1
|
Lee TM, Ware SM, Kamsheh AM, Bhatnagar S, Absi M, Miller E, Purevjav E, Ryan KA, Towbin JA, Lipshultz SE. Genomics of pediatric cardiomyopathy. Pediatr Res 2025:10.1038/s41390-025-03819-2. [PMID: 39922924 DOI: 10.1038/s41390-025-03819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 02/10/2025]
Abstract
Cardiomyopathy in children is a leading cause of heart failure and cardiac transplantation. Disease-associated genetic variants play a significant role in the development of the different subtypes of disease. Genetic testing is increasingly being recognized as the standard of care for diagnosing this heterogeneous group of disorders, guiding management, providing prognostic information, and facilitating family-based risk stratification. The increase in clinical and research genetic testing within the field has led to new insights into this group of disorders. Mutations in genes encoding sarcomere, cytoskeletal, Z-disk, and sarcolemma proteins appear to play a major role in causing the overlapping clinical phenotypes called cardioskeletal myopathies through "final common pathway" links. For myocarditis, the high frequency of infectious exposures and wide spectrum of presentation suggest that genetic factors mediate the development and course of the disease, including genetic risk alleles, an association with cardiomyopathy, and undiagnosed arrhythmogenic cardiomyopathy. Finally, while we have made strides in elucidating the genetic architecture of pediatric cardiomyopathy, understanding the clinical implications of variants of uncertain significance remains a major issue. The need for continued genetic innovation in this field remains great, particularly as a basis to drive forward targeted precision medicine and gene therapy efforts. IMPACT: Cardiomyopathy and skeletal myopathy can occur in the same patient secondary to gene mutations that encode for sarcomeric or cytoskeletal proteins, which are expressed in both muscle groups, highlighting that there are common final pathways of disease. The heterogeneous presentation of myocarditis is likely secondary to a complex interaction of multiple environmental and genetic factors, suggesting a utility to genetic testing in pediatric patients with myocarditis, particularly those in higher risk groups. Given the high prevalence of variants of uncertain significance in genetic testing, better bioinformatic tools and pipelines are needed to resolve their clinical meaning.
Collapse
Affiliation(s)
- Teresa M Lee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Stephanie M Ware
- Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alicia M Kamsheh
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mohammed Absi
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elyse Miller
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaitlin A Ryan
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey A Towbin
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, Buffalo, NY, USA.
| |
Collapse
|
2
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Bueno Marinas M, Cason M, Bariani R, Celeghin R, De Gaspari M, Pinci S, Cipriani A, Rigato I, Zorzi A, Rizzo S, Thiene G, Perazzolo Marra M, Corrado D, Basso C, Bauce B, Pilichou K. A Comprehensive Analysis of Non-Desmosomal Rare Genetic Variants in Arrhythmogenic Cardiomyopathy: Integrating in Padua Cohort Literature-Derived Data. Int J Mol Sci 2024; 25:6267. [PMID: 38892455 PMCID: PMC11173278 DOI: 10.3390/ijms25116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.B.M.); (M.C.); (R.B.); (R.C.); (M.D.G.); (S.P.); (A.C.); (I.R.); (A.Z.); (S.R.); (G.T.); (M.P.M.); (D.C.); (B.B.); (K.P.)
| | | | | |
Collapse
|
4
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
5
|
Papadopoulos C, Malfatti E, Métay C, Keren B, Lejeune E, Buratti J, Xirou S, Chrysanthou-Piterou M, Papadimas GK. Deep Characterization of a Greek Patient with Desmin-Related Myofibrillar Myopathy and Cardiomyopathy. Int J Mol Sci 2023; 24:11181. [PMID: 37446359 DOI: 10.3390/ijms241311181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Desmin is a class III intermediate filament protein highly expressed in cardiac, smooth and striated muscle. Autosomal dominant or recessive mutations in the desmin gene (DES) result in a variety of diseases, including cardiomyopathies and myofibrillar myopathy, collectively called desminopathies. Here we describe the clinical, histological and radiological features of a Greek patient with a myofibrillar myopathy and cardiomyopathy linked to the c.734A>G,p.(Glu245Gly) heterozygous variant in the DES gene. Moreover, through ribonucleic acid sequencing analysis in skeletal muscle we show that this variant provokes a defect in exon 3 splicing and thus should be considered clearly pathogenic.
Collapse
Affiliation(s)
- Constantinos Papadopoulos
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| | - Edoardo Malfatti
- Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Université Paris Est, U955 INSERM, EnvA, EFS, IMRB, F-94010 and APHP, Henri Mondor Hospital, 94010 Créteil, France
| | - Corinne Métay
- APHP, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, INSERM, Institut de Myologie, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
| | - Boris Keren
- APHP, Centre de Génétique Moléculaire et Chromosomique, UF Génétique du Développement, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Elodie Lejeune
- APHP, Centre de Génétique Moléculaire et Chromosomique, UF Génétique du Développement, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Julien Buratti
- APHP, Centre de Génétique Moléculaire et Chromosomique, UF Génétique du Développement, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Sophia Xirou
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| | - Margarita Chrysanthou-Piterou
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| | - George K Papadimas
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| |
Collapse
|
6
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev 2022; 27:1173-1191. [PMID: 34263412 PMCID: PMC8279384 DOI: 10.1007/s10741-021-10139-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) is an umbrella term entailing a wide variety of genetic and non-genetic etiologies, leading to left ventricular systolic dysfunction and dilatation, not explained by abnormal loading conditions or coronary artery disease. The clinical presentation can vary from asymptomatic to heart failure symptoms or sudden cardiac death (SCD) even in previously asymptomatic individuals. In the last 2 decades, there has been striking progress in the understanding of the complex genetic basis of DCM, with the discovery of additional genes and genotype-phenotype correlation studies. Rigorous clinical work-up of DCM patients, meticulous family screening, and the implementation of advanced imaging techniques pave the way for a more efficient and earlier diagnosis as well as more precise indications for implantable cardioverter defibrillator implantation and prevention of SCD. In the era of precision medicine, genotype-directed therapies have started to emerge. In this review, we focus on updates of the genetic background of DCM, characteristic phenotypes caused by recently described pathogenic variants, specific indications for prevention of SCD in those individuals and genotype-directed treatments under development. Finally, the latest developments in distinguishing athletic heart syndrome from subclinical DCM are described.
Collapse
Affiliation(s)
- Nicoletta Orphanou
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece.
- Cardiology Department, Athens General Hospital "G. Gennimatas", Athens, Greece.
| | - Efstathios Papatheodorou
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
8
|
Sarohi V, Srivastava S, Basak T. A Comprehensive Outlook on Dilated Cardiomyopathy (DCM): State-Of-The-Art Developments with Special Emphasis on OMICS-Based Approaches. J Cardiovasc Dev Dis 2022; 9:jcdd9060174. [PMID: 35735803 PMCID: PMC9225617 DOI: 10.3390/jcdd9060174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) remains an enigmatic cardiovascular disease (CVD) condition characterized by contractile dysfunction of the myocardium due to dilation of the ventricles. DCM is one of the major forms of CVD contributing to heart failure. Dilation of the left or both ventricles with systolic dysfunction, not explained by known causes, is a hallmark of DCM. Progression of DCM leads to heart failure. Genetic and various other factors greatly contribute to the development of DCM, but the etiology has still remained elusive in a large number of cases. A significant number of studies have been carried out to identify the genetic causes of DCM. These candidate-gene studies revealed that mutations in the genes of the fibrous, cytoskeletal, and sarcomeric proteins of cardiomyocytes result in the development of DCM. However, a significant proportion of DCM patients are idiopathic in nature. In this review, we holistically described the symptoms, causes (in adults and newborns), genetic basis, and mechanistic progression of DCM. Further, we also summarized the state-of-the-art diagnosis, available biomarkers, treatments, and ongoing clinical trials of potential drug regimens. DCM-mediated heart failure is on the rise worldwide including in India. The discovery of biomarkers with a better prognostic value is the need of the hour for better management of DCM-mediated heart failure patients. With the advent of next-generation omics-based technologies, it is now possible to probe systems-level alterations in DCM patients pertaining to the identification of novel proteomic and lipidomic biomarkers. Here, we also highlight the onset of a systems-level study in Indian DCM patients by applying state-of-the-art mass-spectrometry-based “clinical proteomics” and “clinical lipidomics”.
Collapse
Affiliation(s)
- Vivek Sarohi
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
| | - Shriya Srivastava
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
| | - Trayambak Basak
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
- Correspondence: ; Tel.: +91-1905-267826
| |
Collapse
|
9
|
Gomes G, Seixas MR, Azevedo S, Audi K, Jurberg AD, Mermelstein C, Costa ML. What does desmin do: A bibliometric assessment of the functions of the muscle intermediate filament. Exp Biol Med (Maywood) 2022; 247:538-550. [PMID: 35130760 DOI: 10.1177/15353702221075035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intermediate filaments were first described in muscle in 1968, and desmin was biochemically identified about 10 years afterwards. Its importance grew after the identification of desminopathies and desmin mutations that cause mostly cardiopathies. Since its characterization until recently, different functions have been attributed to desmin. Here, we use bibliometric tools to evaluate the articles published about desmin and to assess its several putative functions. We identified the most productive authors and the relationships between research groups. We studied the more frequent words among 9734 articles (September 2021) containing "desmin" on the title and abstract, to identify the major research focus. We generated an interactive spreadsheet with the 934 papers that contain "desmin" only on the title that can be used to search and quantify terms in the abstract. We further selected the articles that contained the terms "function" or "role" from the spreadsheet, which we then classified according to type of function, organelle, or tissue involved. Based on the bibliographic analysis, we assess comparatively the putative functions, and we propose an alternative explanation for the desmin function.
Collapse
Affiliation(s)
- Geyse Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Marianna R Seixas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Sarah Azevedo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Karina Audi
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Arnon D Jurberg
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.,Faculdade de Medicina, Universidade Estácio de Sá, Rio de Janeiro 20071-001, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| |
Collapse
|
10
|
Zhang Y, Huang G, Yuan Z, Zhang Y, Chang R. Circular RNA Expression for Dilated Cardiomyopathy in Hearts and Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021; 9:760515. [PMID: 34977015 PMCID: PMC8719353 DOI: 10.3389/fcell.2021.760515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a type of heart disease delimited by enlargement and dilation of one or both of the ventricles along with damaged contractility, which is often accompanied by the left ventricular ejection fraction (LVEF) less than 40%. DCM is progressive and always leads to heart failure. Circular RNAs (circRNAs) are unique species of noncoding RNAs featuring high cell-type specificity and long-lasting conservation, which normally are involved in the regulation of heart failure and DCM recently. So far, a landscape of various single gene or polygene mutations, which can cause complex human cardiac disorders, has been investigated by human-induced pluripotent stem cell (hiPSC) technology. Furthermore, DCM has been modeled as well, providing new perspectives on the disease study at a cellular level. In addition, current genome editing methods can not only repair defects of some genes, but also rescue the disease phenotype in patient-derived iPSCs, even introduce pathological-related mutations into wild-type strains. In this review, we gather up the aspects of the circRNA expression and mechanism in the DCM disease scenario, facilitating understanding in DCM development and pathophysiology in the molecular level. Also, we offer an update on the most relevant scientific progress in iPSC modeling of gene mutation-induced DCM.
Collapse
Affiliation(s)
- Yiyu Zhang
- Department of Blood Transfusion, Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Guoqing Huang
- Department of Blood Transfusion, Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yonggang Zhang
- Department of Blood Transfusion, Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Blood Transfusion, Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
11
|
Przybylski R, Abrams DJ. Clinical and genetic features of arrhythmogenic cardiomyopathy: the electrophysiology perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Diagnostic biomarkers of dilated cardiomyopathy. Immunobiology 2021; 226:152153. [PMID: 34784575 DOI: 10.1016/j.imbio.2021.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a condition involving dilation of cardiac chambers, which results in contraction impairment. Besides invasive and non-invasive diagnostic procedures, cardiac biomarkers are of great importance in both diagnosis and prognosis of the disease. These biomarkers are categorized into three groups based on their site; cardiomyocyte biomarkers, microenvironmental biomarkers and macroenvironmental biomarkers. AIMS In this review, an overview of characteristics, epidemiology, etiology and clinical manifestations of DCM is provided. In addition, the most important biomarkers, of all three categories, and their diagnostic and prognostic values are discussed. CONCLUSION Considering the association of DCM with conditions such as infections and autoimmunity, which are prevalent among the population, introducing efficient diagnostic tools is of high value for the early detection of DCM to prevent its severe complications. The three discussed classes of biomarkers are potential candidates for the detection of DCM. However, further studies are necessary in this regard.
Collapse
|
13
|
Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy. J Clin Med 2021; 10:jcm10040577. [PMID: 33557094 PMCID: PMC7913873 DOI: 10.3390/jcm10040577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combinations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby represents another example for the complex genetic and phenotypic continuum of these diseases.
Collapse
|
14
|
The Desmin ( DES) Mutation p.A337P Is Associated with Left-Ventricular Non-Compaction Cardiomyopathy. Genes (Basel) 2021; 12:genes12010121. [PMID: 33478057 PMCID: PMC7835827 DOI: 10.3390/genes12010121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Here, we present a small Russian family, where the index patient received a diagnosis of left-ventricular non-compaction cardiomyopathy (LVNC) in combination with a skeletal myopathy. Clinical follow-up analysis revealed a LVNC phenotype also in her son. Therefore, we applied a broad next-generation sequencing gene panel approach for the identification of the underlying mutation. Interestingly, DES-p.A337P was identified in the genomes of both patients, whereas only the index patient carried DSP-p.L1348X. DES encodes the muscle-specific intermediate filament protein desmin and DSP encodes desmoplakin, which is a cytolinker protein connecting desmosomes with the intermediate filaments. Because the majority of DES mutations cause severe filament assembly defects and because this mutation was found in both affected patients, we analyzed this DES mutation in vitro by cell transfection experiments in combination with confocal microscopy. Of note, desmin-p.A337P forms cytoplasmic aggregates in transfected SW-13 cells and in cardiomyocytes derived from induced pluripotent stem cells underlining its pathogenicity. In conclusion, we suggest including the DES gene in the genetic analysis for LVNC patients in the future, especially if clinical involvement of the skeletal muscle is present.
Collapse
|
15
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
16
|
Langer HT, Mossakowski AA, Willis BJ, Grimsrud KN, Wood JA, Lloyd KCK, Zbinden-Foncea H, Baar K. Generation of desminopathy in rats using CRISPR-Cas9. J Cachexia Sarcopenia Muscle 2020; 11:1364-1376. [PMID: 32893996 PMCID: PMC7567154 DOI: 10.1002/jcsm.12619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Desminopathy is a clinically heterogeneous muscle disease caused by over 60 different mutations in desmin. The most common mutation with a clinical phenotype in humans is an exchange of arginine to proline at position 350 of desmin leading to p.R350P. We created the first CRISPR-Cas9 engineered rat model for a muscle disease by mirroring the R350P mutation in humans. METHODS Using CRISPR-Cas9 technology, Des c.1045-1046 (AGG > CCG) was introduced into exon 6 of the rat genome causing p.R349P. The genotype of each animal was confirmed via quantitative PCR. Six male rats with a mutation in desmin (n = 6) between the age of 120-150 days and an equal number of wild type littermates (n = 6) were used for experiments. Maximal plantar flexion force was measured in vivo and combined with the collection of muscle weights, immunoblotting, and histological analysis. In addition to the baseline phenotyping, we performed a synergist ablation study in the same animals. RESULTS We found a difference in the number of central nuclei between desmin mutants (1 ± 0.4%) and wild type littermates (0.2 ± 0.1%; P < 0.05). While muscle weights did not differ, we found the levels of many structural proteins to be altered in mutant animals. Dystrophin and syntrophin were increased 54% and 45% in desmin mutants, respectively (P < 0.05). Dysferlin and Annexin A2, proteins associated with membrane repair, were increased two-fold and 32%, respectively, in mutants (P < 0.05). Synergist ablation caused similar increases in muscle weight between mutant and wild type animals, but changes in fibre diameter revealed that fibre hypertrophy in desmin mutants was hampered compared with wild type animals (P < 0.05). CONCLUSIONS We created a novel animal model for desminopathy that will be a useful tool in furthering our understanding of the disease. While mutant animals at an age corresponding to a preclinical age in humans show no macroscopic differences, microscopic and molecular changes are already present. Future studies should aim to further decipher those biological changes that precede the clinical progression of disease and test therapeutic approaches to delay disease progression.
Collapse
Affiliation(s)
- Henning T Langer
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.,Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Universität zu Berlin, and Berlin Institute of Health, Humboldt, CA, USA
| | | | - Kristin N Grimsrud
- Mouse Biology Program, University of California, Davis, CA, USA.,Dept. of Pathology, School of Medicine, University of California, Davis, CA, USA
| | - Joshua A Wood
- Mouse Biology Program, University of California, Davis, CA, USA
| | - Kevin C K Lloyd
- Mouse Biology Program, University of California, Davis, CA, USA.,Dept. of Surgery, School of Medicine, University of California, Davis, CA, USA
| | | | - Keith Baar
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.,Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
18
|
Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. J Clin Med 2020; 9:jcm9040937. [PMID: 32235386 PMCID: PMC7231262 DOI: 10.3390/jcm9040937] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The pleomorphic clinical presentation makes the diagnosis of desminopathy difficult. We aimed to describe the prevalence, phenotypic expression, and mitochondrial function of individuals with putative disease-causing desmin (DES) variants identified in patients with an unexplained etiology of cardiomyopathy. Methods: A total of 327 Czech patients underwent whole exome sequencing and detailed phenotyping in probands harboring DES variants. Results: Rare, conserved, and possibly pathogenic DES variants were identified in six (1.8%) probands. Two DES variants previously classified as variants of uncertain significance (p.(K43E), p.(S57L)), one novel DES variant (p.(A210D)), and two known pathogenic DES variants (p.(R406W), p.(R454W)) were associated with characteristic desmin-immunoreactive aggregates in myocardial and/or skeletal biopsy samples. The individual with the novel DES variant p.(Q364H) had a decreased myocardial expression of desmin with absent desmin aggregates in myocardial/skeletal muscle biopsy and presented with familial left ventricular non-compaction cardiomyopathy (LVNC), a relatively novel phenotype associated with desminopathy. An assessment of the mitochondrial function in four probands heterozygous for a disease-causing DES variant confirmed a decreased metabolic capacity of mitochondrial respiratory chain complexes in myocardial/skeletal muscle specimens, which was in case of myocardial succinate respiration more profound than in other cardiomyopathies. Conclusions: The presence of desminopathy should also be considered in individuals with LVNC, and in the differential diagnosis of mitochondrial diseases.
Collapse
|
19
|
TRPV2 channel as a possible drug target for the treatment of heart failure. J Transl Med 2020; 100:207-217. [PMID: 31857697 DOI: 10.1038/s41374-019-0349-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Heart transplantation is currently the only viable option available for the treatment of severe heart failure conditions such as dilated cardiomyopathy. Hence, novel drugs for treating such conditions need to be developed urgently. Recent studies suggest that Ca2+ overload is involved in the onset and progression of dilated cardiomyopathy, and thus heart failure. The expression and activation of the Ca2+ permeable channel, transient receptor potential vanilloid 2 (TRPV2) channel have been found to play an essential role in sustained intracellular Ca2+ concentration increase, leading to heart failure. However, since there have been no TRPV2-specific inhibitors available until recently, the effect of TRPV2 inhibition on the pathology has not been clearly elucidated. Recent reports show that inhibiting TRPV2 activity effectively improves cardiac function, suppressing myocardial fibrosis and ameliorating the prognosis in animal models of cardiomyopathy with heart failure. In addition to that, inflammation is reported to be involved in the development of heart failure. Here, we review the recent findings on TRPV2 in cardiomyocytes and immune cells involved in the development of heart failure and discuss the current progress of drug development for the treatment of heart failure via targeting TRPV2.
Collapse
|
20
|
Restrictive Cardiomyopathy is Caused by a Novel Homozygous Desmin ( DES) Mutation p.Y122H Leading to a Severe Filament Assembly Defect. Genes (Basel) 2019; 10:genes10110918. [PMID: 31718026 PMCID: PMC6896098 DOI: 10.3390/genes10110918] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Here, we present a small Iranian family, where the index patient received a diagnosis of restrictive cardiomyopathy (RCM) in combination with atrioventricular (AV) block. Genetic analysis revealed a novel homozygous missense mutation in the DES gene (c.364T > C; p.Y122H), which is absent in human population databases. The mutation is localized in the highly conserved coil-1 desmin subdomain. In silico, prediction tools indicate a deleterious effect of the desmin (DES) mutation p.Y122H. Consequently, we generated an expression plasmid encoding the mutant and wildtype desmin formed, and analyzed the filament formation in vitro in cardiomyocytes derived from induced pluripotent stem cells and HT-1080 cells. Confocal microscopy revealed a severe filament assembly defect of mutant desmin supporting the pathogenicity of the DES mutation, p.Y122H, whereas the wildtype desmin formed regular intermediate filaments. According to the guidelines of the American College of Medical Genetics and Genomics, we classified this mutation, therefore, as a novel pathogenic mutation. Our report could point to a recessive inheritance of the DES mutation, p.Y122H, which is important for the genetic counseling of similar families with restrictive cardiomyopathy caused by DES mutations.
Collapse
|
21
|
Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 2019; 17:286-297. [PMID: 31605094 DOI: 10.1038/s41569-019-0284-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.
Collapse
Affiliation(s)
| | - Katherine E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Reichart D, Magnussen C, Zeller T, Blankenberg S. Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: A translational review of current literature. J Intern Med 2019; 286:362-372. [PMID: 31132311 DOI: 10.1111/joim.12944] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular dilatation and, consecutively, contractile dysfunction. The causes of DCM are heterogeneous. DCM often results from myocarditis, exposure to alcohol, drugs or other toxins and metabolic or endocrine disturbances. In about 35% of patients, genetic mutations can be identified that usually involve genes responsible for cytoskeletal, sarcomere and nuclear envelope proteins. Due to its heterogeneity, a detailed diagnostic work-up is necessary to identify the specific underlying cause and exclude other conditions with phenotype overlap. Patients with DCM show typical systolic heart failure symptoms, but, with progress of the disease, diastolic dysfunction is present as well. Depending on the underlying pathology, DCM patients also become apparent through arrhythmias, thromboembolic events or cardiogenic shock. Disease progression and prognosis are mostly driven by disease severity and reverse remodelling within the heart. The worst prognosis is seen in patients with lowest ejection fractions or severe diastolic dysfunction, leading to terminal heart failure with subsequent need for left ventricular assist device implantation or heart transplantation. Guideline-based heart failure medication and device therapy reduces the frequency of heart failure hospitalizations and improves survival.
Collapse
Affiliation(s)
- D Reichart
- From the, University Heart Center Hamburg, Hamburg, Germany
| | - C Magnussen
- From the, University Heart Center Hamburg, Hamburg, Germany
| | - T Zeller
- From the, University Heart Center Hamburg, Hamburg, Germany
| | - S Blankenberg
- From the, University Heart Center Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
24
|
Delort F, Segard BD, Hakibilen C, Bourgois-Rocha F, Cabet E, Vicart P, Huang ME, Clary G, Lilienbaum A, Agbulut O, Batonnet-Pichon S. Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies. Exp Cell Res 2019; 383:111539. [PMID: 31369751 DOI: 10.1016/j.yexcr.2019.111539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/24/2022]
Abstract
Desminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition. To improve understanding of redox balance in desminopathies, we further developed cellular models of four pathological mutants localized in 2B helical domain (the most important region for desmin polymerization) to explore desmin behavior upon oxidative stress. We show that the mutations desQ389P and desD399Y share common stress-induced aggregates, desR406W presents more scattered cytoplasmic aggregative pattern, and pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant molecule, prevents all type of aggregation. Mutants desD399Y and desR406W had delayed oxidation kinetics following H2O2 stress prevented by NAC pretreatment. Further, we used AAV-injected mouse models to confirm in vivo effects of N-acetyl-l-cysteine. AAV-desD399Y-injected muscles displayed similar physio-pathological characteristics as observed in patients. However, after 2 months of NAC treatment, they did not have reduced aggregates. Finally, in both models, stress induced some post-translational modifications changing Isoelectric Point, such as potential hyperphosphorylations, and/or molecular weight of human desmin by proteolysis. However, each mutant presented its own pattern that seemed to be post-aggregative. In conclusion, our results indicate that individual desmin mutations have unique pathological molecular mechanisms partly linked to alteration of redox homeostasis. Integrating these mutant-specific behaviors will be important when considering future therapeutics.
Collapse
Affiliation(s)
- Florence Delort
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Bertrand-David Segard
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Coralie Hakibilen
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Fany Bourgois-Rocha
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Eva Cabet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Patrick Vicart
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Guilhem Clary
- Inserm U1016, Institut Cochin, CNRS UMR8104, Université Paris-Descartes, Sorbonne Paris Cité, Plateforme Protéomique 3P5, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Sabrina Batonnet-Pichon
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France.
| |
Collapse
|
25
|
Ma X, Mani K, Liu H, Kovacs A, Murphy JT, Foroughi L, French BA, Weinheimer CJ, Kraja A, Benjamin IJ, Hill JA, Javaheri A, Diwan A. Transcription Factor EB Activation Rescues Advanced αB-Crystallin Mutation-Induced Cardiomyopathy by Normalizing Desmin Localization. J Am Heart Assoc 2019; 8:e010866. [PMID: 30773991 PMCID: PMC6405666 DOI: 10.1161/jaha.118.010866] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
Abstract
Background Mutations in αB-crystallin result in proteotoxic cardiomyopathy with desmin mislocalization to protein aggregates. Intermittent fasting ( IF ) is a novel approach to activate transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in the myocardium. We tested whether TFEB activation can be harnessed to treat advanced proteotoxic cardiomyopathy. Methods and Results Mice overexpressing the R120G mutant of αB-crystallin in cardiomyocytes ( Myh6-Cry ABR 120G) were subjected to IF or ad-lib feeding, or transduced with adeno-associated virus- TFEB or adeno-associated virus-green fluorescent protein after development of advanced proteotoxic cardiomyopathy. Adeno-associated virus-short hairpin RNA-mediated knockdown of TFEB and HSPB 8 was performed simultaneously with IF . Myh6-Cry ABR 120G mice demonstrated impaired autophagic flux, reduced lysosome abundance, and mammalian target of rapamycin activation in the myocardium. IF resulted in mammalian target of rapamycin inhibition and nuclear translocation of TFEB with restored lysosome abundance and autophagic flux; and reduced aggregates with normalized desmin localization. IF also attenuated left ventricular dilation and myocardial hypertrophy, increased percentage fractional shortening, and increased survival. Adeno-associated virus- TFEB transduction was sufficient to rescue cardiomyopathic manifestations, and resulted in reduced aggregates and normalized desmin localization in Myh6-Cry ABR 120G mice. Cry ABR 120G-expressing hearts demonstrated increased interaction of desmin with αB-crystallin and reduced interaction with chaperone protein, HSPB 8, compared with wild type, which was reversed by both IF and TFEB transduction. TFEB stimulated autophagic flux to remove protein aggregates and transcriptionally upregulated HSPB 8, to restore normal desmin localization in Cry ABR 120G-expressing cardiomyocytes. Short hairpin RNA-mediated knockdown of TFEB and HSPB 8 abrogated IF effects, in vivo. Conclusions IF and TFEB activation are clinically relevant therapeutic strategies to rescue advanced R120G αB-crystallin mutant-induced cardiomyopathy by normalizing desmin localization via autophagy-dependent and autophagy-independent mechanisms.
Collapse
Affiliation(s)
- Xiucui Ma
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Kartik Mani
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Haiyan Liu
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Attila Kovacs
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - John T. Murphy
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Layla Foroughi
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Brent A. French
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA
| | - Carla J. Weinheimer
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - Aldi Kraja
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - Ivor J. Benjamin
- Department of Internal MedicineMedical College of WisconsinMilwaukeeWI
| | - Joseph A. Hill
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTX
| | - Ali Javaheri
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| |
Collapse
|
26
|
Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung Circ 2019; 28:31-38. [DOI: 10.1016/j.hlc.2018.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022]
|
27
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
28
|
Paldino A, De Angelis G, Merlo M, Gigli M, Dal Ferro M, Severini GM, Mestroni L, Sinagra G. Genetics of Dilated Cardiomyopathy: Clinical Implications. Curr Cardiol Rep 2018; 20:83. [DOI: 10.1007/s11886-018-1030-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Pawlak A, Rejmak-Kozicka E, Gil KE, Ziemba A, Kaczmarek L, Gil RJ. Patterns of desmin expression in idiopathic dilated cardiomyopathy are related to the desmin mRNA and ubiquitin expression. J Investig Med 2018; 67:11-19. [PMID: 30097466 DOI: 10.1136/jim-2017-000707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
Abstract
Desmin expression depends on desmin messenger RNA (mRNA) and ubiquitin proteasome system. This process is poorly understood in dilated cardiomyopathy. The aim of the study was to investigate whether changes of desmin mRNA and ubiquitin expression correlate with types of desmin expression in cardiomyocytes. Endomyocardial biopsy was performed in 60 patients (85% men, mean age 46±14 years) with heart failure (HF; left ventricular ejection fraction <45%). Desmin and ubiquitin expression were analysed in histological sections by immunohistochemistry and in Western blot. Desmin mRNA expression was determined by fluorescent in situ hybridization methods. In patients with weak/even desmin expression, weak/even expression of ubiquitin in the cytosol and low desmin mRNA expression in the cytosol and nuclei of cardiomyocytes were observed. Expression of ubiquitin and desmin mRNA increased along with the progression of desmin cytoskeleton remodeling. Desmin mRNA and ubiquitin were weakly expressed/absent in cardiomyocytes with low/lack of desmin expression. Variations in desmin mRNA, desmin and ubiquitin expression were associated with gradual changes in myocardial structure and clinical parameters. To conclude, changes in ubiquitin and desmin mRNA expression are related to patterns of desmin expression. An increase in the expression of ubiquitin and desmin mRNA may be a protective feature against unfavorable cell remodeling. This may reduce the adverse effects of cytoskeleton damage in the early stages of HF. Low/lack ubiquitin and/or desmin mRNA expression may be markers of end-stage HF.
Collapse
Affiliation(s)
- Agnieszka Pawlak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Emilia Rejmak-Kozicka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Elżbieta Gil
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Andrzej Ziemba
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Julian Gil
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| |
Collapse
|
30
|
Luciani M, Troncone L, Monte FD. Current and future circulating biomarkers for cardiac amyloidosis. Acta Pharmacol Sin 2018; 39:1133-1141. [PMID: 29770800 PMCID: PMC6289372 DOI: 10.1038/aps.2018.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
Abstract
Cardiac amyloidosis (CA) comprises a heterogeneous group of medical conditions affecting the myocardium. It presents with proteinaceous infiltration with variable degrees of severity, prevalence and evolution. Despite this heterogeneity, erroneous protein folding is the common pathophysiologic process, yielding the formation of a single misfolded protein (monomer) that progressively evolves and ultimately forms amyloid fibers. Additionally, by seeding out from the organs of origin, intermediates called oligomers metastasize and restart the process. Such self-echoing behavior makes the secondary affected organs as important as the primary ones. Unfortunately, CA can be clinically challenging and only suggestive in a late stage of its natural history, leaving a narrow therapeutic time window available. In light of the evolutionary nature of amyloidosis, here, we propose a new classification of the currently used biomarkers based on time stages with different specificity and applicability across CA subtypes. Early markers (free light chains, serum amyloid A, β2-microglobulin, osteopontin and osteoprotegerin) can be employed for disease detection. Intermediate markers [soluble suppression of tumorigenicity 2 (sST-2), midregional proadrenomedullin (MR-proADM), von Willebrand factor (vWF), hepatocyte growth factor (HGF), matrix metalloproteinases (MMPs) and tissue inhibitor metalloproteinases (TIMPs)] can provide information on the biological mechanisms of myocardial damage. As in heart failure, late-stage biomarkers (troponins and natriuretic peptides) can help clinicians with prognosis and therapeutic response evaluation in CA. Such findings have generated a remarkable foundation for our current knowledge on CA. Nevertheless, we envision a future class of biomarkers targeted at upstream events capable of detecting folding defects, which will ultimately expand the therapeutic window.
Collapse
Affiliation(s)
- Marco Luciani
- Herzzentrum, University Hospital of Zürich, Zürich, Switzerland.
| | - Luca Troncone
- Department of Cardiology, Brigham and Women's Hospital - Harvard Medical School, Boston, MA, USA
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
31
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
32
|
Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM. HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight 2018; 3:99319. [PMID: 29875314 PMCID: PMC6124431 DOI: 10.1172/jci.insight.99319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology
| | | | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | | | - Sharlene M. Day
- Department of Molecular and Integrative Physiology
- Department of Internal Medicine
| |
Collapse
|
33
|
Dedeić Z, Sutendra G, Hu Y, Chung K, Slee EA, White MJ, Zhou FY, Goldin RD, Ferguson DJP, McAndrew D, Schneider JE, Lu X. Cell autonomous role of iASPP deficiency in causing cardiocutaneous disorders. Cell Death Differ 2018; 25:1289-1303. [PMID: 29352264 DOI: 10.1038/s41418-017-0039-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Desmosome components are frequently mutated in cardiac and cutaneous disorders in animals and humans and enhanced inflammation is a common feature of these diseases. Previous studies showed that inhibitor of Apoptosis Stimulating p53 Protein (iASPP) regulates desmosome integrity at cell-cell junctions and transcription in the nucleus, and its deficiency causes cardiocutaneous disorder in mice, cattle, and humans. As iASPP is a ubiquitously expressed shuttling protein with multiple functions, a key question is whether the observed cardiocutaneous phenotypes are caused by loss of a cell autonomous role of iASPP in cardiomyocytes and keratinocytes specifically or by a loss of iASPP in other cell types such as immune cells. To address this, we developed cardiomyocyte-specific and keratinocyte-specific iASPP-deficient mouse models and show that the cell-type specific loss of iASPP in cardiomyocytes or keratinocytes is sufficient to induce cardiac or cutaneous disorders, respectively. Additionally, keratinocyte-specific iASPP-deficient mice have delayed eyelid development and wound healing. In keratinocytes, junctional iASPP is critical for stabilizing desmosomes and iASPP deficiency results in increased and disorganized cell migration, as well as impaired cell adhesion, consistent with delayed wound healing. The identification of a cell autonomous role of iASPP deficiency in causing cardiocutaneous syndrome, impaired eyelid development and wound healing suggests that variants in the iASPP gene also may contribute to polygenic heart and skin diseases.
Collapse
Affiliation(s)
- Zinaida Dedeić
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.,Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Ying Hu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.,The School of Life Science and Technology, Harbin Institute of Technology, Harbin, 1500080, China
| | - Kathryn Chung
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elizabeth A Slee
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael J White
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford, OX3 9DU, UK
| | - Debra McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
34
|
García-Pelagio KP, Chen L, Joca HC, Ward C, Jonathan Lederer W, Bloch RJ. Absence of synemin in mice causes structural and functional abnormalities in heart. J Mol Cell Cardiol 2018; 114:354-363. [PMID: 29247678 PMCID: PMC5850968 DOI: 10.1016/j.yjmcc.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Cardiomyopathies have been linked to changes in structural proteins, including intermediate filament (IF) proteins located in the cytoskeleton. IFs associate with the contractile machinery and costameres of striated muscle and with intercalated disks in the heart. Synemin is a large IF protein that mediates the association of desmin with Z-disks and stabilizes intercalated disks. It also acts as an A-kinase anchoring protein (AKAP). In murine skeletal muscle, the absence of synemin causes a mild myopathy. Here, we report that the genetic silencing of synemin in mice (synm -/-) causes left ventricular systolic dysfunction at 3months and 12-16months of age, and left ventricular hypertrophy and dilatation at 12-16months of age. Isolated cardiomyocytes showed alterations in calcium handling that indicate defects intrinsic to the heart. Although contractile and costameric proteins remained unchanged in the old synm -/- hearts, we identified alterations in several signaling proteins (PKA-RII, ERK and p70S6K) critical to cardiomyocyte function. Our data suggest that synemin plays an important regulatory role in the heart and that the consequences of its absence are profound.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; Department of Physics, School of Science, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04320, Mexico
| | - Ling Chen
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; Department of Medicine, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Humberto C Joca
- BioMET, University of Maryland, 111 S Penn St, Baltimore, MD 21201, USA; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av Prof. Alfredo Balena, 190, Belo Horizonte, MG 30130, Brazil
| | - Christopher Ward
- School of Nursing and Department of Orthopedics, School of Medicine, University of Maryland,100 Penn St, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; BioMET, University of Maryland, 111 S Penn St, Baltimore, MD 21201, USA
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Silvestri NJ, Ismail H, Zimetbaum P, Raynor EM. Cardiac involvement in the muscular dystrophies. Muscle Nerve 2017; 57:707-715. [DOI: 10.1002/mus.26014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo Jacobs School of Medicine and Biomedical Sciences; 1010 Main St Buffalo New York 14202 USA
| | - Haisam Ismail
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Peter Zimetbaum
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Elizabeth M. Raynor
- Department of Neurology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| |
Collapse
|
36
|
Lu J, Lee YK, Ran X, Lai WH, Li RA, Keung W, Tse K, Tse HF, Yao X. An abnormal TRPV4-related cytosolic Ca2+ rise in response to uniaxial stretch in induced pluripotent stem cells-derived cardiomyocytes from dilated cardiomyopathy patients. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2964-2972. [DOI: 10.1016/j.bbadis.2017.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
|
37
|
Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ, Lal AK, Lamour JM, Miller EM, Thrush PT, Czachor JD, Razoky H, Hill A, Lipshultz SE. Pediatric Cardiomyopathies. Circ Res 2017; 121:855-873. [PMID: 28912187 DOI: 10.1161/circresaha.116.309386] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric cardiomyopathies are rare diseases with an annual incidence of 1.1 to 1.5 per 100 000. Dilated and hypertrophic cardiomyopathies are the most common; restrictive, noncompaction, and mixed cardiomyopathies occur infrequently; and arrhythmogenic right ventricular cardiomyopathy is rare. Pediatric cardiomyopathies can result from coronary artery abnormalities, tachyarrhythmias, exposure to infection or toxins, or secondary to other underlying disorders. Increasingly, the importance of genetic mutations in the pathogenesis of isolated or syndromic pediatric cardiomyopathies is becoming apparent. Pediatric cardiomyopathies often occur in the absence of comorbidities, such as atherosclerosis, hypertension, renal dysfunction, and diabetes mellitus; as a result, they offer insights into the primary pathogenesis of myocardial dysfunction. Large international registries have characterized the epidemiology, cause, and outcomes of pediatric cardiomyopathies. Although adult and pediatric cardiomyopathies have similar morphological and clinical manifestations, their outcomes differ significantly. Within 2 years of presentation, normalization of function occurs in 20% of children with dilated cardiomyopathy, and 40% die or undergo transplantation. Infants with hypertrophic cardiomyopathy have a 2-year mortality of 30%, whereas death is rare in older children. Sudden death is rare. Molecular evidence indicates that gene expression differs between adult and pediatric cardiomyopathies, suggesting that treatment response may differ as well. Clinical trials to support evidence-based treatments and the development of disease-specific therapies for pediatric cardiomyopathies are in their infancy. This compendium summarizes current knowledge of the genetic and molecular origins, clinical course, and outcomes of the most common phenotypic presentations of pediatric cardiomyopathies and highlights key areas where additional research is required. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT02549664 and NCT01912534.
Collapse
Affiliation(s)
- Teresa M Lee
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.).
| | - Daphne T Hsu
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Paul Kantor
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jeffrey A Towbin
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Stephanie M Ware
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Steven D Colan
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Wendy K Chung
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - John L Jefferies
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Joseph W Rossano
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Chesney D Castleberry
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Linda J Addonizio
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Ashwin K Lal
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jacqueline M Lamour
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Erin M Miller
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Philip T Thrush
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jason D Czachor
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Hiedy Razoky
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Ashley Hill
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Steven E Lipshultz
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| |
Collapse
|
38
|
Simpson S, Rutland P, Rutland CS. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Vet Sci 2017; 4:E19. [PMID: 29056678 PMCID: PMC5606618 DOI: 10.3390/vetsci4010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
In the global human population, the leading cause of non-communicable death is cardiovascular disease. It is predicted that by 2030, deaths attributable to cardiovascular disease will have risen to over 20 million per year. This review compares the cardiomyopathies in both human and non-human animals and identifies the genetic associations for each disorder in each species/taxonomic group. Despite differences between species, advances in human medicine can be gained by utilising animal models of cardiac disease; likewise, gains can be made in animal medicine from human genomic insights. Advances could include undertaking regular clinical checks in individuals susceptible to cardiomyopathy, genetic testing prior to breeding, and careful administration of breeding programmes (in non-human animals), further development of treatment regimes, and drugs and diagnostic techniques.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Paul Rutland
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | - Catrin Sian Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
39
|
Neonatal dilated cardiomyopathy. Rev Port Cardiol 2017; 36:201-214. [DOI: 10.1016/j.repc.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/25/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
|
40
|
Neonatal dilated cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2016.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
de Gonzalo-Calvo D, Quezada M, Campuzano O, Perez-Serra A, Broncano J, Ayala R, Ramos M, Llorente-Cortes V, Blasco-Turrión S, Morales F, Gonzalez P, Brugada R, Mangas A, Toro R. Familial dilated cardiomyopathy: A multidisciplinary entity, from basic screening to novel circulating biomarkers. Int J Cardiol 2017; 228:870-880. [PMID: 27889554 DOI: 10.1016/j.ijcard.2016.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
|
42
|
Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization. Proc Natl Acad Sci U S A 2017; 114:E1375-E1384. [PMID: 28096335 DOI: 10.1073/pnas.1612988114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A hallmark of muscle atrophy is the excessive degradation of myofibrillar proteins primarily by the ubiquitin proteasome system. In mice, during the rapid muscle atrophy induced by fasting, the desmin cytoskeleton and the attached Z-band-bound thin filaments are degraded after ubiquitination by the ubiquitin ligase tripartite motif-containing protein 32 (Trim32). To study the order of events leading to myofibril destruction, we investigated the slower atrophy induced by denervation (disuse). We show that myofibril breakdown is a two-phase process involving the initial disassembly of desmin filaments by Trim32, which leads to the later myofibril breakdown by enzymes, whose expression is increased by the paired box 4 (PAX4) transcription factor. After denervation of mouse tibialis anterior muscles, phosphorylation and Trim32-dependent ubiquitination of desmin filaments increased rapidly and stimulated their gradual depolymerization (unlike their rapid degradation during fasting). Trim32 down-regulation attenuated the loss of desmin and myofibrillar proteins and reduced atrophy. Although myofibrils and desmin filaments were intact at 7 d after denervation, inducing the dissociation of desmin filaments caused an accumulation of ubiquitinated proteins and rapid destruction of myofibrils. The myofibril breakdown normally observed at 14 d after denervation required not only dissociation of desmin filaments, but also gene induction by PAX4. Down-regulation of PAX4 or its target gene encoding the p97/VCP ATPase reduced myofibril disassembly and degradation on denervation or fasting. Thus, during atrophy, the initial loss of desmin is critical for the subsequent myofibril destruction, and over time, myofibrillar proteins become more susceptible to PAX4-induced enzymes that promote proteolysis.
Collapse
|
43
|
Cho KW, Lee J, Kim Y. Genetic Variations Leading to Familial Dilated Cardiomyopathy. Mol Cells 2016; 39:722-727. [PMID: 27802374 PMCID: PMC5104879 DOI: 10.14348/molcells.2016.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 11/27/2022] Open
Abstract
Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.
Collapse
Affiliation(s)
- Kae Won Cho
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheon-an 31151,
Korea
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheon-an 31151,
Korea
| |
Collapse
|
44
|
Brody MJ, Lee Y. The Role of Leucine-Rich Repeat Containing Protein 10 (LRRC10) in Dilated Cardiomyopathy. Front Physiol 2016; 7:337. [PMID: 27536250 PMCID: PMC4971440 DOI: 10.3389/fphys.2016.00337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat containing protein 10 (LRRC10) is a cardiomyocyte-specific member of the Leucine-rich repeat containing (LRRC) protein superfamily with critical roles in cardiac function and disease pathogenesis. Recent studies have identified LRRC10 mutations in human idiopathic dilated cardiomyopathy (DCM) and Lrrc10 homozygous knockout mice develop DCM, strongly linking LRRC10 to the molecular etiology of DCM. LRRC10 localizes to the dyad region in cardiomyocytes where it can interact with actin and α-actinin at the Z-disc and associate with T-tubule components. Indeed, this region is becoming increasingly recognized as a signaling center in cardiomyocytes, not only for calcium cycling, excitation-contraction coupling, and calcium-sensitive hypertrophic signaling, but also as a nodal signaling hub where the myocyte can sense and respond to mechanical stress. Disruption of a wide range of critical structural and signaling molecules in cardiomyocytes confers susceptibility to cardiomyopathies in addition to the more classically studied mutations in sarcomeric proteins. However, the molecular mechanisms underlying DCM remain unclear. Here, we review what is known about the cardiomyocyte functions of LRRC10, lessons learned about LRRC10 and DCM from the Lrrc10 knockout mouse model, and discuss ongoing efforts to elucidate molecular mechanisms whereby mutation or absence of LRRC10 mediates cardiac disease.
Collapse
Affiliation(s)
- Matthew J Brody
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
45
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
46
|
Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. J Mol Cell Cardiol 2016; 91:207-14. [DOI: 10.1016/j.yjmcc.2015.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 12/20/2022]
|
47
|
Azzimato V, Gennebäck N, Tabish AM, Buyandelger B, Knöll R. Desmin, desminopathy and the complexity of genetics. J Mol Cell Cardiol 2016; 92:93-5. [PMID: 26807690 DOI: 10.1016/j.yjmcc.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Valerio Azzimato
- ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Myocardial Genetics, Karolinska University Hospital in Huddinge (M54), 141 86, Huddinge, Sweden
| | - Nina Gennebäck
- ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Myocardial Genetics, Karolinska University Hospital in Huddinge (M54), 141 86, Huddinge, Sweden
| | - Ali M Tabish
- ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Myocardial Genetics, Karolinska University Hospital in Huddinge (M54), 141 86, Huddinge, Sweden
| | - Byambajav Buyandelger
- ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Myocardial Genetics, Karolinska University Hospital in Huddinge (M54), 141 86, Huddinge, Sweden
| | - Ralph Knöll
- AstraZeneca R&D Mölndal, R&D, Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, Pepparedsleden 1, 431 83 Mölndal, Sweden; ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Myocardial Genetics, Karolinska University Hospital in Huddinge (M54), 141 86, Huddinge, Sweden.
| |
Collapse
|
48
|
Al-Yacoub N, Shaheen R, Awad SM, Kunhi M, Dzimiri N, Nguyen HC, Xiong Y, Al-Buraiki J, Al-Habeeb W, Alkuraya FS, Poizat C. FBXO32, encoding a member of the SCF complex, is mutated in dilated cardiomyopathy. Genome Biol 2016; 17:2. [PMID: 26753747 PMCID: PMC4707779 DOI: 10.1186/s13059-015-0861-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/29/2015] [Indexed: 01/12/2023] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy causing systolic dysfunction and heart failure. Rare variants in more than 30 genes, mostly encoding sarcomeric proteins and proteins of the cytoskeleton, have been implicated in familial DCM to date. Yet, the majority of variants causing DCM remain to be identified. The goal of the study is to identify novel mutations causing familial dilated cardiomyopathy. Results We identify FBXO32 (ATROGIN 1), a member of the F-Box protein family, as a novel DCM-causing locus. The missense mutation affects a highly conserved amino acid and is predicted to severely impair binding to SCF proteins. This is validated by co-immunoprecipitation experiments from cells expressing the mutant protein and from human heart tissue from two of the affected patients. We also demonstrate that the hearts of the patients with the FBXO32 mutation show accumulation of selected proteins regulating autophagy. Conclusion Our results indicate that abnormal SCF activity with subsequent impairment of the autophagic flux due to a novel FBXO32 mutation is implicated in the pathogenesis of DCM. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0861-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadya Al-Yacoub
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Salma Mahmoud Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Nduna Dzimiri
- Cardiovascular & Pharmacogenetics, Genetics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jehad Al-Buraiki
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
49
|
QU XINKAI, YUAN FANG, LI RUOGU, XU LEI, JING WEIFENG, LIU HUA, XU YINGJIA, ZHANG MIN, LIU XU, FANG WEIYI, YANG YIQING, QIU XINGBIAO. Prevalence and spectrum of LRRC10 mutations associated with idiopathic dilated cardiomyopathy. Mol Med Rep 2015; 12:3718-3724. [DOI: 10.3892/mmr.2015.3843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
|
50
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|