1
|
Perike S, Gonzalez-Gonzalez FJ, Abu-Taha I, Damen FW, Hanft LM, Lizama KS, Aboonabi A, Capote AE, Aguilar-Sanchez Y, Levin B, Han Z, Sridhar A, Grand J, Martin J, Akar JG, Warren CM, Solaro RJ, Sang-Ging O, Darbar D, McDonald KS, Goergen CJ, Wolska BM, Dobrev D, Wehrens XH, McCauley MD. PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation. Circ Res 2023; 133:758-771. [PMID: 37737016 PMCID: PMC10616980 DOI: 10.1161/circresaha.123.322516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.
Collapse
Affiliation(s)
- Srikanth Perike
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Francisco J. Gonzalez-Gonzalez
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
| | - Frederick W. Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Ken S. Lizama
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Andrielle E. Capote
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Yuriana Aguilar-Sanchez
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| | | | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine,University of Illinois at Chicago
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Jacob Grand
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | | | | | - Chad M. Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Ong Sang-Ging
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Pharmacology and Regenerative Medicine, College of Medicine,University of Illinois at Chicago
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Beata M. Wolska
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
- Department of Medicine, Montréal Heart Institute and Université de Montréal, Montréal, Canada
| | - Xander H.T. Wehrens
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| | - Mark D. McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
2
|
Perike S, Gonzalez-Gonzalez FJ, Abu-Taha I, Damen FW, Lizama KS, Aboonabi A, Capote AE, Aguilar-Sanchez Y, Levin B, Han Z, Sridhar A, Grand J, Martin J, Akar JG, Warren CM, Solaro RJ, Ong SG, Darbar D, Goergen CJ, Wolska BM, Dobrev D, Wehrens XHT, McCauley MD. Myosin Light Chain Dephosphorylation by PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537590. [PMID: 37131731 PMCID: PMC10153354 DOI: 10.1101/2023.04.19.537590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, increases thromboembolic stroke risk five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C, the PP1 regulatory subunit targeting atrial myosin light chain 2 (MLC2a), causes hypophosphorylation of MLC2a and results in atrial hypocontractility. Methods Right atrial appendage tissues were isolated from human AF patients versus sinus rhythm (SR) controls. Western blots, co-immunoprecipitation, and phosphorylation studies were performed to examine how the PP1c-PPP1R12C interaction causes MLC2a de-phosphorylation. In vitro studies of pharmacologic MRCK inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with EP studies. Results In human patients with AF, PPP1R12C expression was increased two-fold versus SR controls ( P =2.0×10 -2 , n=12,12 in each group) with > 40% reduction in MLC2a phosphorylation ( P =1.4×10 -6 , n=12,12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF ( P =2.9×10 -2 and 6.7×10 -3 respectively, n=8,8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Lenti-12C mice demonstrated a 150% increase in LA size versus controls ( P =5.0×10 -6 , n=12,8,12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in Lenti-12C mice was significantly higher than controls ( P =1.8×10 -2 and 4.1×10 -2 respectively, n= 6,6,5). Conclusions AF patients exhibit increased levels of PPP1R12C protein compared to controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.
Collapse
|
3
|
Zheng Y, VanDusen NJ. Massively Parallel Reporter Assays for High-Throughput In Vivo Analysis of Cis-Regulatory Elements. J Cardiovasc Dev Dis 2023; 10:jcdd10040144. [PMID: 37103023 PMCID: PMC10146671 DOI: 10.3390/jcdd10040144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.
Collapse
|
4
|
Conrad R, Stölting G, Hendriks J, Ruello G, Kortzak D, Jordan N, Gensch T, Hidalgo P. Rapid Turnover of the Cardiac L-Type Ca V1.2 Channel by Endocytic Recycling Regulates Its Cell Surface Availability. iScience 2018; 7:1-15. [PMID: 30267672 PMCID: PMC6135870 DOI: 10.1016/j.isci.2018.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium entry through CaV1.2 L-type calcium channels regulates cardiac contractility. Here, we study the impact of exocytic and post-endocytic trafficking on cell surface channel abundance in cardiomyocytes. Single-molecule localization and confocal microscopy reveal an intracellular CaV1.2 pool tightly associated with microtubules from the perinuclear region to the cell periphery, and with actin filaments at the cell cortex. Channels newly inserted into the plasma membrane become internalized with an average time constant of 7.5 min and are sorted out to the Rab11a-recycling compartment. CaV1.2 recycling suffices for maintaining stable L-type current amplitudes over 20 hr independent of de novo channel transport along microtubules. Disruption of the actin cytoskeleton re-routes CaV1.2 from recycling toward lysosomal degradation. We identify endocytic recycling as essential for the homeostatic regulation of voltage-dependent calcium influx into cardiomyocytes. This mechanism provides the basis for a dynamic adjustment of the channel's surface availability and thus, of heart's contraction.
Collapse
Affiliation(s)
- Rachel Conrad
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Johnny Hendriks
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanna Ruello
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Daniel Kortzak
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Patricia Hidalgo
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Cheng YY, Yan YT, Lundy DJ, Lo AH, Wang YP, Ruan SC, Lin PJ, Hsieh PC. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol Med 2017; 9:251-264. [PMID: 28011860 PMCID: PMC5286362 DOI: 10.15252/emmm.201606558] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although remnant cardiomyocytes (CMs) possess a certain degree of proliferative ability, efficiency is too low for cardiac regeneration after injury. In this study, we identified a distinct stage within the initiation phase of CM reprogramming before the MET process, and microarray analysis revealed the strong up-regulation of several mitosis-related genes at this stage of reprogramming. Several candidate genes were selected and tested for their ability to induce CM proliferation. Delivering a cocktail of three genes, FoxM1, Id1, and Jnk3-shRNA (FIJs), induced CMs to re-enter the cell cycle and complete mitosis and cytokinesis in vitro More importantly, this gene cocktail increased CM proliferation in vivo and significantly improved cardiac function and reduced fibrosis after myocardial infarction. Collectively, our findings present a cocktail FIJs that may be useful in cardiac regeneration and also provide a practical strategy for probing reprogramming assays for regeneration of other tissues.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Yan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - David J Lundy
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Annie Ha Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Chian Ruan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Patrick Ch Hsieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Surgery, Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Rubin N, Harrison MR, Krainock M, Kim R, Lien CL. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice. Semin Cell Dev Biol 2016; 58:34-40. [PMID: 27132022 PMCID: PMC5028242 DOI: 10.1016/j.semcdb.2016.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/13/2016] [Accepted: 04/17/2016] [Indexed: 02/06/2023]
Abstract
Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.
Collapse
Affiliation(s)
- Nicole Rubin
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Michael R Harrison
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Michael Krainock
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Richard Kim
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Ching-Ling Lien
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States; Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, United States.
| |
Collapse
|
7
|
Takahashi K, Endo M, Miyoshi T, Tsuritani M, Shimazu Y, Hosoda H, Saga K, Tamai K, Flake AW, Yoshimatsu J, Kimura T. Immune tolerance induction using fetal directed placental injection in rodent models: a murine model. PLoS One 2015; 10:e0123712. [PMID: 25876079 PMCID: PMC4395343 DOI: 10.1371/journal.pone.0123712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives Induction of the immune response is a major problem in replacement therapies for inherited protein deficiencies. Tolerance created in utero can facilitate postnatal treatment. In this study, we aimed to induce immune tolerance towards a foreign protein with early gestational cell transplantation into the chorionic villi under ultrasound guidance in the murine model. Methods Pregnant C57BL/6 (B6) mice on day 10 of gestation were anesthetized and imaged by high resolution ultrasound. Murine embryos and their placenta were positioned to get a clear view in B-mode with power mode of the labyrinth, which is the equivalent of chorionic villi in the human. Bone marrow cells (BMCs) from B6-Green Fluorescence Protein (B6GFP) transgenic mice were injected into the fetal side of the placenta which includes the labyrinth with glass microcapillary pipettes. Each fetal mouse received 2 x 105 viable GFP-BMCs. After birth, we evaluated the humoral and cell-mediated immune response against GFP. Results Bone marrow transfer into fetal side of placenta efficiently distributed donor cells to the fetal mice. The survival rate of this procedure was 13.5%(5 out of 37). Successful engraftment of the B6-GFP donor skin grafts was observed in all recipient (5 out of 5) mice 6 weeks after birth. Induction of anti-GFP antibodies was completely inhibited. Cytotoxic immune reactivity of thymic cells against cells harboring GFP was suppressed by ELISPOT assay. Conclusions In this study, we utilized early gestational placental injection targeting the murine fetus, to transfer donor cells carrying a foreign protein into the fetal circulation. This approach is sufficient to induce both humoral and cell-mediated immune tolerance against the foreign protein.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Takekazu Miyoshi
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mitsuhiro Tsuritani
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yukiko Shimazu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Hosoda
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kotaro Saga
- Department of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Alan W. Flake
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jun Yoshimatsu
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
8
|
Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorg Med Chem Lett 2015; 25:1171-6. [DOI: 10.1016/j.bmcl.2015.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/30/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022]
|
9
|
Abstract
Although amphibian and fish models of heart regeneration have existed for decades, a mammalian equivalent has long remained elusive. Our discovery of a brief postnatal window for heart regeneration in neonatal mice has led to the establishment of surgical models for cardiac regenerative studies in mammals for the first time. This protocol describes a 10-min surgical procedure to induce cardiac injury in 1-d-old neonatal mice. This allows for the analysis of cardiac regeneration after surgical amputation of the left ventricle (LV) (apical resection) and coronary artery occlusion (myocardial infarction (MI)). A comparative analysis of neonatal and adult responses to myocardial injury should enable identification of the key differences between regenerative and nonregenerative responses to cardiac injury. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and it provides a valuable tool for unlocking the molecular mechanisms that guide mammalian heart regeneration during early postnatal life.
Collapse
|
10
|
Mehta V, Peebles D, David AL. Animal models for prenatal gene therapy: choosing the right model. Methods Mol Biol 2012; 891:183-200. [PMID: 22648773 DOI: 10.1007/978-1-61779-873-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Testing in animal models is an essential requirement during development of prenatal gene therapy for -clinical application. Some information can be derived from cell lines or cultured fetal cells, such as the efficiency of gene transfer and the vector dose that might be required. Fetal tissues can also be maintained in culture for short periods of time and transduced ex vivo. Ultimately, however, the use of animals is unavoidable since in vivo experiments allow the length and level of transgene expression to be measured, and provide an assessment of the effect of the delivery procedure and the gene therapy on fetal and neonatal development. The choice of animal model is determined by the nature of the disease and characteristics of the animal, such as its size, lifespan, and immunology, the number of fetuses and their development, parturition, and the length of gestation and the placentation. The availability of a disease model is also critical. In this chapter, we discuss the various animal models that can be used and consider how their characteristics can affect the results obtained. The projection to human application and the regulatory hurdles are also presented.
Collapse
Affiliation(s)
- Vedanta Mehta
- Prenatal Cell and Gene Therapy Group, EGA Institute for Women's Health, University College London, London, UK
| | | | | |
Collapse
|
11
|
Mattar CN, Biswas A, Choolani M, Chan JKY. Animal models for prenatal gene therapy: the nonhuman primate model. Methods Mol Biol 2012; 891:249-71. [PMID: 22648776 DOI: 10.1007/978-1-61779-873-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intrauterine gene therapy (IUGT) potentially enables the treatment and possible cure of monogenic -diseases that cause severe fetal damage. The main benefits of this approach will be the ability to correct the disorder before the onset of irreversible pathology and inducing central immune tolerance to the vector and transgene if treatment is instituted in early gestation. Cure has been demonstrated in small animal models, but because of the significant differences in immune ontogeny and the much shorter gestation compared to humans, it is unlikely that questions of long-term efficacy and safety will be adequately addressed in rodents. The nonhuman primate (NHP) allows investigation of key issues, in particular, the different outcomes in early and late-gestation IUGT associated with different stages of immune maturity, longevity of transgene expression, and delayed-onset adverse events in treated offspring and mothers including insertional mutagenesis. Here, we describe a model based on the Macaca fascicularis using ultrasound and fetoscopic approaches to systemic vector delivery and the processes involved in vector administration and longitudinal analyses.
Collapse
Affiliation(s)
- Citra N Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, Singapore, Singapore
| | | | | | | |
Collapse
|
12
|
Abstract
Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 2011; 51:288-98. [PMID: 21723873 DOI: 10.1016/j.yjmcc.2011.06.012] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022]
Abstract
Since techniques for cardiomyocyte isolation were first developed 35 years ago, experiments on single myocytes have yielded great insight into their cellular and sub-cellular physiology. These studies have employed a broad range of techniques including electrophysiology, calcium imaging, cell mechanics, immunohistochemistry and protein biochemistry. More recently, techniques for cardiomyocyte culture have gained additional importance with the advent of gene transfer technology. While such studies require a high quality cardiomyocyte population, successful cell isolation and maintenance during culture remain challenging. In this review, we describe methods for the isolation of adult and neonatal ventricular myocytes from rat and mouse heart. This discussion outlines general principles for the beginner, but also provides detailed specific protocols and advice for common caveats. We additionally review methods for short-term myocyte culture, with particular attention given to the importance of substrate and media selection, and describe time-dependent alterations in myocyte physiology that should be anticipated. Gene transfer techniques for neonatal and adult cardiomyocytes are also reviewed, including methods for transfection (liposome, electroporation) and viral-based gene delivery.
Collapse
|
14
|
Mattar CN, Choolani M, Biswas A, Waddington SN, Chan JKY. Fetal gene therapy: recent advances and current challenges. Expert Opin Biol Ther 2011; 11:1257-71. [PMID: 21623703 DOI: 10.1517/14712598.2011.585153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Fetal gene therapy (FGT) can potentially be applied to perinatally lethal monogenic diseases for rescuing clinically severe phenotypes, increasing the probability of intact neurological and other key functions at birth, or inducing immune tolerance to a transgenic protein to facilitate readministration of the vector/protein postnatally. As the field is still at an experimental stage, there are several important considerations regarding the practicality and the ethics of FGT. AREAS COVERED Here, through a review of FGT studies, the authors discuss the role and applications of FGT, the progress made with animal models that simulate human development, possible adverse effects in the recipient fetus and the mother and factors that affect clinical translation. EXPERT OPINION Although there are valid safety and ethical concerns, the authors argue that there may soon be enough convincing evidence from non-human primate models to take the next step towards clinical trials in the near future.
Collapse
Affiliation(s)
- Citra N Mattar
- Yong Loo Lin School of Medicine, National University of Singapore, Department of Obstetrics and Gynaecology, Experimental Fetal Medicine Group, NUHS Tower Block, Level 12, 1E Kent Ridge Road, 119228 Singapore
| | | | | | | | | |
Collapse
|
15
|
Kammili RK, Taylor DG, Xia J, Osuala K, Thompson K, Menick DR, Ebert SN. Generation of novel reporter stem cells and their application for molecular imaging of cardiac-differentiated stem cells in vivo. Stem Cells Dev 2011; 19:1437-48. [PMID: 20109065 DOI: 10.1089/scd.2009.0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapies offer the potential for repair and regeneration of cardiac tissue. To facilitate evaluation of stem cell activity in vivo, we created novel dual-reporter mouse embryonic stem (mES) cell lines that express the firefly luciferase (LUC) reporter gene under the control of the cardiac sodium-calcium exchanger-1 (Ncx-1) promoter in the background of the 7AC5-EYFP mES cell line that constitutively expresses the enhanced yellow fluorescent protein (EYFP). We compared the ability of recombinant clonal cell lines to express LUC before and after induction of cardiac differentiation in vitro. In particular, one of the clonal cell lines (Ncx-1-43LUC mES cells) showed markedly enhanced LUC expression (45-fold increase) upon induction of cardiac differentiation in vitro. Further, cardiac differentiation in these cells was perpetuated over a period of 2-4 weeks after transplantation in a neonatal mouse heart model, as monitored by noninvasive bioluminescence imaging (BLI) and confirmed via postmortem immunofluorescence and histological assessments. In contrast, transplantation of undifferentiated pluripotent Ncx-1-43LUC mES cells in neonatal hearts did not result in detectable levels of cardiac differentiation in these cells in vivo. These results suggest that prior induction of cardiac differentiation in vitro enhances development and maintenance of a cardiomyocyte-like phenotype for mES cells following transplantation into neonatal mouse hearts in vivo. We conclude that the Ncx-1-43LUC mES cell line is a novel tool for monitoring early cardiac differentiation in vivo using noninvasive BLI.
Collapse
Affiliation(s)
- Ramana K Kammili
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Palatinus JA, O'Quinn MP, Barker RJ, Harris BS, Jourdan J, Gourdie RG. ZO-1 determines adherens and gap junction localization at intercalated disks. Am J Physiol Heart Circ Physiol 2010; 300:H583-94. [PMID: 21131473 DOI: 10.1152/ajpheart.00999.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disruption of the spatial order of electromechanical junctions at myocyte-intercalated disks (ICDs) is a poorly understood characteristic of many cardiac disease states. Here, in vitro and in vivo evidence is provided that zonula occludens-1 (ZO-1) regulates the organization of gap junctions (GJs) and adherens junctions (AJs) at ICDs. We investigated the contribution of ZO-1 to cell-cell junction localization by expressing a dominant-negative ZO-1 construct (DN-ZO-1) in rat ventricular myocytes (VMs). The expression of DN-ZO-1 in cultured neonatal VMs for 72 h reduced the interaction of ZO-1 and N-cadherin, as assayed by colocalization and coimmunoprecipitation, prompting cytoplasmic internalization of AJ and GJ proteins. DN-ZO-1 expression in adult VMs in vivo also reduced N-cadherin colocalization with ZO-1, a phenomenon not observed when the connexin-43 (Cx43)-ZO-1 interaction was disrupted using a mimetic of the ZO-1-binding ligand from Cx43. DN-ZO-1-infected VMs demonstrated large GJs at the ICD periphery and showed a loss of focal ZO-1 concentrations along plaque edges facing the disk interior. Additionally, there was breakdown of the characteristic ICD pattern of small interior and large peripheral GJs. Continuous DN-ZO-1 expression in VMs over postnatal development reduced ICD-associated Cx43 GJs and increased lateralized and cytoplasmic Cx43. We conclude that ZO-1 regulation of GJ localization is via an association with the N-cadherin multiprotein complex and that this is a key determinant of stable localization of both AJs and GJs at the ICD.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Regenerative Medicine and Cell Biology, Cardiovascular Biology Center, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, 29425, USA
| | | | | | | | | | | |
Collapse
|
18
|
Peña JR, Szkudlarek AC, Warren CM, Heinrich LS, Gaffin RD, Jagatheesan G, del Monte F, Hajjar RJ, Goldspink PH, Solaro RJ, Wieczorek DF, Wolska BM. Neonatal gene transfer of Serca2a delays onset of hypertrophic remodeling and improves function in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 2010; 49:993-1002. [PMID: 20854827 DOI: 10.1016/j.yjmcc.2010.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 08/25/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant genetic disorder linked to numerous mutations in the sarcomeric proteins. The clinical presentation of FHC is highly variable, but it is a major cause of sudden cardiac death in young adults with no specific treatments. We tested the hypothesis that early intervention in Ca(2+) regulation may prevent pathological hypertrophy and improve cardiac function in a FHC displaying increased myofilament sensitivity to Ca(2+) and diastolic dysfunction. A transgenic (TG) mouse model of FHC with a mutation in tropomyosin at position 180 was employed. Adenoviral-Serca2a (Ad.Ser) was injected into the left ventricle of 1-day-old non-transgenic (NTG) and TG mice. Ad.LacZ was injected as a control. Serca2a protein expression was significantly increased in NTG and TG hearts injected with Ad.Ser for up to 6 weeks. Compared to TG-Ad.LacZ hearts, the TG-Ad.Ser hearts showed improved whole heart morphology. Moreover, there was a significant decline in ANF and β-MHC expression. Developed force in isolated papillary muscle from 2- to 3-week-old TG-Ad.Ser hearts was higher and the response to isoproterenol (ISO) improved compared to TG-Ad.LacZ muscles. In situ hemodynamic measurements showed that by 3 months the TG-Ad.Ser hearts also had a significantly improved response to ISO compared to TG-Ad.LacZ hearts. The present study strongly suggests that Serca2a expression should be considered as a potential target for gene therapy in FHC. Moreover, our data imply that development of FHC can be successfully delayed if therapies are started shortly after birth.
Collapse
Affiliation(s)
- James R Peña
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Endo M, Henriques-Coelho T, Zoltick PW, Stitelman DH, Peranteau WH, Radu A, Flake AW. The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther 2009; 17:61-71. [PMID: 19727133 DOI: 10.1038/gt.2009.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene transfer after intra-amniotic injection has, in general, been of low efficiency and limited to epithelial cells in the skin, pulmonary and gastrointestinal system. We have recently shown that early gestational administration results in a more efficient gene transfer to developmentally accessible stem cell populations in the skin and eye. In this study we present a comprehensive analysis of patterns of tissue expression seen after early intra-amniotic gene transfer (IAGT) using lentiviral vectors. To assess the influence of developmental stage on tissue expression, injections were administered from the late head fold/early somite stage (E8) to E18. In early gestation (E8-10), green fluorescent protein (GFP) expression was observed in multiple organs, derived from all three germ layers. Remarkably, GFP expression was observed in tissues derived from mesoderm and neural ectoderm at E8, whereas expression was limited to only epithelial cells of ectoderm- and endoderm-derived organs after E11. The amount and duration of gene expression was much higher after IAGT at early gestational time points. The observed temporal patterns of gene expression correspond to the predicted developmental accessibility of organ-specific cell populations. This model may be useful for the analyses of mechanisms of genetic and/or developmental disease and for the development of prenatal gene therapy for specific disorders.
Collapse
Affiliation(s)
- M Endo
- The Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Jerebtsova M, Ye X, Ray PE. A simple technique to establish a long-term adenovirus mediated gene transfer to the heart of newborn mice. Cardiovasc Hematol Disord Drug Targets 2009; 9:136-40. [PMID: 19519372 DOI: 10.2174/187152909788488645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies using different techniques have shown that adenoviral-mediated gene transfer to different tissues, including the kidney, is more efficient in neonatal mice. In this study, we report a simple technique that allows an efficient and long term expression of beta-galactosidase (beta-gal) in the heart of newborn mice. Newborn and adult C57BL6/J mice were subjected to a single retro-orbital venous plexus injection of recombinant adenoviral vectors (rAd) (2 x 10(9) particles/g body weight) carrying the lac Z gene. Seven days after the injection, positive beta-gal staining was systematically observed in the heart, lung, intestine, liver, kidney and spleen of newborn mice. However, only the heart showed persistent expression of beta-gal one year after the initial injection. In contrast, adult mice showed only significant but transient beta-gal expression mainly in the liver. In summary, we have found that a single retro-orbital intravenous injection can be used to establish a long-term adenoviral-mediated gene transfer to cardiac cells of newborn mice.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Center for Molecular Physiology, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
21
|
Fibroblast Growth Factor-2 regulates proliferation of cardiac myocytes in normal and hypoplastic left ventricles in the developing chick. Cardiol Young 2009; 19:159-69. [PMID: 19195417 DOI: 10.1017/s1047951109003552] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing heart increases its mass predominantly by increasing the number of contained cells through proliferation. We hypothesized that addition of fibroblast growth factor-2, a factor previously shown to stimulate division of the embryonic myocytes, to the left ventricular myocardium in an experimental model of left heart hypoplasia created in the chicken would attenuate phenotypic severity by increasing cellular proliferation. We have established an effective mode of delivery of fibroblast growth factor-2 to the chick embryonic left ventricular myocardium by using adenovirus vectors, which was more efficient and better tolerated than direct injection of recombinant fibroblast growth factor-2 protein. Injection of control adenovirus expressing green fluorescent protein did not result in significant alterations in myocytic proliferation or cell death compared with intact, uninjected, controls. Co-injection of adenoviruses expressing green fluorescent protein and fibroblast growth factor-2 was used for verification of positive injection, and induction of proliferation, respectively. Treatment of both normal and hypoplastic left ventricles with fibroblast growth factor-2 expressing adenovirus resulted in to 2 to 3-fold overexpression of fibroblast growth factor-2, as verified by immunostaining. An increase by 45% in myocytic proliferation was observed following injection of normal hearts, and an increase of 39% was observed in hypoplastic hearts. There was a significant increase in anti-myosin immunostaining in the hypoplastic, but not the normal hearts. We have shown, therefore, that expression of exogenous fibroblast growth factor-2 in the late embryonic heart can exert direct effects on cardiac myocytes, inducing both their proliferation and differentiation. These data suggest potential for a novel therapeutic option in selected cases of congenital cardiac disease, such as hypoplastic left heart syndrome.
Collapse
|
22
|
Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol Cell Biol 2008; 28:3790-803. [PMID: 18285456 DOI: 10.1128/mcb.01580-07] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible transcription factor 1 (HIF-1) and HIF-2alpha regulate the expression of an expansive array of genes associated with cellular responses to hypoxia. Although HIF-regulated genes mediate crucial beneficial short-term biological adaptations, we hypothesized that chronic activation of the HIF pathway in cardiac muscle, as occurs in advanced ischemic heart disease, is detrimental. We generated mice with cardiac myocyte-specific deletion of the von Hippel-Lindau protein (VHL), an essential component of an E3 ubiquitin ligase responsible for suppressing HIF levels during normoxia. These mice were born at expected frequency and thrived until after 3 months postbirth, when they developed severe progressive heart failure and premature death. VHL-null hearts developed lipid accumulation, myofibril rarefaction, altered nuclear morphology, myocyte loss, and fibrosis, features seen for various forms of human heart failure. Further, nearly 50% of VHL(-/-) hearts developed malignant cardiac tumors with features of rhabdomyosarcoma and the capacity to metastasize. As compelling evidence for the mechanistic contribution of HIF-1alpha, the concomitant deletion of VHL and HIF-1alpha in the heart prevented this phenotype and restored normal longevity. These findings strongly suggest that chronic activation of the HIF pathway in ischemic hearts is maladaptive and contributes to cardiac degeneration and progression to heart failure.
Collapse
|
23
|
Abstract
Heart failure is a major cause of morbidity and mortality in contemporary societies. Although progress in conventional treatment modalities is making steady and incremental gains to reduce this disease burden, there remains a need to explore new and potentially therapeutic approaches. Gene therapy, for example, was initially envisioned as a treatment strategy for inherited monogenic disorders. It is now apparent that gene therapy has broader potential that also includes acquired polygenic diseases, such as heart failure. Advances in the understanding of the molecular basis of conditions such as these, together with the evolution of increasingly efficient gene transfer technology, has placed congestive heart failure within reach of gene-based therapy.
Collapse
Affiliation(s)
- Hung Ly
- Cardiology Division, Cardiovascular Research Center, the Cardiology Laboratory of Integrative Physiology, Imaging at Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
24
|
Slevin JC, Byers L, Gertsenstein M, Qu D, Mu J, Sunn N, Kingdom JCP, Rossant J, Adamson SL. High resolution ultrasound-guided microinjection for interventional studies of early embryonic and placental development in vivo in mice. BMC DEVELOPMENTAL BIOLOGY 2006; 6:10. [PMID: 16504164 PMCID: PMC1436015 DOI: 10.1186/1471-213x-6-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 02/27/2006] [Indexed: 01/13/2023]
Abstract
Background In utero microinjection has proven valuable for exploring the developmental consequences of altering gene expression, and for studying cell lineage or migration during the latter half of embryonic mouse development (from embryonic day 9.5 of gestation (E9.5)). In the current study, we use ultrasound guidance to accurately target microinjections in the conceptus at E6.5–E7.5, which is prior to cardiovascular or placental dependence. This method may be useful for determining the developmental effects of targeted genetic or cellular interventions at critical stages of placentation, gastrulation, axis formation, and neural tube closure. Results In 40 MHz ultrasound images at E6.5, the ectoplacental cone region and proamniotic cavity could be visualized. The ectoplacental cone region was successfully targeted with 13.8 nL of a fluorescent bead suspension with few or no beads off-target in 51% of concepti microinjected at E6.5 (28/55 injected). Seventy eight percent of the embryos survived 2 to 12 days post injection (93/119), 73% (41/56) survived to term of which 68% (38/56) survived and appeared normal one week after birth. At E7.5, the amniotic and exocoelomic cavities, and ectoplacental cone region were discernable. Our success at targeting with few or no beads off-target was 90% (36/40) for the ectoplacental cone region and 81% (35/43) for the exocoelomic cavity but tended to be less, 68% (34/50), for the smaller amniotic cavity. At E11.5, beads microinjected at E7.5 into the ectoplacental cone region were found in the placental spongiotrophoblast layer, those injected into the exocoelomic cavity were found on the surface or within the placental labyrinth, and those injected into the amniotic cavity were found on the surface or within the embryo. Following microinjection at E7.5, survival one week after birth was 60% (26/43) when the amniotic cavity was the target and 66% (19/29) when the target was the ectoplacental cone region. The survival rate was similar in sham experiments, 54% (33/61), for which procedures were identical but no microinjection was performed, suggesting that surgery and manipulation of the uterus were the main causes of embryonic death. Conclusion Ultrasound-guided microinjection into the ectoplacental cone region at E6.5 or E7.5 and the amniotic cavity at E7.5 was achieved with a 7 day postnatal survival of ≥60%. Target accuracy of these sites and of the exocoelomic cavity at E7.5 was ≥51%. We suggest that this approach may be useful for exploring gene function during early placental and embryonic development.
Collapse
Affiliation(s)
- John C Slevin
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Lois Byers
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Marina Gertsenstein
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Dawei Qu
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Junwu Mu
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Nana Sunn
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - John CP Kingdom
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Janet Rossant
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Canada
| | - S Lee Adamson
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Controlling Adenoviral Gene Transfer in Heart by Catheter-Based Coronary Perfusion. Gene Ther 2006. [DOI: 10.1016/b978-044452806-3/50005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Waddington SN, Kramer MG, Hernandez-Alcoceba R, Buckley SMK, Themis M, Coutelle C, Prieto J. In utero gene therapy: current challenges and perspectives. Mol Ther 2005; 11:661-76. [PMID: 15851005 DOI: 10.1016/j.ymthe.2005.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Over the past few years, considerable progress in prenatal diagnosis and surgery combined with improvements in vector design vindicate a reappraisal of the feasibility of in utero gene therapy for serious monogenetic diseases. As adult gene therapy gathers pace, several apparent obstacles to its application as a treatment may be overcome by pre- or early postnatal treatment. This review will examine the concepts and practice of prenatal vector administration. We aim to highlight the advantages of early therapeutic intervention focusing on diseases that could benefit greatly from a prenatal gene therapy approach. We will pay special attention to the strategies and vectors that are most likely to be used for this application and will speculate on their expected developments for the near future.
Collapse
Affiliation(s)
- Simon N Waddington
- Gene Therapy Research Group, Sir Alexander Fleming Building, Imperial College, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Bouchard S, MacKenzie TC, Radu AP, Hayashi S, Peranteau WH, Chirmule N, Flake AW. Long-term transgene expression in cardiac and skeletal muscle following fetal administration of adenoviral or adeno-associated viral vectors in mice. J Gene Med 2004; 5:941-50. [PMID: 14601131 DOI: 10.1002/jgm.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In utero gene transfer may provide advantages for the correction of congenital genetic disorders. In the present study we compare the ability of adenovirus (AdCMVLacZ), and two serotypes of adeno-associated virus (AAVCMVLacZ serotypes 2 and 2/5), to target cardiac and skeletal muscle after prenatal systemic or intramuscular injection in mice and assess the immune response to the vectors. METHODS Day 14 gestation fetal mice underwent direct intraperitoneal or intramuscular injection of AdCMVLacZ, and AAVCMVLacZ serotypes 2 and 2/5 vectors. Tissues were processed for beta-galactosidase expression in frozen or high-resolution thin plastic sections at early and late time points. Neutralizing antibodies to Ad and AAV were analyzed in separate fetal experimental and neonatal or adult control groups after administration and re-administration of the vectors. RESULTS A single injection of each vector in utero resulted in sustained expression of beta-galactosidase transgene in skeletal and cardiac muscle. Transgene expression was detected for the length of the study, i.e. 86, 58, and 31 weeks after birth for AdCMVLacZ, and AAVCMVLacZ serotypes 2 and 2/5, respectively. High-level expression in the myocardium was observed independent of the vector or route of administration. Neutralizing antibody responses to AAV and Ad antigens were reduced and long-term expression in muscle was not ablated on postnatal re-administration of vector. CONCLUSIONS Sustained, high-level cardiac and skeletal muscle transgene expression can be obtained after prenatal gene transfer with each of these vectors. The potential for immune response to viral antigens is altered, but not entirely ablated after in utero exposure.
Collapse
Affiliation(s)
- Sarah Bouchard
- Division of Pediatric General, Thoracic, and Fetal Surgery, The Children's Institute for Surgical Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Iwatate M, Gu Y, Dieterle T, Iwanaga Y, Peterson KL, Hoshijima M, Chien KR, Ross J. In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart. Gene Ther 2003; 10:1814-20. [PMID: 12960971 DOI: 10.1038/sj.gt.3302077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-efficiency somatic gene transfer in adult mouse heart has not yet been achieved in vivo. Here, we demonstrate high-efficiency in vivo transcoronary gene delivery to the adult murine myocardium using a catheter-based technique with recombinant adenovirus (AdV) and adeno-associated virus (AAV) vectors in normal and genetically engineered mice. The method involves immersion hypothermia followed by transient aortic and pulmonary artery occlusion with proximal intra-aortic segmental injection of cardioplegic solution containing substance P and viral vectors. Gene expression measured using a LacZ marker gene was observed throughout both ventricles. The expression efficiency of a cytoplasmic LacZ marker gene in the left ventricular myocardium was 56.4+/-14.5% (mean+/-s.d.) at 4 days with an AdV vector, and with an AAV vector it was 81.0+/-5.9% at 4 weeks. Following AAV gene transfer, no gene expression was found in kidney, brain, lung, and spleen, but there was slight expression in liver. In addition, we demonstrate temporally controlled genetic manipulation in the heart with an efficiency of 54.6+/-5.2%, by transferring an AdV vector carrying Cre recombinase in ROSA26 flox-LacZ reporter mice. Procedure-related mortality was 16% for AdV and zero for AAV transfer. Thus, this method provides efficient, relatively homogeneous gene expression in both ventricles of the adult mouse heart, and offers a novel approach for conditional gene rescue or ablation in genetically engineered mouse models.
Collapse
Affiliation(s)
- M Iwatate
- Institute of Molecular Medicine and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ebelt H, Braun T. Optimized, highly efficient transfer of foreign genes into newborn mouse hearts in vivo. Biochem Biophys Res Commun 2003; 310:1111-6. [PMID: 14559230 DOI: 10.1016/j.bbrc.2003.09.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Expression of foreign genes in vivo is a standard method to disclose functions of specific genes and to alter physiological conditions in distinct cell types and tissues. Virus-mediated gene transfer has proved to be a valuable tool for directed gene expression in vivo complementary to transgenic approaches. However, several problems associated with routes of application, endurance of gene expression, and efficiency of infections still have to be solved. We have optimized a gene transfer protocol into hearts of newborn mice to achieve widespread long-lasting expression using adenoviral vectors. Intrathoracic injection of high-titer adenoviral preparations (10(8)pfu) led to expression of foreign genes in >71+/-8% of all heart cells for >50 days after infection without any morphological signs of cardiac malfunction, inflammation, or immune response. This approach might be adapted to long-term cellular studies in vivo since 5 months after infection up to 20% of all cardiac cells still expressed virally encoded genes. Successful and efficient expression of other gene of interest can be easily controlled by co-injection of low titers of a reporter vector encoding EGFP (10(6)pfu).
Collapse
Affiliation(s)
- Henning Ebelt
- Institute of Physiological Chemistry, University of Halle-Wittenberg, Hollystrasse 1, 06097 Halle, Germany
| | | |
Collapse
|
30
|
Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D. Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 2003; 108:1626-32. [PMID: 12952841 PMCID: PMC2581719 DOI: 10.1161/01.cir.0000089371.11664.27] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND More than 90% of Duchenne muscular dystrophy (DMD) patients develop cardiomyopathy, and many die of cardiac failure. Despite tremendous progress in skeletal muscle gene therapy, few attempts have been made to treat cardiomyopathy. Microdystrophin genes are shown to correct skeletal muscle pathological lesions in the mdx mouse model for DMD. Here, we tested the therapeutic potential of adeno-associated virus (AAV)-mediated microdystrophin gene therapy in the mdx mouse heart. METHODS AND RESULTS AAV was delivered to the newborn mdx mouse cardiac cavity. The procedure was rapid and well tolerated. Efficient expression was achieved in the inner and the outer layers of the myocardium. The ubiquitous cytomegalovirus promoter resulted in substantially higher expression than the muscle-specific CK6 promoter. The therapeutic effects of microdystrophin were evaluated at 10 months after infection. Immunostaining demonstrated extensive microdystrophin expression and successful restoration of the dystrophin-glycoprotein complex. Importantly, AAV-mediated microdystrophin expression improved the sarcolemma integrity in the mdx heart. CONCLUSIONS We established a simple gene transfer method for efficient and persistent transduction of the mdx mouse heart. AAV-mediated microdystrophin expression restored the critical dystrophin-glycoprotein complex and improved sarcolemma integrity of the mdx heart. Our results revealed the promise of AAV-microdystrophin gene therapy for cardiomyopathy in DMD.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Mo 65212, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kodirov SA, Brunner M, Busconi L, Koren G. Long-term restitution of 4-aminopyridine-sensitive currents in Kv1DN ventricular myocytes using adeno-associated virus-mediated delivery of Kv1.5. FEBS Lett 2003; 550:74-8. [PMID: 12935889 DOI: 10.1016/s0014-5793(03)00822-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Overexpression of a dominant-negative truncated Kv1.1 (Kv1DN) polypeptide in the mouse heart resulted in marked attenuation of a 4-aminopyridine (4-AP)-sensitive current, I(K,slow1). We used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of Kv1.5 into the mouse myocardium in order to normalize the action potential duration (APD) 6 months after injection. The injection of rAAV-Kv1.5 reconstituted the 4-AP-sensitive outward potassium currents, shortened the APD, and eliminated spontaneous early afterdepolarizations. Immunoblots detected the FL-Kv1.5 polypeptides only in rAAV-Kv1.5-infected hearts. These data demonstrate long-term expression of 4-AP-sensitive potassium currents in ventricular myocytes by gene transfer using rAAV vector encodes Kv1.5.
Collapse
Affiliation(s)
- S A Kodirov
- Bioelectricity Laboratory, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
32
|
Abstract
In the near future, prenatal therapy may include stem cell-based cellular therapy or gene therapy. There is considerable overlap in the rationale and potential applications for these 2 approaches. The purpose of this manuscript is to consider current progress in both areas relevant to prenatal treatment. Although clinical application is currently limited to a few highly selected disorders that are amenable to cellular therapy, there is reason to believe that a dramatic increase in application will occur in the near future.
Collapse
Affiliation(s)
- Alan W Flake
- The Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Wiechert S, El-Armouche A, Rau T, Zimmermann WH, Eschenhagen T. 24-h Langendorff-perfused neonatal rat heart used to study the impact of adenoviral gene transfer. Am J Physiol Heart Circ Physiol 2003; 285:H907-14. [PMID: 12663262 DOI: 10.1152/ajpheart.00856.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human genome project has increased the demand for simple experimental systems that allow the impact of gene manipulations to be studied under controlled ex vivo conditions. We hypothesized that, in contrast to adult hearts, neonatal hearts allow long-term perfusion and efficient gene transfer ex vivo. A Langendorff perfusion system was modified to allow perfusion for >24 h with particular emphasis on uncompromised contractile activity, sterility, online measurement of force of contraction, inotropic response to beta-adrenergic stimulation, and efficient gene transfer. The hearts were perfused with serum-free medium (DMEM + medium 199, 4 + 1) supplemented with hydrocortisone, triiodothyronine, ascorbic acid, insulin, pyruvate, l-carnitine, creatine, taurine, l-glutamine, mannitol, and antibiotics recirculating (500 ml/2 hearts) at 1 ml/min. Hearts from 2 day-old rats beat constantly at 135-155 beats/min and developed active force of 1-2 mN. During 24 h of perfusion, twitch tension increased to approximately 165% of initial values (P < 0.05), whereas the inotropic response to isoprenaline remained constant. A decrease in total protein content of 10% and histological examination indicated moderate edema, but actin and calsequestrin concentration remained unchanged and perfusion pressure remained constant at 7-11 mmHg. Perfusion with a LacZ-encoding adenovirus at 3 x 108 active virus particles yielded homogeneous transfection of approximately 80% throughout the heart and did not affect heart rate, force of contraction, or response to isoprenaline compared with uninfected controls (n = 7 each). Taken together, the 24-h Langendorff-perfused neonatal rat heart is a relatively simple, inexpensive, and robust new heart model that appears feasible as a test bed for functional genomics.
Collapse
Affiliation(s)
- S Wiechert
- Institute of Experimental and Clinical Pharmacology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Surace EM, Auricchio A, Reich SJ, Rex T, Glover E, Pineles S, Tang W, O'Connor E, Lyubarsky A, Savchenko A, Pugh EN, Maguire AM, Wilson JM, Bennett J. Delivery of adeno-associated virus vectors to the fetal retina: impact of viral capsid proteins on retinal neuronal progenitor transduction. J Virol 2003; 77:7957-63. [PMID: 12829835 PMCID: PMC161923 DOI: 10.1128/jvi.77.14.7957-7963.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of fetal ocular gene transfer may be useful as a therapeutic tool for the prevention of retinal genetic disorders with congenital or early clinical manifestations. In this study we explored the neural progenitor transduction patterns of adeno-associated virus (AAV) vectors following delivery to the developing retina. Recombinant vectors with the same genome carrying the enhanced green fluorescent protein (EGFP) transgene packaged in capsids of differing serotypes (serotypes 1, 2, and 5, termed AAV2/1, AAV2/2, and AAV2/5, respectively) were created. Delivery of the AAV vectors during early retinal development resulted in efficient and stable transduction of retinal progenitors. Vector surface proteins and the developmental status of the retina profoundly affected viral tropism and transgene distribution. The procedure is not detrimental to retinal development and function and therefore provides a safe delivery vehicle for potential therapeutic applications and a means of assessing the mechanisms of retina development and disease.
Collapse
Affiliation(s)
- Enrico M Surace
- F. M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, Scheie Eye Institute, 310 Stellar Chance Building, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104-6069, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shiojima I, Yefremashvili M, Luo Z, Kureishi Y, Takahashi A, Tao J, Rosenzweig A, Kahn CR, Abel ED, Walsh K. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J Biol Chem 2002; 277:37670-7. [PMID: 12163490 DOI: 10.1074/jbc.m204572200] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Akt is a serine-threonine kinase that mediates a variety of cellular responses to external stimuli. During postnatal development, Akt signaling in the heart was up-regulated when the heart was rapidly growing and was down-regulated by caloric restriction, suggesting a role of Akt in nutrient-dependent regulation of cardiac growth. Consistent with this notion, reductions in Akt, 70-kDa S6 kinase 1, and eukaryotic initiation factor 4E-binding protein 1 phosphorylation were observed in mice with cardiac-specific deletion of insulin receptor gene, which exhibit a small heart phenotype. In contrast to wild type animals, caloric restriction in these mice had little effect on Akt phosphorylation in the heart. Furthermore, forced expression of Akt1 in these hearts restored 70-kDa S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 phosphorylation to normal levels and rescued the small heart phenotype. Collectively, these results indicate that Akt signaling mediates insulin-dependent physiological heart growth during postnatal development and suggest a mechanism by which heart size is coordinated with overall body size as the nutritional status of the organism is varied.
Collapse
Affiliation(s)
- Ichiro Shiojima
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kemi OJ, Loennechen JP, Wisløff U, Ellingsen Ø. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol (1985) 2002; 93:1301-9. [PMID: 12235029 DOI: 10.1152/japplphysiol.00231.2002] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas novel pathways of pathological heart enlargement have been unveiled by thoracic aorta constriction in genetically modified mice, the molecular mechanisms of adaptive cardiac hypertrophy remain virtually unexplored and call for an effective and well-characterized model of physiological mechanical loading. Experimental procedures of maximal oxygen consumption (VO(2 max)) and intensity-controlled treadmill running were established in 40 female and 36 male C57BL/6J mice. An inclination-dependent VO(2 max) with 0.98 test-retest correlation was found at 25 degrees treadmill grade. Running for 2 h/day, 5 days/wk, in intervals of 8 min at 85-90% of VO(2 max) and 2 min at 50% (adjusted to weekly VO(2 max) testing) increased VO(2 max) to a plateau 49% above sedentary females and 29% in males. Running economy improved in both sexes, and echocardiography indicated significantly increased left ventricle posterior wall thickness. Ventricular weights increased by 19-29 and 12-17% in females and males, respectively, whereas cardiomyocyte dimensions increased by 20-32, and 17-23% in females and males, respectively; skeletal muscle mass increased by 12-18%. Thus the model mimics human responses to exercise and can be used in future studies of molecular mechanisms underlying these adaptations.
Collapse
Affiliation(s)
- Ole Johan Kemi
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Alan W Flake
- Center for Fetal Diagnosis and Therapy, The Children's Institute for Surgical Science, Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
38
|
Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y, Iwatate M, Li M, Wang L, Wilson JM, Wang Y, Ross J, Chien KR. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 2002; 8:864-71. [PMID: 12134142 DOI: 10.1038/nm739] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The feasibility of gene therapy for cardiomyopathy, heart failure and other chronic cardiac muscle diseases is so far unproven. Here, we developed an in vivo recombinant adeno-associated virus (rAAV) transcoronary delivery system that allows stable, high efficiency and relatively cardiac-selective gene expression. We used rAAV to express a pseudophosphorylated mutant of human phospholamban (PLN), a key regulator of cardiac sarcoplasmic reticulum (SR) Ca(2+) cycling in BIO14.6 cardiomyopathic hamsters. The rAAV/S16EPLN treatment enhanced myocardial SR Ca(2+) uptake and suppressed progressive impairment of left ventricular (LV) systolic function and contractility for 28-30 weeks, thereby protecting cardiac myocytes from cytopathic plasma-membrane disruption. Low LV systolic pressure and deterioration in LV relaxation were also largely prevented by rAAV/S16EPLN treatment. Thus, transcoronary gene transfer of S16EPLN via rAAV vector is a potential therapy for progressive dilated cardiomyopathy and associated heart failure.
Collapse
Affiliation(s)
- Masahiko Hoshijima
- University of California, San Diego Institute of Molecular Medicine, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J, Chien KR, Lee KF. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002; 8:459-65. [PMID: 11984589 DOI: 10.1038/nm0502-459] [Citation(s) in RCA: 617] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is critical for the progression of several forms of breast cancer. In a large-scale clinical trial, treatment with Herceptin (trastuzumab), a humanized blocking antibody against ErbB2, led to marked improvement in survival. However, cardiomyopathy was uncovered as a mitigating side effect, thereby suggesting an important role for ErbB2 signaling as a modifier of human heart failure. To investigate the physiological role of ErbB2 signaling in the adult heart, we generated mice with a ventricular-restricted deletion of Erbb2. These ErbB2-deficient conditional mutant mice were viable and displayed no overt phenotype. However, physiological analysis revealed the onset of multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning and decreased contractility. Additionally, cardiomyocytes isolated from these conditional mutants were more susceptible to anthracycline toxicity. ErbB2 signaling in cardiomyocytes is therefore essential for the prevention of dilated cardiomyopathy.
Collapse
|
40
|
Abstract
One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.
Collapse
Affiliation(s)
- M Lewandoski
- Section of Genetics of Vertebrate Development, Laboratory of Cancer and Developmental Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
41
|
Moisset PA, Tremblay JP. Gene therapy: a strategy for the treatment of inherited muscle diseases? Curr Opin Pharmacol 2001; 1:294-9. [PMID: 11712754 DOI: 10.1016/s1471-4892(01)00052-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence of new vectors of viral origin (recombinant adeno-associated viruses, second and third generation adenoviruses) and a new potential source of cells for transplantation (muscle-derived stem cells) are broadening the panel of therapeutic options for myopathies. Although the perfect gene-transfer method(s) have not yet been found, recent findings will certainly constitute a strong knowledge base for future clinical trials.
Collapse
Affiliation(s)
- P A Moisset
- Human Genetics Unit, CHUL Research Center, Laval University, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
42
|
Hingtgen SD, Davisson RL. Gene therapeutic approaches to oxidative stress-induced cardiac disease: principles, progress, and prospects. Antioxid Redox Signal 2001; 3:433-49. [PMID: 11491655 DOI: 10.1089/15230860152409077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heart and vascular diseases continue to rank among the most frequent and devastating disorders to affect adults in many parts of the world. Increasing evidence from a variety of experimental models indicates that reactive oxygen species can play a key role in the development of myocardial damage from ischemia/reperfusion, the development of cardiac hypertrophy, and the transition of hypertrophy to cardiac failure. The recent dramatic increase in availability of genomic data has included information on the genetic modulation of reactive oxygen species and the antioxidant systems that normally prevent damage from these radicals. Nearly simultaneously, progressively more sophisticated and powerful methods for altering the genetic complement of selected tissues and cells have permitted application of gene therapeutic methods to understand better the pathophysiology of reactive oxygen species-mediated myocardial damage and to attenuate or treat that damage. Although exciting and promising, gene therapy approaches to these common disorders are still in the experimental and developmental stages. Improved understanding of pathophysiology, better gene delivery systems, and specific gene therapeutic strategies will be needed before gene therapy of oxyradical-mediated myocardial damage becomes a clinical reality.
Collapse
Affiliation(s)
- S D Hingtgen
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|