycoprotein ligand-1 and CD11a was increased in Akita mice, while L-selectin remained unchanged when compared with WT. Moreover, P-selectin expression in Akita gingival tissues was elevated compared with that of WT. CONCLUSION Chronic hyperglycemia induces a proinflammatory state in the gingival microcirculation characterized by increased vascular permeability, and leukocyte and endothelial cell activation. Leukocyte-induced microvascular damage, in turn, may contribute to periodontal tissue damage in diabetes.
Collapse
Affiliation(s)
- C Sima
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
26
|
Lee YM. Effect of Apocynin on Acute Lung Injury in Rats Given Interleukin-1α Intratracheally. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.70.6.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Young Man Lee
- Department of Physiology, The Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
27
|
Shizukuda Y, Bhatti S, Munjal J, Hu YL, Harrelson A. Personalized echocardiography: clinical applications of advanced echocardiography and future directions. Future Cardiol 2010; 6:833-44. [PMID: 21142639 DOI: 10.2217/fca.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Future cardiology practice will be increasingly individualized, and thus to maintain its central role, echocardiography must keep pushing to expand the boundaries of real-time data acquisition from tissue and fluid motion, and yet still provide efficient and timely data analysis that leads to succinct, clear clinical recommendations tailored to each person in our care. In this article, recent efforts to expand echocardiography techniques into an era of increasingly personalized cardiology, including advances in color-coded tissue Doppler, 3D echocardiography and complex exercise stress echocardiography are described. The common metric for success in each of these efforts is the development of robust and institutionally supportable echocardiography protocols for specific cardiology disease populations that currently may be underdiagnosed and/or undertreated. The common result in each case should be the creation of new guidelines that can supplement the current standard protocols advocated by professional echocardiography organizations.
Collapse
Affiliation(s)
- Yukitaka Shizukuda
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
28
|
Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil's role in tissue injury. J Leukoc Biol 2010; 89:359-72. [PMID: 21097697 DOI: 10.1189/jlb.0910538] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neutrophil is an essential component of the innate immune system, and its function is vital to human life. Its production increases in response to virtually all forms of inflammation, and subsequently, it can accumulate in blood and tissue to varying degrees. Although its participation in the inflammatory response is often salutary by nature of its normal interaction with vascular endothelium and its capability to enter tissues and respond to chemotactic gradients and to phagocytize and kill microrganisms, it can contribute to processes that impair vascular integrity and blood flow. The mechanisms that the neutrophil uses to kill microorganisms also have the potential to injure normal tissue under special circumstances. Its paradoxical role in the pathophysiology of disease is particularly, but not exclusively, notable in seven circumstances: 1) diabetic retinopathy, 2) sickle cell disease, 3) TRALI, 4) ARDS, 5) renal microvasculopathy, 6) stroke, and 7) acute coronary artery syndrome. The activated neutrophil's capability to become adhesive to endothelium, to generate highly ROS, and to secrete proteases gives it the potential to induce local vascular and tissue injury. In this review, we summarize the evidence for its role as a mediator of tissue injury in these seven conditions, making it or its products potential therapeutic targets.
Collapse
Affiliation(s)
- George B Segel
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA.
| | | | | |
Collapse
|
29
|
Bravo E, Napolitano M, Valentini SB, Quattrucci S. Neutrophil unsaturated fatty acid release by GM-CSF is impaired in cystic fibrosis. Lipids Health Dis 2010; 9:129. [PMID: 21059219 PMCID: PMC2988788 DOI: 10.1186/1476-511x-9-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/08/2010] [Indexed: 01/11/2023] Open
Abstract
Dysregulated inflammation in cystic fibrosis (CF) is attributed to an altered production of inflammatory mediators derived from polyunsaturated lipids. In comparison to the arachidonic acid (AA) cascade, little is known about the modulation of docosahexaenoic acid (DHA) membrane release. We compared data on neutrophil DHA- and AA- release from both control (CT) and patients with CF using [3H]AA or [14C]DHA as a markers for, respectively, AA and DHA- release. Granulocyte-macrophage-colony stimulating factor stimulated DHA release from CT, but not CF, neutrophils. Comparison showed that both [14C]DHA and [3H]AA liberated after stimulation was higher in CT than in CF neutrophils. Since bioactive mediators derived from DHA are resolving factors and those derived from AA are both pro- and anti- inflammatory, these results suggest that CF is associated with a reduction of the release of PUFA-precursors of lipooxygenated resolving mediators. This leads to the hypothesis that defects in the resolving factors production could contribute to the inflammatory dysregulated processes in CF. Furthermore, the methodology used may help to improve knowledge on the regulation and resolution of inflammation.
Collapse
Affiliation(s)
- Elena Bravo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 199-00161 Roma, Italy.
| | | | | | | |
Collapse
|
30
|
Gallicchio MA, Bach LA. Advanced glycation end products inhibit Na+ K+ ATPase in proximal tubule epithelial cells: role of cytosolic phospholipase A2alpha and phosphatidylinositol 4-phosphate 5-kinase gamma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:919-30. [PMID: 20435073 DOI: 10.1016/j.bbamcr.2010.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycaemia during diabetes leads to non-enzymatic glycation of proteins to form advanced glycation end products (AGEs) that contribute to nephropathy. In diabetes, renal Na+ K+ ATPase (NKA) activity is downregulated and phosphoinositide metabolism is upregulated. We examined the effects of AGEs on NKA activity in porcine LLC-PK1 and human HK2 proximal tubule epithelial cells. AGE-BSA increased cellular phosphoinositol 4,5 bisphosphate (PIP2) production as determined by immunofluorescence microscopy and thin layer chromatography. AGE-BSA (40 microM) induced 3H-arachidonic acid release and reactive oxygen species (ROS) production via cytosolic phospholipase A2 (cPLA2) activation. Within minutes, AGE-BSA significantly inhibited NKA surface expression and activity in a dose- and time-dependent manner as determined by immunofluorescence staining and [86Rb+] uptake, respectively, suggesting AGEs inhibit NKA by stimulating its endocytosis. The AGE-BSA-induced decrease in cell surface NKA was reversed by a cPLA2alpha inhibitor, neomycin, a PIP2 inhibitor, and PP2, a Src inhibitor. AGE-BSA increased binding of NKA to the alpha-adaptin but not beta2- or mu2-adaptin subunits of the AP-2 clathrin pit adaptor complex. Transfection of HK2 cells with PIP5Kgamma siRNA prevented AGE-BSA inhibition of NKA activity. AGEs may stimulate PIP5Kgamma to increase PIP2 production, which may enhance AP-2 localisation to clathrin pits, increase clathrin pit formation, enhance NKA cargo recognition by AP-2 and/or stimulate cPLA2alpha activity. These results suggest AGEs modulate arachidonic acid and phosphoinositide metabolism to inhibit NKA via clathrin-mediated endocytosis. Elucidation of new intracellular AGE signaling pathways may lead to improved therapies for diabetic nephropathy.
Collapse
Affiliation(s)
- Marisa A Gallicchio
- Monash University, Department of Medicine, Alfred Hospital, Commercial Rd., Prahran, 3004, Australia
| | | |
Collapse
|
31
|
Ayilavarapu S, Kantarci A, Fredman G, Turkoglu O, Omori K, Liu H, Iwata T, Yagi M, Hasturk H, Van Dyke TE. Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. THE JOURNAL OF IMMUNOLOGY 2010; 184:1507-15. [PMID: 20053941 DOI: 10.4049/jimmunol.0901219] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neutrophils from people with poorly controlled diabetes present a primed phenotype and secrete excessive superoxide. Phospholipase A(2) (PLA(2))-derived arachidonic acid (AA) activates the assembly of NADPH oxidase to generate superoxide anion. There is a gap in the current literature regarding which PLA(2) isoform regulates NADPH oxidase activation. The aim of this study was to identify the PLA(2) isoform involved in the regulation of superoxide generation in neutrophils and investigate if PLA(2) mediates priming in response to pathologic hyperglycemia. Neutrophils were isolated from people with diabetes mellitus and healthy controls, and HL60 neutrophil-like cells were grown in hyperglycemic conditions. Incubating neutrophils with the Ca(2+)-independent PLA(2) (iPLA(2)) inhibitor bromoenol lactone (BEL) completely suppressed fMLP-induced generation of superoxide. The nonspecific actions of BEL on phosphatidic acid phosphohydrolase-1, p47(phox) phosphorylation, and apoptosis were ruled out by specific assays. Small interfering RNA knockdown of iPLA(2) inhibited superoxide generation by neutrophils. Neutrophils from people with poorly controlled diabetes and in vitro incubation of neutrophils with high glucose and the receptor for advanced glycation end products ligand S100B greatly enhanced superoxide generation compared with controls, and this was significantly inhibited by BEL. A modified iPLA(2) assay, Western blotting, and PCR confirmed that there was increased iPLA(2) activity and expression in neutrophils from people with diabetes. AA (10 microM) partly rescued the inhibition of superoxide generation mediated by BEL, confirming that NADPH oxidase activity is, in part, regulated by AA. This study provides evidence for the role of iPLA(2) in enhanced superoxide generation in neutrophils from people with diabetes mellitus and presents an alternate pathway independent of protein kinase C and phosphatidic acid phosphohydrolase-1 hydrolase signaling.
Collapse
Affiliation(s)
- Srinivas Ayilavarapu
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee YS. Arachidonic Acid Activates K-Cl-cotransport in HepG2 Human Hepatoblastoma Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:401-8. [PMID: 19915704 DOI: 10.4196/kjpp.2009.13.5.401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/30/2009] [Accepted: 10/07/2009] [Indexed: 12/20/2022]
Abstract
K(+)-Cl(-)-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase A(2) (PLA(2))-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced K(+) efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activator-induced K(+) efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calcium-independent PLA(2) (iPLA(2)), whereas it was not significantly altered by arachidonyl trifluoromethylketone (AACOCF(3)) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic PLA(2) (cPLA(2)) and the secretory PLA(2) (sPLA(2)), respectively. NEM increased AA liberation in a dose- and time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas AACOCF(3) and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that iPLA(2)-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.
Collapse
Affiliation(s)
- Yong Soo Lee
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| |
Collapse
|
33
|
Peppa M, Stavroulakis P, Raptis SA. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 2009; 17:461-72. [PMID: 19614910 DOI: 10.1111/j.1524-475x.2009.00518.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Impaired wound healing is an important diabetic complication associated with increased morbidity and mortality. It appears to be the net result of micro- and macrovascular disease. Diabetic neuropathy and the resulting loss of protective sensation (LOPS) has been recognized as one of the major causes for delayed healing in diabetic foot ulcer patients. In addition, hyperglycemia and a number of hyperglycemia-related factors have been linked to impaired diabetic wound healing, including advanced glycation end products (AGE). A large body of evidence from in vitro and in vivo studies and also data from studies using anti-AGE agents, indicate that AGE may play a role in the pathogenesis of impaired diabetic wound healing. AGE affect the wound healing process either directly by their interference with a variety of components involved or indirectly through their association with diabetic neuropathy and/or angiopathy. However, further studies need to be performed, mostly clinical studies, to evaluate the exact role of AGE in the impaired diabetic wound healing, suggesting new therapeutic approaches.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center, Athens University Medical School, Attikon University Hospital, Athens, Greece.
| | | | | |
Collapse
|
34
|
|
35
|
Gao JT, Liu SH, Yan YE, Wu Y, Wu HT, Xing C, Ge XM, Wang H, Zhao YQ, Fan M. Quinacrine protects neuronal cells against heat-induced injury. Cell Biol Int 2009; 33:874-81. [PMID: 19427915 DOI: 10.1016/j.cellbi.2009.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 03/18/2009] [Accepted: 04/14/2009] [Indexed: 11/16/2022]
Abstract
The effects of quinacrine (QA) on heat-induced neuronal injury have been explored, with the intention of understanding the mechanisms of QA protection. Primary cultivated striatum neurons from newborn rats were treated with QA 1h before heat treatment at 43 degrees C which lasted for another 1h, and necrosis and apoptosis were detected by Annexin-V-FITC and propidium iodide (PI) double staining. Neuronal apoptosis was determined using terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) techniques. Cell membrane fluidity, activity of cytosolic phospholipase A(2) (cPLA(2)) and the level of arachidonic acid (AA) were also examined. Membrane surface ultrastructure of striatum neurons was investigated by atomic force microscopy (AFM). Results showed that heat treatment induced great striatum neurons death, with many dying neurons undergoing necrosis rather than apoptosis. QA alone had little effect on the survival of striatum neurons, while QA pretreatment before heat treatment decreased necrosis. Heat treatment also resulted in decreased membrane fluidity and increased cPLA(2) activity as well as arachidonic acid level; these effects were reversed by QA pretreatment. QA pretreatment also significantly prevented damage to the membrane surface ultrastructure of heat-treated neurons. These results suggest that QA protects striatum neurons against heat-induced neuronal necrosis, and also demonstrate that inhibition of cPLA(2) activity and stabilization of membranes may contribute to protective effect of quinacrine.
Collapse
Affiliation(s)
- Jun-Tao Gao
- Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Küpper FC, Gaquerel E, Cosse A, Adas F, Peters AF, Müller DG, Kloareg B, Salaün JP, Potin P. Free Fatty Acids and Methyl Jasmonate Trigger Defense Reactions in Laminaria digitata. PLANT & CELL PHYSIOLOGY 2009; 50:789-800. [PMID: 19213737 DOI: 10.1093/pcp/pcp023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arachidonic acid, linolenic acid and methyl jasmonate (MeJA) were found to be strong triggers of an oxidative burst in the kelp Laminaria digitata. These findings constitute the first report of an oxidative burst in an algal system induced by free fatty acids. The source of reactive oxygen species can be at least partially inhibited by diphenylene iodonium (DPI). Treatment with arachidonic acid increases the levels of a number of free fatty acids [including myristic (C14:0), linoleic (C18:2), linolenic (C18:3) and eicosapentaeneoic (C20:5) acids] and hydroxylated derivatives [such as 15-hydroxyeicosatetraenoic acid (15-HETE), 13-hydroxyoctadecatrienoic acid (13-HOTE) and 15-hydroxyeicosapentaenoic acid (15-HEPE)]. Similar to a previous report of the function of an alginate oligosaccharide-triggered oxidative burst in the establishment of resistance in L. digitata against infection by its brown algal endophyte Laminariocolax tomentosoides, C20:4- and MeJA-induced oxidative bursts seem to be involved in establishing the same protection in L. digitata. Altogether, this study supports the notion that lipid oxidation signaling plays a key role in defense induction in marine brown algae.
Collapse
Affiliation(s)
- Frithjof C Küpper
- Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lindsey JB, Cipollone F, Abdullah SM, McGuire DK. Receptor for advanced glycation end-products (RAGE) and soluble RAGE (sRAGE): cardiovascular implications. Diab Vasc Dis Res 2009; 6:7-14. [PMID: 19156622 DOI: 10.3132/dvdr.2009.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disorders of glucose metabolism are associated with increased risk for cardiovascular disease (CVD) complications, including coronary, peripheral and cerebral arterial disease, that account for the majority of morbidity and mortality among patients with diabetes mellitus (DM). These associations between glucose and CVD risk extend continuously well below the glycaemic thresholds established for the diagnosis of diabetes, including significantly increased risk associated with impaired fasting glucose, impaired glucose tolerance, and even high normal glucose concentrations. While these epidemiological observations have established a clear association between cardiovascular disease and dysglycaemia and suggest a direct causal link, the mechanisms by which hyperglycaemia may contribute to the development, progression and instability of atherosclerosis remain unclear. A number of recent advances in the realm of vascular biology have identified several novel, plausible pathways that might link hyperglycaemia with atherosclerosis, individually or in aggregate. Key among them are the interaction between advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE), which exists as a trans-membrane signalling receptor and as a circulating form, soluble RAGE (sRAGE). The purpose of this review is to provide an overview of the present understanding of RAGE and sRAGE, their plausible role linking perturbed glucose metabolism with the development, progression and instability of atherosclerosis, and the potential therapeutic implications of modulation of this biological system.
Collapse
Affiliation(s)
- Jason B Lindsey
- The Donald W Reynolds Cardiovascular Clinical Research Center, Division of Cardiology, University of Texas Southwestern, Medical Center, 5909 Harry Hines Blvd., Dallas, TX 75235-9047, USA
| | | | | | | |
Collapse
|
38
|
Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem J 2008; 416:255-61. [PMID: 18643777 DOI: 10.1042/bj20080054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AGEs (advanced glycation end-products) accumulate in collagen molecules during uraemia and diabetes, two diseases associated with high susceptibility to bacterial infection. Because neutrophils bind to collagen during their locomotion in extravascular tissue towards the infected area we investigated whether glycoxidation of collagen (AGE-collagen) alters neutrophil migration. Type I collagen extracted from rat tail tendons was used for in vitro glycoxidation (AGE-collagen). Neutrophils were obtained from peripheral blood of healthy adult volunteers and were used for the in vitro study of adhesion and migration on AGE- or control collagen. Glycoxidation of collagen increased adhesion of neutrophils to collagen surfaces. Neutrophil adhesion to AGE-collagen was inhibited by a rabbit anti-RAGE (receptor for AGEs) antibody and by PI3K (phosphoinositide 3-kinase) inhibitors. No effect was observed with ERK (extracellular-signal-regulated kinase) or p38 MAPK (mitogen-activated protein kinase) inhibitors. AGE-collagen was able to: (i) induce PI3K activation in neutrophils, and (ii) inhibit chemotaxis and chemokinesis of chemoattractant-stimulated neutrophils. Finally, we found that blocking RAGE with anti-RAGE antibodies or inhibiting PI3K with PI3K inhibitors restored fMLP (N-formylmethionyl-leucyl-phenylalanine)-induced neutrophil migration on AGE-collagen. These results show that RAGE and PI3K modulate adhesion and migration rate of neutrophils on AGE-collagen. Modulation of adhesiveness may account for the change in neutrophil migration rate on AGE-collagen. As neutrophils rely on their ability to move to perform their function as the first line of defence against bacterial invasion, glycoxidation of collagen may participate in the suppression of normal host defence in patients with diabetes and uraemia.
Collapse
|
39
|
|
40
|
Oya-Ito T, Naitou H, Masuda S, Kinae N, Ohashi N. Functional analyses of neutrophil-like differentiated cell lines under a hyperglycemic condition. Mol Nutr Food Res 2008; 52:360-9. [DOI: 10.1002/mnfr.200600122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Preshaw PM, Foster N, Taylor JJ. Cross-susceptibility between periodontal disease and type 2 diabetes mellitus: an immunobiological perspective. Periodontol 2000 2007; 45:138-57. [PMID: 17850454 DOI: 10.1111/j.1600-0757.2007.00221.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Philip M Preshaw
- Periodontology, School of Dental Sciences, Newcastle University, Newcastle, UK
| | | | | |
Collapse
|
42
|
Shi Y, So KF, Man RYK, Vanhoutte PM. Oxygen-derived free radicals mediate endothelium-dependent contractions in femoral arteries of rats with streptozotocin-induced diabetes. Br J Pharmacol 2007; 152:1033-41. [PMID: 17767168 PMCID: PMC2095103 DOI: 10.1038/sj.bjp.0707439] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The present experiments were designed to study the contribution of oxygen-derived free radicals to endothelium-dependent contractions in femoral arteries of rats with streptozotocin-induced diabetes. EXPERIMENTAL APPROACH Rings with and without endothelium were suspended in organ chambers for isometric tension recording. The production of oxygen-derived free radicals in the endothelium was measured with 2',7'-dichlorodihydrofluorescein diacetate using confocal microscopy. The presence of protein was measured by western blotting. KEY RESULTS In the presence of L-NAME, the calcium ionophore A23187 induced larger endothelium-dependent contractions in femoral arteries from diabetic rats. Tiron, catalase, deferoxamine and MnTMPyP, but not superoxide dismutase reduced the response, suggesting that oxygen-derived free radicals are involved in the endothelium-dependent contraction. In the presence of L-NAME, A23187 increased the fluorescence signal in femoral arteries from streptozotocin-treated, but not in those from control rats, confirming that the production of oxygen-derived free radicals contributes to the enhanced endothelium-dependent contractions in diabetes. Exogenous H2O2 caused contractions in femoral arterial rings without endothelium which were reduced by deferoxamine, indicating that hydroxyl radicals contract vascular smooth muscle and thus could be an endothelium-derived contracting factor in diabetes. The reduced presence of Mn-SOD and the decreased activity of catalase in femoral arteries from streptozotocin-treated rats demonstrated the presence of a redox abnormality in arteries from rats with diabetes. CONCLUSIONS AND IMPLICATIONS These findings suggest that the redox abnormality resulting from diabetes increases oxidative stress which facilitates and/or causes endothelium-dependent contractions.
Collapse
Affiliation(s)
- Y Shi
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong, SAR, China
| | - K-F So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong, SARChina
| | - R Y K Man
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong, SAR, China
| | - P M Vanhoutte
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong Hong Kong, SAR, China
- Author for correspondence:
| |
Collapse
|
43
|
Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 2007; 103:1-16. [PMID: 17561938 DOI: 10.1111/j.1471-4159.2007.04670.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
44
|
Seres I, Fóris G, Varga Z, Kosztáczky B, Kassai A, Balogh Z, Fülöp P, Paragh G. The association between angiotensin II-induced free radical generation and membrane fluidity in neutrophils of patients with metabolic syndrome. J Membr Biol 2007; 214:91-8. [PMID: 17546512 DOI: 10.1007/s00232-006-0020-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 11/09/2006] [Indexed: 11/26/2022]
Abstract
Angiotensin II (Ang II) is able to induce free radical generation in neutrophils, which is more elevated in neutrophils of patients with hypercholesterolemia (HC). In addition, the signal processing through angiotensin I (Ang I) receptors is altered. In present study, we compared the Ang II-triggered free radical generation of neutrophils obtained from patients with relatively isolated forms of metabolic syndrome (MS) with membrane-bound cholesterol content and membrane fluidity. We determined the enhancement of Ang II-induced superoxide anion and leukotriene C(4) (LTC(4)) generation, membrane fluidity and cell-bound cholesterol content of neutrophils obtained from 12 control subjects, 11 patients with obesity (Ob), 10 patients with type 2 diabetes mellitus (t2-DM) and 12 patients with HC. The alteration of signal processing was studied after preincubation with different inhibiting drugs. Superoxide anion, LTC(4) production and membrane rigidity were increased in the following order: control < Ob < t2-DM < HC. Both Ang II-induced superoxide anion and LTC(4) generation were decreased in control cells by pertussis toxin and fluvastatin (Flu), whereas in each patient group, mepacrin, verapamil and Flu were effective, suggesting alterations in signal pathways, which may be attributed to isoprenylation. The enhancement of superoxide anion and LTC(4) generation correlated significantly with membrane rigidity, independently from the experimental groups and membrane-bound cholesterol content. Membrane rigidity of neutrophils, obtained from patients with MS, plays a role in Ang II-induced free radical generation independent of intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Ildikó Seres
- First Department of Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4012 Hungary
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vasdev S, Gill V, Singal PK. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms. Vasc Health Risk Manag 2007; 2:263-76. [PMID: 17326332 PMCID: PMC1993980 DOI: 10.2147/vhrm.2006.2.3.263] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Low ethanol intake is known to have a beneficial effect on cardiovascular disease. In cardiovascular disease, insulin resistance leads to altered glucose and lipid metabolism resulting in an increased production of aldehydes, including methylglyoxal. Aldehydes react non-enzymatically with sulfhydryl and amino groups of proteins forming advanced glycation end products (AGEs), altering protein structure and function. These alterations cause endothelial dysfunction with increased cytosolic free calcium, peripheral vascular resistance, and blood pressure. AGEs produce atherogenic effects including oxidative stress, platelet adhesion, inflammation, smooth muscle cell proliferation and modification of lipoproteins. Low ethanol intake attenuates hypertension and atherosclerosis but the mechanism of this effect is not clear. Ethanol at low concentrations is metabolized by low Km alcohol dehydrogenase and aldehyde dehydrogenase, both reactions resulting in the production of reduced nicotinamide adenine dinucleotide (NADH). This creates a reductive environment, decreasing oxidative stress and secondary production of aldehydes through lipid peroxidation. NADH may also increase the tissue levels of the antioxidants cysteine and glutathione, which bind aldehydes and stimulate methylglyoxal catabolism. Low ethanol improves insulin resistance, increases high-density lipoprotein and stimulates activity of the antioxidant enzyme, paraoxonase. In conclusion, we suggest that chronic low ethanol intake confers its beneficial effect mainly through its ability to increase antioxidant capacity and lower AGEs.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, St.John's, Newfoundland, Canada.
| | | | | |
Collapse
|
46
|
Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 2007; 42:153-64. [PMID: 17189821 DOI: 10.1016/j.freeradbiomed.2006.09.030] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 02/06/2023]
Abstract
As a cornerstone of the innate immune response, neutrophils are the archetypical phagocytic cell; they actively seek out, ingest, and destroy pathogenic microorganisms. To achieve this essential role in host defense, neutrophils deploy a potent antimicrobial arsenal that includes oxidants, proteinases, and antimicrobial peptides. Importantly, oxidants produced by neutrophils, referred to in this article as reactive oxygen (ROS) and reactive nitrogen (RNS) species, have a dual function. On one hand they function as potent antimicrobial agents by virtue of their ability to kill microbial pathogens directly. On the other hand, they participate as signaling molecules that regulate diverse physiological signaling pathways in neutrophils. In the latter role, ROS and RNS serve as modulators of protein and lipid kinases and phosphatases, membrane receptors, ion channels, and transcription factors, including NF-kappaB. The latter regulates expression of key cytokines and chemokines that further modulate the inflammatory response. During the inflammatory response, ROS and RNS modulate phagocytosis, secretion, gene expression, and apoptosis. Under pathological circumstances such as acute lung injury and sepsis, excess production of ROS may influence vicinal cells such as endothelium or epithelium, contributing to inflammatory tissue injury. A better understanding of these pathways will help identify novel targets for amelioration of the untoward effects of inflammation.
Collapse
Affiliation(s)
- Lea Fialkow
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Intensive Care Unit, Intensive Care Division, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
47
|
Levy R. The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1323-34. [PMID: 17046321 DOI: 10.1016/j.bbalip.2006.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/14/2006] [Accepted: 09/06/2006] [Indexed: 11/16/2022]
Abstract
Phospholipase A2(s) (PLA2(s)) are a family of enzymes that is present in a variety of mammalian and nonmammalian sources. Phagocytic cells contain cytosolic PLA2 (cPLA2) as well as several types of secreted PLA2, all of which have the potential to produce proinflammatory lipid mediators. The role of the predominant form of cPLA2 present in neutrophils is cPLA2alpha was studied by many groups. By modulating its expression in a variety of phagocytes it was found that it plays a major role in formation of eicosanoids. In addition, it was reported that cPLA2alpha also regulates the NADPH oxidase activation. The specificity of its effect on the NADPH oxidase is evident by results demonstrating that the differentiation process as well as other phagocytic functions are normal in cPLA2alpha-deficient PLB cell model. The novel dual subcellular localization of cPLA2alpha in different compartments, in the plasma membranes and in the nucleus, provides a molecular mechanism for the participation of cPLA2alpha in different processes (stimulation of NADPH oxidase and formation of eicosanoids) in the same cells.
Collapse
Affiliation(s)
- Rachel Levy
- Infectious Diseases Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center, Beer Sheva 84105, Israel.
| |
Collapse
|
48
|
Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8:691-728. [PMID: 16771662 DOI: 10.1089/ars.2006.8.691] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increased oxidative stress plays an important role in the pathophysiology of cardiovascular diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, and ischemia-reperfusion. Although several sources of reactive oxygen species (ROS) may be involved, a family of NADPH oxidases appears to be especially important for redox signaling and may be amenable to specific therapeutic targeting. These include the prototypic Nox2 isoform-based NADPH oxidase, which was first characterized in neutrophils, as well as other NADPH oxidases such as Nox1 and Nox4. These Nox isoforms are expressed in a cell- and tissue-specific fashion, are subject to independent activation and regulation, and may subserve distinct functions. This article reviews the potential roles of NADPH oxidases in both cardiovascular physiological processes (such as the regulation of vascular tone and oxygen sensing) and pathophysiological processes such as endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, angiogenesis, and vascular and cardiac remodeling. The complexity of regulation of NADPH oxidases in these conditions may provide the possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the disease process.
Collapse
Affiliation(s)
- Alison C Cave
- King's College London, Department of Cardiology, Cardiovascular Division, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Karima M, Kantarci A, Ohira T, Hasturk H, Jones VL, Nam BH, Malabanan A, Trackman PC, Badwey JA, Van Dyke TE. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J Leukoc Biol 2005; 78:862-70. [PMID: 16081595 PMCID: PMC1249507 DOI: 10.1189/jlb.1004583] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammation and oxidative stress are important factors in the pathogenesis of diabetes and contribute to the pathogenesis of diabetic complications. Periodontitis is an inflammatory disease that is characterized by increased oxidative stress, and the risk for periodontitis is increased significantly in diabetic subjects. In this study, we examined the superoxide (O(2)(-))-generating reduced nicotinamide adenine dinucleotide phosphate-oxidase complex and protein kinase C (PKC) activity in neutrophils. Fifty diabetic patients were grouped according to glycemic control and the severity of periodontitis. Neutrophils from diabetic patients with moderate [amount of glycated hemoglobin (HbA(1c)) between 7.0% and 8.0%] or poor (HbA(1c) >8.0%) glycemic control released significantly more O(2)(-) than neutrophils from diabetic patients with good glycemic control (HbA(1c) <7.0%) and neutrophils from nondiabetic, healthy individuals upon stimulation with 4beta-phorbol 12-myristate 13-acetate or N-formyl-Met-Leu-Phe. Depending on glycemic status, neutrophils from these patients also exhibited increased activity of the soluble- and membrane-bound forms of PKC, elevated amounts of diglyceride, and enhanced phosphorylation of p47-phox during cell stimulation. In addition, we report a significant correlation between glycemic control (HbA(1c) levels) and the severity of periodontitis in diabetic patients, suggesting that enhanced oxidative stress and increased inflammation exacerbate both diseases. Thus, hyperglycemia can lead to a novel form of neutrophil priming, where elevated PKC activity results in increased phosphorylation of p47-phox and O(2)(-) release.
Collapse
Affiliation(s)
- M. Karima
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
| | - A. Kantarci
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
| | - T. Ohira
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
- Brigham and Women’s Hospital and Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts
| | - H. Hasturk
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
| | - V. L. Jones
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
| | - B-H. Nam
- Department of Statistics and Mathematics
| | - A. Malabanan
- Medical Center, Department of Endocrinology, and
| | - P. C. Trackman
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
- School of Medicine, Department of Biochemistry, Boston University, Massachusetts; and
| | - J. A. Badwey
- Brigham and Women’s Hospital and Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts
| | - T. E. Van Dyke
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology
- Correspondence: Department of Periodontology and Oral Biology, Boston University, Goldman School of Dental Medicine, 100 East Newton Street G-107, Boston MA 02118. E-mail:
| |
Collapse
|