1
|
Neves RVP, Corrêa HL, Reis AL, Andrade RV, Araújo TB, Santos RL, Oliveira FFS, Moraes Araújo GEB, Marra AVG, Baracho TA, Martins TO, Barbosa JMDS, Garcia MN, Miller NMG, Deus LA, Rosa TDS. Exercise Improves Respiratory Function, Body Fluid and Nitric Oxide in Hemodialysis Patients. Int J Sports Med 2024; 45:994-1004. [PMID: 38897226 DOI: 10.1055/a-2348-2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Emerging evidence suggests that resistance training (RT) can mitigate respiratory muscle weakness in hemodialysis (HD) patients. However, the underlying mechanisms responsible for these beneficial effects remain unclear. The purpose of this study was to assess the impact of periodized RT on respiratory muscle strength and its relationship with handgrip strength (HGS), fat-free mass (FFM), nitric oxide (NO), and interdialytic weight gain (IWG) in HD patients. Thirty-three patients were randomly assigned to two groups: control (CTL; n=18) and RT (n=15). The RT group did not perform any additional exercise training specific to the respiratory tract. Maximal inspiratory (MIP) and expiratory (MEP) pressures, peak expiratory flow (PEF), HGS, FFM, NO, and IWG were measured before and after the intervention period. Participants in the RT group engaged in a 24-week RT program, three times per week. RT resulted in significant improvements in MIP, MEP, PEF, as well as enhancements in HGS, FFM, NO, and IWG (p<0.05). Notably, inverse correlations were observed between MIP (r=-0.37, p=0.03) and PEF (r=-0.4, p=0.02) with IWG. Thus, the amelioration of HGS and FFM coincided with a reduction in respiratory muscle weakness among HD patients. Decreased IWG and increased circulating NO are plausible mechanisms contributing to these improvements.
Collapse
Affiliation(s)
| | - Hugo Luca Corrêa
- Physical Education, Catholic University of Brasilia, Taguatinga, Brazil
| | | | | | | | - Rafael Lavarini Santos
- Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasilia, Taguatinga, Brazil
| | | | | | | | - Thaís Amaral Baracho
- Graduate Programm in Physical Education, Catholic University of Brasilia, Taguatinga, Brazil
| | - Taynah Oliveira Martins
- Graduate Program in Physical Education, Catholic University of Brasilia, Riacho Fundo I, Brazil
| | | | - Mariana Neiva Garcia
- Graduate Programm in Physical Education, Catholic University of Brasilia, Taguatinga, Brazil
| | | | - Lysleine Alves Deus
- Graduate Programm in Physical Education, Catholic University of Brasilia, Taguatinga, Brazil
| | - Thiago Dos Santos Rosa
- Graduate Program in Physical Education and Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Taguatinga, Brazil
| |
Collapse
|
2
|
Zhang Z, Yi C, Chen T, Zhao Y, Zhang Y, Jin H. Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx. SENSORS (BASEL, SWITZERLAND) 2024; 24:7378. [PMID: 39599154 PMCID: PMC11598561 DOI: 10.3390/s24227378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Precise monitoring of NOx concentrations in nitric oxide delivery systems is crucial to ensure the safety and well-being of patients undergoing inhaled nitric oxide (iNO) therapy for pulmonary arterial hypertension. Currently, NOx sensing in commercialized iNO instruments predominantly relies on chemiluminescence sensors, which not only drives up costs but also limits their portability. Herein, we developed solid-state gas sensors utilizing Ni-based sensing materials for effectively tracking the levels of NO and NO2 in the NO delivery system. These sensors comprised of NiO-SE or (NiFe2O4 + 30 wt.% Fe2O3)-SE vs. Mn-based RE demonstrated high selectivity toward 100 ppm NO under the interference of 10 ppm NO2 or 3 ppm NO2 under the interference of 100 ppm NO, respectively. Meanwhile, excellent stability, repeatability, and humidity resistance were also verified for the proposed sensors. Sensing mechanisms were thoroughly investigated through assessments of adsorption capabilities and electrochemical reactivity. It turns out that the superior electrochemical reactivity of NiO toward NO, alongside the NO2 favorable adsorption characteristics of (NiFe2O4 + 30 wt.% Fe2O3), is the primary reason for the high selectivity to NOx. These findings indicate a bright future for the application of these NOx sensors in innovative iNO treatment technologies.
Collapse
Affiliation(s)
- Zhenghu Zhang
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
| | - Chenghan Yi
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
| | - Tao Chen
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Yangbo Zhao
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Yanyu Zhang
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Han Jin
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
- Medical School, Henan University, Kaifeng 475004, China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
- Wuzhen Laboratory, Tongxiang 314500, China
| |
Collapse
|
3
|
Yoshida K, Kawamata F, Hasegawa T, Shiraishi T, Inoue S. Appropriate use of inhaled nitric oxide in line with sustainable development goals. JA Clin Rep 2024; 10:69. [PMID: 39466527 PMCID: PMC11519255 DOI: 10.1186/s40981-024-00752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Affiliation(s)
- Keisuke Yoshida
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Fumika Kawamata
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
| | - Takayuki Hasegawa
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
| | - Taichi Shiraishi
- Department of Anesthesiology, Southern Tohoku General Hospital, Koriyama, Fukushima, Japan
| | - Satoki Inoue
- Department of Anesthesiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|
4
|
Sánchez-García S, Castrillo A, Boscá L, Prieto P. Potential Beneficial Role of Nitric Oxide in SARS-CoV-2 Infection: Beyond Spike-Binding Inhibition. Antioxidants (Basel) 2024; 13:1301. [PMID: 39594443 PMCID: PMC11591382 DOI: 10.3390/antiox13111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
SARS-CoV-2, the causative virus for the COVID-19 disease, uses its spike glycoprotein to bind to human ACE2 as a first step for viral entry into the cell. For this reason, great efforts have been made to find mechanisms that disrupt this interaction, avoiding the infection. Nitric oxide (NO) is a soluble endogenous gas with known antiviral and immunomodulatory properties. In this study, we aimed to test whether NO could inhibit the binding of the viral spike to ACE2 in human cells and its effects on ACE2 enzymatic activity. Our results show that ACE2 activity was decreased by the NO donors DETA-NONOate and GSNO and by the NO byproduct peroxynitrite. Furthermore, we found that DETA-NONOate could break the spike-ACE2 interaction using the spike from two different variants (Alpha and Gamma) and in two different human cell types. Moreover, the same result was obtained when using NO-producing murine macrophages, while no significant changes were observed in ACE2 expression or distribution within the cell. These results support that it is worth considering NO as a therapeutic agent for COVID-19, as previous reports have suggested.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Patricia Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
5
|
Zhou X, Su W, Bao Q, Cui Y, Li X, Yang Y, Yang C, Wang C, Jiao L, Chen D, Huang J. Nitric Oxide Ameliorates the Effects of Hypoxia in Mice by Regulating Oxygen Transport by Hemoglobin. High Alt Med Biol 2024; 25:174-185. [PMID: 38743636 DOI: 10.1089/ham.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Xiaoying Zhou, Wenting Su, Quanwei Bao, Yu Cui, Xiaoxu Li, Yidong Yang, Chengzhong Yang, Chengyuan Wang, Li Jiao, Dewei Chen, and Jian Huang. Nitric oxide ameliorates the effects of hypoxia in mice by regulating oxygen transport by hemoglobin. High Alt Med Biol. 25:174-185, 2024.-Hypoxia is a common pathological and physiological phenomenon in ischemia, cancer, and strenuous exercise. Nitric oxide (NO) acts as an endothelium-derived relaxing factor in hypoxic vasodilation and serves as an allosteric regulator of hemoglobin (Hb). However, the ultimate effects of NO on the hematological system in vivo remain unknown, especially in extreme environmental hypoxia. Whether NO regulation of the structure of Hb improves oxygen transport remains unclear. Hence, we examined whether NO altered the oxygen affinity of Hb (Hb-O2 affinity) to protect extremely hypoxic mice. Mice were exposed to severe hypoxia with various concentrations of NO, and the survival time, exercise capacity, and other physical indexes were recorded. The survival time was prolonged in the 5 ppm NO (6.09 ± 1.29 minutes) and 10 ppm NO (6.39 ± 1.58 minutes) groups compared with the 0 ppm group (4.98 ± 1.23 minutes). Hypoxia of the brain was relieved, and the exercise exhaustion time was prolonged when mice inhaled 20 ppm NO (24.70 ± 6.87 minutes vs. 20.23 ± 6.51 minutes). In addition, the differences in arterial oxygen saturation (SO2%) (49.64 ± 7.29% vs. 42.90 ± 4.30%) and arteriovenous SO2% difference (25.14 ± 8.95% vs. 18.10 ± 6.90%) obviously increased. In ex vivo experiments, the oxygen equilibrium curve (OEC) left shifted as P50 decreased from 43.77 ± 2.49 mmHg (0 ppm NO) to 40.97 ± 1.40 mmHg (100 ppm NO) and 38.36 ± 2.78 mmHg (200 ppm NO). Furthermore, the Bohr effect of Hb was enhanced by the introduction of 200 ppm NO (-0.72 ± 0.062 vs.-0.65 ± 0.051), possibly allowing Hb to more easily offload oxygen in tissue at lower pH. The crystal structure reveals a greater distance between Asp94β-His146β in nitrosyl -Hb(NO-Hb), NO-HbβCSO93, and S-NitrosoHb(SNO-Hb) compared to tense Hb(T-Hb, 3.7 Å, 4.3 Å, and 5.8 Å respectively, versus 3.5 Å for T-Hb). Moreover, hydrogen bonds were less likely to form, representing a key limitation of relaxed Hb (R-Hb). Upon NO interaction with Hb, hydrogen bonds and salt bridges were less favored, facilitating relaxation. We speculated that NO ameliorated the effects of hypoxia in mice by promoting erythrocyte oxygen loading in the lung and offloading in tissues.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Wenting Su
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengyuan Wang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Li Jiao
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- High Altitude Medical Research Center, PLA, Chongqing, China
- Key Laboratory of High Altitude and Frigidzone Medical Surpport, PLA, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
6
|
Solís-García G, Bravo MC, Pellicer A. Cardiorespiratory interactions during the transitional period in extremely preterm infants: a narrative review. Pediatr Res 2024:10.1038/s41390-024-03451-6. [PMID: 39179873 DOI: 10.1038/s41390-024-03451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
We aimed to review the physiology and evidence behind cardiorespiratory interactions during the transitional circulation of extremely preterm infants with fragile physiology and to propose a framework for future research. Cord clamping strategies have a great impact on initial haemodynamic changes, and appropriate transition can be facilitated by establishing spontaneous ventilation before cord clamping. Mechanical ventilation modifies preterm transitional haemodynamics, with positive pressure ventilation affecting the right and left heart loading conditions. Pulmonary vascular resistances can be minimized by ventilating with optimal lung volumes at functional residual capacity, and other pulmonary vasodilator treatments such as inhaled nitric oxide can be used to improve ventilation/perfusion mismatch. Different cardiovascular drugs can be used to provide support during transition in this population, and it is important to understand both their cardiovascular and respiratory effects, in order to provide adequate support to vulnerable preterm infants and improve outcomes. Current available non-invasive bedside tools, such as near-infrared spectroscopy, targeted neonatal echocardiography, or lung ultrasound offer the opportunity to precisely monitor cardiorespiratory interactions in preterm infants. More research is needed in this field using precision medicine to strengthen the benefits and avoid the harms associated to early neonatal interventions. IMPACT: In extremely preterm infants, haemodynamic and respiratory transitions are deeply interconnected, and their changes have a key impact in the establishment of lung aireation and postnatal circulation. We describe how mechanical ventilation modifies heart loading conditions and pulmonary vascular resistances in preterm patients, and how hemodynamic interventions such as cord clamping strategies or cardiovascular drugs affect the infant respiratory status. Current available non-invasive bedside tools can help monitor cardiorespiratory interactions in preterm infants. We highlight the areas of research in which precision medicine can help strengthen the benefits and avoid the harms associated to early neonatal interventions.
Collapse
Affiliation(s)
- Gonzalo Solís-García
- Department of Neonatology, La Paz University Hospital and IdiPaz (La Paz Hospital Institute for Health Research), Madrid, Spain.
| | - María Carmen Bravo
- Department of Neonatology, La Paz University Hospital and IdiPaz (La Paz Hospital Institute for Health Research), Madrid, Spain
- Consultant Neonatologist, Rotunda Hospital, Dublin, Ireland
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital and IdiPaz (La Paz Hospital Institute for Health Research), Madrid, Spain
| |
Collapse
|
7
|
Kamenshchikov NO, Safaee Fakhr B, Kravchenko IV, Dish AY, Podoksenov YK, Kozlov BN, Kalashnikova TP, Tyo MA, Anfinogenova ND, Boshchenko AA, Berra L. Assessment of continuous low-dose and high-dose burst of inhaled nitric oxide in spontaneously breathing COVID-19 patients: A randomized controlled trial. Nitric Oxide 2024; 149:41-48. [PMID: 38880198 DOI: 10.1016/j.niox.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Inhaled nitric oxide (iNO) showed to improve oxygenation at low doses by reducing intrapulmonary shunt and to display antiviral properties at high doses. To assess the safety and potential benefits, we designed an exploratory clinical trial comparing low-dose with intermittent high-dose iNO to only intermittent high-dose iNO in hypoxemic COVID-19 patients. METHODS In this single-center interventional non-inferiority randomized trial (ClinicalTrials.gov, NCT04476992), twenty oxygen-dependent COVID-19 patients were randomly assigned to the high-dose (200 ppm for 30 min) + continuous low-dose (20 ppm) iNO group (iNO200/20) or the high-dose iNO group (iNO200). Methemoglobinemia (MetHb) assessed 48 h after iNO initiation was the primary endpoint. Reverse-transcription polymerase chain reaction for SARS-CoV-2, inflammatory markers during hospitalization, and heart ultrasounds during the iNO200 treatments were evaluated. RESULTS MetHb difference between iNO groups remained within the non-inferiority limit of 3 %, indicating comparable treatments despite being statistically different (p-value<0.01). Both groups presented similar SpO2/FiO2 ratio at 48 h (iNO200 vs. iNO200/20 341[334-356] vs. 359 [331-380], respectively, p-value = 0.436). Both groups showed the same time to SARS-CoV-2 negativization, hospital length of stay, and recovery time. iNO-treated patients showed quicker SARS-CoV-2 negativization compared to a similar group of non-iNO patients (HR 2.57, 95%CI 1.04-6.33). During the 228 treatments, iNO200 and iNO200/20 groups were comparable for safety, hemodynamic stability, and respiratory function improvement. CONCLUSIONS iNO200/20 and iNO200 are equally safe in non-intubated patients with COVID-19-induced respiratory failure with regards to MetHb and NO2. Larger studies should investigate whether iNO200/20 leads to better outcomes compared to non-iNO treated patients.
Collapse
Affiliation(s)
- Nikolay O Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Bijan Safaee Fakhr
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Igor V Kravchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | | | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Boris N Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Tatiana P Kalashnikova
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Mark A Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Nina D Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Chen M, Chang S, Xu Y, Guo H, Liu J. Dietary Beetroot Juice - Effects in Patients with COPD: A Review. Int J Chron Obstruct Pulmon Dis 2024; 19:1755-1765. [PMID: 39099609 PMCID: PMC11296515 DOI: 10.2147/copd.s473397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) exerts a severe toll on human health and the economy, with high prevalence and mortality rates. The search for bioactive components effective in the treatment of COPD has become a focal point of research. Beetroot juice, readily accessible and cost-effective, is noted for its ability to enhance athletic performance and for its preventive and therapeutic impact on hypertension. Beetroot juice is a rich source of dietary nitrates and modulates physiological processes via the nitrate-nitrite- nitric oxide pathway, exerting multiple beneficial effects such as antihypertensive, bronchodilatory, anti-inflammatory, antioxidant, hypoglycemic, and lipid-lowering actions. This paper provides a review of the existing research on the effects of beetroot juice on COPD, summarizing its potential in enhancing exercise capacity, lowering blood pressure, improving vascular function, and ameliorating sleep quality among patients with COPD. The review serves as a reference for the prospective use of beetroot juice in the symptomatic improvement of COPD, as well as in the prevention of exacerbations and associated comorbidities.
Collapse
Affiliation(s)
- Mingming Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Shuting Chang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yunpeng Xu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Hong Guo
- Department of Critical Care Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou City, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
9
|
Wolak T, Dicker D, Shifer Y, Grossman A, Rokach A, Shitrit M, Tal A. A safety evaluation of intermittent high-dose inhaled nitric oxide in viral pneumonia due to COVID-19: a randomised clinical study. Sci Rep 2024; 14:17201. [PMID: 39060420 PMCID: PMC11282178 DOI: 10.1038/s41598-024-68055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
High-dose inhaled Nitric Oxide (iNO) has been shown to have anti-inflammatory, vasodilator, and antimicrobial properties, resulting in improved arterial oxygenation as well as a beneficial therapeutic effect on lower respiratory tract infections. This study evaluated the safety and efficacy of 150-ppm intermittent iNO administered with a novel iNO-generator, for treating adults hospitalised for viral pneumonia. In this prospective, open-label, multicenter study, subjects aged 18-80, diagnosed with viral pneumonia received either standard supportive treatment alone (Control-Group) or combined with iNO for 40 min, 4 times per day up to 7 days (Treatment-Group). Out of 40 recruited subjects, 35 were included in the intention-to-treat population (34 with COVID-19). Adverse Events rate was similar between the groups (56.3% vs. 42.1%; respectively). No treatment-related adverse events were reported, while 2 serious adverse events were accounted for by underlying pre-existing conditions. Among the Treatment-Group, oxygen support duration was reduced by 2.7 days (Hazard Ratio = 2.8; p = 0.0339), a greater number of subjects reached oxygen saturation ≥ 93% within hospitalisation period (Hazard Ratio = 5.4; p = 0.049), and a trend for earlier discharge was demonstrated. Intermittent 150-ppm iNO-treatment is well-tolerated, safe, and beneficial compared to usual care for spontaneously breathing hospitalised adults diagnosed with COVID-19 viral pneumonia.
Collapse
Affiliation(s)
- Talya Wolak
- Department of Internal Medicine D, Shaare Zedek Medical Center, 12 Bait Shmuel St, P.O. Box 3235, 9103102, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - D Dicker
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah-Tikva, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Y Shifer
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - A Grossman
- Internal Medicine B, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - A Rokach
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - M Shitrit
- Respiratory Therapy Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - A Tal
- Beyond Air, Ltd, Rehovot, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
10
|
Zhao M, Zhang Q, Lin Y, Chen Y, Cao H. Impact of nitric oxide via cardiopulmonary bypass on pediatric heart surgery: a meta-analysis of randomized controlled trials. J Cardiothorac Surg 2024; 19:461. [PMID: 39030578 PMCID: PMC11258894 DOI: 10.1186/s13019-024-02953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 06/30/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE The impact of nitric oxide (NO) administered via cardiopulmonary bypass (CPB) on pediatric heart surgery remains controversial. The objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of NO administered via CPB on pediatric heart surgery. METHODS This study searched 7 electronic databases to identify Randomized Controlled Trials (RCTs) on the impact of NO administration during CPB on postoperative outcomes in pediatric heart surgery. The searched databases included Embase, Medline (though PubMed), Cochrane Library, Web of Science, Wan Fang database, China National Knowledge Infrastructure (CNKI), and ClinicalTrials.gov from their inception to November 2, 2022. The included RCTs compared NO administration during CPB with standard CPB procedures or placebo gas treatment in pediatric heart surgery. fixed-effects models and/or random-effects models were used to estimate the effect size with 95% confidence interval (CI). Heterogeneity among studies was indicated by p-values and I2. All analyses were performed using Review Manager software (version 5.4) in this study. RESULTS A total of 6 RCTs including 1,739 children were identified in this study. The primary outcome was duration of postoperative mechanical ventilation, with the length of hospital and intensive care unit (ICU) stay as the second outcomes. Through a pooled analysis, we found that exogenous NO administered via CPB for pediatric heart surgery could not shorten the duration of postoperative mechanical ventilation when compared with the control group (standardized mean difference (SMD) -0.07, CI [-0.16, 0.02], I2 = 45%, P = 0.15). Additionally, there were also no difference between the two groups in terms of length of hospital stay (mean difference (MD) -0.29, CI [-1.03, 0.46], I2 = 32%, P = 0.45) and length of ICU stay (MD -0.22, CI [-0.49 to 0.05], I2 = 72%, P = 0.10). CONCLUSIONS This meta-analysis showed that exogenous NO administration via CBP had no benefits on the duration of mechanical ventilation, the length of postoperative hospital, and ICU stay after pediatric heart surgery.
Collapse
Affiliation(s)
- Minli Zhao
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Qiuping Zhang
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Yuan Lin
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Yukun Chen
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Hua Cao
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350014, China.
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China.
| |
Collapse
|
11
|
Fukumitsu M, Kawada T, Nishikawa T, Yokota S, Matsushita H, Morita H, Sato K, Yoshida Y, Uemura K, Saku K. Effects of nitric oxide inhalation on pulmonary arterial impedance: differences between normal and pulmonary hypertension male rats. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38819383 DOI: 10.1152/ajpheart.00108.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Nitric oxide (NO) inhalation improves pulmonary hemodynamics in participants with pulmonary arterial hypertension (PAH). Although it can reduce pulmonary vascular resistance (PVR) in PAH, its impact on the dynamic mechanics of pulmonary arteries and its potential difference between control and participants with PAH remain unclear. PA impedance provides a comprehensive description of PA mechanics. With an arterial model, PA impedance can be parameterized into peripheral pulmonary resistance (Rp), arterial compliance (Cp), characteristic impedance of the proximal arteries (Zc), and transmission time from the main PA to the reflection site. This study investigated the effects of inhaled NO on PA impedance and its associated parameters in control and monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) male rats (6/group). Measurements were obtained at baseline and during NO inhalation at 40 and 80 ppm. In both groups, NO inhalation decreased PVR and increased the left atrial pressure. Notably, its impact on PA impedance was frequency dependent, as revealed by reduced PA impedance modulus in the low-frequency range below 10 Hz, with little effect on the high-frequency range. Furthermore, NO inhalation attenuated Rp, increased Cp, and prolonged transmission time without affecting Zc. It reduced Rp more pronouncedly in MCT-PAH rats, whereas it increased Cp and delayed transmission time more effectively in control rats. In conclusion, the therapeutic effects of inhaled NO on PA impedance were frequency dependent and may differ between the control and MCT-PAH groups, suggesting that the effect on the mechanics differs depending on the pathological state.NEW & NOTEWORTHY Nitric oxide inhalation decreased pulmonary arterial impedance in the low-frequency range (<10 Hz) with little impact on the high-frequency range. It reduced peripheral pulmonary resistance more pronouncedly in pulmonary hypertension rats, whereas it increased arterial compliance and transmission time in control rats. Its effect on the mechanics of the pulmonary arteries may differ depending on the pathological status.
Collapse
Affiliation(s)
- Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Nishikawa
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hidetaka Morita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kei Sato
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuki Yoshida
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
- NTTR-NCVC Bio Digital Twin Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
- NTTR-NCVC Bio Digital Twin Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
12
|
Larsson AO, Eriksson MB. Role of NO in Disease: Good, Bad or Ugly. Biomedicines 2024; 12:1343. [PMID: 38927550 PMCID: PMC11201552 DOI: 10.3390/biomedicines12061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
This Special Issue of Biomedicines (https://www [...].
Collapse
Affiliation(s)
- Anders O. Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden;
| | - Mats B. Eriksson
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
| |
Collapse
|
13
|
Freidkin L, Kramer MR, Rosengarten D, Izhakian S, Taieb S, Pertzov B. The acute effect of inhaled nitric oxide on the exercise capacity of patients with advanced interstitial lung disease: a randomized controlled trial. BMC Pulm Med 2024; 24:226. [PMID: 38724947 PMCID: PMC11084010 DOI: 10.1186/s12890-024-03051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Inhaled nitric oxide (iNO) selectively acts on the pulmonary vasculature of ventilated lung tissue by reducing pulmonary vascular resistance and intrapulmonary shunt. This effect may reduce ventilation/perfusion mismatch and decrease pulmonary hypertension in patients with interstitial lung disease. METHODS In a prospective, single-blinded, randomized, placebo-controlled trial, participants with advanced interstitial lung disease, underwent two separate six-minute walk tests (6MWT): one with iNO and the other with a placebo. The primary outcome measured the difference in meters between the distances covered in the two tests. Secondary outcomes included oxygen saturation levels, distance-saturation product, and Borg dyspnea score. A predefined subgroup analysis was conducted for patients with pulmonary hypertension. RESULTS Overall, 44 patients were included in the final analysis. The 6MWT distance was similar for iNO treatment and placebo, median 362 m (IQR 265-409) vs 371 m (IQR 250-407), respectively (p = 0.29). Subgroup analysis for patients with pulmonary hypertension showed no difference in 6MWT distance with iNO and placebo, median 339 (256-402) vs 332 (238-403) for the iNO and placebo tests respectively (P=0.50). No correlation was observed between mean pulmonary artery pressure values and the change in 6MWT distance with iNO versus placebo (spearman correlation Coefficient 0.24, P=0.33). CONCLUSION In patients with advanced interstitial lung disease, both with and without concurrent pulmonary hypertension, the administration of inhaled nitric oxide failed to elicit beneficial effects on the six-minute walk distance and oxygen saturation. The use of inhaled NO was found to be safe and did not lead to any serious side effects. TRIAL REGISTRATION (NCT03873298, MOH_2018-04-24_002331).
Collapse
Affiliation(s)
- Lev Freidkin
- Pulmonary Division, Rabin Medical Center, Beilinson Campus, 39 Jabotinski St, Petach-Tikva, 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mordechai R Kramer
- Pulmonary Division, Rabin Medical Center, Beilinson Campus, 39 Jabotinski St, Petach-Tikva, 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Rosengarten
- Pulmonary Division, Rabin Medical Center, Beilinson Campus, 39 Jabotinski St, Petach-Tikva, 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Izhakian
- Pulmonary Division, Rabin Medical Center, Beilinson Campus, 39 Jabotinski St, Petach-Tikva, 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Taieb
- Internal medicine E, Rabin Medical Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Barak Pertzov
- Pulmonary Division, Rabin Medical Center, Beilinson Campus, 39 Jabotinski St, Petach-Tikva, 4941492, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Chang YT, Liu JR, Chen WM, Tseng CN, See LC. First-year outcomes of very low birth weight preterm singleton infants with hypoxemic respiratory failure treated with milrinone and inhaled nitric oxide (iNO) compared to iNO alone: A nationwide retrospective study. PLoS One 2024; 19:e0297137. [PMID: 38722851 PMCID: PMC11081351 DOI: 10.1371/journal.pone.0297137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2023] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Inhaled nitric oxide (iNO) has a beneficial effect on hypoxemic respiratory failure. The increased use of concurrent iNO and milrinone was observed. We aimed to report the trends of iNO use in the past 15 years in Taiwan and compare the first-year outcomes of combining iNO and milrinone to the iNO alone in very low birth weight preterm (VLBWP) infants under mechanical ventilation. METHODS This nationwide cohort study enrolled preterm singleton infants with birth weight <1500g treated with iNO from 2004 to 2019. Infants were divided into two groups, with a combination of intravenous milrinone (Group 2, n = 166) and without milrinone (Group 1, n = 591). After propensity score matching (PSM), each group's sample size is 124. The primary outcomes were all-cause mortality and the respiratory condition, including ventilator use and duration. The secondary outcomes were preterm morbidities within one year after birth. RESULTS After PSM, more infants in Group 2 needed inotropes. The mortality rate was significantly higher in Group 2 than in Group 1 from one month after birth till 1 year of age (55.1% vs. 13.5%) with the adjusted hazard ratio of 4.25 (95%CI = 2.42-7.47, p <0.001). For infants who died before 36 weeks of postmenstrual age (PMA), Group 2 had longer hospital stays compared to Group 1. For infants who survived after 36 weeks PMA, the incidence of moderate and severe bronchopulmonary dysplasia (BPD) was significantly higher in Group 2 than in Group 1. For infants who survived until one year of age, the incidence of pneumonia was significantly higher in Group 2 (28.30%) compared to Group 1 (12.62%) (p = 0.0153). CONCLUSION Combined treatment of iNO and milrinone is increasingly applied in VLBWP infants in Taiwan. This retrospective study did not support the benefits of combining iNO and milrinone on one-year survival and BPD prevention. A future prospective study is warranted.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Jia-Rou Liu
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Min Chen
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chi-Nan Tseng
- Department of Cardiac Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Lai-Chu See
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
15
|
Matsugi E, Takashima S, Doteguchi S, Kobayashi T, Okayasu M. Real-world safety and effectiveness of inhaled nitric oxide therapy for pulmonary hypertension during the perioperative period of cardiac surgery: a post-marketing study of 2817 patients in Japan. Gen Thorac Cardiovasc Surg 2024; 72:311-323. [PMID: 37713058 PMCID: PMC11018662 DOI: 10.1007/s11748-023-01971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To evaluate the real-world safety and effectiveness of inhaled nitric oxide (INOflo® for Inhalation 800 ppm) for perioperative pulmonary hypertension associated with cardiac surgery in Japan. METHODS This was a prospective, non-interventional, all-case, post-marketing study of pediatric and adult patients who received perioperative INOflo with cardiac surgery from November 2015-December 2020. Safety and effectiveness were monitored from INOflo initiation to 48 h after treatment completion or withdrawal. Safety outcomes included adverse drug reactions, blood methemoglobin concentrations, and inspired nitrogen dioxide concentrations over time. Effectiveness outcomes included changes in central venous pressure among pediatrics, mean pulmonary arterial pressure among adults, and the partial pressure of arterial oxygen/fraction of inspired oxygen ratio (PaO2/FiO2) in both populations. RESULTS The safety analysis population included 2,817 Japanese patients registered from 253 clinical sites (pediatrics, n = 1375; adults, n = 1442). INOflo was generally well tolerated; 15 and 20 adverse drug reactions were reported in 14 pediatrics (1.0%) and 18 adults (1.2%), respectively. No clinically significant elevations in blood methemoglobin and inspired nitrogen dioxide concentrations were observed. INOflo treatment was associated with significant reductions in both central venous pressure among pediatrics and mean pulmonary arterial pressure among adults, and significant improvements in PaO2/FiO2 among pediatrics and adults with PaO2/FiO2 ≤ 200 at baseline. CONCLUSIONS Perioperative INOflo treatment was a safe and effective strategy to improve hemodynamics and oxygenation in patients with pulmonary hypertension during cardiac surgery. These data support the use of INOflo for this indication in Japanese clinical practice.
Collapse
Affiliation(s)
- Emi Matsugi
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan.
| | | | - Shuhei Doteguchi
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan
| | - Tomomi Kobayashi
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan
| | - Motohiro Okayasu
- Medical Affairs, Mallinckrodt Pharmaceuticals, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6030, Japan
| |
Collapse
|
16
|
Strickland B, Stuart Harris N. Adapting nitric oxide: A review of its foundation, uses in austere medical conditions, and emerging applications. Nitric Oxide 2024; 146:58-63. [PMID: 38583684 DOI: 10.1016/j.niox.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Nitric oxide was first identified as a novel and effective treatment for persistent pulmonary hypertension of the newborn (PPHN), and has since been found to be efficacious in treating acute respiratory distress syndrome (ARDS) and pulmonary hypertension. Physicians and researchers have also found it shows promise in resource-constrained settings, both within and outside of the hospital, such as in high altitude pulmonary edema (HAPE) and COVID-19. The treatment has been well tolerated in these settings, and is both efficacious and versatile when studied across a variety of clinical environments. Advancements in inhaled nitric oxide continue, and the gas is worthy of investigation as physicians contend with new respiratory and cardiovascular illnesses, as well as unforeseen logistical challenges.
Collapse
Affiliation(s)
- Brian Strickland
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA.
| | - N Stuart Harris
- Division of Wilderness Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Ware LR, Kim CS, Szumita PM, DeGrado JR. A Narrative Review on the Administration of Inhaled Prostaglandins in Critically Ill Adult Patients With Acute Respiratory Distress Syndrome. Ann Pharmacother 2024; 58:533-548. [PMID: 37589097 DOI: 10.1177/10600280231194539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVE To describe the effect of inhaled prostaglandins on both oxygenation and mortality in critically ill patients with acute respiratory distress syndrome (ARDS), with a focus on safety and efficacy in coronavirus disease 2019 (COVID-19)-associated ARDS and non-COVID-19 ARDS. DATA SOURCES A literature search of MEDLINE was performed using the following search terms: inhaled prostaglandins, inhaled epoprostenol, inhaled nitric oxide, ARDS, critically ill. All abstracts were reviewed. STUDY SELECTION AND DATA EXTRACTION Relevant English-language reports and studies conducted in humans between 1980 and June 2023 were considered. DATA SYNTHESIS Data regarding inhaled prostaglandins and their effect on oxygenation are limited but show a benefit in patients who respond to therapy, and data pertaining to their effect on mortality is scarce. Concerns exist regarding the formulation of inhaled epoprostenol (iEPO) utilized in addition to modes of medication delivery; however, the limited data surrounding their use have shown a reasonable safety profile. Other avenues and beneficial effects may exist with inhaled prostaglandins, such as use in COVID-19-associated ARDS or non-COVID-19 ARDS patients undergoing noninvasive mechanical ventilation or during patient transport. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The use of inhaled prostaglandins can be considered in critically ill patients with COVID-19-associated ARDS or non-COVID-19 ARDS who are experiencing difficulties with oxygenation refractory to nonpharmacologic strategies. CONCLUSIONS The use of iEPO and other inhaled prostaglandins requires further investigation to fully elucidate their effects on clinical outcomes, but it appears these medications may have a potential benefit in COVID-19-associated ARDS and non-COVID-19 ARDS patients with refractory hypoxemia but with little effect on mortality.
Collapse
Affiliation(s)
- Lydia R Ware
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Christine S Kim
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul M Szumita
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremy R DeGrado
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Masood M, Singh P, Hariss D, Khan F, Yameen D, Siraj S, Islam A, Dohare R, Mahfuzul Haque M. Nitric oxide as a double-edged sword in pulmonary viral infections: Mechanistic insights and potential therapeutic implications. Gene 2024; 899:148148. [PMID: 38191100 DOI: 10.1016/j.gene.2024.148148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
In the face of the global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), researchers are tirelessly exploring novel therapeutic approaches to combat coronavirus disease 2019 (COVID-19) and its associated complications. Nitric oxide (NO) has appeared as a multifaceted signaling mediator with diverse and often contrasting biological activities. Its intricate biochemistry renders it a crucial regulator of cardiovascular and pulmonary functions, immunity, and neurotransmission. Perturbations in NO production, whether excessive or insufficient, contribute to the pathogenesis of various diseases, encompassing cardiovascular disease, pulmonary hypertension, asthma, diabetes, and cancer. Recent investigations have unveiled the potential of NO donors to impede SARS-CoV- 2 replication, while inhaled NO demonstrates promise as a therapeutic avenue for improving oxygenation in COVID-19-related hypoxic pulmonary conditions. Interestingly, NO's association with the inflammatory response in asthma suggests a potential protective role against SARS-CoV-2 infection. Furthermore, compelling evidence indicates the benefits of inhaled NO in optimizing ventilation-perfusion ratios and mitigating the need for mechanical ventilation in COVID-19 patients. In this review, we delve into the molecular targets of NO, its utility as a diagnostic marker, the mechanisms underlying its action in COVID-19, and the potential of inhaled NO as a therapeutic intervention against viral infections. The topmost significant pathway, gene ontology (GO)-biological process (BP), GO-molecular function (MF) and GO-cellular compartment (CC) terms associated with Nitric Oxide Synthase (NOS)1, NOS2, NOS3 were arginine biosynthesis (p-value = 1.15 x 10-9) regulation of guanylate cyclase activity (p-value = 7.5 x 10-12), arginine binding (p-value = 2.62 x 10-11), vesicle membrane (p-value = 3.93 x 10-8). Transcriptomics analysis further validates the significant presence of NOS1, NOS2, NOS3 in independent COVID-19 and pulmonary hypertension cohorts with respect to controls. This review investigates NO's molecular targets, diagnostic potentials, and therapeutic role in COVID-19, employing bioinformatics to identify key pathways and NOS isoforms' significance.
Collapse
Affiliation(s)
- Mohammad Masood
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Daaniyaal Hariss
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Faizya Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Daraksha Yameen
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Seerat Siraj
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
19
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
20
|
Shetty NS, Gaonkar M, Giammatteo V, Arora P, Berra L. Reply to Eleuteri et al.: High-Dose Inhaled Nitric Oxide in Acute Hypoxemic Respiratory Failure: Need for Patient Phenotyping? Am J Respir Crit Care Med 2024; 209:460-462. [PMID: 38128097 PMCID: PMC10878377 DOI: 10.1164/rccm.202311-2112le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Naman S. Shetty
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mokshad Gaonkar
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Valentina Giammatteo
- Department of Anesthesia, Critical Care and Pain Medicine
- Harvard Medical School, Boston, Massachusetts; and
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine
- Anesthesia Critical Care Center for Research, and
- Respiratory Care Services, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
21
|
Yuriditsky E, Chonde M, Friedman O, Horowitz JM. Medical and Mechanical Circulatory Support of the Failing Right Ventricle. Curr Cardiol Rep 2024; 26:23-34. [PMID: 38108956 DOI: 10.1007/s11886-023-02012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE OF REVIEW To describe medical therapies and mechanical circulatory support devices used in the treatment of acute right ventricular failure. RECENT FINDINGS Experts have proposed several algorithms providing a stepwise approach to medical optimization of acute right ventricular failure including tailored volume administration, ideal vasopressor selection to support coronary perfusion, inotropes to restore contractility, and pulmonary vasodilators to improve afterload. Studies have investigated various percutaneous and surgically implanted right ventricular assist devices in several clinical settings. The initial management of acute right ventricular failure is often guided by invasive hemodynamic data tracking parameters of circulatory function with the use of pharmacologic therapies. Percutaneous microaxial and centrifugal extracorporeal pumps bypass the failing RV and support circulatory function in severe cases of right ventricular failure.
Collapse
Affiliation(s)
- Eugene Yuriditsky
- Division of Cardiology, Department of Medicine, NYU Langone Health, 530 First Ave. Skirball 9R, New York, NY, 10016, USA.
| | - Meshe Chonde
- Department of Cardiology, Department of Cardiac Surgery, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Oren Friedman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James M Horowitz
- Division of Cardiology, Department of Medicine, NYU Langone Health, 530 First Ave. Skirball 9R, New York, NY, 10016, USA
| |
Collapse
|
22
|
Wang Y, Yu Q, Tian Y, Ren S, Liu L, Wei C, Liu R, Wang J, Li D, Zhu K. Unraveling the impact of nitric oxide, almitrine, and their combination in COVID-19 (at the edge of sepsis) patients: a systematic review. Front Pharmacol 2024; 14:1172447. [PMID: 38318311 PMCID: PMC10839063 DOI: 10.3389/fphar.2023.1172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction: During the coronavirus disease 2019 (COVID-19) pandemic, a large number of critically ill and severe COVID-19 patients meet the diagnostic criteria for sepsis and even septic shock. The treatments for COVID-19 patients with sepsis are still very limited. For sepsis, improving ventilation is one of the main treatments. Nitric oxide (NO) and almitrine have been reported to improve oxygenation in patients with "classical" sepsis. Here, we conducted a systematic review and meta-analysis to evaluate the efficacy and safety of NO, almitrine, and the combination of both for COVID-19 (at the edge of sepsis) patients. Method: A systematic search was performed on Embase, PubMed, the Cochrane Library, the Web of Science, Wanfang Data, and China National Knowledge Infrastructure. Randomized clinical trials, cohort studies, cross-sectional studies, case-control studies, case series, and case reports in COVID-19 patients with suspected or confirmed sepsis were performed. Study characteristics, patient demographics, interventions, and outcomes were extracted from eligible articles. Results: A total of 35 studies representing 1,701 patients met eligibility criteria. Inhaled NO did not affect the mortality (OR 0.96, 95% CI 0.33-2.8, I2 = 81%, very low certainty), hospital length of stay (SMD 0.62, 95% CI 0.04-1.17, I2 = 83%, very low certainty), and intubation needs (OR 0.82, 95% CI 0.34-1.93, I2 = 56%, very low certainty) of patients with COVID-19 (at the edge of sepsis). Meanwhile, almitrine did not affect the mortality (OR 0.44, 95% CI 0.17-1.13, low certainty), hospital length of stay (SMD 0.00, 95% CI -0.29-0.29, low certainty), intubation needs (OR 0.94, 95% CI 0.5-1.79, low certainty), and SAEs (OR 1.16, 95% CI 0.63-2.15, low certainty). Compared with pre-administration, the PaO2/FiO2 of patients with NO (SMD-0.87, 95% CI -1.08-0.66, I2 = 0%, very low certainty), almitrine (SMD-0.73, 95% CI-1.06-0.4, I2 = 1%, very low certainty), and the combination of both (SMD-0.94, 95% CI-1.71-0.16, I2 = 47%, very low certainty) increased significantly. Conclusion: Inhaled NO, almitrine, and the combination of the two drugs improved oxygenation significantly, but did not affect the patients' mortality, hospitalization duration, and intubation needs. Almitrine did not significantly increase the patients' SAEs. Well-designed high-quality studies are needed for establishing a stronger quality of evidence. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=367667, identifier CRD42022367667.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yuan Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Shiying Ren
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chaojie Wei
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Renli Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Wang
- Department of Pharmacy, Siping Tumor Hospital, Siping, Jilin, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Kun Zhu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Ramakrishnan K, Turner J, Desai M, Tongut A, Nuskowski M. Gaseous Nitric Oxide-Cangrelor Combination to Prevent Clots in Extracorporeal Life Support System. J Surg Res 2024; 293:468-474. [PMID: 37820395 DOI: 10.1016/j.jss.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The objective of this study was to investigate the potential synergistic utility of a combination of gaseous nitric oxide (gNO)-intravenous Cangrelor as an effective pharmacological option for the prevention of thrombosis in an animal model of extracorporeal life support (ECLS) circuits. METHODS 10 newborn lambs were placed on ECLS. 5 of them were administered a combination of gNO and intravenous Cangrelor. The remaining 5 were not administered any anticoagulant. The primary end point was duration of ECLS without clot formation. The secondary outcome measure was the absolute maximum transmembrane pressure gradient. RESULTS The mean duration of ECLS were 168 min (standard deviation 224.98 min) in the control group and 402 min (standard deviation 287.5 min) in the experimental group (P = 0.17). The peak trans-oxygenator pressure difference was 43 mm Hg (standard deviation 23 mm Hg) in the control group and 62 mm Hg (standard deviation 71 mm Hg) in the experimental group(P = 0.64). Two animals in the experimental group were supported up to 12 h without clot formation. Clot formation in the experimental group occurred after placement of the cannulae but prior to initiation of ECLS flows after cannulation. CONCLUSIONS A combination of gNO and Cangrelor is prevents clot formation in an experimental animal model when administered through a clean clot-free circuit. However, the combination s ineffective when there are pre-existing clots in the circuit. A bolus of anticoagulation prior to cannulation is needed prior to testing this combination in future studies with a larger sample size.
Collapse
Affiliation(s)
- Karthik Ramakrishnan
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia; Department of Surgery and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| | - Joel Turner
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Manan Desai
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia; Department of Surgery and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Aybala Tongut
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia; Department of Surgery and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mark Nuskowski
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia
| |
Collapse
|
24
|
Sheet PS, Lautner G, Meyerhoff ME, Schwendeman SP. Mechanistic analysis of the photolytic decomposition of solid-state S-nitroso-N-acetylpenicillamine. Nitric Oxide 2024; 142:38-46. [PMID: 37979933 DOI: 10.1016/j.niox.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 μm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.
Collapse
Affiliation(s)
- Partha S Sheet
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gergely Lautner
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Di Fenza R, Shetty NS, Gianni S, Parcha V, Giammatteo V, Safaee Fakhr B, Tornberg D, Wall O, Harbut P, Lai PS, Li JZ, Paganoni S, Cenci S, Mueller AL, Houle TT, Akeju O, Bittner EA, Bose S, Scott LK, Carroll RW, Ichinose F, Hedenstierna M, Arora P, Berra L. High-Dose Inhaled Nitric Oxide in Acute Hypoxemic Respiratory Failure Due to COVID-19: A Multicenter Phase II Trial. Am J Respir Crit Care Med 2023; 208:1293-1304. [PMID: 37774011 PMCID: PMC10765403 DOI: 10.1164/rccm.202304-0637oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.
Collapse
Affiliation(s)
- Raffaele Di Fenza
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Naman S. Shetty
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefano Gianni
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Vibhu Parcha
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Valentina Giammatteo
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Bijan Safaee Fakhr
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Daniel Tornberg
- Department of Clinical Sciences and
- Department of Anesthesia and Intensive Care and
| | - Olof Wall
- Department of Clinical Sciences and
- Department of Clinical Science and Education, Sodersxjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Harbut
- Department of Clinical Sciences and
- Department of Anesthesia and Intensive Care and
| | - Peggy S. Lai
- Pulmonary and Critical Care Medicine, Department of Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Jonathan Z. Li
- Harvard Medical School, Boston, Massachusetts
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS
- Neurological Clinical Research Institute
- Harvard Medical School, Boston, Massachusetts
| | - Stefano Cenci
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Ariel L. Mueller
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Research Center
- Harvard Medical School, Boston, Massachusetts
| | - Timothy T. Houle
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Research Center
- Harvard Medical School, Boston, Massachusetts
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care, and Pain Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Somnath Bose
- Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Louie K. Scott
- Critical Care Medicine, Department of Medicine, Louisiana State University Health Shreveport, Shreveport, Louisiana
| | - Ryan W. Carroll
- Division of Pediatric Critical Care Medicine, Department of Pediatrics
- Harvard Medical School, Boston, Massachusetts
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Critical Care Center for Research, and
- Harvard Medical School, Boston, Massachusetts
| | | | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care, and Pain Medicine
- Anesthesia Critical Care Center for Research, and
- Respiratory Care Services, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Osmani N, Marinaro J, Guliani S. Life-threatening pulmonary embolism: overview and management. Int Anesthesiol Clin 2023; 61:35-42. [PMID: 37622318 DOI: 10.1097/aia.0000000000000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Affiliation(s)
- Nizar Osmani
- Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Jonathan Marinaro
- Center for Adult Critical Care, University of New Mexico, Albuquerque, New Mexico
| | - Sundeep Guliani
- Center for Adult Critical Care, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
27
|
Malfertheiner MV, Garrett A, Passmore M, Haymet AB, Webb RI, Von Bahr V, Millar JE, Schneider BA, Obonyo NG, Black D, Bouquet M, Bartnikowski N, Suen JY, Fraser JF. The effects of nitric oxide on coagulation and inflammation in ex vivo models of extracorporeal membrane oxygenation and cardiopulmonary bypass. Artif Organs 2023; 47:1581-1591. [PMID: 37395735 PMCID: PMC7616762 DOI: 10.1111/aor.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Extracorporeal life support (ECLS) has extensive applications in managing patients with acute cardiac and pulmonary failure. Two primary modalities of ECLS, cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO), include several similarities in their composition, complications, and patient outcomes. Both CPB and ECMO pose a high risk of thrombus formation and platelet activation due to the large surface area of the devices and bleeding due to system anticoagulation. Therefore, novel methods of anticoagulation are needed to reduce the morbidity and mortality associated with extracorporeal support. Nitric oxide (NO) has potent antiplatelet properties and presents a promising alternative or addition to anticoagulation with heparin during extracorporeal support. METHODS We developed two ex vivo models of CPB and ECMO to investigate NO effects on anticoagulation and inflammation in these systems. RESULTS Sole addition of NO as an anticoagulant was not successful in preventing thrombus formation in the ex vivo setups, therefore a combination of low-level heparin with NO was used. Antiplatelet effects were observed in the ex vivo ECMO model when NO was delivered at 80 ppm. Platelet count was preserved after 480 min when NO was delivered at 30 ppm. CONCLUSION Combined delivery of NO and heparin did not improve haemocompatibility in either ex vivo model of CPB and ECMO. Anti-inflammatory effects of NO in ECMO systems have to be evaluated further.
Collapse
Affiliation(s)
- Maximilian V. Malfertheiner
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Ashlen Garrett
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - Margaret Passmore
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - Andrew B. Haymet
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - Richard I. Webb
- The Centre for Microscopy and Microanalysis, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - Viktor Von Bahr
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Department of Physiology and Pharmacology, The Section for Anesthesiology and Intensive Care Medicine, The Karolinska Institutet, Stockholm, Sweden
| | - Jonathan E. Millar
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Bailey A. Schneider
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - Nchafatso G. Obonyo
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
- Initiative to Develop African Research Leaders (IDeAL), KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Wellcome Trust Centre for Global Health Research, Imperial College London, London, UK
| | - Debra Black
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Mahe Bouquet
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Nicole Bartnikowski
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - Jacky Y. Suen
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| | - John F. Fraser
- The Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- The Faculty of Medicine, The University of Queensland, Saint Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Bai Y, Li G, Yung L, Yu PB, Ai X. Intrapulmonary arterial contraction assay reveals region-specific deregulation of vasoreactivity to lung injuries. Am J Physiol Lung Cell Mol Physiol 2023; 325:L114-L124. [PMID: 37278410 PMCID: PMC10393320 DOI: 10.1152/ajplung.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice. We found that PaAs exhibited robust vasoconstriction in response to contractile agonists and significant nitric oxide (NO)-induced vasodilation. In comparison, IaAs were less contractile and displayed a greater relaxation response to NO. Furthermore, in a mouse model of pulmonary arterial hypertension (PAH) induced by chronic exposure to ovalbumin (OVA) allergen and hypoxia (OVA-HX), IaAs demonstrated a reduced vasocontraction despite vascular wall thickening with the emergence of new αSMA+ cells coexpressing markers of pericytes. In contrast, PaAs became hypercontractile and less responsive to NO. The reduction in relaxation of PaAs was associated with decreased expression of protein kinase G, a key component of the NO pathway, following chronic OVA-HX exposure. Taken together, the PCLS prepared using the modified preparation method enables functional evaluation of pulmonary arteries in different anatomical locations and reveals region-specific mechanisms underlying the pathophysiology of PAH in a mouse model.NEW & NOTEWORTHY Utilizing mouse precision-cut lung slices with preserved intrapulmonary vessels, we demonstrated a location-dependent structural and contractile regulation of pulmonary arteries in health and on noxious stimulations. For instance, chronic ovalbumin and hypoxic exposure increased pulmonary arterial pressure (PAH) by remodeling intraacinar arterioles to reduce vascular wall compliance while enhancing vasoconstriction in proximal preacinar arteries. These findings suggest region-specific mechanisms and therapeutic targets for pulmonary vascular diseases such as PAH.
Collapse
Affiliation(s)
- Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital and Wuhan University, Wuhan, People's Republic of China
| | - Laiming Yung
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
29
|
Lau VI, Mah GD, Wang X, Byker L, Robinson A, Milovanovic L, Alherbish A, Odenbach J, Vadeanu C, Lu D, Smyth L, Rohatensky M, Whiteside B, Gregoire P, Luksun W, van Diepen S, Anderson D, Verma S, Slemko J, Brindley P, Kustogiannis DJ, Jacka M, Shaw A, Wheatley M, Windram J, Opgenorth D, Baig N, Rewa OG, Bagshaw SM, Buchanan BM. Intrapulmonary and Intracardiac Shunts in Adult COVID-19 Versus Non-COVID Acute Respiratory Distress Syndrome ICU Patients Using Echocardiography and Contrast Bubble Studies (COVID-Shunt Study): A Prospective, Observational Cohort Study. Crit Care Med 2023; 51:1023-1032. [PMID: 36971440 PMCID: PMC10335602 DOI: 10.1097/ccm.0000000000005848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVES Studies have suggested intrapulmonary shunts may contribute to hypoxemia in COVID-19 acute respiratory distress syndrome (ARDS) with worse associated outcomes. We evaluated the presence of right-to-left (R-L) shunts in COVID-19 and non-COVID ARDS patients using a comprehensive hypoxemia workup for shunt etiology and associations with mortality. DESIGN Prospective, observational cohort study. SETTING Four tertiary hospitals in Edmonton, Alberta, Canada. PATIENTS Adult critically ill, mechanically ventilated, ICU patients admitted with COVID-19 or non-COVID (November 16, 2020, to September 1, 2021). INTERVENTIONS Agitated-saline bubble studies with transthoracic echocardiography/transcranial Doppler ± transesophageal echocardiography assessed for R-L shunts presence. MEASUREMENTS AND MAIN RESULTS Primary outcomes were shunt frequency and association with hospital mortality. Logistic regression analysis was used for adjustment. The study enrolled 226 patients (182 COVID-19 vs 42 non-COVID). Median age was 58 years (interquartile range [IQR], 47-67 yr) and Acute Physiology and Chronic Health Evaluation II scores of 30 (IQR, 21-36). In COVID-19 patients, the frequency of R-L shunt was 31 of 182 COVID patients (17.0%) versus 10 of 44 non-COVID patients (22.7%), with no difference detected in shunt rates (risk difference [RD], -5.7%; 95% CI, -18.4 to 7.0; p = 0.38). In the COVID-19 group, hospital mortality was higher for those with R-L shunt compared with those without (54.8% vs 35.8%; RD, 19.0%; 95% CI, 0.1-37.9; p = 0.05). This did not persist at 90-day mortality nor after adjustment with regression. CONCLUSIONS There was no evidence of increased R-L shunt rates in COVID-19 compared with non-COVID controls. R-L shunt was associated with increased in-hospital mortality for COVID-19 patients, but this did not persist at 90-day mortality or after adjusting using logistic regression.
Collapse
Affiliation(s)
- Vincent I Lau
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Graham D Mah
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Xiaoming Wang
- Health Services Statistical and Analytic Methods, Alberta Health Services, Edmonton, AB, Canada
| | - Leon Byker
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Andrea Robinson
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Lazar Milovanovic
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Aws Alherbish
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, Faculty of Medicine, and Alberta Health Services, Edmonton, AB, Canada
| | - Jeffrey Odenbach
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristian Vadeanu
- Department of Emergency Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David Lu
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Leo Smyth
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mitchell Rohatensky
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brian Whiteside
- Department of Emergency Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Phillip Gregoire
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Warren Luksun
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sean van Diepen
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, Faculty of Medicine, and Alberta Health Services, Edmonton, AB, Canada
| | - Dustin Anderson
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sanam Verma
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, Faculty of Medicine, and Alberta Health Services, Edmonton, AB, Canada
| | - Jocelyn Slemko
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Peter Brindley
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Demetrios J Kustogiannis
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Michael Jacka
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Andrew Shaw
- Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, OH
| | - Matt Wheatley
- Department of Neurosurgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Windram
- Division of Cardiology, Department of Medicine, Faculty of Medicine, and Alberta Health Services, Edmonton, AB, Canada
| | - Dawn Opgenorth
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Nadia Baig
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Oleksa G Rewa
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Brian M Buchanan
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| |
Collapse
|
30
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
31
|
Pearl RG, Cole SP. Development of the Modern Cardiothoracic Intensive Care Unit and Current Management. Crit Care Clin 2023; 39:559-576. [PMID: 37230556 DOI: 10.1016/j.ccc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The modern cardiothoracic intensive care unit (CTICU) developed as a result of advances in critical care, cardiology, and cardiac surgery. Patients undergoing cardiac surgery today are sicker, frailer, and have more complex cardiac and noncardiac morbidities. CTICU providers need to understand postoperative implications of different surgical procedures, complications that can occur in CTICU patients, resuscitation protocols for cardiac arrest, and diagnostic and therapeutic interventions such as transesophageal echocardiography and mechanical circulatory support. Optimum CTICU care requires a multidisciplinary team with collaboration between cardiac surgeons and critical care physicians with training and experience in the care of CTICU patients.
Collapse
Affiliation(s)
- Ronald G Pearl
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford University School of Medicine, 300 Pasteur Drive, Room H3589.
| | - Sheela Pai Cole
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford University School of Medicine, 300 Pasteur Drive, Room H3589
| |
Collapse
|
32
|
Redaelli S, Pozzi M, Giani M, Magliocca A, Fumagalli R, Foti G, Berra L, Rezoagli E. Inhaled Nitric Oxide in Acute Respiratory Distress Syndrome Subsets: Rationale and Clinical Applications. J Aerosol Med Pulm Drug Deliv 2023; 36:112-126. [PMID: 37083488 PMCID: PMC10402704 DOI: 10.1089/jamp.2022.0058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition, characterized by diffuse inflammatory lung injury. Since the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, the most common cause of ARDS has been the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both the COVID-19-associated ARDS and the ARDS related to other causes-also defined as classical ARDS-are burdened by high mortality and morbidity. For these reasons, effective therapeutic interventions are urgently needed. Among them, inhaled nitric oxide (iNO) has been studied in patients with ARDS since 1993 and it is currently under investigation. In this review, we aim at describing the biological and pharmacological rationale of iNO treatment in ARDS by elucidating similarities and differences between classical and COVID-19 ARDS. Thereafter, we present the available evidence on the use of iNO in clinical practice in both types of respiratory failure. Overall, iNO seems a promising agent as it could improve the ventilation/perfusion mismatch, gas exchange impairment, and right ventricular failure, which are reported in ARDS. In addition, iNO may act as a viricidal agent and prevent lung hyperinflammation and thrombosis of the pulmonary vasculature in the specific setting of COVID-19 ARDS. However, the current evidence on the effects of iNO on outcomes is limited and clinical studies are yet to demonstrate any survival benefit by administering iNO in ARDS.
Collapse
Affiliation(s)
- Simone Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Giani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
| | - Roberto Fumagalli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Anesthesia and Intensive Care Medicine, Niguarda Ca’ Granda, Milan, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
33
|
Spina S, Marrazzo F, Morais CA, Victor M, Forlini C, Guarnieri M, Bastia L, Giudici R, Bassi G, Xin Y, Cereda M, Amato M, Langer T, Berra L, Fumagalli R. Modulation of pulmonary blood flow in patients with acute respiratory failure. Nitric Oxide 2023; 136-137:1-7. [PMID: 37172929 DOI: 10.1016/j.niox.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-minute steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.
Collapse
Affiliation(s)
- Stefano Spina
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Francesco Marrazzo
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - CaioC A Morais
- Division of Pneumology (Laboratory of Medical Investigation 09), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcus Victor
- Division of Pneumology (Laboratory of Medical Investigation 09), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Clarissa Forlini
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Marcello Guarnieri
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Luca Bastia
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Riccardo Giudici
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Gabriele Bassi
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Yi Xin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Amato
- Division of Pneumology (Laboratory of Medical Investigation 09), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thomas Langer
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roberto Fumagalli
- Department of Anaesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
34
|
Yamasaki H, Imai H, Tanaka A, Otaki JM. Pleiotropic Functions of Nitric Oxide Produced by Ascorbate for the Prevention and Mitigation of COVID-19: A Revaluation of Pauling's Vitamin C Therapy. Microorganisms 2023; 11:397. [PMID: 36838362 PMCID: PMC9963342 DOI: 10.3390/microorganisms11020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Linus Pauling, who was awarded the Nobel Prize in Chemistry, suggested that a high dose of vitamin C (l-ascorbic acid) might work as a prevention or treatment for the common cold. Vitamin C therapy was tested in clinical trials, but clear evidence was not found at that time. Although Pauling's proposal has been strongly criticized for a long time, vitamin C therapy has continued to be tested as a treatment for a variety of diseases, including coronavirus infectious disease 2019 (COVID-19). The pathogen of COVID-19, SARS-CoV-2, belongs to the β-coronavirus lineage, which includes human coronavirus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). This review intends to shed new light on vitamin C antiviral activity that may prevent SARS-CoV-2 infection through the chemical production of nitric oxide (NO). NO is a gaseous free radical that is largely produced by the enzyme NO synthase (NOS) in cells. NO produced by upper epidermal cells contributes to the inactivation of viruses and bacteria contained in air or aerosols. In addition to enzymatic production, NO can be generated by the chemical reduction of inorganic nitrite (NO2-), an alternative mechanism for NO production in living organisms. Dietary vitamin C, largely contained in fruits and vegetables, can reduce the nitrite in saliva to produce NO in the oral cavity when chewing foods. In the stomach, salivary nitrite can also be reduced to NO by vitamin C secreted from the epidermal cells of the stomach. The strong acidic pH of gastric juice facilitates the chemical reduction of salivary nitrite to produce NO. Vitamin C contributes in multiple ways to the host innate immune system as a first-line defense mechanism against pathogens. Highlighting chemical NO production by vitamin C, we suggest that controversies on the therapeutic effects of vitamin C in previous clinical trials may partly be due to less appreciation of the pleiotropic functions of vitamin C as a universal bioreductant.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | | | | | | |
Collapse
|
35
|
Segovia F, Garcia H, Alkhateeb H, Mukherjee D, Nickel N. Updates in the Pharmacotherapy of Pulmonary Hypertension in Patients with Heart Failure with Preserved Ejection Fraction. Cardiovasc Hematol Disord Drug Targets 2023; 23:215-225. [PMID: 37921162 DOI: 10.2174/011871529x258234230921112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 11/04/2023]
Abstract
Pulmonary hypertension (PH) associated with left heart disease (LHD) is a complex cardiopulmonary condition where a variable degree of pulmonary congestion, arterial vasoconstriction and vascular remodeling can lead to PH and right heart strain. Right heart dysfunction has a significant prognostic impact on these patients. Therefore, preserving right ventricular (RV) function is an important treatment goal. However, the treatment of PH in patients with left heart disease has produced conflicting evidence. The transition from pure LHD to LHD with PH is a continuum and clinically challenging. The heart failure with preserved ejection fraction (HFpEF) patient population is heterogeneous when it comes to PH and RV function. Appropriate clinical and hemodynamic phenotyping of patients with HFpEF and concomitant PH is paramount to making the appropriate treatment decision. This manuscript will summarize the current evidence for the use of pulmonary arterial vasodilators in patients with HFpEF.
Collapse
Affiliation(s)
- Fernando Segovia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Hernando Garcia
- Pulmonary and Critical Care, Mount Sinai Medical Center, Miami, Florida, USA
| | - Haider Alkhateeb
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Nils Nickel
- Division of Pulmonary and Critical Care Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
36
|
Dal Negro RW, Turco P, Povero M. Nebivolol: an effective option against long-lasting dyspnoea following COVID-19 pneumonia - a pivotal double-blind, cross-over controlled study. Multidiscip Respir Med 2022; 17:886. [PMID: 36636645 PMCID: PMC9830396 DOI: 10.4081/mrm.2022.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022] Open
Abstract
Background Pulmonary microvascular occlusions can aggravate SARS-CoV-2 pneumonia and result in a variable decrease in capillary blood volume (Vc). Dyspnoea may persist for several weeks after hospital discharge in many patients who have "radiologically recovered" from COVID-19 pneumonia. Dyspnoea is frequently "unexplained" in these cases because abnormalities in lung vasculature are understudied. Furthermore, even when they are identified, therapeutic options are still lacking in clinical practice, with nitric oxide (NO) supplementation being used only for severe respiratory failure in the hospital setting. Nebivolol is the only selective β1 adrenoceptor antagonist capable of inducing nitric oxide-mediated vasodilation by stimulating endothelial NO synthase via β3 agonism. The purpose of this study was to compare the effect of nebivolol versus placebo in patients who had low Vc and complained of dyspnoea for several weeks after COVID-19 pneumonia. Methods Patients of both genders, aged ≥18 years, non-smokers, who had a CT scan that revealed no COVID-related parenchymal lesions but still complaining of dyspnoea 12-16 weeks after hospital discharge, were recruited. Spirometrical volumes, blood haemoglobin, SpO2, simultaneous diffusing capacity for carbon monoxide (CO) and NO (DLCO and DLNO, respectively), DLNO/DLCO ratio, Vc and exhaled NO (eNO) were measured together with their dyspnoea score (DS), heart frequency (HF), and blood arterial pressure (BAP). Data were collected before and one week after both placebo (P) and nebivolol (N) (2.5 mg od) double-blind cross-over administered at a two-week interval. Data were statistically compared, and p<0.05 assumed as statistically significant. Results Eight patients (3 males) were investigated. In baseline, their mean DS was 2.5±0.6 SD, despite the normality of lung volumes. DLCO and DLNO mean values were lower than predicted, while mean DLNO/DLCO ratio was higher. Mean Vc proved substantially reduced. Placebo did not modify any variable (all p=ns) while N improved DLco and Vc significantly (+8.5%, p<0.04 and +17.7%, p<0.003, respectively). eNO also was significantly increased (+17.6%, p<0.002). Only N lowered the dyspnoea score (-76%, p<0.001). Systolic and diastolic BAP were slightly lowered (-7.5%, p<0.02 and -5.1%, p<0.04, respectively), together with HF (-16.8%, p<0.03). Conclusions The simultaneous assessment of DLNO, DLCO, DLNO/DLCO ratio, and Vc confirmed that long-lasting dyspnoea is related to hidden abnormalities in the lung capillary vasculature. These abnormalities can persist even after the complete resolution of parenchymal lesions regardless of the normality of lung volumes. Nebivolol, but not placebo, improves DS and Vc significantly. The mechanism suggested is the NO-mediated vasodilation via the β3 adrenoceptor stimulation of endothelial NO synthase. This hypothesis is supported by the substantial increase of eNO only assessed after nebivolol. As the nebivolol tolerability in these post-COVID normotensive patients was very good, the therapeutic use of nebivolol against residual and symptomatic signs of long-COVID can be suggested in out-patients.
Collapse
Affiliation(s)
- Roberto W. Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology - CESFAR, Verona ,National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology, Via G. Rossetti 4, 37124 Verona, Italy.
| | - Paola Turco
- Research & Clinical Governance, Verona, Italy
| | | |
Collapse
|
37
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
38
|
Nanoparticle-based delivery of nitric oxide for therapeutic applications. Ther Deliv 2022; 13:403-427. [DOI: 10.4155/tde-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery. Recently, a number of nanoparticle (NP)-based systems are described that address some of these issues by taking advantage of the unique attributes of the NP carrier to effect efficient NO delivery. This review highlights the progress that has been made over the past 5 years in the use of various constructs for the therapeutic delivery of NO.
Collapse
|
39
|
Nasrullah A, Virk S, Shah A, Jacobs M, Hamza A, Sheikh AB, Javed A, Butt MA, Sangli S. Acute Respiratory Distress Syndrome and the Use of Inhaled Pulmonary Vasodilators in the COVID-19 Era: A Narrative Review. Life (Basel) 2022; 12:1766. [PMID: 36362921 PMCID: PMC9695622 DOI: 10.3390/life12111766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/03/2023] Open
Abstract
The Coronavirus disease (COVID-19) pandemic of 2019 has resulted in significant morbidity and mortality, especially from severe acute respiratory distress syndrome (ARDS). As of September 2022, more than 6.5 million patients have died globally, and up to 5% required intensive care unit treatment. COVID-19-associated ARDS (CARDS) differs from the typical ARDS due to distinct pathology involving the pulmonary vasculature endothelium, resulting in diffuse thrombi in the pulmonary circulation and impaired gas exchange. The National Institute of Health and the Society of Critical Care Medicine recommend lung-protective ventilation, prone ventilation, and neuromuscular blockade as needed. Further, a trial of pulmonary vasodilators is suggested for those who develop refractory hypoxemia. A review of the prior literature on inhaled pulmonary vasodilators in ARDS suggests only a transient improvement in oxygenation, with no mortality benefit. This narrative review aims to highlight the fundamental principles in ARDS management, delineate the fundamental differences between CARDS and ARDS, and describe the comprehensive use of inhaled pulmonary vasodilators. In addition, with the differing pathophysiology of CARDS from the typical ARDS, we sought to evaluate the current evidence regarding the use of inhaled pulmonary vasodilators in CARDS.
Collapse
Affiliation(s)
- Adeel Nasrullah
- Division of Pulmonology and Critical Care, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Shiza Virk
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Aaisha Shah
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Max Jacobs
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Amina Hamza
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Abu Baker Sheikh
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Anam Javed
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Muhammad Ali Butt
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Swathi Sangli
- Division of Pulmonology and Critical Care, Allegheny Health Network, Pittsburgh, PA 15212, USA
| |
Collapse
|
40
|
Gill K, Rivera E, Flores NO, AlAshi A, Rossi A, Sasaki J. Postoperative Inhaled Nitric Oxide Use and Early Outcomes after Fontan Surgery Completion. J Pediatr Intensive Care 2022. [DOI: 10.1055/s-0042-1756308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractA considerable number of patients after the Fontan operation require prolonged hospitalization due to significant perioperative morbidities. The early postoperative morbidity can be attributed to elevated pulmonary vascular resistance. We hypothesized that the postoperative outcomes would improve with the routine use of inhaled nitric oxide (iNO) to decrease pulmonary vascular resistance. From January 2015 to November 2017 (Group 1), 37 patients underwent Fontan operation, and from December 2017 to December 2019 (Group 2), 34 patients underwent Fontan operation. All patients in Group 2 received iNO in the immediate perioperative period as part of a standardized postoperative pathway. There was no statistically significant difference in demographics or single ventricle subtype between the two groups. All patients underwent an extracardiac Fontan, and Group 2 had a higher number of fenestration (p< 0.01). Pre-Fontan hemodynamics showed no statistically significant difference in Glenn pressure, transpulmonary gradient, or systemic arterial and venous saturation. Both groups had a median length of stay of 13 days (p = 0.5), median chest tube placement of 7 days (p = 0.5), and there was no statistically significant difference in major complications. Readmission within 1 month of discharge occurred in five patients in Group 1 and six patients in Group 2 (p = 0.7). Routine use of iNO in the early postoperative period after Fontan operation did not reduce the length of stay, chest tube duration, rate of complications, or readmission.
Collapse
Affiliation(s)
- Kamalvir Gill
- Division of Cardiology, The Hospital for Sick Children, Toronto, Canada
| | - Estefania Rivera
- Department of Cardiology, Nicklaus Children's Hospital, Miami, Florida, United States
| | - Nicolas Ortiz Flores
- Department of Cardiology, Nicklaus Children's Hospital, Miami, Florida, United States
| | - Amro AlAshi
- Department of Pediatrics, Herbert Wertheim School of Medicine, Florida International University, Miami, Florida, United States
| | - Anthony Rossi
- Department of Cardiology, Nicklaus Children's Hospital, Miami, Florida, United States
| | - Jun Sasaki
- Division of Pediatric Critical Care Medicine and Pediatric Cardiology, Weill Cornell Medicine/New York-Presbyterian Komansky Children's Hospital, New York, United States
| |
Collapse
|
41
|
High-Dose Inhaled Nitric Oxide for the Treatment of Spontaneously Breathing Pregnant Patients With Severe Coronavirus Disease 2019 (COVID-19) Pneumonia. Obstet Gynecol 2022; 140:195-203. [PMID: 35852269 PMCID: PMC9994457 DOI: 10.1097/aog.0000000000004847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.
Collapse
|
42
|
Safety and practicality of high dose inhaled nitric oxide in emergency department COVID-19 patients. Am J Emerg Med 2022; 58:5-8. [PMID: 35623183 PMCID: PMC9066706 DOI: 10.1016/j.ajem.2022.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator and mild bronchodilator that has been shown to improve systemic oxygenation, but has rarely been administered in the Emergency Department (ED). In addition to its favorable pulmonary vascular effects, in-vitro studies report that NO donors can inhibit replication of viruses, including SARS Coronavirus 2 (SARS-CoV-2). This study evaluated the administration of high-dose iNO by mask in spontaneously breathing emergency department (ED) patients with respiratory symptoms attributed to Coronavirus disease 2019 (COVID-19). METHODS We designed a randomized clinical trial to determine whether 30 min of high dose iNO (250 ppm) could be safely and practically administered by emergency physicians in the ED to spontaneously-breathing patients with respiratory symptoms attributed to COVID-19. Our secondary goal was to learn if iNO could prevent the progression of mild COVID-19 to a more severe state. FINDINGS We enrolled 47 ED patients with acute respiratory symptoms most likely due to COVID-19: 25 of 47 (53%) were randomized to the iNO treatment group; 22 of 47 (46%) to the control group (supportive care only). All patients tolerated the administration of high-dose iNO in the ED without significant complications or symptoms. Five patients receiving iNO (16%) experienced asymptomatic methemoglobinemia (MetHb) > 5%. Thirty-four of 47 (72%) subjects tested positive for SARS-CoV-2: 19 of 34 were randomized to the iNO treatment group and 15 of 34 subjects to the control group. Seven of 19 (38%) iNO patients returned to the ED, while 4 of 15 (27%) control patients did. One patient in each study arm was hospitalized: 5% in iNO treatment and 7% in controls. One patient was intubated in the iNO group. No patients in either group died. The differences between these groups were not significant. CONCLUSION A single dose of iNO at 250 ppm was practical and not associated with any significant adverse effects when administered in the ED by emergency physicians. Local disease control led to early study closure and prevented complete testing of COVID-19 safety and treatment outcomes measures.
Collapse
|
43
|
Foote HP, Hornik CP, Hill KD, Rotta AT, Kumar KR, Thompson EJ. A systematic review of clinical study evidence for pulmonary vasodilator therapy following surgery with cardiopulmonary bypass in children with CHD. Cardiol Young 2022; 32:1-18. [PMID: 35856267 DOI: 10.1017/s1047951122002293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Complications from pulmonary hypertension are one of the leading contributors to morbidity and mortality post-cardiopulmonary bypass surgery in children with CHD. Pulmonary vasodilator therapies are commonly used post-operatively, but the optimal target patient population, therapy choice, timing of therapy initiation, and duration of therapy are not well defined. METHODS We used PubMed and EMBASE to identify studies from 2000 to 2020 investigating the use of pulmonary vasodilator therapy post-cardiopulmonary bypass in children aged 0-18 years. To ensure eligibility criteria, studies were systematically reviewed by two independent reviewers. RESULTS We identified 26 studies of 42,971 children across four medication classes; 23 were single centre, 14 were prospective, and 11 involved randomisation (four of which employed a placebo-control arm). A disproportionate number of children were from a single retrospective study of 41,872 patients. Definitions varied, but change in pulmonary haemodynamics was the most common primary outcome, used in 14 studies. Six studies had clinical endpoints, with mortality the primary endpoint for two studies. Treatment with inhaled nitric oxide, iloprost, and sildenafil all resulted in improved haemodynamics in specific cohorts of children with post-operative pulmonary hypertension, although improved outcomes were not consistently demonstrated across all treated children. Iloprost may be a cheaper alternative to inhaled nitric oxide with similar haemodynamic response. CONCLUSION Studies were predominantly single-centre, a control arm was rarely used in randomised studies, and haemodynamic endpoints varied significantly. Further research is needed to reduce post-operative morbidity and mortality from pulmonary hypertension in children with CHD.
Collapse
Affiliation(s)
- Henry P Foote
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin D Hill
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexandre T Rotta
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Karan R Kumar
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
44
|
More questions than answers for the use of inhaled nitric oxide in COVID-19. Nitric Oxide 2022; 124:39-48. [PMID: 35526702 PMCID: PMC9072755 DOI: 10.1016/j.niox.2022.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Inhaled nitric oxide (iNO) is a potent vasodilator approved for use in term and near-term neonates, but with broad off-label use in settings including acute respiratory distress syndrome (ARDS). As an inhaled therapy, iNO reaches well ventilated portions of the lung and selectively vasodilates the pulmonary vascular bed, with little systemic effect due to its rapid inactivation in the bloodstream. iNO is well documented to improve oxygenation in a variety of pathological conditions, but in ARDS, these transient improvements in oxygenation have not translated into meaningful clinical outcomes. In coronavirus disease 2019 (COVID-19) related ARDS, iNO has been proposed as a potential treatment due to a variety of mechanisms, including its vasodilatory effect, antiviral properties, as well as anti-thrombotic and anti-inflammatory actions. Presently however, no randomized controlled data are available evaluating iNO in COVID-19, and published data are largely derived from retrospective and cohort studies. It is therefore important to interpret these limited findings with caution, as many questions remain around factors such as patient selection, optimal dosing, timing of administration, duration of administration, and delivery method. Each of these factors may influence whether iNO is indeed an efficacious therapy - or not - in this context. As such, until randomized controlled trial data are available, use of iNO in the treatment of patients with COVID-19 related ARDS should be considered on an individual basis with sound clinical judgement from the attending physician.
Collapse
|
45
|
Poonam PBH, Koscik R, Nguyen T, Rikhi S, Lin HM. Nitric oxide versus epoprostenol for refractory hypoxemia in Covid-19. PLoS One 2022; 17:e0270646. [PMID: 35759496 PMCID: PMC9236233 DOI: 10.1371/journal.pone.0270646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Objective To compare the efficacy and outcomes with inhaled nitric oxide (iNO) and inhaled epoprostenol (iEPO) in patients with refractory hypoxemia due to COVID-19. Design Retrospective Cohort Study. Setting Single health system multicenter academic teaching hospitals. Patients OR subjects Age group of 18–80 years admitted to the medical ICU. Interventions Mechanically ventilated patients with COVID-19 infection, who received either iNO or iEPO between March 1st, 2020, and June 30th, 2020. Measurements and main results The primary outcome was the change in the PaO2/FiO2 (P/F) ratio 1 hour after initiation of pulmonary vasodilator therapy. Secondary outcomes include P/F ratios on days 1–3 after initiation, positive response in P/F ratio (increase of at least 20% in PaO2), total days of treatment, rebound hypoxemia (if there was a drop in oxygen saturation after treatment was stopped), ventilator free days (if any patient was extubated), days in ICU, days to extubation, days to tracheostomy, mortality days after intubation, 30-day survival and mortality. 183 patients were excluded, as they received both iNO and iEPO. Of the remaining 103 patients, 62 received iEPO and 41 received iNO. The severity of ARDS was similar in both groups. Change in P/F ratio at one hour was 116 (70.3) with iNO and 107 (57.6) with iEPO (Mean/SD). Twenty-two (53.7%) patients in the iNO group and 25 (40.3%) in the iEPO group were responders to pulmonary vasodilators n(%)(p = 0.152) (more than 20% increase in partial pressure of oxygen, Pao2), and 18 (43.9%) and 31 (50%) patients in the iNO and iEPO group (p = 0.685), respectively, had rebound hypoxemia. Only 7 patients in the cohort achieved ventilator free days (3 in the iEPO group and 4 in iNO group). Conclusions We found no significant difference between iNO and iEPO in terms of change in P/F ratio, duration of mechanical ventilation, ICU, in-hospital mortality in this cohort of mechanically ventilated patients with COVID-19. Larger, prospective studies are necessary to validate these results.
Collapse
Affiliation(s)
- Pai B. H. Poonam
- Department of Anesthesia, Perioperative and Pain Medicine, Mount Sinai West-Morningside Hospitals, New York, NY, United States of America
- * E-mail:
| | - Rebecca Koscik
- Department of Anesthesia, NYU Langone Health, New York, NY, United States of America
| | - Trong Nguyen
- Department of Anesthesia, Perioperative and Pain Medicine, Mount Sinai West-Morningside Hospitals, New York, NY, United States of America
| | - Shefali Rikhi
- Department of Anesthesia, Perioperative and Pain Medicine, Mount Sinai West-Morningside Hospitals, New York, NY, United States of America
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Mount Sinai West-Morningside Hospitals, New York, NY, United States of America
| |
Collapse
|
46
|
Pawar SS, Wilcox ME, van Haren FM. Inhaled pulmonary vasodilators in severe COVID-19: Don't hold your breath. J Crit Care 2022; 69:153988. [PMID: 35093675 PMCID: PMC8798495 DOI: 10.1016/j.jcrc.2022.153988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
|
47
|
McGlothlin D, Granton J, Klepetko W, Beghetti M, Rosenzweig EB, Corris P, Horn E, Kanwar M, McRae K, Roman A, Tedford R, Badagliacca R, Bartolome S, Benza R, Caccamo M, Cogswell R, Dewachter C, Donahoe L, Fadel E, Farber HW, Feinstein J, Franco V, Frantz R, Gatzoulis M, Hwa (Anne) Goh C, Guazzi M, Hansmann G, Hastings S, Heerdt P, Hemnes A, Herpain A, Hsu CH, Kerr K, Kolaitis N, Kukreja J, Madani M, McCluskey S, McCulloch M, Moser B, Navaratnam M, Radegran G, Reimer C, Savale L, Shlobin O, Svetlichnaya J, Swetz K, Tashjian J, Thenappan T, Vizza CD, West S, Zuckerman W, Zuckermann A, De Marco T. ISHLT CONSENSUS STATEMENT: Peri-operative Management of Patients with Pulmonary Hypertension and Right Heart Failure Undergoing Surgery. J Heart Lung Transplant 2022; 41:1135-1194. [DOI: 10.1016/j.healun.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022] Open
|
48
|
Rajendran R, Chathambath A, Al-Sehemi AG, Pannipara M, Unnikrishnan MK, Aleya L, Raghavan RP, Mathew B. Critical role of nitric oxide in impeding COVID-19 transmission and prevention: a promising possibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38657-38672. [PMID: 35258738 PMCID: PMC8902850 DOI: 10.1007/s11356-022-19148-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/06/2022] [Indexed: 05/06/2023]
Abstract
COVID-19 is a serious respiratory infection caused by a beta-coronavirus that is closely linked to SARS. Hypoxemia is a symptom of infection, which is accompanied by acute respiratory distress syndrome (ARDS). Augmenting supplementary oxygen may not always improve oxygen saturation; reversing hypoxemia in COVID-19 necessitates sophisticated means to promote oxygen transfer from alveoli to blood. Inhaled nitric oxide (iNO) has been shown to inhibit the multiplication of the respiratory coronavirus, a property that distinguishes it from other vasodilators. These findings imply that NO may have a crucial role in the therapy of COVID-19, indicating research into optimal methods to restore pulmonary physiology. According to clinical and experimental data, NO is a selective vasodilator proven to restore oxygenation by helping to normalize shunts and ventilation/perfusion mismatches. This study examines the role of NO in COVID-19 in terms of its specific physiological and biochemical properties, as well as the possibility of using inhaled NO as a standard therapy. We have also discussed how NO could be used to prevent and cure COVID-19, in addition to the limitations of NO.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anjana Chathambath
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | | | - Lotfi Aleya
- Laboratoire Chrono-Environment, Universite de Bourgogne Franche-Comte, CNRS6249, Besancon, France
| | - Roshni Pushpa Raghavan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| |
Collapse
|
49
|
Marc-Derrien Y, Gren L, Dierschke K, Albin M, Gudmundsson A, Wierzbicka A, Sandberg F. Acute Cardiovascular Effects of Hydrotreated Vegetable Oil Exhaust. Front Physiol 2022; 13:828311. [PMID: 35350690 PMCID: PMC8957941 DOI: 10.3389/fphys.2022.828311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Ambient air pollution is recognized as a key risk factor for cardiovascular morbidity and mortality contributing to the global disease burden. The use of renewable diesel fuels, such as hydrotreated vegetable oil (HVO), have increased in recent years and its impact on human health are not completely known. The present study investigated changes in cardiovascular tone in response to exposure to diluted HVO exhaust. The study participants, 19 healthy volunteers, were exposed in a chamber on four separate occasions for 3 h and in a randomized order to: (1) HVO exhaust from a wheel loader without exhaust aftertreatment, (2) HVO exhaust from a wheel loader with an aftertreatment system, (3) clean air enriched with dry NaCl salt particles, and (4) clean air. Synchronized electrocardiogram (ECG) and photoplethysmogram (PPG) signals were recorded throughout the exposure sessions. Pulse decomposition analysis (PDA) was applied to characterize PPG pulse morphology, and heart rate variability (HRV) indexes as well as pulse transit time (PTT) indexes were computed. Relative changes of PDA features, HRV features and PTT features at 1, 2, and 3 h after onset of the exposure was obtained for each participant and exposure session. The PDA index A13, reflecting vascular compliance, increased significantly in both HVO exposure sessions but not in the clean air or NaCl exposure sessions. However, the individual variation was large and the differences between exposure sessions were not statistically significant.
Collapse
Affiliation(s)
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Hussain WA, Bondi DS, Shah P, Morgan SE, Sriram S, Schreiber MD. Implementation of an Inhaled Nitric Oxide Weaning Protocol and Stewardship in a Level 4 NICU to Decrease Inappropriate Use. J Pediatr Pharmacol Ther 2022; 27:284-291. [PMID: 35350163 DOI: 10.5863/1551-6776-27.3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Inhaled nitric oxide (iNO) is an effective but expensive treatment of pulmonary hypertension in newborns, with limited data regarding weaning. Our institution implemented a multidisciplinary iNO weaning protocol and stewardship to reduce inappropriate use of iNO. The objective of this study was to evaluate our institutional iNO usage before and after implementation. METHODS Single-center study comparing a retrospective control group to a prospective cohort after implementation of an iNO weaning protocol. All infants in the neonatal intensive care unit (NICU) who received iNO during the study timeframe were included. The primary outcome was duration of iNO per course. RESULTS A total of 47 courses of iNO occurred during the pre-protocol timeframe compared with 37 courses in the post-protocol timeframe. Median iNO usage per course was 149 hours (IQR, 63-243) in the pre-protocol group versus 59 hours (IQR, 37-122) in the post-protocol group (p = 0.008). Length of stay was significantly longer in the pre-protocol group (p = 0.02), likely related to significantly longer ventilator days in the pre-protocol group (p = 0.02). Compliance with initiation of weaning when recommended per the protocol was 72%, and the incidence of successful weaning was 74%. CONCLUSIONS The implementation of an iNO weaning protocol in the NICU significantly decreased iNO usage by approximately 60% with no notable negative effects.
Collapse
Affiliation(s)
- Walid A Hussain
- Section of Neonatology, Department of Pediatrics (WAH), Loyola University Medical Center, Maywood, IL
| | - Deborah S Bondi
- Department of Pharmacy (DSB, PS), University of Chicago Medicine Comer Children's Hospital, Chicago, IL
| | - Pooja Shah
- Department of Pharmacy (DSB, PS), University of Chicago Medicine Comer Children's Hospital, Chicago, IL
| | - Sherwin E Morgan
- Department of Respiratory Care Services (SEM), University of Chicago Medicine, Chicago, IL
| | - Sudhir Sriram
- Section of Neonatology, Department of Pediatrics (SS, MDS), University of Chicago Medicine Comer Children's Hospital, Chicago, IL
| | - Michael D Schreiber
- Section of Neonatology, Department of Pediatrics (SS, MDS), University of Chicago Medicine Comer Children's Hospital, Chicago, IL
| |
Collapse
|