1
|
Ramipril Improves Endothelial Function and Increases the Number of Endothelial Progenitor Cells in Patients With Systemic Lupus Erythematosus. J Clin Rheumatol 2022; 28:349-353. [PMID: 35662232 DOI: 10.1097/rhu.0000000000001869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/OBJECTIVES Endothelial dysfunction and reduced number of endothelial progenitor cells (EPCs) in peripheral blood are contributing factors to cardiovascular disease in systemic lupus erythematosus (SLE) patients. Endothelial progenitor cell proliferation is regulated by vascular endothelial growth factor (VEGF). Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality in patients with coronary heart disease. METHODS This was a randomized trial including 37 female SLE patients without cardiovascular risk factors allocated into 2 groups: 19 patients received ramipril 10 mg/d for 12 weeks (IG) and 18 patients maintained without ramipril (CG). Endothelial function was assessed by brachial artery ultrasound measuring flow-mediated dilation, and EPCs were quantified by flow cytometry and cell culture, at baseline and after 12 weeks. Serum VEGF levels were measured by enzyme-linked immunosorbent assay. Statistical analysis was intention to treat. p < 0.05 was considered significant. RESULTS After 12 weeks, higher flow-mediated dilation (6.17% vs. 11.14%, p < 0.001) was observed in IG, without change in CG (5.37% vs. 5.02%, p = 0.630). Higher number of EPC colony-forming units was also observed in IG (21.3 ± 10.4 vs. 31.6 ± 8.5, p < 0.001), without difference in CG ( p = 0.714). No difference was found in EPCs evaluated by flow cytometry. Vascular endothelial growth factor level increased after 12 weeks in IG ( p = 0.048), with no difference in CG ( p = 0.661). CONCLUSION Ramipril improved endothelial function and increased the numbers of EPCs evaluated by cell culture and VEGF levels in SLE patients without cardiovascular risk factors. These data suggest that angiotensin-converting enzyme inhibitor bring an extra benefit beyond the hypotensive action and should be considered as a preferred antihypertensive drug in SLE patients.
Collapse
|
2
|
Tripaldi R, Lanuti P, Simeone PG, Liani R, Bologna G, Ciotti S, Simeone P, Di Castelnuovo A, Marchisio M, Cipollone F, Santilli F. Endogenous PCSK9 may influence circulating CD45 neg/CD34 bright and CD45 neg/CD34 bright/CD146 neg cells in patients with type 2 diabetes mellitus. Sci Rep 2021; 11:9659. [PMID: 33958634 PMCID: PMC8102605 DOI: 10.1038/s41598-021-88941-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Protease proprotein convertase subtilisin/kexin type 9 (PCSK9) is a regulator of LDL cholesterol clearance and has been associated with cardiovascular risk. PCSK9 inhibitors increase in vivo circulating endothelial progenitor cells (EPCs), a subtype of immature cells involved in ongoing endothelial repair. We hypothesized that the effect of PCSK9 on vascular homeostasis may be mediated by EPCs in patients with or without type 2 diabetes mellitus (T2DM). Eighty-two patients (45 with, 37 without T2DM) at high cardiovascular risk were enrolled in this observational study. Statin treatment was associated with higher circulating levels of PCSK9 in patients with and without T2DM (p < 0.001 and p = 0.036) and with reduced CD45neg/CD34bright (total EPC compartment) (p = 0.016) and CD45neg/CD34bright/CD146neg (early EPC) (p = 0.040) only among patients with T2DM. In the whole group of patients, statin treatment was the only independent predictor of low number of CD45neg/CD34bright (β = - 0.230; p = 0.038, adjusted R2 = 0.041). Among T2DM patients, PCSK9 circulating levels were inversely related and predicted both the number of CD45neg/CD34bright (β = - 0.438; p = 0.003, adjusted R2 = 0.173), and CD45neg/CD34bright/CD146neg (β = - 0.458; p = 0.002, adjusted R2 = 0.191) independently of age, gender, BMI and statin treatment. In high-risk T2DM patients, high endogenous levels of PCSK9 may have a detrimental effect on EPCs by reducing the endothelial repair and worsening the progression of atherothrombosis.
Collapse
Affiliation(s)
- Romina Tripaldi
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Paola Giustina Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Sonia Ciotti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | | | - Marco Marchisio
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy.
| |
Collapse
|
3
|
Swapna Sasi US, Sindhu G, Raghu KG. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicol In Vitro 2020; 68:104952. [PMID: 32730863 DOI: 10.1016/j.tiv.2020.104952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
A proper in vitro model for conducting research on high energy food induced steatosis via defective energy metabolism in the liver is not visible in the literature. The present study developed an in vitro model in HepG2 cell line to mimic high energy diet induced steatosis in liver via mitochondrial dysfunction. For this, HepG2 cells were treated with fructose (100 mM) and palmitate (100 μM) for about 24 h and subjected for biochemical analysis relevant to lipogenesis and mitochondrial biology. Our findings showed that fructose-palmitate treatment caused significant lipid accumulation and rise in lipogenic proteins. Further studies showed alteration in mitochondrial integrity, dynamics and oxidative phosphorylation. Mitochondrial integrity was affected by the dissipation of trans-membrane potential, surplus mitochondrial superoxide with calcium overload. Similarly, mitochondrial dynamics were altered with up regulation of mitochondrial fission proteins: DRP1 and FIS1, cytochrome c release, caspase-3 activity and apoptosis. Various components of the electron transport chain: complex I, II, III and IV were altered with significant depletion in oxygen consumption. Overall our findings illustrate the dominant role of mitochondria in the genesis of high fructose-palmitate induced steatosis in HepG2 cells. Since continuous high energy food consumption is the main inducer of steatosis, this model is found to be an ideal one for preliminary and basic research in the area of liver disease via mitochondrial dysfunction.
Collapse
Affiliation(s)
- U S Swapna Sasi
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India; Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| | - G Sindhu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| | - K G Raghu
- Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India; Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
4
|
Ozkok A, Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res 2018; 43:701-718. [PMID: 29763891 DOI: 10.1159/000489745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs.
Collapse
Affiliation(s)
- Abdullah Ozkok
- University of Health Sciences, Umraniye Training and Research Hospital, Department of Nephrology, Istanbul, Turkey,
| | - Alaattin Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|
5
|
Afdal P, AbdelMassih AF. Is pulmonary vascular disease reversible with PPAR ɣ agonists? Microcirculation 2018; 25:e12444. [DOI: 10.1111/micc.12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Afdal
- Faculty of Medicine; Cairo University; Cairo Egypt
| | | |
Collapse
|
6
|
Zhang X, Ji R, Sun H, Peng J, Ma X, Wang C, Fu Y, Bao L, Jin Y. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Free Radic Res 2018; 52:198-211. [PMID: 29400110 DOI: 10.1080/10715762.2017.1422602] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterised by excessive accumulation of hepatic lipids and oxidative injury of hepatocytes. Scutellarin is a flavonoid glycoside having antioxidative stress activity. Our current study aims to investigate the molecular mechanism of scutellarin ameliorating NAFLD. Scutellarin treatment was applied to male C57BL/6 mice maintained on a high-fat diet (HFD) and HepG2 cells challenged with oleic acid. The antioxidation biochemical indicators and lipid levels in the liver and cells were detected by kits. Liver pathology was observed by light microscope, Oil Red O staining, and transmission electron microscope (TEM). In addition, quantitative real-time polymerase chain reactions (qRT-PCR) and western blot assays were employed to detect the mRNA and protein levels of various antioxidative-related genes in the presence or absence of peroxisome proliferator-activated receptor gamma (PPARγ); inhibitor GW9662. Our results showed that scutellarin could significantly reduce blood lipid levels and enhance antioxidative capacities in both the models. In addition, scutellarin treatment conspicuously activated PPARγ, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear factor erythroid-2-related factor (Nrf2), haem oxygenase-1 (HO-1), glutathione S-transferase (GST), and NAD(P)H quinone dehydrogenase one (NQO1), while it significantly inhibited nuclear factor kappa B (NF-κB), Kelch-like ECH-associated protein 1 (Keap1) at both the mRNA and protein levels. However, after interfered by GW9662, scutellarin effect was significantly decreased. The experimental data demonstrated that scutellarin showed strong hypolipidaemic, antioxidative, and liver protective activity which could be attributed to its regulating activity in the PPARγ/PGC-1α-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Renpeng Ji
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Huijun Sun
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Jinyong Peng
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Xiaodong Ma
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - ChangYuan Wang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yufeng Fu
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Liuchi Bao
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yue Jin
- a College of Pharmacy , Dalian Medical University , Dalian , China
| |
Collapse
|
7
|
Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 2016; 170:98-115. [PMID: 27773788 DOI: 10.1016/j.pharmthera.2016.10.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes induces a decrease in the number and function of different pro-angiogenic cell types generically designated as putative endothelial progenitor cells (EPC), which encompasses cells from myeloid origin that act in a paracrine fashion to promote angiogenesis and putative "true" EPC that contribute to endothelial replacement. This not only compromises neovasculogenesis in ischemic tissues but also impairs, at an early stage, the reendotheliziation process at sites of injury, contributing to the development of endothelial dysfunction and cardiovascular complications. Hyperglycemia, insulin resistance and dyslipidemia promote putative EPC dysregulation by affecting the SDF-1/CXCR-4 and NO pathways and the p53/SIRT1/p66Shc axis that contribute to their mobilization, migration, homing and vasculogenic properties. To optimize the clinical management of patients with hypoglycemic agents, statins and renin-angiotensin system inhibitors, which display pleiotropic effects on putative EPC, is a first step to improve their number and angiogenic potential but specific strategies are needed. Among them, mobilizing therapies based on G-CSF, erythropoietin or CXCR-4 antagonism have been developed to increase putative EPC number to treat ischemic diseases with or without prior cell isolation and transplantation. Growth factors, genetic and pharmacological strategies are also evaluated to improve ex vivo cultured EPC function before transplantation. Moreover, pharmacological agents increasing in vivo the bioavailability of NO and other endothelial factors demonstrated beneficial effects on neovascularization in diabetic ischemic models but their effects on endothelial dysfunction remain poorly evaluated. More experiments are warranted to develop orally available drugs and specific agents targeting p66Shc to reverse putative EPC dysfunction in the expected goal of preventing endothelial dysfunction and diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Julien Wils
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Julie Favre
- MITOVASC Institute, Angers, France; Centre National de la Recherche Scientifique (CNRS) UMR 6214, Angers, France; INSERM U1083, Angers, France; University of Angers, Angers, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
8
|
Lake JE, Seang S, Kelesidis T, Currier JS, Yang OO. Telmisartan increases vascular reparative capacity in older HIV-infected adults: a pilot study. HIV CLINICAL TRIALS 2016; 17:225-232. [PMID: 27658740 DOI: 10.1080/15284336.2016.1234222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are bone marrow-derived cells that contribute to vascular repair. EPCs may be reduced in HIV-infected (HIV+) persons, contributing to cardiovascular disease (CVD). Telmisartan is an angiotensin receptor blocker that increases EPCs in HIV-uninfected adults. OBJECTIVE To assess telmisartan's effects on EPC number and immunophenotype in older HIV + adults at risk for CVD. METHODS HIV + persons ≥50 years old with HIV-1 RNA < 50 copies/mL on suppressive antiretroviral therapy and ≥1 CVD risk factor participated in a prospective, open-label, pilot study of oral telmisartan 80 mg daily for 12 weeks. Using CD34 and CD133 as markers of early maturity and KDR as a marker of endothelial lineage commitment, EPCs were quantified via flow cytometry and defined as viable CD3-/CD33-/CD19-/glycophorin- cells of four immunophenotypes: CD133+/KDR+, CD34+/KDR+, CD34+/CD133+, or CD34+/KDR+/CD133+. The primary endpoint was a 12-week change in EPC subsets (NCT01578772). RESULTS Seventeen participants (88% men, median age 60 years and peripheral CD4+ T lymphocyte count 625 cells/mm3) enrolled and completed the study. After 6 and 12 weeks of telmisartan, frequencies of all EPC immunophenotypes were higher than baseline (all p < 0.10 except week 12 CD133+/KDR+ EPC, p = 0.13). Participants with lower baseline EPC levels had the largest gains. Additionally, the percentage of CD34+ cells with endothelial commitment (KDR+) increased. CONCLUSIONS Our data suggest that telmisartan use is associated with an increase in circulating EPCs in older HIV + individuals with CVD risk factors. Further controlled studies are needed to assess whether EPC increases translate to a reduction in CVD risk in this population.
Collapse
Affiliation(s)
- Jordan E Lake
- a Division of Infectious Diseases, Department of Medicine , University of California , Los Angeles , CA , USA
| | - Sophie Seang
- a Division of Infectious Diseases, Department of Medicine , University of California , Los Angeles , CA , USA
| | - Theodoros Kelesidis
- a Division of Infectious Diseases, Department of Medicine , University of California , Los Angeles , CA , USA
| | - Judith S Currier
- a Division of Infectious Diseases, Department of Medicine , University of California , Los Angeles , CA , USA
| | - Otto O Yang
- a Division of Infectious Diseases, Department of Medicine , University of California , Los Angeles , CA , USA.,b Department of Microbiology, Immunology, and Molecular Genetics , University of California , Los Angeles , CA , USA.,c AIDS Healthcare Foundation , Los Angeles , CA , USA
| |
Collapse
|
9
|
Lan H, Wang Y, Yin T, Wang Y, Liu W, Zhang X, Yu Q, Wang Z, Wang G. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater 2015; 104:1237-47. [PMID: 26059710 DOI: 10.1002/jbm.b.33398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023]
Abstract
Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016.
Collapse
Affiliation(s)
- Hualin Lan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Tieyin Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Xiaojuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Qinsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissue Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, Gliddon BL, Moretti PA, Tigyi G, Pitson SM, Bonder CS. Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis. FASEB J 2015; 29:3638-53. [PMID: 25985799 DOI: 10.1096/fj.14-261289] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that can function both extracellularly and intracellularly to mediate a variety of cellular processes. Using lipid affinity matrices and a radiolabeled lipid binding assay, we reveal that S1P directly interacts with the transcription factor peroxisome proliferator-activated receptor (PPAR)γ. Herein, we show that S1P treatment of human endothelial cells (ECs) activated a luciferase-tagged PPARγ-specific gene reporter by ∼12-fold, independent of the S1P receptors. More specifically, in silico docking, gene reporter, and binding assays revealed that His323 of the PPARγ ligand binding domain is important for binding to S1P. PPARγ functions when associated with coregulatory proteins, and herein we identify that peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1)β binds to PPARγ in ECs and their progenitors (nonadherent endothelial forming cells) and that the formation of this PPARγ:PGC1β complex is increased in response to S1P. ECs treated with S1P selectively regulated known PPARγ target genes with PGC1β and plasminogen-activated inhibitor-1 being increased, no change to adipocyte fatty acid binding protein 2 and suppression of CD36. S1P-induced in vitro tube formation was significantly attenuated in the presence of the PPARγ antagonist GW9662, and in vivo application of GW9662 also reduced vascular development in Matrigel plugs. Interestingly, activation of PPARγ by the synthetic ligand troglitazone also reduced tube formation in vitro and in vivo. To support this, Sphk1(-/-)Sphk2(+/-) mice, with low circulating S1P levels, demonstrated a similar reduction in vascular development. Taken together, our data reveal that the transcription factor, PPARγ, is a bona fide intracellular target for S1P and thus suggest that the S1P:PPARγ:PGC1β complex may be a useful target to manipulate neovascularization.
Collapse
Affiliation(s)
- Kate A Parham
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Julia R Zebol
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katie L Tooley
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wai Y Sun
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lachlan M Moldenhauer
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michaelia P Cockshell
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Briony L Gliddon
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Paul A Moretti
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gabor Tigyi
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stuart M Pitson
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Claudine S Bonder
- *Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Co-operative Research Centre for Biomarker Translation, La Trobe University, Melbourne, Victoria, Australia; and Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Liebson PR. Stem-cell angiogenesis and regeneration of the heart: review of a saga of 2 decades. Clin Cardiol 2015; 38:309-16. [PMID: 25955103 DOI: 10.1002/clc.22381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/20/2022] Open
Abstract
Advances in the novel approach to control ischemic heart disease and heart failure using stem cells or progenitor cells from bone marrow, mesenchyme, or myocardial tissue itself have demonstrated efficacy for increasing left ventricular function, decreasing infarct scar tissue, improving exercise tolerance and heart failure symptoms, and, in some studies, decreasing mortality and reducing rehospitalization for intractable angina or subsequent myocardial infarction. The most common techniques utilize injections of cells into the coronary vasculature or directly into specific areas of vulnerable myocardium. Although few adverse effects have been noted in clinical trials of these procedures, further clinical trials over the next decade should provide further advances in interventional techniques, ancillary supporting technologies to enhance cell regeneration, and applications in ischemic heart disease, cardiomyopathies, and cardiac genetic disorders.
Collapse
Affiliation(s)
- Philip R Liebson
- Department of Preventive Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Abstract
Endothelial progenitor cells (EPCs) are primitive endothelial precursors which are known to functionally contribute to the pathogenesis of disease. To date a number of distinct subtypes of these cells have been described, with differing maturation status, cellular phenotype, and function. Although there is much debate on which subtype constitutes the true EPC population, all subtypes have endothelial characteristics and contribute to neovascularisation. Vasculogenesis, the process by which EPCs contribute to blood vessel formation, can be dysregulated in disease with overabundant vasculogenesis in the context of solid tumours, leading to tumour growth and metastasis, and conversely insufficient vasculogenesis can be present in an ischemic environment. Importantly, it is widely known that transcription factors tightly regulate cellular phenotype and function by controlling the expression of particular target genes and in turn regulating specific signalling pathways. This suggests that transcriptional regulators may be potential therapeutic targets to control EPC function. Herein, we discuss the observed EPC subtypes described in the literature and review recent studies describing the role of a number of transcriptional families in the regulation of EPC phenotype and function in normal and pathological conditions.
Collapse
|
13
|
Hong SH, Jang HH, Lee SR, Lee KH, Woo JS, Kim JB, Kim WS, Min BI, Cho KH, Kim KS, Cheng X, Kim W. Impact of lysophosphatidylcholine on survival and function of UEA-1(+)acLDL (+) endothelial progenitor cells in patients with coronary artery disease. Heart Vessels 2014; 30:115-25. [PMID: 24510253 DOI: 10.1007/s00380-014-0473-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Lysophosphatidylcholine (LPC) generated from oxidized low-density lipoprotein by lipoprotein-associated phospholipase A2 plays a key role in plaque inflammation and vulnerability. Endothelial progenitor cells (EPCs) can repair injured endothelium and exert anti-inflammatory effects of vulnerable plaque. We study the impact and mechanisms of LPC on UEA-1 and acLDL binding EPCs (UEA-1(+)acLDL(+) EPCs). UEA-1(+)acLDL(+) EPCs from coronary artery disease (CAD) patients were cultured and exposed to LPC at different concentrations and different timepoints. We determined the significant concentration (40 μM). UEA-1(+)acLDL(+) EPCs were preincubated for 30 min with pravastatin (20 μM) with LY249002, a specific inhibitor of the Akt signaling pathway, and exposed for 24 h to LPC 40 μM. The survival, migration, adhesion, and proliferation of UEA-1(+)acLDL(+) EPCs were assessed. To examine the mechanisms of LPC toxicity and pravastatin effects, phosphorylated Akt and endothelial nitric oxide synthase (eNOS) levels and the ratio of Bcl-2/Bax protein expression were assessed. LPC induced apoptosis and impaired migration and adhesion of UEA-1(+)acLDL(+) EPCs significantly. The detrimental effects of LPC were attenuated by pravastatin. However, when UEA-1(+)acLDL(+) EPCs were pretreated with pravastatin and LY249002, a specific inhibitor of the Akt signaling pathway, simultaneously, the beneficial effects of pravastatin were abolished. Furthermore, LPC suppressed Akt and eNOS phosphorylation and increased Bcl-2/Bax expression. The effects of LPC on Akt/eNOS and Bcl-2/Bax activity were reversed by pravastatin. In conclusion, LPC inhibited UEA-1(+)acLDL(+) EPCs survival and impaired its functions, and these were attributable to inhibition of the Akt/eNOS and Bcl-2/Bax pathway. Pravastatin reversed the detrimental action of LPC. These findings suggest that LPC inhibition can be a possible strategy for CAD through EPC revitalization.
Collapse
Affiliation(s)
- Seong Hun Hong
- Division of Cardiology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang HF, Wang L, Yuan HJ, Ma YH, Wang YF, Hu ZY, Su Y, Zhao ZG. PPAR-γ agonist pioglitazone prevents apoptosis of endothelial progenitor cells from rat bone marrow. Cell Biol Int 2013; 37:430-5. [PMID: 23504801 DOI: 10.1002/cbin.10046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/06/2013] [Indexed: 11/11/2022]
Abstract
Selective peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist affects the functions of endothelial progenitor cells (EPCs). This study explores the effect of selective PPAR-γ agonist, pioglitazone, on EPC apoptosis. The cells were cultured and identified via the double staining method in a medium containing different concentrations of pioglitazone. EPC apoptosis was detected by flow cytometry. On Day 7, EPCs engulfed DiL-ac-LDL and FITC-UEA-1, and showed yellow fluorescence in a laser-scanning confocal microscope. EPC apoptosis inhibition was maximal at 50 µmol/L. The ability of pioglitazone to prevent EPC apoptosis may be mediated by the PI3K/Akt signal pathway. The use of thiazolidine two ketone (TZD) to reduce EPC apoptosis may have some potential in treating vascular diseases.
Collapse
Affiliation(s)
- Hui-Feng Zhang
- The Second Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou Henan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin CP, Lin FY, Huang PH, Chen YL, Chen WC, Chen HY, Huang YC, Liao WL, Huang HC, Liu PL, Chen YH. Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:845037. [PMID: 23484163 PMCID: PMC3591199 DOI: 10.1155/2013/845037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) move towards injured endothelium or inflamed tissues and incorporate into foci of neovascularisation, thereby improving blood flow and tissue repair. Patients with cardiovascular diseases have been shown to exhibit reduced EPC number and function. It has become increasingly apparent that these changes may be effected in response to enhanced oxidative stress, possibly as a result of systemic and localised inflammatory responses. The interplay between inflammation and oxidative stress affects the initiation, progression, and complications of cardiovascular diseases. Recent studies suggest that inflammation and oxidative stress modulate EPC bioactivity. Clinical medications with anti-inflammatory and antioxidant properties, such as statins, thiazolidinediones, angiotensin II receptor 1 blockers, and angiotensin-converting enzyme inhibitors, are currently administered to patients with cardiovascular diseases. These medications appear to exert beneficial effects on EPC biology. This review focuses on EPC biology and explores the links between oxidative stress, inflammation, and development of cardiovascular diseases.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine and Divisions of Biochemistry and Cardiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, Taipei Medical University and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Po-Hsun Huang
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine and Divisions of Biochemistry and Cardiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Chuen Huang
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Huey-Chun Huang
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
16
|
Anjum F, Lazar J, Zein J, Jamaleddine G, Demetis S, Wadgaonkar R. Characterization of altered patterns of endothelial progenitor cells in sickle cell disease related pulmonary arterial hypertension. Pulm Circ 2012; 2:54-60. [PMID: 22558520 PMCID: PMC3342749 DOI: 10.4103/2045-8932.94834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endothelial dysfunction plays an important role in the pathogenesis of pulmonary arterial hypertension (PAH) in sickle cell disease (SCD). A variety of evidence suggests that circulating endothelial progenitor cells (EPCs) play an integral role in vascular repair. We hypothesized that SCD patients with PAH are deficient in EPCs, potentially contributing to endothelial dysfunction and disease progression. The number of circulating CD34+/CD14−/CD106+ EPCs was significantly lower in SCD patients with PAH than without PAH (P=0.025). CD34+/CD14−/CD106+ numbers significantly correlated with tricuspid regurgitation velocity (TRV, r=−0.44, P=0.033) 6-minute walk distance (6MWD, r= 0.72, P=0.001), mean pulmonary artery pressure (mPAP, r= −0.43, P=0.05), and pulmonary vascular resistance (PVR, r=−0.45, P=0.05). Other EPC subsets including CD31+/CD133+/CD146+ were similar between both groups. Numbers of EPCs did not correlate with age, sex, hemoglobin, WBC count, reticulocyte count, lactate dehydrogenase (LDH), iron/ferritin levels, and serum creatinine. These data indicate that subsets of EPC are lower in SCD patients with PAH than in those without PAH. Fewer EPCs in PAH patients may contribute to the pulmonary vascular pathology. Reduced number of EPCs in SCD patients with PAH might not only give potential insight into the pathophysiological mechanisms but also might be useful for identifying suitable therapeutic targets in these patients.
Collapse
Affiliation(s)
- Fatima Anjum
- SUNY Downstate Medical Center and VA Medical Center, Brooklyn, New York, USA
| | | | | | | | | | | |
Collapse
|
17
|
Khazaei M, Salehi E. Rosiglitazone enhances neovascularization in diabetic rat ischemic hindlimb model. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:312-7. [PMID: 23104577 DOI: 10.5507/bp.2012.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/25/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is increasing evidence that peroxisome proliferator-activated receptors (PPARs) may be involved in the regulation of angiogenesis. In this study, we examined whether rosiglitazone, a PPARγ agonist, can restore angiogenesis in a rat hindlimb ischemia model of diabetes. METHODS Male wistar rats were divided into four groups (n=6 each): control, diabetic and control and diabetic rats who received rosiglitazone (8 mg/kg/day). Diabetes was induced by streptozotocin (55 mg/kg; ip). After 21 days, serum concentrations of nitric oxide (NO), vascular endothelial growth factor (VEGF) and soluble VEGF receptor-2 (VEGFR-2) were measured and neovascularization in ischemic legs was evaluated by immunohistochemistry. RESULTS Capillary density and capillary/fiber ratio in hindlimb ischemia of diabetic animals were significantly lower than the control group (P<0.05). Rosiglitazone significantly restored neovascularization in diabetic animals (P<0.05). CONCLUSIONS rosiglitazone enhances neovascularization in diabetic ischemic skeletal muscle and could be considered for treatment of peripheral artery disease in diabetic subjects.
Collapse
Affiliation(s)
- Majid Khazaei
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | |
Collapse
|
18
|
Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark Med 2012; 5:731-44. [PMID: 22103609 DOI: 10.2217/bmm.11.92] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The discovery of endothelial progenitor cells in the 1990s challenged the paradigm of angiogenesis by showing that cells derived from hematopoietic stem cells are capable of forming new blood vessels even in the absence of a pre-existing vessel network, a process termed vasculogenesis. Since then, the majority of studies in the field have found a strong association between circulating endothelial progenitor cells and cardiovascular risk. Several studies have also reported that inflammation influences the mobilization and differentiation of endothelial progenitor cells. In this review, we discuss the emerging role of endothelial progenitor cells as biomarkers of cardiovascular disease as well as the interplay between inflammation and endothelial progenitor cell biology. We will also review the challenges in the field of endothelial progenitor cell-based therapy.
Collapse
Affiliation(s)
- Johannes C Grisar
- Department of Medicine, Division of Immunology & Rheumatology, Stanford School of Medicine, 265 Campus Drive, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
19
|
Magri CJ, Gatt N, Xuereb RG, Fava S. Peroxisome proliferator-activated receptor-γ and the endothelium: implications in cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 9:1279-94. [PMID: 21985541 DOI: 10.1586/erc.11.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptors-γ (PPARγs) are ligand-activated transcription factors that play a crucial regulatory role in the transcription of a large number of genes involved in lipid metabolism and inflammation. In addition to physiological ligands, synthetic ligands (the thiazoledinediones) have been developed. In spite of the much publicized adverse cardiovascular effects of one such thiazoledinedione (rosiglitazone), PPARγ activation may have beneficial cardiovascular effects. In this article we review the effects of PPARγ activation on the endothelium with special emphasis on the possible implications in cardiovascular disease. We discuss its possible role in inflammation, vasomotor function, thrombosis, angiogenesis, vascular aging and vascular rhythm. We also briefly review the clinical implications of these lines of research.
Collapse
Affiliation(s)
- Caroline Jane Magri
- Department of Cardiac Services, Mater Dei Hospital, Tal-Qroqq, Msida MSD 2090, Malta
| | | | | | | |
Collapse
|
20
|
Wang CH, Hsieh IC, Chen SJ, Wang JS, Cherng WJ, Chen CC, Lam IJ, Lin SJ. VE-Cadherinlow.ALPHA.-Smooth Muscle Actin+ Component of Vascular Progenitor Cells Correlates With the Coronary Artery Gensini Score. Circ J 2012; 76:477-484. [DOI: 10.1253/circj.cj-11-0739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
- Institute of Clinical Medicine, National Yang-Ming University
| | - I-Chang Hsieh
- Second Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
| | - Shih-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science and Healthy Aging Research Center, Chang Gung University
| | - Wen-Jin Cherng
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Chun-Chi Chen
- Second Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
| | - Iii-Jan Lam
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital
- Chang Gung University College of Medicine
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University
| |
Collapse
|
21
|
Moebius-Winkler S, Schuler G, Adams V. Endothelial progenitor cells and exercise-induced redox regulation. Antioxid Redox Signal 2011; 15:997-1011. [PMID: 21091077 DOI: 10.1089/ars.2010.3734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelial progenitor cells (EPCs) are thought to participate in endothelial cell regeneration and neovascularization in either a direct or an indirect way. The number of circulating EPCs is influenced by many factors like disease status, medication, age, and fitness level and is an independent predictor of disease progression and cardiovascular events. Experimental as well as clinical studies during the last 10 years clearly demonstrated that physical exercise training has a beneficial effect on endothelial function, which is a clear predictive value for cardiovascular mortality. Over the last years mainly clinical studies provided solid evidence for an exercise training induced mobilization of EPCs from the bone marrow, thereby possibly influencing the regeneration of the endothelial cell layer. This review will discuss the mechanisms how exercise induces mobilization of EPCs from the bone marrow with a focus on the influence on the redox balance.
Collapse
Affiliation(s)
- Sven Moebius-Winkler
- Department of Internal Medicine/Cardiology, University Leipzig-Heart Center, Leipzig, Germany
| | | | | |
Collapse
|
22
|
Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-gamma: Therapeutic Implications for Cardiovascular Diseases. PPAR Res 2011; 2008:429123. [PMID: 18288288 PMCID: PMC2225465 DOI: 10.1155/2008/429123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/24/2007] [Indexed: 12/14/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (SMCs) is a critical process for the development of atherosclerosis and complications of procedures used to treat atherosclerotic diseases, including postangioplasty restenosis, vein graft failure, and transplant vasculopathy. Peroxisome proliferator-activated receptor (PPAR) gamma is a member of the nuclear hormone receptor superfamily and the molecular target for the thiazolidinediones (TZD), used clinically to treat insulin resistance in patients with type 2 diabetes. In addition to their efficacy to improve insulin sensitivity, TZD exert a broad spectrum of pleiotropic beneficial effects on vascular gene expression programs. In SMCs, PPARgamma is prominently upregulated during neointima formation and suppresses the proliferative response to injury of the arterial wall. Among the molecular target genes regulated by PPARgamma in SMCs are genes encoding proteins involved in the regulation of cell-cycle progression, cellular senescence, and apoptosis. This inhibition of SMC proliferation is likely to contribute to the prevention of atherosclerosis and postangioplasty restenosis observed in animal models and proof-of-concept clinical studies. This review will summarize the transcriptional target genes regulated by PPARgamma in SMCs and outline the therapeutic implications of PPARgamma activation for the treatment and prevention of atherosclerosis and its complications.
Collapse
|
23
|
Wong WT, Tian XY, Xu A, Yu J, Lau CW, Hoo RLC, Wang Y, Lee VWY, Lam KSL, Vanhoutte PM, Huang Y. Adiponectin is required for PPARγ-mediated improvement of endothelial function in diabetic mice. Cell Metab 2011; 14:104-15. [PMID: 21723508 DOI: 10.1016/j.cmet.2011.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 03/11/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
Rosiglitazone is a PPARγ agonist commonly used to treat diabetes. In addition to improving insulin sensitivity, rosiglitazone restores normal vascular function by a mechanism that remains poorly understood. Here we show that adiponectin is required to mediate the PPARγ effect on vascular endothelium of diabetic mice. In db/db and diet-induced obese mice, PPARγ activation by rosiglitazone restores endothelium-dependent relaxation of aortae, whereas diabetic mice lacking adiponectin or treated with an anti-adiponectin antibody do not respond. Rosiglitazone stimulates adiponectin release from fat explants, and subcutaneous fat transplantation from rosiglitazone-treated mice recapitulates vasodilatation in untreated db/db recipients. Mechanistically, adiponectin activates AMPK/eNOS and cAMP/PKA signaling pathways in aortae, which increase NO bioavailability and reduce oxidative stress. Taken together, these results demonstrate that adipocyte-derived adiponectin is required for PPARγ-mediated improvement of endothelial function in diabetes. Thus, the adipose tissue represents a promising target for treating diabetic vasculopathy.
Collapse
Affiliation(s)
- Wing Tak Wong
- Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Paget MB, Murray HE, Bailey CJ, Flatt PR, Downing R. Rotational co-culture of clonal β-cells with endothelial cells: effect of PPAR-γ agonism in vitro on insulin and VEGF secretion. Diabetes Obes Metab 2011; 13:662-8. [PMID: 21435140 DOI: 10.1111/j.1463-1326.2011.01392.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting β-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. METHODS Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-γ agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. RESULTS D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p < 0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p < 0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p < 0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p < 0.01) and VEGF production (p < 0.01) in the presence and absence of D11 cells. CONCLUSIONS Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-γ agonist may improve the prospects for graft revascularization and function after implantation.
Collapse
Affiliation(s)
- M B Paget
- Islet Research Laboratory, Worcestershire Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.
| | | | | | | | | |
Collapse
|
25
|
Differentiation profile of peripheral blood-derived vascular progenitor cell predicts intimal hyperplasia after coronary stenting. Heart Vessels 2011; 27:10-9. [DOI: 10.1007/s00380-011-0118-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
26
|
Green DE, Sutliff RL, Hart CM. Is peroxisome proliferator-activated receptor gamma (PPARγ) a therapeutic target for the treatment of pulmonary hypertension? Pulm Circ 2011; 1:33-47. [PMID: 21547012 PMCID: PMC3085428 DOI: 10.4103/2045-8932.78101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH), a progressive disorder associated with significant morbidity and mortality, is caused by complex pathways that culminate in structural and functional alterations of the pulmonary circulation and increases in pulmonary vascular resistance and pressure. Diverse genetic, pathological, or environmental triggers stimulate PH pathogenesis culminating in vasoconstriction, cell proliferation, vascular remodeling, and thrombosis. We conducted a thorough literature review by performing MEDLINE searches via PubMed to identify articles pertaining to PPARγ as a therapeutic target for the treatment of PH. This review examines basic and preclinical studies that explore PPARγ and its ability to regulate PH pathogenesis. Despite the current therapies that target specific pathways in PH pathogenesis, including prostacyclin derivatives, endothelin-receptor antagonists, and phosphodiesterase type 5 inhibitors, morbidity and mortality related to PH remain unacceptably high, indicating the need for novel therapeutic approaches. Consequently, therapeutic targets that simultaneously regulate multiple pathways involved in PH pathogenesis have gained attention. This review focuses on peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. While the PPARγ receptor is best known as a master regulator of lipid and glucose metabolism, a growing body of literature demonstrates that activation of PPARγ exerts antiproliferative, antithrombotic, and vasodilatory effects on the vasculature, suggesting its potential efficacy as a PH therapeutic target.
Collapse
Affiliation(s)
- David E Green
- Department of Medicine, Emory University, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | | | | |
Collapse
|
27
|
Endothelial progenitor cells: Their potential role in pregnancy and preeclampsia. Pregnancy Hypertens 2011; 1:48-58. [DOI: 10.1016/j.preghy.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Wang CH, Hsieh IC, Su Pang JH, Cherng WJ, Lin SJ, Tung TH, Mei HF. Factors associated with purity, biological function, and activation potential of endothelial colony-forming cells. Am J Physiol Regul Integr Comp Physiol 2010; 300:R586-94. [PMID: 21160060 DOI: 10.1152/ajpregu.00450.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endothelial colony-forming cells (ECFCs) are undergoing extensive investigations to tackle certain deliberating cardiovascular diseases. However, the success of this approach depends on a thorough understanding of ECFC biology. This study sought to determine the factors associated with the purity, biological function, and activation potential of ex vivo expanded ECFCs. Seventy-three patients with newly diagnosed coronary artery disease (CAD) and 24 controls were studied. ECFCs were cultured for up to 10 passages to investigate changes in and the impact of coronary risk factors on ECFC biological functions and the atherogenic potential. Passages 3-5 of ECFCs exhibited higher endothelial phenotype expression and better biological functions, in terms of nitric oxide secretion and tubular formation, but lower activation potentials compared with later passages (P <0.05). Studies on passage 3 showed that endothelial phenotype expression and biological functions were impaired, and the activation potentials of the ECFCs were significantly upregulated in subjects with coronary risk factors and especially those with CAD (P < 0.05). Furthermore, ECFCs were already activated before inflammatory stimulation in subjects with diabetes mellitus, hypertension, and CAD. Atorvastatin upregulated the endothelial nitric oxide synthase expression of ECFCs in CAD patients (P < 0.01), although not up to the baseline level of controls. In conclusion, the passage number and a variety of coronary risk factors were associated with the purity, biological function, and activation potential of ex vivo-expanded ECFCs. Functional assessments and manipulations of ECFCs have to be pursued in patients with extensive risk factors.
Collapse
Affiliation(s)
- Chao-Hung Wang
- Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, Cheng KK, Wang Y, Vanhoutte PM, Xu A. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 2010; 59:2949-59. [PMID: 20802255 PMCID: PMC2963556 DOI: 10.2337/db10-0582] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A reduced number of circulating endothelial progenitor cells (EPCs) are casually associated with the cardiovascular complication of diabetes. Adiponectin exerts multiple protective effects against cardiovascular disease, independent of its insulin-sensitizing activity. The objective of this study was to investigate whether adiponectin plays a role in modulating the bioavailability of circulating EPCs and endothelial repair. RESEARCH DESIGN AND METHODS Adiponectin knockout mice were crossed with db(+/-) mice to produce db/db diabetic mice without adiponectin. Circulating number of EPCs were analyzed by flow cytometry. Reendothelialization was evaluated by staining with Evans blue after wire-induced carotid injury. RESULTS In adiponectin knockout mice, the number of circulating EPCs decreased in an age-dependent manner compared with the wild-type controls, and this difference was reversed by the chronic infusion of recombinant adiponectin. In db/db diabetic mice, the lack of adiponectin aggravated the hyperglycemia-induced decrease in circulating EPCs and also diminished the stimulatory effects of the PPARγ agonist rosiglitazone on EPC production and reendothelialization. In EPCs isolated from both human peripheral blood and mouse bone marrow, treatment with adiponectin prevented high glucose-induced premature senescence. At the molecular level, adiponectin decreased high glucose-induced accumulation of intracellular reactive oxygen species and consequently suppressed activation of p38 MAP kinase (MAPK) and expression of the senescence marker p16(INK4A). CONCLUSIONS Adiponectin prevents EPC senescence by inhibiting the ROS/p38 MAPK/p16(INK4A) signaling cascade. The protective effects of adiponectin against diabetes vascular complications are attributed in part to its ability to counteract hyperglycemia-mediated decrease in the number of circulating EPCs.
Collapse
Affiliation(s)
- Junlei Chang
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Karen S.L. Lam
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
| | - Ruby L.C. Hoo
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Kenneth K.Y. Cheng
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
| | - Yiqun Wang
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
| | - Paul M. Vanhoutte
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong, China
- Research Center for Heart, Brain, Hormones, and Healthy Aging, Univeristy of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
- Corresponding author: Aimin Xu,
| |
Collapse
|
30
|
Sutliff RL, Kang BY, Hart CM. PPARgamma as a potential therapeutic target in pulmonary hypertension. Ther Adv Respir Dis 2010; 4:143-60. [PMID: 20530063 DOI: 10.1177/1753465809369619] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disorder of the pulmonary circulation associated with significant morbidity and mortality. The pathobiology of PH involves a complex series of derangements causing endothelial dysfunction, vasoconstriction and abnormal proliferation of pulmonary vascular wall cells that lead to increases in pulmonary vascular resistance and pressure. Recent evidence indicates that the ligand-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARgamma) can have a favorable impact on a variety of pathways involved in the pathogenesis of PH. This review summarizes PPARgamma biology and the emerging evidence that therapies designed to activate this receptor may provide novel approaches to the treatment of PH. Mediators of PH that are regulated by PPARgamma are reviewed to provide insights into potential mechanisms underlying therapeutic effects of PPARgamma ligands in PH.
Collapse
Affiliation(s)
- Roy L Sutliff
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| | | | | |
Collapse
|
31
|
Yeh YC, Wei HJ, Lee WY, Yu CL, Chang Y, Hsu LW, Chung MF, Tsai MS, Hwang SM, Sung HW. Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Eng Part A 2010; 16:1925-36. [PMID: 20067384 DOI: 10.1089/ten.tea.2009.0728] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) derived from second-trimester amniocentesis were evaluated for the therapeutic potential of cardiac repair. Whether hAFSCs can be differentiated into cardiomyogenic cells and toward the maturation of endothelial cell lineage was investigated in vitro using mimicking differentiation milieu. Employing an immune-suppressed rat model with experimental myocardial infarction, an intramyocardial injection was conducted with a needle directly into the peri-infarct areas. There were three treatment groups: sham, saline, and hAFSCs (n > or = 10). When cultured with rat neonatal cardiomyocytes or in endothelial growth medium-2 enriched with vascular endothelial growth factor, hAFSCs were differentiated into cardiomyocyte-like cells and cells of endothelial lineage, respectively. After 4 weeks, hAFSC-treated animals showed a preservation of the infarcted thickness, an attenuation of left ventricle remodeling, a higher vascular density, and thus an improvement in cardiac function, when compared with the saline injection group. Survival and proliferation of the transplanted hAFSCs were revealed by immunohistochemical staining. Expressions of the cardiac-specific markers such as Nkx2.5, alpha-actinin, and cardiac Troponin T were observed in the transplanted hAFSCs. Additionally, Cx43 was clearly expressed at the borders of the transplanted/transplanted and host/transplanted cells, an indication of enhancement of cell connection. The results demonstrated that hAFSCs induce angiogenesis, have cardiomyogenic potential, and may be used as a new cell source for cellular cardiomyoplasty.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Benameur T, Tual-Chalot S, Andriantsitohaina R, Martínez MC. PPARalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PLoS One 2010; 5:e12392. [PMID: 20811625 PMCID: PMC2928272 DOI: 10.1371/journal.pone.0012392] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 07/28/2010] [Indexed: 12/16/2022] Open
Abstract
Background Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. Methodology/Principal Findings We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms. Conclusions/Significance Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.
Collapse
Affiliation(s)
- Tarek Benameur
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - Simon Tual-Chalot
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
| | - María Carmen Martínez
- CNRS, UMR 6214, Angers, France
- INSERM, U771, Angers, France
- Faculté de Médecine, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
33
|
Abstract
Diabetes mellitus increases cardiovascular risk through its negative impact on vascular endothelium. Although glucotoxicity and lipotoxicity account for endothelial cell damage, endothelial repair is also affected by diabetes. Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. For these reasons, EPCs are thought to have a protective impact within the cardiovascular system. In addition, EPCs appear to modulate the functioning of other organs, providing neurotropic signals and promoting repair of the glomerular endothelium. The exact mechanisms by which EPCs provide cardiovascular protection are unknown and the definition of EPCs is not standardized. Notwithstanding these limitations, the literature consistently indicates that EPCs are altered in type 1 and type 2 diabetes and in virtually all diabetic complications. Moreover, experimental models suggest that EPC-based therapies might help prevent or reverse the features of end-organ complications. This identifies EPCs as having a novel pathogenic role in diabetes and being a potential therapeutic target. Several ways of favourably modulating EPCs have been identified, including lifestyle intervention, commonly used medications and cell-based approaches. Herein, we provide a comprehensive overview of EPC pathophysiology and the potential for EPC modulation in diabetes.
Collapse
Affiliation(s)
- G P Fadini
- Department of Clinical and Experimental Medicine, Division of Metabolic Diseases, University of Padova, Medical School, Padova, Italy.
| | | |
Collapse
|
34
|
Padfield GJ, Newby DE, Mills NL. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 2010; 55:1553-65. [PMID: 20378071 DOI: 10.1016/j.jacc.2009.10.070] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/14/2009] [Accepted: 10/17/2009] [Indexed: 12/22/2022]
Abstract
Percutaneous coronary intervention is associated with mechanical endovascular injury and endothelial denudation. Re-endothelialization is essential for restoration of normal vascular homeostasis and regulation of neointimal hyperplasia. The endothelial progenitor cell recently emerged as an important component of the response to vascular injury, having the potential to accelerate vascular repair through rapid re-endothelialization. There remains considerable uncertainty over the precise identity and function of endothelial progenitor cells, and harnessing their therapeutic potential remains a challenge. A better understanding of the role of circulating progenitors in the response to vascular injury is necessary if we are to develop effective strategies to enhance vascular repair after percutaneous coronary intervention. In this review, we examine the preclinical and clinical evidence of a role for bone marrow-derived putative endothelial progenitor cells after iatrogenic vascular injury associated with balloon angioplasty and stent deployment. Therapies designed to mobilize endothelial progenitors or to increase their ability to home to the site of stent implantation may have a role in the future management of patients undergoing percutaneous coronary intervention.
Collapse
Affiliation(s)
- Gareth J Padfield
- Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
35
|
Chiang CK, Chowdhury MF, Iyer RK, Stanford WL, Radisic M. Engineering surfaces for site-specific vascular differentiation of mouse embryonic stem cells. Acta Biomater 2010; 6:1904-16. [PMID: 20004260 DOI: 10.1016/j.actbio.2009.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/15/2009] [Accepted: 12/03/2009] [Indexed: 01/27/2023]
Abstract
Differentiation of stem and progenitor cells routinely relies on the application of soluble growth factors, an approach that enables temporal control of cell fate but enables no spatial control of the differentiation process. Angiogenic progenitor cells derived from mouse embryonic stem cells (ESCs) were differentiated here according to the pattern of immobilized vascular endothelial growth factor-A (VEGF). Mouse ESCs engineered to express green fluorescent protein (eGFP) under control of promoter for the receptor tyrosine kinase Flk1 were used. The Flk1+ angiogenic progenitors were selected from day 3 differentiating embryoid bodies based on their expression of eGFP using fluorescence activated cell sorting. Mouse VEGF(165) was covalently immobilized onto collagen IV (ColIV) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) chemistry. A non-cell adhesive layer of photocrosslinkable chitosan was first created, after which VEGF-ColIV was stamped as 100mum wide lanes on top of the chitosan layer and the Flk1+ angiogenic progenitors were seeded for site-specific differentiation. Lanes stamped with only ColIV served as controls. The results presented here demonstrate that the cultivation of Flk1+ progenitors on surfaces with immobilized VEGF yielded primarily endothelial cells (53+/-13% CD31 positive and 17+/-2% smooth muscle actin positive), whereas surfaces without VEGF favored vascular smooth muscle-like cell differentiation (26+/-17% CD31 positive and 38+/-9% smooth muscle actin positive).
Collapse
Affiliation(s)
- C Katherine Chiang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
36
|
Liao YF, Chen LL, Zeng TS, Li YM, Fan Yu, Hu LJ, Ling Yue. Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes. Vasc Med 2010; 15:279-85. [PMID: 20511292 DOI: 10.1177/1358863x10367537] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial dysfunction is an early marker of atherosclerosis seen in type 2 diabetes (T2DM). Circulating endothelial progenitor cell (EPC) is involved in the neovasculogenesis and maintenance of vascular homeostasis, whose impairment may have an important role in the pathogenesis of diabetic vasculopathy. This study was performed to investigate the relationship between vascular endothelial function and circulating EPC number in T2DM. A total of 46 newly diagnosed T2DM patients (DM group) and 51 healthy subjects (NG group) were recruited. Metformin was administered to all patients for 16 weeks. Endothelial function was assessed by flow-mediated brachial artery dilatation (FMD). EPC was defined by CD45( low)/CD34(+)/VEGFR2(+) and quantified by flow cytometry. The EPC number in the DM group was significantly lower than that in the NG group (p < 0.001), and improved markedly after treatment (p < 0.001). The results of FMD were consistent with EPC variations among the three groups (p < 0.001). In multivariate regression analysis, the EPC number was an independent risk factor for FMD at baseline (p < 0.05). The absolute changes of EPC number showed significant correlation with the changes of FMD before and after treatment (r = 0.63, p < 0.001). This study demonstrated that the circulating EPC number was related to endothelial function and could be considered as a surrogate biological marker of endothelial function for T2DM.
Collapse
Affiliation(s)
- Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
38
|
Tian L, Zhou J, Casimiro MC, Liang B, Ojeifo JO, Wang M, Hyslop T, Wang C, Pestell RG. Activating peroxisome proliferator-activated receptor gamma mutant promotes tumor growth in vivo by enhancing angiogenesis. Cancer Res 2010; 69:9236-44. [PMID: 19934321 DOI: 10.1158/0008-5472.can-09-2067] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in a variety of cancer cells. The addition of ligand activates the receptor by inducing a conformational change in the receptor, which can be recapitulated by mutation. To investigate the role of activated PPARgamma signaling in breast cancer, we compared the function of a constitutively active PPARgamma (PgammaCA) mutant with the wild-type PPARgamma in ErbB2-induced mammary tumorigenesis in vivo. Tumor cells transduced with either PPARgamma or PgammaCA were implanted into immunocompetent FVB mice. Enhanced tumor growth was observed in PgammaCA-transduced cells, which was associated with increased angiogenesis and endothelial stem cells as evidenced by increased number of cells stained with von Willebrand factor, c-Kit, CD133, and CD31. Genome-wide expression profiling identified a group of genes within the angiogenesis pathway, including Angptl4, as targets of activated PPARgamma; PgammaCA also induced Angptl4 protein secretion in ErbB2-transformed mammary epithelial cells. Angptl4 promoted vascular endothelial cell migration; conversely, immunodepletion of Angptl4 reduced PgammaCA-mediated cellular migration. Collectively, these studies suggest that activated PPARgamma induces Angptl4 to promote tumor growth through enhanced angiogenesis in vivo.
Collapse
Affiliation(s)
- Lifeng Tian
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Petrik JJ, Gerstein HC, Cesta CE, Kellenberger LD, Alfaidy N, Holloway AC. Effects of rosiglitazone on ovarian function and fertility in animals with reduced fertility following fetal and neonatal exposure to nicotine. Endocrine 2009; 36:281-90. [PMID: 19693712 DOI: 10.1007/s12020-009-9229-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/14/2009] [Accepted: 06/04/2009] [Indexed: 11/30/2022]
Abstract
We have previously shown that in utero nicotine exposure causes impaired fertility, follicle immaturity, and ovarian dysfunction in adult female rat offspring. These characteristics overtly resemble the clinical profile of polycystic ovarian syndrome (PCOS) and recent studies have shown that thiazolidinediones such as rosiglitazone improve fertility in women with PCOS but the mechanism is not well defined. Our goal was to examine whether rosiglitazone would (1) ameliorate the altered ovarian physiology that occurs following fetal and neonatal exposure to nicotine and (2) to examine whether this could be due to normalization of ovarian vascularization. At weaning, offspring of nicotine-exposed dams were given either vehicle (NV) or rosiglitazone (3 mg kg(-1) day(-1); NR). Offspring of saline-exposed dams received vehicle (SV). Tissues were collected when the female offspring reached 26 weeks of age. NV animals had reduced granulosa cell proliferation and increased ovarian cell apoptosis. Treatment with rosiglitazone increased proliferation, and decreased apoptosis, compared NV animals. NV animals had decreased ovarian vascularity relative to controls, whereas NR animals had an intermediate level of ovarian vessel density. Moreover, ovaries from NV animals had decreased levels of the pro-angiogenic growth factors vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF both of which were increased with rosiglitazone treatment. Rosiglitazone reversed some of the nicotine effects in the ovary and increased ovarian vascularization, follicle maturation and improved oocyte competence. Rosiglitazone may be an important treatment option for PCOS and the present study provides a potential mechanism by which rosiglitazone may have beneficial effects on fertility in these patients.
Collapse
Affiliation(s)
- J J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Takeda K, Okamoto M, de Langhe S, Dill E, Armstrong M, Reisdorf N, Irwin D, Koster M, Wilder J, Stenmark KR, West J, Klemm D, Gelfand EW, Nozik-Grayck E, Majka SM. Peroxisome proliferator-activated receptor-g agonist treatment increases septation and angiogenesis and decreases airway hyperresponsiveness in a model of experimental neonatal chronic lung disease. Anat Rec (Hoboken) 2009; 292:1045-61. [PMID: 19484746 DOI: 10.1002/ar.20921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic lung disease (CLD) affects premature newborns requiring supplemental oxygen and results in impaired lung development and subsequent airway hyperreactivity. We hypothesized that the maintenance of peroxisome proliferator-activated receptor gamma (PPARgamma) signaling is important for normal lung morphogenesis and treatment with PPARgamma agonists could protect against CLD and airway hyperreactivity (AHR) following chronic hyperoxic exposure. This was tested in an established hyperoxic murine model of experimental CLD. Newborn mice and mothers were exposed to room air (RA) or moderate hyperoxia (70% oxygen) for 10 days and fed a standard diet or chow impregnated with the PPARgamma agonist rosiglitazone (ROSI) for the duration of study. Following hyperoxic exposure (HE) animals were returned to RA until postnatal day (P) 13 or P41. The accumulation of ROSI in neonatal and adult tissue was confirmed by mass spectrometry. Analyses of body weight and lung histology were performed on P13 and P41 to localize and quantitate PPARgamma expression, determine alveolar and microvessel density, proliferation and alpha-smooth muscle actin (alpha-SMA) levels as a measure of myofibroblast differentiation. Microarray analyses were conducted on P13 to examine transcriptional changes in whole lung. Pulmonary function and airway responsiveness were analyzed at P55. ROSI treatment during HE preserved septation and vascular density. Key array results revealed ontogeny groups differentially affected by hyperoxia including cell cycle, angiogenesis, matrix, and muscle differentiation/contraction. These results were further confirmed by histological evaluation of myofibroblast and collagen accumulation. Late AHR to methacholine was present in mice following HE and attenuated with ROSI treatment. These findings suggest that rosiglitazone maintains downstream PPARgamma effects and may be beneficial in the prevention of severe CLD with AHR.
Collapse
Affiliation(s)
- K Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Villegas A, Gonzalez FA, Llorente L, Redondo S. Emerging hematological targets and therapy for cardiovascular disease: From bench to bedside. Biologics 2009; 2:397-407. [PMID: 19707371 PMCID: PMC2721378 DOI: 10.2147/btt.s2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death and a major part of its pathophysiology remains obscure. Some hematological targets have been related to the development and clinical outcome of this disease, especially soluble cytokines, leukocytes, red blood cells, hemostatic factors and platelets, and bone-marrow vascular progenitors. These emerging factors may be modulated by current antiatherosclerotic pharmacotherapy, target-designed novel drugs or progenitor cell therapy. The aim of current review article is to comprehensively review the role of these antiatherosclerotic targets and therapy.
Collapse
Affiliation(s)
- Ana Villegas
- Service of Hematology and Hemotherapy, Hospital, Clinico Universitario, San Carlos, Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Zhao W, Thacker SG, Hodgin JB, Zhang H, Wang JH, Park JL, Randolph A, Somers EC, Pennathur S, Kretzler M, Brosius FC, Kaplan MJ. The peroxisome proliferator-activated receptor gamma agonist pioglitazone improves cardiometabolic risk and renal inflammation in murine lupus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2729-40. [PMID: 19620300 PMCID: PMC2765333 DOI: 10.4049/jimmunol.0804341] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Individuals with systemic lupus erythematosus (SLE) have a striking increase in the risk of premature atherosclerosis, a complication preceded by significant subclinical vascular damage. A proposed mechanism leading to accelerated vascular disease in SLE is an imbalance between vascular damage and repair, as patients with this disease display significant abnormalities in phenotype and function of endothelial progenitor cells. In addition, individuals with SLE have a higher incidence of insulin resistance which may further contribute to the increased cardiovascular risk. This study examined the role of the peroxisome proliferator activated receptor gamma agonist pioglitazone in improving endothelial function, endothelial progenitor cell numbers and functional capacity, metabolic parameters, and disease activity in the lupus-prone murine model New Zealand Black/New Zealand White (NZB x NZW)F(1). Ten-week-old prenephritic female NZB/NZW F(1) mice were exposed to 10 or 25 mg/kg/day of oral pioglitazone or vehicle for 15 or 24 wk. Mice exposed to pioglitazone exhibited pronounced enhancement in endothelial-dependent vasorelaxation of thoracic aortas and in endothelial progenitor cell function, as assessed by the capacity of bone marrow-derived endothelial progenitor cells to differentiate into mature endothelial cells. Pioglitazone-treated mice showed improvement in insulin resistance, adipokine, and lipid profile. Kidneys from pioglitazone-treated mice showed significant decreases in immune complex deposition, renal inflammation, T cell glomerular infiltration, and intrarenal synthesis of TNF-alpha, IL-1beta, and VCAM-1. These results indicate that peroxisome proliferator-activated receptor gamma agonists could serve as important tools in the prevention of premature cardiovascular disease and organ damage in SLE.
Collapse
Affiliation(s)
- Wenpu Zhao
- Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clin Sci (Lond) 2009; 117:173-90. [PMID: 19630751 DOI: 10.1042/cs20080263] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin resistance, a key feature of obesity, the metabolic syndrome and Type 2 diabetes mellitus, results in an array of metabolic and vascular phenomena which ultimately promote the development of atherosclerosis. Endothelial dysfunction is intricately related to insulin resistance through the parallel stimulatory effects of insulin on glucose disposal in metabolic tissues and NO production in the endothelium. Perturbations characteristic of insulin resistance, including dyslipidaemia, inflammation and oxidative stress, may jeopardize the structural or functional integrity of the endothelium. Recent evidence suggests that endothelial damage is mitigated by endogenous reparative processes which mediate endothelial regeneration. EPCs (endothelial progenitor cells) are circulating cells which have been identified as mediators of endothelial repair. Several of the abnormalities associated with insulin resistance, including reduced NO bioavailability, increased production of ROS (reactive oxygen species) and down-regulation of intracellular signalling pathways, have the potential to disrupt EPC function. Improvement in the number and function of EPCs may contribute to the protective actions of evidence-based therapies to reduce cardiometabolic risk. In the present article, we review the putative effects of insulin resistance on EPCs, discuss the underlying mechanisms and highlight potential therapeutic manoeuvres which could improve vascular repair in individuals with insulin resistance.
Collapse
|
44
|
Abstract
Adult endothelial as well as smooth muscle progenitor cells are engaged in the complex pathophysiology of atherosclerosis including primary remodeling with development and progression of atherosclerotic plaques as well as secondary complications associated with ischemia, endothelial damage, neointimal growth and transplant arteriosclerosis. These adult vascular precursor cells correspond to similar embryonic stem cell-derived progeny and are primarily located in bone marrow and peripheral blood. Recently, specific investigation on their recruitment emerged as a novel fundamental in the pathogenesis of arterial remodeling, plaque stability and angiogenesis. This multifaceted process of mobilization and homing is regulated by numerous chemokines, adhesion molecules and growth factors that guide and control the trafficking of vascular progenitor cells to the arterial wall after injury or during ischemia.
Collapse
Affiliation(s)
- M Hristov
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
45
|
van Oostrom O, Fledderus JO, de Kleijn D, Pasterkamp G, Verhaar MC. Smooth muscle progenitor cells: friend or foe in vascular disease? Curr Stem Cell Res Ther 2009; 4:131-40. [PMID: 19442197 PMCID: PMC3182076 DOI: 10.2174/157488809788167454] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The origin of vascular smooth muscle cells that accumulate in the neointima in vascular diseases such as transplant arteriosclerosis, atherosclerosis and restenosis remains subject to much debate. Smooth muscle cells are a highly heterogeneous cell population with different characteristics and markers, and distinct phenotypes in physiological and pathological conditions. Several studies have reported a role for bone marrow-derived progenitor cells in vascular maintenance and repair. Moreover, bone marrow-derived smooth muscle progenitor cells have been detected in human atherosclerotic tissue as well as in in vivo mouse models of vascular disease. However, it is not clear whether smooth muscle progenitor cells can be regarded as a 'friend' or 'foe' in neointima formation. In this review we will discuss the heterogeneity of smooth muscle cells, the role of smooth muscle progenitor cells in vascular disease, potential mechanisms that could regulate smooth muscle progenitor cell contribution and the implications this may have on designing novel therapeutic tools to prevent development and progression of vascular disease.
Collapse
Affiliation(s)
- Olivia van Oostrom
- Department of Vascular Medicine, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPAR gamma appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPAR gamma expression may be a vascular compensatory response. Also, ligand-activated PPAR gamma decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPAR alpha, similar to PPAR gamma, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPAR alpha activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPAR delta overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPAR delta ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology.
Collapse
Affiliation(s)
- Milton Hamblin
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
47
|
Schernthaner G. Pleiotropic effects of thiazolidinediones on traditional and non-traditional atherosclerotic risk factors. Int J Clin Pract 2009; 63:912-29. [PMID: 19490202 DOI: 10.1111/j.1742-1241.2009.02025.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The thiazolidinediones pioglitazone and rosiglitazone have established efficacy in improving insulin sensitivity, glycaemic control, dyslipidaemia, hypertension and microalbuminuria in patients with type 2 diabetes. As specific agonists of peroxisome proliferator-activated receptor-gamma, thiazolidinediones have also demonstrated protective effects on a variety of atherosclerosis biomarkers and surrogate measures of cardiovascular disease. AIM This paper reviews the evidence for pleiotropic effects on a variety of non-traditional atherosclerotic risk factors. DISCUSSION Thiazolidinediones attenuate circulating levels of pro-inflammatory mediators in patients with type 2 diabetes, including C-reactive protein, interleukin-6, CD40L, monocyte chemoattractant protein-1 and metalloproteinase-9. These agents also increase levels of the vascular protective adipokine, adiponectin. The clinical significance of these findings is supported by evidence of improved endothelial dysfunction, reduced carotid intima media thickness and improvements in stenosis following coronary artery stent implantation in patients treated with thiazolidinediones. Limited data suggest that thiazolidinediones might also improve the circulating levels and functional activity of angiogenic endothelial progenitor cells, which independently predict the incidence of cardiovascular events and death. It should be noted that the US Food and Drug Administration and the European Medicines Agency have requested changes to the prescribing information for rosiglitazone to highlight the possibility of an increased risk with this agent in patients with ischaemic heart disease; on review, no such amendment was required for the pioglitazone prescribing information. Both agencies continue to suggest that the benefits of both thiazolidinediones outweight any possible detrimental effects. Further research remains to be conducted to elucidate the potentially differential vascular protective effects of thiazolidinediones. In the US, there are black box heart failure warnings for both agents. CONCLUSION In light of the established importance of reducing cardiovascular risk in patients with type 2 diabetes, current evidence continues to support the use of pioglitazone within multifactorial risk management strategies.
Collapse
Affiliation(s)
- G Schernthaner
- Department of Medicine, Rudolfstiftung Hospital, Vienna, Austria.
| |
Collapse
|
48
|
Zeoli A, Dentelli P, Brizzi MF. Endothelial progenitor cells and their potential clinical implication in cardiovascular disorders. J Endocrinol Invest 2009; 32:370-82. [PMID: 19636208 DOI: 10.1007/bf03345729] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Risk factors associated with cardiovascular diseases reduce the availability of endothelial progenitor cells (EPC) by affecting their mobilization and integration into injured vascular sites. The existence of a bone marrow reservoir of EPC has attracted interest, especially as target for therapeutic intervention in different pathological settings. Among the cardiovascular risk factors, hypertension has been shown to be a strongest predictor of EPC migratory impairment. However, at present, data concerning EPC biology are still limited. In this article we provide an overview of data relevant to their potential clinical implications in cardiovascular disorders. In addition, the recent advances in understanding the role of EPC in the pathophysiology of hypertension are discussed.
Collapse
Affiliation(s)
- A Zeoli
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | | | | |
Collapse
|
49
|
Yokoyama J, Higuma T, Tomita H, Abe N, Oikawa K, Fujiwara T, Yokota T, Yokoyama H, Kimura M, Sasaki S, Hanada H, Osanai T, Okumura K. Impact of telmisartan on coronary stenting in patients with acute myocardial infarction compared with enalapril. Int J Cardiol 2009; 132:114-20. [DOI: 10.1016/j.ijcard.2007.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/05/2007] [Accepted: 11/02/2007] [Indexed: 11/25/2022]
|
50
|
Honda A, Matsuura K, Fukushima N, Tsurumi Y, Kasanuki H, Hagiwara N. Telmisartan induces proliferation of human endothelial progenitor cells via PPARgamma-dependent PI3K/Akt pathway. Atherosclerosis 2008; 205:376-84. [PMID: 19193378 DOI: 10.1016/j.atherosclerosis.2008.12.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Although recent clinical trials have suggested that angiotensin II type 1 receptor blockers (ARBs) reduced cardiovascular events, the precise mechanisms involved are still unknown. Telmisartan, an ARB, has recently been identified as a ligand of peroxisome proliferator-activated receptor-gamma (PPARgamma). On the other hand, since endothelial progenitor cells (EPCs) are thought to play a critical role in ischemic diseases, we investigated effects of telmisartan on proliferation of EPCs. METHODS AND RESULTS Human peripheral blood mononuclear cells were isolated from healthy volunteers, and cultured on fibronectin-coated dishes in the presence or absence of telmisartan. Four days after starting culture, adherent cells were collected, and equal numbers of cells were reseeded into methylcellulose medium with or without telmisartan. In the presence of telmisartan, numbers of colonies increased in a dose-dependent manner. DiI-AcLDL uptake and lectin and CD31, CD34 staining revealed that these colonies were EPCs. Increase in colony number by treatment with telmisartan was absolutely inhibited when cultured with a specific inhibitor of PPARgamma. In addition, we observed that specific inhibitors of phosphoinositide-3 kinase (PI3K) abolished telmisartan-stimulated increase of monocytic EPC-like cells and telmisartan induced phosphorylation of Akt. Furthermore, mRNA expression of p21 was downregulated in a dose dependent manner, suggesting that growth inductive effects of telmisartan might be regulated by the PI3K/Akt and p21 signaling pathway. CONCLUSIONS These findings suggest that telmisartan might contribute to endothelial integrity and vasculogenesis in ischemic regions by increasing numbers of EPCs.
Collapse
Affiliation(s)
- Atsushi Honda
- Department of Cardiology, Tokyo Women's Medical University, Japan
| | | | | | | | | | | |
Collapse
|