1
|
Reisch F, Heydeck D, Schäfer M, Rothe M, Yang J, Stehling S, Püschel GP, Kuhn H. Knock-in mice expressing a humanized arachidonic acid 15-lipoxygenase (Alox15) carry a partly dysfunctional erythropoietic system. Cell Mol Biol Lett 2023; 28:97. [PMID: 38030974 PMCID: PMC10685687 DOI: 10.1186/s11658-023-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.
Collapse
Affiliation(s)
- Florian Reisch
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute for Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Dagmar Heydeck
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marjann Schäfer
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute for Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jiaxing Yang
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sabine Stehling
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Gerhard P Püschel
- Institute for Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Wu S, Wang C, Yao M, Han D, Li Q. Photothermal lipolysis accelerates ECM production via macrophage-derived ALOX15-mediated p38 MAPK activation in fibroblasts. JOURNAL OF BIOPHOTONICS 2023; 16:e202200321. [PMID: 36529997 DOI: 10.1002/jbio.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Skin and subcutaneous tissue tightening is usually treated by noninvasive photothermal treatment for medical esthetics purpose, while the underlying mechanism remains to be elucidated. Here, we hypothesized that adipocyte injury, as a stimulator, may regulate extracellular matrix (ECM) production by increasing ALOX15 in macrophages, which could lead to fibroblast activation. In this study, we show that lipolysis was induced by laser heating (45°C for 15 min) in patients and rats, and adipocyte thermal injury stimulates the ECM production in fibroblasts by ALOX15 that was increased in cocultured macrophages. These phenomena were evidenced by the ALOX15 knockdown. In addition, ALOX15 metabolite 12(S)-HETE activated p38 MAPK signaling pathway that mediated the production of ECM in fibroblast. In summary, the results of this study demonstrate that the mechanisms of adipose photothermal injury-induced skin and/or subcutaneous tissue tightening may have clinical relevance for noninvasive or minimally invasive photothermal therapeutics.
Collapse
Affiliation(s)
- Shan Wu
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Wang
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yao
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022; 11:3843. [PMID: 36497101 PMCID: PMC9735601 DOI: 10.3390/cells11233843] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system and is the leading cause of cardiovascular diseases worldwide. Excessive generation of reactive oxygen species (ROS) leads to a state of oxidative stress which is a major risk factor for the development and progression of atherosclerosis. ROS are important for maintaining vascular health through their potent signalling properties. However, ROS also activate pro-atherogenic processes such as inflammation, endothelial dysfunction and altered lipid metabolism. As such, considerable efforts have been made to identify and characterise sources of oxidative stress in blood vessels. Major enzymatic sources of vascular ROS include NADPH oxidases, xanthine oxidase, nitric oxide synthases and mitochondrial electron transport chains. The production of ROS is balanced by ROS-scavenging antioxidant systems which may become dysfunctional in disease, contributing to oxidative stress. Changes in the expression and function of ROS sources and antioxidants have been observed in human atherosclerosis while in vitro and in vivo animal models have provided mechanistic insight into their functions. There is considerable interest in utilising antioxidant molecules to balance vascular oxidative stress, yet clinical trials are yet to demonstrate any atheroprotective effects of these molecules. Here we will review the contribution of ROS and oxidative stress to atherosclerosis and will discuss potential strategies to ameliorate these aspects of the disease.
Collapse
Affiliation(s)
| | | | - Emma Yu
- Section of Cardiorespiratory Medicine, University of Cambridge, Cambridge CB2 0BB, UK
| |
Collapse
|
4
|
Aoyagi R, Yamamoto T, Furukawa Y, Arita M. Characterization of the Structural Diversity and Structure-Specific Behavior of Oxidized Phospholipids by LC-MS/MS. Chem Pharm Bull (Tokyo) 2021; 69:953-961. [PMID: 34602576 DOI: 10.1248/cpb.c21-00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), esterified to phospholipids, are susceptible to oxidation. They form oxidized phospholipids (OxPLs) by oxygenases or reactive oxygen species (ROS), or both. These OxPLs are associated with various diseases, such as atherosclerosis, pulmonary injuries, neurodegenerative diseases, cancer, and diabetes. Since many types of OxPLs seem to be generated in vivo, precise determination of their structural diversity is required to understand their potential structure-specific functions. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful method to quantitatively measure the structural diversity of OxPLs present in biological samples. This review outlines recent advances in analytical methods for OxPLs and their physiological relevance in health and diseases.
Collapse
Affiliation(s)
- Ryohei Aoyagi
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS)
| | - Takahiro Yamamoto
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS)
| | - Yuuki Furukawa
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS)
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS).,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University
| |
Collapse
|
5
|
Kulkarni A, Nadler JL, Mirmira RG, Casimiro I. Regulation of Tissue Inflammation by 12-Lipoxygenases. Biomolecules 2021; 11:717. [PMID: 34064822 PMCID: PMC8150372 DOI: 10.3390/biom11050717] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoxygenases (LOXs) are lipid metabolizing enzymes that catalyze the di-oxygenation of polyunsaturated fatty acids to generate active eicosanoid products. 12-lipoxygenases (12-LOXs) primarily oxygenate the 12th carbon of its substrates. Many studies have demonstrated that 12-LOXs and their eicosanoid metabolite 12-hydroxyeicosatetraenoate (12-HETE), have significant pathological implications in inflammatory diseases. Increased level of 12-LOX activity promotes stress (both oxidative and endoplasmic reticulum)-mediated inflammation, leading to damage in these tissues. 12-LOXs are also associated with enhanced cellular migration of immune cells-a characteristic of several metabolic and autoimmune disorders. Genetic depletion or pharmacological inhibition of the enzyme in animal models of various diseases has shown to be protective against disease development and/or progression in animal models in the setting of diabetes, pulmonary, cardiovascular, and metabolic disease, suggesting a translational potential of targeting the enzyme for the treatment of several disorders. In this article, we review the role of 12-LOXs in the pathogenesis of several diseases in which chronic inflammation plays an underlying role.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Jerry L. Nadler
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | | | - Isabel Casimiro
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
6
|
Direct Separation of the Diastereomers of Cholesterol Ester Hydroperoxide Using LC-MS/MS to Evaluate Enzymatic Lipid Oxidation. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cholesterol ester hydroperoxide (CEOOH) is one of the main lipid oxidation products contained in oxidized low-density lipoprotein (LDL). Previous studies suggest that CEOOH in oxidized LDL is closely related to several diseases. Of the oxidation mechanisms of cholesterol ester (CE) in vivo, it has been suggested that enzymatic oxidation induced by lipoxygenase (LOX) plays an important role. Thus, we attempted to develop a method that can evaluate the enzymatic oxidation of CE via the diastereoselective separation of CEOOH bearing 13RS-9Z,11E-hydroperoxy-octadecadienoic acid (13(RS)-HPODE CE). Firstly, we synthesized the standard of 13(RS)-HPODE CE. Using this standard, the screening of analytical conditions (i.e., column, mobile phase, and column temperature) was conducted, and separation of the diastereomers of 13(RS)-HPODE CE was achieved. The diastereoselective separation of 13(RS)-HPODE CE was also confirmed by LC-MS/MS. The developed method (column, CHIRALPAK IB N-3; mobile phase, hexane:ethanol (100:1, v/v); column temperature, 0 °C) can distinguish between enzymatic oxidation and other oxidation mechanisms of CE. Thus, the method can be expected to provide a greater understanding of the biochemical oxidation mechanisms in vivo. Such information will be essential to further elucidate the involvement of CEOOH in various diseases.
Collapse
|
7
|
Fukuda R, Murakami T. Potential of Lipoprotein-Based Nanoparticulate Formulations for the Treatment of Eye Diseases. Biol Pharm Bull 2020; 43:596-607. [PMID: 32238702 DOI: 10.1248/bpb.b19-00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins are naturally occurring nanoparticles and their main physiological function is the promotion of lipid metabolism. They can be prepared in vitro for use as drug carriers, and these reconstituted lipoproteins show similar biological activity to their natural counterparts. Some lipoproteins can cross the blood-retinal barrier and are involved in intraocular lipid metabolism. Drug-loaded lipoproteins can be delivered to the retina for the treatment of posterior eye diseases. In this review, we have discussed the therapeutic applications of lipoproteins for eye diseases and introduced the emerging animal models used for the evaluation of their therapeutic effects.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University.,Research Fellow of Japan Society for the Promotion of Science (JSPS)
| | - Tatsuya Murakami
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS)
| |
Collapse
|
8
|
Gonen A, Choi SH, Miu P, Agatisa-Boyle C, Acks D, Taylor AM, McNamara CA, Tsimikas S, Witztum JL, Miller YI. A monoclonal antibody to assess oxidized cholesteryl esters associated with apoAI and apoB-100 lipoproteins in human plasma. J Lipid Res 2018; 60:436-445. [PMID: 30563909 PMCID: PMC6358287 DOI: 10.1194/jlr.d090852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is associated with increased lipid peroxidation, leading to generation of multiple oxidation-specific epitopes (OSEs), contributing to the pathogenesis of atherosclerosis and its clinical manifestation. Oxidized cholesteryl esters (OxCEs) are a major class of OSEs found in human plasma and atherosclerotic tissue. To evaluate OxCEs as a candidate biomarker, we generated a novel mouse monoclonal Ab (mAb) specific to an OxCE modification of proteins. The mAb AG23 (IgG1) was raised in C57BL6 mice immunized with OxCE-modified keyhole limpet hemocyanin, and hybridomas were screened against OxCE-modified BSA. This method ensures mAb specificity to the OxCE modification, independent of a carrier protein. AG23 specifically stained human carotid artery atherosclerotic lesions. An ELISA method, with AG23 as a capture and either anti-apoAI or anti-apoB-100 as the detection Abs, was developed to assay apoAI and apoB-100 lipoproteins that have one or more OxCE epitopes. OxCE-apoA or OxCE-apoB did not correlate with the well-established oxidized phospholipid-apoB biomarker. In a cohort of subjects treated with atorvastatin, OxCE-apoA was significantly lower than in the placebo group, independent of the apoAI levels. These results suggest the potential diagnostic utility of a new biomarker assay to measure OxCE-modified lipoproteins in patients with CVD.
Collapse
Affiliation(s)
- Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Phuong Miu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Acks
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Angela M Taylor
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Coleen A McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
9
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
10
|
Zhang Y, Igwe OJ. Role of Toll-like receptor 4/oxidant-coupled activation in regulating the biosynthesis of omega-3 polyunsaturated fatty acid derivative resolvin D1 in primary murine peritoneal macrophage. Biochem Pharmacol 2018; 158:73-83. [PMID: 30287282 DOI: 10.1016/j.bcp.2018.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
We have previously shown that reactive oxygen species (ROS) as prooxidants can activate Toll-like receptor 4 (TLR4) with the potential to initiate, propagate and maintain "sterile" inflammation of innate immunity, which plays a mediatory role in a host of human disease states. We now present new evidence that ROS can also activate TLR4 to counter the inflammatory phenotype by increasing the production of resolvin D1 (RvD1), which is a specialized anti-inflammatory and pro-resolving lipid mediator. We used primary murine peritoneal macrophages (pM) derived from both TLR4-WT and TLR4-KO mice as a cellular model. We used potassium peroxychromate (PPC) as a direct in vitro source of exogenous ROS. PPC treatment increased intracellular ROS levels, which decreased intracellular total antioxidant capacity, thus suggesting an enhanced cellular oxidative stress. PPC and LPS-EK (a TLR4-specific agonist) increased pro-inflammatory TNFα production with noeffect on IL-10, an anti-inflammatory cytokine. Treatment with the prooxidant increased the expression of 12 lipoxygenase (12-LOX) and 5-lipoxygenase (5-LOX) only in pM derived from TLR4 WT but not in pM from TLR4-KO mice. 5-LOX and 12-LOX are the key enzymes in the RvD1 biosynthetic pathway. In addition, PPC increased the expression of RvD1 receptor, a member of G-protein-coupled receptor only in pM from TLR4-WT mice. Our data support the involvement of TLR4-mediated oxidant-induced pro-inflammatory phenotypes that are in opposition to the production of anti-inflammatory/pro-resolution phenotypes in macrophages. Now, we show that through TLR4 activation, exogenous oxidants can play a role both in producing proinflammatory phenotypes at the same time that it enhances resolution of inflammation to maintain a state of cellular homeostasis and prevent tissue damage/disease.
Collapse
Affiliation(s)
- Yan Zhang
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| | - Orisa J Igwe
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
11
|
Chien Y, Chou SJ, Chang YL, Leu HB, Yang YP, Tsai PH, Lai YH, Chen KH, Chang WC, Sung SH, Yu WC. Inhibition of Arachidonate 12/15-Lipoxygenase Improves α-Galactosidase Efficacy in iPSC-Derived Cardiomyocytes from Fabry Patients. Int J Mol Sci 2018; 19:ijms19051480. [PMID: 29772700 PMCID: PMC5983630 DOI: 10.3390/ijms19051480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
(1) Background: A high incidence of intervening sequence (IVS)4+919 G>A mutation with later-onset cardiac phenotype have been reported in a majority of Taiwan Fabry cohorts. Some evidence indicated that conventional biomarkers failed to predict the long-term progression and therapeutic outcome; (2) Methods: In this study, we constructed an induced pluripotent stem cell (iPSC)-based platform from Fabry cardiomyopathy (FC) patients carrying IVS4+919 G>A mutation to screen for potential targets that may help the conventional treatment; (3) Results: The FC-patient-derived iPSC-differentiated cardiomyocytes (FC-iPSC-CMs) carried an expected IVS4+919 G>A genetic mutation and recapitulated several FC characteristics, including low α-galactosidase A enzyme activity and cellular hypertrophy. The proteomic analysis revealed that arachidonate 12/15-lipoxygenase (Alox12/15) was the most highly upregulated marker in FC-iPSC-CMs, and the metabolites of Alox12/15, 12(S)- and 15(S)-hydroxyeicosatetraenoic acid (HETE), were also elevated in the culture media. Late administration of Alox12/15 pharmacological inhibitor LOXBlock-1 combined with α-galactosidase, but not α-galactosidase alone, effectively reduced cardiomyocyte hypertrophy, the secretion of 12(S)- and 15(S)-HETE and the upregulation of fibrotic markers at the late phase of FC; (4) Conclusions: Our study demonstrates that cardiac Alox12/15 and circulating 12(S)-HETE/15(S)-HETE are involved in the pathogenesis of FC with IVS4+919 G>A mutation.
Collapse
Affiliation(s)
- Yueh Chien
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Shih-Jie Chou
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | - Yuh-Lih Chang
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Department of Pharmacology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hsin-Bang Leu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Heath Care and Management Center, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | - Ying-Hsiu Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Kuan-Hsuan Chen
- Department of Pharmacology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Shih-Hsien Sung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Wen-Chung Yu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|
12
|
12/15 lipoxygenase: A crucial enzyme in diverse types of cell death. Neurochem Int 2018; 118:34-41. [PMID: 29627380 DOI: 10.1016/j.neuint.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
The 12/15-lipoxygenase (12/15-LOX) enzymes react with polyunsaturated fatty acids producing active lipid metabolites that are involved in plethora of human diseases including neurological disorders. A great many of elegant studies over the last decades have contributed to unraveling the mechanism how 12/15-lipoxygenase play a role in these diseases. And the way it works is mainly through apoptosis. However, recent years have found that the way 12/15-lipoxygenase works is also related to autophagy and ferroptosis, a newly defined type of cell death by Stockwell's lab in 2012. Figuring out how 12/15-lipoxygenase participate in these modes of cell death is of vital importance to understand its role in disease. The review aims to give a sight on our current knowledge on the role of this enzyme in apoptosis, autophagy and ferroptosis. And the relevant diseases that 12/15-lipoxygenase may be involved.
Collapse
|
13
|
Abstract
S-sulfhydration is a signalling pathway of hydrogen sulfide (H2S), which is suggested as an anti-atherogenic molecule that may protect against atherosclerosis. The identification of S-sulfhydrated proteins by proteomic approach could be a major step towards understanding the mechanisms of H2S in response to atherosclerosis. The present study studied targeted S-sulfhydrated proteins using the modified biotin switch method followed by matrix-assisted laser desorption/ionisation time of flight tandem mass spectrometry identification. The results showed that H2S can protect against atherosclerosis by reducing body weight gain and alleviating aortic plaque formation. In addition, H2S treatment can increase aortic protein S-sulfhydration. Seventy targeted S-sulfhydrated aortic proteins were identified, mainly involved in metabolism, stimulus response and biological regulation, as determined by gene ontology database analysis. H2S also induced S-sulfhydration of glutathione peroxidase 1 and further reduced lipid peroxidation and increased antioxidant defence in the aorta by prompting glutathione synthesis. Our data suggest that H2S is a cardiovascular-protective molecule that S-sulfhydrates a subset of proteins that are mainly responsible for lipid metabolism and exerts its cytoprotective effects to clear free radicals and inhibit oxidative stress through cysteine S-sulfhydration.
Collapse
|
14
|
Cai T, Yang F. Phospholipid and Phospholipidomics in Health and Diseases. LIPIDOMICS IN HEALTH & DISEASE 2018. [DOI: 10.1007/978-981-13-0620-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
16
|
Kaur N, Singh J, Reddy S. Interaction between ALOX15 polymorphisms and coronary artery disease in North Indian population. Clin Exp Hypertens 2017; 40:398-405. [DOI: 10.1080/10641963.2017.1384485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Naindeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sreenivas Reddy
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Uderhardt S, Ackermann JA, Fillep T, Hammond VJ, Willeit J, Santer P, Mayr M, Biburger M, Miller M, Zellner KR, Stark K, Zarbock A, Rossaint J, Schubert I, Mielenz D, Dietel B, Raaz-Schrauder D, Ay C, Gremmel T, Thaler J, Heim C, Herrmann M, Collins PW, Schabbauer G, Mackman N, Voehringer D, Nadler JL, Lee JJ, Massberg S, Rauh M, Kiechl S, Schett G, O'Donnell VB, Krönke G. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med 2017; 214:2121-2138. [PMID: 28566277 PMCID: PMC5502424 DOI: 10.1084/jem.20161070] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/12/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023] Open
Abstract
Blood coagulation is essential for physiological hemostasis but simultaneously contributes to thrombotic disease. However, molecular and cellular events controlling initiation and propagation of coagulation are still incompletely understood. In this study, we demonstrate an unexpected role of eosinophils during plasmatic coagulation, hemostasis, and thrombosis. Using a large-scale epidemiological approach, we identified eosinophil cationic protein as an independent and predictive risk factor for thrombotic events in humans. Concurrent experiments showed that eosinophils contributed to intravascular thrombosis by exhibiting a strong endogenous thrombin-generation capacity that relied on the enzymatic generation and active provision of a procoagulant phospholipid surface enriched in 12/15-lipoxygenase-derived hydroxyeicosatetraenoic acid-phosphatidylethanolamines. Our findings reveal a previously unrecognized role of eosinophils and enzymatic lipid oxidation as regulatory elements that facilitate both hemostasis and thrombosis in response to vascular injury, thus identifying promising new targets for the treatment of thrombotic disease.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen A Ackermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Fillep
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Victoria J Hammond
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Manuel Mayr
- King's British Heart Foundation Centre, Kings College, London, England, UK
| | - Markus Biburger
- Department of Biology, Institute of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Meike Miller
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katie R Zellner
- Department of Biochemistry and Molecular Biology, Division of Pulmonary Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dirk Mielenz
- Department of Internal Medicine 3, Division of Molecular Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dorette Raaz-Schrauder
- Department of Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cihan Ay
- Department of Medicine I, Clinical Division of Haematology and Haemostaseology, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Division of Angiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Thaler
- Department of Medicine I, Clinical Division of Haematology and Haemostaseology, Medical University of Vienna, Vienna, Austria
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter W Collins
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nigel Mackman
- Department Medicine, University of North Carolina, Chapel Hill, NC
| | - David Voehringer
- Department of Infection Biology, Institute for Clinical Microbiology, Immunology, and Hygiene, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jerry L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Division of Pulmonary Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Manfred Rauh
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany .,Nikolaus Fiebiger Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Management of Alzheimer’s disease—An insight of the enzymatic and other novel potential targets. Int J Biol Macromol 2017; 97:700-709. [DOI: 10.1016/j.ijbiomac.2017.01.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
|
19
|
Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats. Br J Nutr 2017; 117:335-350. [DOI: 10.1017/s0007114517000174] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractOxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.
Collapse
|
20
|
He Y, Akumuo RC, Yang Y, Hewett SJ. Mice deficient in L-12/15 lipoxygenase show increased vulnerability to 3-nitropropionic acid neurotoxicity. Neurosci Lett 2017; 643:65-69. [PMID: 28229935 DOI: 10.1016/j.neulet.2017.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023]
Abstract
Considerable evidence supports a contributory role for leukocyte-type 12/15 Lipoxygenase (L-12/15 LO) in mediating hippocampal and cortical neuronal injury in models of Alzheimer's disease and stroke. Whether L-12/15 LO contributes to neuronal injury in a model of Huntington's disease (HD) has yet to be determined. HD is characterized by marked striatal neuronal loss, which can be mimicked in humans and animals by inhibition of mitochondrial complex II using 3-Nitropropionic acid (3-NP). Herein, we compared histological and behavioral outcomes between mice that were wild-type or null for L-12/15 LO following systemic injection of 3NP. We found that mice deficient in L-12/15 LO had a higher incidence of striatal lesions coincident with an increase in morbidity as compared to their wild-type littermate controls. This could not be explained by differential metabolism of 3-NP as striatal succinate dehydrogenase activity was inhibited to the same extent in both genotypes. The present results show that deleting L-12/15 LO is detrimental to the striatum in the setting of chronic, systemic 3-NP exposure and are consistent with the overall conclusion that region-specific effects may determine the ultimate outcome of L-12/15 LO activation in the setting of brain injury.
Collapse
Affiliation(s)
- Yan He
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States
| | - Rita C Akumuo
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States
| | - Yuan Yang
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States.
| |
Collapse
|
21
|
Abidin MHZ, Abdullah N, Abidin NZ. Therapeutic properties ofPleurotusspecies (oyster mushrooms) for atherosclerosis: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1210162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 2016; 84:1-7. [PMID: 27256928 DOI: 10.1016/j.vph.2016.05.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/28/2016] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a progressive disease in which endothelial cell dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation, lead to the loss of vascular homeostasis. Oxidized low-density lipoprotein (oxLDL) may play a pre-eminent function in atherosclerotic lesion formation, even if their role is still debated. Several types of scavenger receptors (SRs) such as SR-AI/II, SRBI, CD36, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), toll-like receptors (TLRs) and others can promote the internalization of oxLDL. They are expressed on the surface of vascular wall cells (endothelial cells, macrophages and smooth muscle cells) and they mediate the cellular effects of oxLDL. The key influence of both oxLDL and SRs on the atherogenic process has been established in atherosclerosis-prone animals, in which antioxidant treatment and/or silencing of SRs has been shown to reduce atherogenesis. Despite some discrepancies, the indication from cohort studies that there is an association between oxLDL and cardiovascular (CV) events seems to point toward a role for oxLDL in atherosclerotic plaque progress and disruption. Finally, randomized clinical trials using antioxidants have demonstrated benefits only in high-risk patients, suggesting that additional proofs are still needed to better define the involvement of each type of modified LDL in the development of atherosclerosis.
Collapse
|
23
|
Liu Y, Almeida M, Weinstein RS, O'Brien CA, Manolagas SC, Jilka RL. Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression, and bone formation in atherosclerotic ApoE-null mice. Am J Physiol Endocrinol Metab 2016; 310:E762-73. [PMID: 26956187 PMCID: PMC6415649 DOI: 10.1152/ajpendo.00501.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
ApoE-null (ApoE-KO) mice fed a high-fat diet (HFD) develop atherosclerosis, due in part to activation of vascular inflammation by oxidized low-density lipoprotein. Since bone loss also occurs in these mice, we used them to investigate the impact of oxidized lipids on bone homeostasis and to search for underlying pathogenic pathways. Four-month-old female ApoE-KO mice fed a HFD for three months exhibited increased levels of oxidized lipids in bone, as well as decreased femoral and vertebral trabecular and cortical bone mass, compared with ApoE-KO mice on normal diet. Despite HFD-induced increase in expression of Alox15, a lipoxygenase that oxidizes LDL and promotes atherogenesis, global deletion of this gene failed to ameliorate the skeletal impact of HFD. Osteoblast number and function were dramatically reduced in trabecular and cortical bone of HFD-fed mice, whereas osteoclast number was modestly reduced only in trabecular bone, indicating that an imbalance in favor of osteoclasts was responsible for HFD-induced bone loss. These changes were associated with decreased osteoblast progenitors and increased monocyte/macrophages in the bone marrow as well as increased expression of IL-1β, IL-6, and TNF. HFD also attenuated Wnt signaling as evidenced by reduced expression of Wnt target genes, and it decreased expression of pro-osteoblastogenic Wnt ligands. These results suggest that oxidized lipids decrease bone mass by increasing anti-osteoblastogenic inflammatory cytokines and decreasing pro-osteoblastogenic Wnt ligands.
Collapse
Affiliation(s)
- Yu Liu
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Maria Almeida
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert S Weinstein
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles A O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stavros C Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert L Jilka
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
24
|
Yuan H, Reddy MA, Deshpande S, Jia Y, Park JT, Lanting LL, Jin W, Kato M, Xu ZG, Das S, Natarajan R. Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxid Redox Signal 2016; 24:361-75. [PMID: 26492974 PMCID: PMC4779982 DOI: 10.1089/ars.2015.6372] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Epigenetic mechanisms, including histone post-translational modifications and DNA methylation, are implicated in the pathogenesis of diabetic nephropathy (DN), but the mediators are not well known. Moreover, although dyslipidemia contributes to DN, epigenetic changes triggered by lipids are unclear. In diabetes, increased expression of 12/15-lipoxygenase (12/15-LO) enhances oxidized lipids such as 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], which promote oxidant stress, glomerular and mesangial cell (MC) dysfunction, and fibrosis, and mediate the actions of profibrotic growth factors. We hypothesized that 12/15-LO and its oxidized lipid products can regulate epigenetic mechanisms mediating profibrotic gene expression related to DN. RESULTS 12(S)-HETE increased profibrotic gene expression and enrichment of permissive histone lysine modifications at their promoters in MCs. 12(S)-HETE also increased protein levels of SET7, a histone H3 lysine 4 methyltransferase, and promoted its nuclear translocation and enrichment at profibrotic gene promoters. Furthermore, SET7 (Setd7) gene silencing inhibited 12(S)-HETE-induced profibrotic gene expression. 12/15-LO (Alox15) gene silencing or genetic knockout inhibited transforming growth factor-β1 (TGF-β1)-induced expression of Setd7 and profibrotic genes and histone modifications in MCs. Furthermore, 12/15-LO knockout in mice ameliorated key features of DN and abrogated increases in renal SET7 and profibrotic genes. Additionally, 12/15-LO siRNAs in vivo blocked increases in renal SET7 and profibrotic genes in diabetic mice. INNOVATION AND CONCLUSION These novel results demonstrate for the first time that 12/15-LO-derived oxidized lipids regulate histone modifications associated with profibrotic gene expression in MCs, and 12/15-LO can mediate similar actions of TGF-β1 and diabetes. Targeting 12/15-LO might be a useful strategy to inhibit key epigenetic mechanisms involved in DN.
Collapse
Affiliation(s)
- Hang Yuan
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,2 Department of Nephrology, First Hospital of Jilin University , Changchun, China
| | - Marpadga A Reddy
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Supriya Deshpande
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Ye Jia
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,3 Department of Nephrology, Second Hospital of Jilin University , Changchun, China
| | - Jung Tak Park
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California.,4 Department of Internal Medicine, College of Medicine, Yonsei University , Seoul, Republic of Korea
| | - Linda L Lanting
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Wen Jin
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Mitsuo Kato
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Zhong Gao Xu
- 2 Department of Nephrology, First Hospital of Jilin University , Changchun, China
| | - Sadhan Das
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| | - Rama Natarajan
- 1 Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope , Duarte, California
| |
Collapse
|
25
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
26
|
Kotla S, Rao GN. Reactive Oxygen Species (ROS) Mediate p300-dependent STAT1 Protein Interaction with Peroxisome Proliferator-activated Receptor (PPAR)-γ in CD36 Protein Expression and Foam Cell Formation. J Biol Chem 2015; 290:30306-20. [PMID: 26504087 DOI: 10.1074/jbc.m115.686865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 01/24/2023] Open
Abstract
Previously, we have demonstrated that 15(S)-hydroxyeicosatetranoic acid (15(S)-HETE) induces CD36 expression involving STAT1. Many studies have shown that peroxisome proliferator-activated receptor (PPAR)-γ mediates CD36 expression. Therefore, we asked the question whether these transcriptional factors interact with each other in the regulation of CD36 expression by 15(S)-HETE. Here, we show that STAT1 interacts with PPARγ in the induction of CD36 expression and foam cell formation by 15(S)-HETE. In addition, using molecular biological approaches such as EMSA, supershift EMSA, ChIP, re-ChIP, and promoter-reporter gene assays, we demonstrate that the STAT1 and PPARγ complex binds to the STAT-binding site at -107 nucleotides in the CD36 promoter and enhances its activity. Furthermore, the interaction of STAT1 with PPARγ depends on STAT1 acetylation, which is mediated by p300. In addition, our findings show that reactive oxygen species-dependent Syk and Pyk2 stimulation is required for p300 tyrosine phosphorylation and activation. Together, these results demonstrate that an interaction between STAT1, p300, and peroxisome proliferator-activated receptor-γ is required for 15(S)-HETE-induced CD36 expression, oxidized low density lipoprotein uptake, and foam cell formation, critical events underlying the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Sivareddy Kotla
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
27
|
Rothe T, Gruber F, Uderhardt S, Ipseiz N, Rössner S, Oskolkova O, Blüml S, Leitinger N, Bicker W, Bochkov VN, Yamamoto M, Steinkasserer A, Schett G, Zinser E, Krönke G. 12/15-Lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest 2015; 125:1944-54. [PMID: 25844901 DOI: 10.1172/jci78490] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/27/2015] [Indexed: 11/17/2022] Open
Abstract
DCs are able to undergo rapid maturation, which subsequently allows them to initiate and orchestrate T cell-driven immune responses. DC maturation must be tightly controlled in order to avoid random T cell activation and development of autoimmunity. Here, we determined that 12/15-lipoxygenase-meditated (12/15-LO-mediated) enzymatic lipid oxidation regulates DC activation and fine-tunes consecutive T cell responses. Specifically, 12/15-LO activity determined the DC activation threshold via generation of phospholipid oxidation products that induced an antioxidative response dependent on the transcription factor NRF2. Deletion of the 12/15-LO-encoding gene or pharmacologic inhibition of 12/15-LO in murine or human DCs accelerated maturation and shifted the cytokine profile, thereby favoring the differentiation of Th17 cells. Exposure of 12/15-LO-deficient DCs to 12/15-LO-derived oxidized phospholipids attenuated both DC activation and the development of Th17 cells. Analysis of lymphatic tissues from 12/15-LO-deficient mice confirmed enhanced maturation of DCs as well as an increased differentiation of Th17 cells. Moreover, experimental autoimmune encephalomyelitis in mice lacking 12/15-LO resulted in an exacerbated Th17-driven autoimmune disease. Together, our data reveal that 12/15-LO controls maturation of DCs and implicate enzymatic lipid oxidation in shaping the adaptive immune response.
Collapse
|
28
|
Joshi YB, Giannopoulos PF, Praticò D. The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer's disease. Trends Pharmacol Sci 2015; 36:181-186. [PMID: 25708815 PMCID: PMC4355395 DOI: 10.1016/j.tips.2015.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative condition characterized by progressive memory loss. Mutations in genes involved in the production of amyloid-β (Aβ) are linked to the early-onset variant of AD. However, the most common form, sporadic AD, is considered to be the result of an interaction between environmental risk factors and various genes. Among them, recent work has highlighted the potential role that the 12/15-lipoxygenase (12/15LO) pathway may play in AD pathogenesis. 12/15LO is widely distributed in the central nervous system, and its levels are upregulated in patients with AD or mild cognitive impairments. Studies using animal models have implicated 12/15LO in the molecular pathology of AD, including the metabolism of Aβ and tau, synaptic integrity, and cognitive functions. We provide an overview of this pathway and its relevance to AD pathogenesis, discuss the mechanism(s) involved, and provide an assessment of how targeting 12/15LO could lead to novel AD therapeutics.
Collapse
Affiliation(s)
- Yash B Joshi
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| | - Phillip F Giannopoulos
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
29
|
Geller BJ, Mega JL, Morrow DA, Guo J, Hoffman EB, Gibson CM, Ruff CT. Autoantibodies to phosphorylcholine and cardiovascular outcomes in patients with acute coronary syndromes in the ATLAS ACS-TIMI 46 trial. J Thromb Thrombolysis 2015; 37:310-6. [PMID: 23860881 DOI: 10.1007/s11239-013-0968-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Atherogenesis is a complex inflammatory process stemming from the accumulation and oxidation of low density lipoproteins (LDL). IgM autoantibodies against phosphorylcholine (anti-PC) bind to the PC epitope on oxidized LDL (OxLDL), inhibiting the uptake of oxLDL by macrophages in atherosclerotic lesions. Anti-PC autoantibodies have been reported to be protective against atherothrombosis. We investigated the relationship of anti-PC concentrations with cardiovascular outcomes in patients with acute coronary syndromes (ACS). We measured anti-PC levels within 7 days of an ACS in 3,356 patients enrolled in the ATLAS ACS-TIMI 46 trial, a randomized dose ranging study of rivaroxaban versus placebo. The primary endpoint was death, myocardial infarction (MI), stroke, or severe recurrent ischemia (SRI) requiring revascularization during 6 months. The median baseline anti-PC concentration was 40.9 U/mL (25th, 75th percentiles: 25.4, 67.4). There was no significant association between anti-PC levels and the primary endpoint (Q1: 6.8 %, Q2: 4.2 %, Q3: 7.8 %, Q4: 5.4 %, p-trend = 0.87), all-cause mortality (Q1: 1.4 %, Q2: 0.7 %, Q3: 2.4 %, Q4: 0.9 %, p-trend = 0. 96), or any of the other individual endpoint components (MI: p-trend = 0.87, Stroke: p-trend = 0.43, SRI: p-trend = 0.66). Using the previously reported anti-PC cutpoint of 17 U/mL did not reveal a significant relationship between anti-PC concentrations and cardiovascular outcomes (<17 U/mL: 8.1 % vs. ≥17 U/mL: 5.8 %; p = 0.11). Similarly, evaluation of anti-PC as a continuous variable did not reveal a significant association (p = 0.30). In this study of patients early after ACS undergoing intensive secondary preventive therapy, IgM anti-PC titers did not exhibit a significant relationship with cardiovascular outcomes.
Collapse
Affiliation(s)
- Bram J Geller
- TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 350 Longwood Avenue, First Floor, Boston, MA, USA,
| | | | | | | | | | | | | |
Collapse
|
30
|
Sukhanov S, Snarski P, Vaughn C, Lobelle-Rich P, Kim C, Higashi Y, Shai SY, Delafontaine P. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase. Atherosclerosis 2014; 238:313-20. [PMID: 25549319 DOI: 10.1016/j.atherosclerosis.2014.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. APPROACH AND RESULTS We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. CONCLUSIONS Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1.
Collapse
Affiliation(s)
- Sergiy Sukhanov
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Patricia Snarski
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Charlotte Vaughn
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Patricia Lobelle-Rich
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Catherine Kim
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yusuke Higashi
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shaw-Yung Shai
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Patrice Delafontaine
- Heart and Vascular Institute, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
31
|
Kotla S, Singh NK, Traylor JG, Orr AW, Rao GN. ROS-dependent Syk and Pyk2-mediated STAT1 activation is required for 15(S)-hydroxyeicosatetraenoic acid-induced CD36 expression and foam cell formation. Free Radic Biol Med 2014; 76:147-62. [PMID: 25152235 PMCID: PMC4253592 DOI: 10.1016/j.freeradbiomed.2014.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 02/02/2023]
Abstract
15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1/2 (15-LO1/2) metabolite of arachidonic acid (AA), induces CD36 expression through xanthine oxidase and NADPH oxidase-dependent ROS production and Syk and Pyk2-dependent STAT1 activation. In line with these observations, 15(S)-HETE also induced foam cell formation involving ROS, Syk, Pyk2, and STAT1-mediated CD36 expression. In addition, peritoneal macrophages from Western diet-fed ApoE(-/-) mice exhibited elevated levels of xanthine oxidase and NADPH oxidase activities, ROS production, Syk, Pyk2, and STAT1 phosphorylation, and CD36 expression compared to those from ApoE(-/-):12/15-LO(-/-) mice and these events correlated with increased lipid deposits, macrophage content, and lesion progression in the aortic roots. Human atherosclerotic arteries also showed increased 15-LO1 expression, STAT1 phosphorylation, and CD36 levels as compared to normal arteries. Together, these findings suggest that 12/15-LO metabolites of AA, particularly 12/15(S)-HETE, might play a crucial role in atherogenesis by enhancing foam cell formation.
Collapse
Affiliation(s)
- Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | - James G Traylor
- Department of Pathology, Louisiana State University Health Science Center, 1501 King׳s Hwy, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Science Center, 1501 King׳s Hwy, Shreveport, LA 71130, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
32
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
33
|
Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol 2014; 30:91-8. [PMID: 25282339 DOI: 10.1016/j.coi.2014.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 02/08/2023]
Abstract
Cell death cannot go unnoticed. It demands that the surrounding cells clear away the corpses in a manner appropriate to the type of cell death. Dying cells represent a threat to the body that should be eliminated by the host immune response. Inflammasome activation followed by IL-1alpha release and IL-1beta maturation is crucial for tackling pathological conditions, including infections, whereas inflammasome activation precedes inflammatory pyroptotic cell death. On the other hand, recent studies have shown that the inflammasome plays an important role in the pathogenesis of metabolic diseases, including obesity, diabetes, and atherosclerosis. Here, we review current knowledge of the association between cell death, excess metabolites, and inflammasome activation as it relates to chronic inflammatory diseases.
Collapse
|
34
|
|
35
|
Ravandi A, Leibundgut G, Hung MY, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S. Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 2014; 63:1961-71. [PMID: 24613321 DOI: 10.1016/j.jacc.2014.01.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study sought to assess whether oxidized lipids are released downstream from obstructive plaques after percutaneous coronary and peripheral interventions using distal protection devices. BACKGROUND Oxidation of lipoproteins generates multiple bioactive oxidized lipids that affect atherothrombosis and endothelial function. Direct evidence of their role during therapeutic procedures, which may result in no-reflow phenomenon, myocardial infarction, and stroke, is lacking. METHODS The presence of specific oxidized lipids was assessed in embolized material captured by distal protection filter devices during uncomplicated saphenous vein graft, carotid, renal, and superficial femoral artery interventions. The presence of oxidized phospholipids (OxPL) and oxidized cholesteryl esters (OxCE) was evaluated in 24 filters using liquid chromatography, tandem mass spectrometry, enzyme-linked immunosorbent assays, and immunostaining. RESULTS Phosphatidylcholine-containing OxPL, including (1-palmitoyl-2-[9-oxo-nonanoyl] PC), representing a major phosphatidylcholine-OxPL molecule quantitated within plaque material, [1-palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphocholine], and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, were identified in the extracted lipid portion from all vascular beds. Several species of OxCE, such as keto, hydroperoxide, hydroxy, and epoxy cholesteryl ester derivatives from cholesteryl linoleate and cholesteryl arachidonate, were also present. The presence of OxPL was confirmed using enzyme-linked immunoassays and immunohistochemistry of captured material. CONCLUSIONS This study documents the direct release and capture of OxPL and OxCE during percutaneous interventions from multiple arterial beds in humans. Entrance of bioactive oxidized lipids into the microcirculation may mediate adverse clinical outcomes during therapeutic procedures.
Collapse
Affiliation(s)
- Amir Ravandi
- St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medicine, University of California-San Diego, La Jolla, California
| | - Gregor Leibundgut
- Department of Medicine, University of California-San Diego, La Jolla, California; University of Basel, Basel, Switzerland
| | - Ming-Yow Hung
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mitul Patel
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Anand Prasad
- Department of Medicine, University of California-San Diego, La Jolla, California; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ehtisham Mahmud
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Yury I Miller
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Edward A Dennis
- Department of Pharmacology and Chemistry and Biochemistry, University of California, La Jolla, California
| | - Joseph L Witztum
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Sotirios Tsimikas
- Department of Medicine, University of California-San Diego, La Jolla, California.
| |
Collapse
|
36
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Choi SH, Yin H, Ravandi A, Armando A, Dumlao D, Kim J, Almazan F, Taylor AM, McNamara CA, Tsimikas S, Dennis EA, Witztum JL, Miller YI. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages. PLoS One 2013; 8:e83145. [PMID: 24376657 PMCID: PMC3871536 DOI: 10.1371/journal.pone.0083145] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/30/2013] [Indexed: 12/30/2022] Open
Abstract
Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron Armando
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Darren Dumlao
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Jungsu Kim
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Felicidad Almazan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Angela M. Taylor
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Coleen A. McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Edward A. Dennis
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Joseph L. Witztum
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chattopadhyay R, Dyukova E, Singh NK, Ohba M, Mobley JA, Rao GN. Vascular endothelial tight junctions and barrier function are disrupted by 15(S)-hydroxyeicosatetraenoic acid partly via protein kinase C ε-mediated zona occludens-1 phosphorylation at threonine 770/772. J Biol Chem 2013; 289:3148-63. [PMID: 24338688 DOI: 10.1074/jbc.m113.528190] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Disruption of tight junctions (TJs) perturbs endothelial barrier function and promotes inflammation. Previously, we have shown that 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1 (15-LO1) metabolite of arachidonic acid, by stimulating zona occludens (ZO)-2 tyrosine phosphorylation and its dissociation from claudins 1/5, induces endothelial TJ disruption and its barrier dysfunction. Here, we have studied the role of serine/threonine phosphorylation of TJ proteins in 15(S)-HETE-induced endothelial TJ disruption and its barrier dysfunction. We found that 15(S)-HETE enhances ZO-1 phosphorylation at Thr-770/772 residues via PKCε-mediated MEK1-ERK1/2 activation, causing ZO-1 dissociation from occludin, disrupting endothelial TJs and its barrier function, and promoting monocyte transmigration; these effects were reversed by T770A/T772A mutations. In the arteries of WT mice ex vivo, 15(S)-HETE also induced ZO-1 phosphorylation and endothelial TJ disruption in a PKCε and MEK1-ERK1/2-dependent manner. In line with these observations, in WT mice high fat diet feeding induced 12/15-lipoxygenase (12/15-LO) expression in the endothelium and caused disruption of its TJs and barrier function. However, in 12/15-LO(-/-) mice, high fat diet feeding did not cause disruption of endothelial TJs and barrier function. These observations suggest that the 12/15-LO-12/15(S)-HETE axis, in addition to tyrosine phosphorylation of ZO-2, also stimulates threonine phosphorylation of ZO-1 in the mediation of endothelial TJ disruption and its barrier dysfunction.
Collapse
Affiliation(s)
- Rima Chattopadhyay
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
39
|
Jang I, Park S, Cho JW, Yigitkanli K, van Leyen K, Roth J. Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy. Exp Cell Res 2013; 321:276-87. [PMID: 24291223 DOI: 10.1016/j.yexcr.2013.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/09/2013] [Accepted: 11/19/2013] [Indexed: 12/24/2022]
Abstract
12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagy and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components.
Collapse
Affiliation(s)
- Insook Jang
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Sujin Park
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Kazim Yigitkanli
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jürgen Roth
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|
40
|
Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm 2013; 2013:714653. [PMID: 24222937 PMCID: PMC3816061 DOI: 10.1155/2013/714653] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023] Open
Abstract
The oxidative modification hypothesis of atherosclerosis, which assigns to oxidized low-density lipoproteins (LDLs) a crucial role in atherosclerosis initiation and progression, is still debated. This review examines the role played by oxidized LDLs in atherogenesis taking into account data derived by studies based on molecular and clinical approaches. Experimental data carried out in cellular lines and animal models of atherosclerosis support the proatherogenic role of oxidized LDLs: (a) through chemotactic and proliferating actions on monocytes/macrophages, inciting their transformation into foam cells; (b) through stimulation of smooth muscle cells (SMCs) recruitment and proliferation in the tunica intima; (c) through eliciting endothelial cells, SMCs, and macrophages apoptosis with ensuing necrotic core development. Moreover, most of the experimental data on atherosclerosis-prone animals benefiting from antioxidant treatment points towards a link between oxidative stress and atherosclerosis. The evidence coming from cohort studies demonstrating an association between oxidized LDLs and cardiovascular events, notwithstanding some discrepancies, seems to point towards a role of oxidized LDLs in atherosclerotic plaque development and destabilization. Finally, the results of randomized clinical trials employing antioxidants completed up to date, despite demonstrating no benefits in healthy populations, suggest a benefit in high-risk patients. In conclusion, available data seem to validate the oxidative modification hypothesis of atherosclerosis, although additional proofs are still needed.
Collapse
Affiliation(s)
- Giuseppe Maiolino
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giacomo Rossitto
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Paola Caielli
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Valeria Bisogni
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Gian Paolo Rossi
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Lorenzo A. Calò
- Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
41
|
Kotla S, Singh NK, Heckle MR, Tigyi GJ, Rao GN. The transcription factor CREB enhances interleukin-17A production and inflammation in a mouse model of atherosclerosis. Sci Signal 2013; 6:ra83. [PMID: 24045154 DOI: 10.1126/scisignal.2004214] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The enzyme 15-lipoxygenase (15-LO) plays a role in atherogenesis (also known as atherosclerosis), but the underlying mechanisms are unclear. We found that 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE], the major 15-LO-dependent metabolite of arachidonic acid, stimulated the production of reactive oxygen species (ROS) by monocytes through the xanthine oxidase-mediated activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. ROS production led to the Syk-, Pyk2-, and mitogen-activated protein kinase (MAPK)-dependent production of the proinflammatory cytokine interleukin-17A (IL-17A) in a manner that required the transcription factor CREB (cyclic adenosine monophosphate response element-binding protein). In addition, this pathway was required for the 15(S)-HETE-dependent migration and adhesion of monocytes to endothelial cells. Consistent with these observations, we found that peritoneal macrophages from apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (a mouse model of atherosclerosis) exhibited increased xanthine oxidase and NADPH oxidase activities; ROS production; phosphorylation of Syk, Pyk2, MAPK, and CREB; and IL-17A production compared to those from similarly fed ApoE-/-:12/15-LO-/- mice. These events correlated with increased lipid deposits and numbers of monocytes and macrophages in the aortic arches of ApoE-/- mice, which resulted in atherosclerotic plaque formation. Together, these observations suggest that 15(S)-HETE exacerbates atherogenesis by enhancing CREB-dependent IL-17A production and inflammation.
Collapse
Affiliation(s)
- Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
42
|
Hamze M, Desmetz C, Berthe ML, Roger P, Boulle N, Brancherau P, Picard E, Guzman C, Tolza C, Guglielmi P. Characterization of Resident B Cells of Vascular Walls in Human Atherosclerotic Patients. THE JOURNAL OF IMMUNOLOGY 2013; 191:3006-16. [DOI: 10.4049/jimmunol.1202870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Koenig O, Walker T, Perle N, Zech A, Neumann B, Schlensak C, Wendel HP, Nolte A. New aspects of gene-silencing for the treatment of cardiovascular diseases. Pharmaceuticals (Basel) 2013; 6:881-914. [PMID: 24276320 PMCID: PMC3816708 DOI: 10.3390/ph6070881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/15/2013] [Accepted: 07/11/2013] [Indexed: 01/17/2023] Open
Abstract
Coronary heart disease (CHD), mainly caused by atherosclerosis, represents the single leading cause of death in industrialized countries. Besides the classical interventional therapies new applications for treatment of vascular wall pathologies are appearing on the horizon. RNA interference (RNAi) represents a novel therapeutic strategy due to sequence-specific gene-silencing through the use of small interfering RNA (siRNA). The modulation of gene expression by short RNAs provides a powerful tool to theoretically silence any disease-related or disease-promoting gene of interest. In this review we outline the RNAi mechanisms, the currently used delivery systems and their possible applications to the cardiovascular system. Especially, the optimization of the targeting and transfection procedures could enhance the efficiency of siRNA delivery drastically and might open the way to clinical applicability. The new findings of the last years may show the techniques to new innovative therapies and could probably play an important role in treating CHD in the future.
Collapse
Affiliation(s)
- Olivia Koenig
- Clinical Research Laboratory, Dept. of Thoracic, Cardiac and Vascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kundumani-Sridharan V, Dyukova E, Hansen DE, Rao GN. 12/15-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: a new role for 15(S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction. J Biol Chem 2013; 288:15830-42. [PMID: 23589307 DOI: 10.1074/jbc.m113.453290] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A convincing body of evidence suggests that 12/15-lipoxygenase (12/15-LO) plays a role in atherosclerosis. However, the mechanisms of its involvement in the pathogenesis of this disease are not clear. Therefore, the purpose of this study is to understand the mechanisms by which 12/15-LO mediates endothelial dysfunction. 15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 12/15-LO metabolite of arachidonic acid (AA), induced endothelial barrier permeability via Src and Pyk2-dependent zonula occluden (ZO)-2 tyrosine phosphorylation and its dissociation from the tight junction complexes. 15(S)-HETE also stimulated macrophage adhesion to the endothelial monolayer in Src and Pyk2-dependent manner. Ex vivo studies revealed that exposure of arteries from WT mice to AA or 15(S)-HETE led to Src-Pyk2-dependent ZO-2 tyrosine phosphorylation, tight junction disruption, and macrophage adhesion, whereas the arteries from 12/15-LO knock-out mice are protected from these effects of AA. Feeding WT mice with a high-fat diet induced the expression of 12/15-LO in the arteries leading to tight junction disruption and macrophage adhesion and deletion of the 12/15-LO gene disallowed these effects. Thus, the findings of this study provide the first evidence of the role of 12/15-LO and its AA metabolite, 15(S)-HETE, in high-fat diet-induced endothelial tight junction disruption and macrophage adhesion, the crucial events underlying the pathogenesis of atherosclerosis.
Collapse
|
46
|
Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2013; 33:1162-70. [PMID: 23559625 DOI: 10.1161/atvbaha.112.300572] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are associated with the accumulation of reactive aldehydes derived from oxidized lipids. Although inhibition of aldehyde metabolism has been shown to exacerbate atherosclerosis and enhance the accumulation of aldehyde-modified proteins in atherosclerotic plaques, no therapeutic interventions have been devised to prevent aldehyde accumulation in atherosclerotic lesions. APPROACH AND RESULTS We examined the efficacy of carnosine, a naturally occurring β-alanyl-histidine dipeptide, in preventing aldehyde toxicity and atherogenesis in apolipoprotein E-null mice. In vitro, carnosine reacted rapidly with lipid peroxidation-derived unsaturated aldehydes. Gas chromatography mass-spectrometry analysis showed that carnosine inhibits the formation of free aldehydes 4-hydroxynonenal and malonaldialdehyde in Cu(2+)-oxidized low-density lipoprotein. Preloading bone marrow-derived macrophages with cell-permeable carnosine analogs reduced 4-hydroxynonenal-induced apoptosis. Oral supplementation with octyl-D-carnosine decreased atherosclerotic lesion formation in aortic valves of apolipoprotein E-null mice and attenuated the accumulation of protein-acrolein, protein-4-hydroxyhexenal, and protein-4-hydroxynonenal adducts in atherosclerotic lesions, whereas urinary excretion of aldehydes as carnosine conjugates was increased. CONCLUSIONS The results of this study suggest that carnosine inhibits atherogenesis by facilitating aldehyde removal from atherosclerotic lesions. Endogenous levels of carnosine may be important determinants of atherosclerotic lesion formation, and treatment with carnosine or related peptides could be a useful therapy for the prevention or the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Miller YI, Choi SH, Wiesner P, Bae YS. The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 2013; 167:990-9. [PMID: 22776094 DOI: 10.1111/j.1476-5381.2012.02097.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is the best known for its involvement in immune receptor signalling, mediated by binding of SYK tandem Src-homology 2 domains to tandem phosphotyrosine in immunoreceptor tyrosine-based activation motifs (ITAMs). ITAM adaptors or ITAM-containing receptor tails mediate signalling from B- and T-cell receptors, Fc receptors and many C-type lectins, including dectin-1. Recent data point to constitutive binding of SYK to the cytoplasmic domain of toll-like receptor-4 (TLR4). This SYK-TLR4 binding increases upon TLR4 dimerization and phosphorylation, and SYK plays a prominent role in TLR4 signalling in response to LPS in neutrophils and monocytes. SYK also plays an important role in TLR4-mediated macrophage responses to minimally oxidized low-density lipoprotein (mmLDL), which is a form of oxidized LDL relevant to development of human atherosclerosis. Interestingly, mmLDL-induced effects in macrophages, which occur via TLR4, are predominantly MyD88 independent. This unmasks the role of the SYK branch of TLR4 signalling, which mediates modest cytokine release via activation of AP-1 transcription and robust reactive oxygen species generation and cytoskeletal rearrangements. The latter results in extensive membrane ruffling and macropinocytosis, leading to lipoprotein uptake and foam cell formation, a hallmark of atherosclerotic lesions. Because inhibitors of SYK activity, such as fostamatinib, are in advanced clinical trials for rheumatoid arthritis and other autoimmune diseases, understanding the role of SYK in signalling via TLR4 is of immediate importance. This signalling pathway seems to be particularly important in TLR4 activation by host-derived, damage-associated molecular pattern ligands, such as mmLDL, relevant to development of atherosclerosis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
48
|
Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res 2012; 111:778-99. [PMID: 22935534 DOI: 10.1161/circresaha.111.256859] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms. It has been recognized that Ox-PL promote phenotypic changes in these cell types that have long-term consequences for the vessel wall. Individual Ox-PL responsible for specific cellular effects have been identified. A model of the configuration of bioactive truncated Ox-PL within membranes has been developed that demonstrates that the oxidized fatty acid moiety protrudes into the aqueous phase, rendering it accessible for receptor recognition. Receptors and signaling pathways for individual Ox-PL species are now determined and receptor independent signaling pathways identified. The effects of Ox-PL are mediated both by gene regulation and transcription independent processes. It has now become apparent that Ox-PL affects multiple genes and pathways, some of which are proatherogenic and some are protective. However, at concentrations that are likely present in the vessel wall in atherosclerotic lesions, the effects promote atherogenesis. There have also been new insights on enzymes that metabolize Ox-PL and the significance of these enzymes for atherosclerosis. With the knowledge we now have of the regulation and effects of Ox-PL in different vascular cell types, it should be possible to design experiments to test the role of specific Ox-PL on the development of atherosclerosis.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, MRL 4760, 675 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kim DS, Burt AA, Crosslin DR, Robertson PD, Ranchalis JE, Boyko EJ, Nickerson DA, Furlong CE, Jarvik GP. Novel common and rare genetic determinants of paraoxonase activity: FTO, SERPINA12, and ITGAL. J Lipid Res 2012; 54:552-60. [PMID: 23160181 DOI: 10.1194/jlr.p033266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HDL-associated paraoxonase 1 (PON1) activity is associated with cardiovascular and other human diseases. As the role of genetic variants outside of the PON gene cluster on PON1 activity is unknown, we sought to identify common and rare variants in such loci. We typed 33,057 variants on the CVD chip in 1,362 subjects to test for their effects on adjusted-PON1 activity. Three novel genes (FTO, ITGAL, and SERPINA12) and the PON gene cluster had SNPs associated with PON1 arylesterase (AREase) activity. These loci were carried forward for rare-variant analysis using Exome chip genotypes in an overlapping subset of 1,051 subjects using sequence kernel association testing. PON1 (P = 2.24 × 10(-4)), PON3 (P = 0.022), FTO (P = 0.019), and SERPINA12 (P = 0.039) had both common and rare variants associated with PON1 AREase. ITGAL variants were associated with PON1 activity when using weighted sequence kernel association testing (SKAT) analysis (P = 2.63 × 10(-3)). When adjusting for the initial common variants, SERPINA12 became marginally significant (P = 0.09), whereas all other findings remained significant (P < 0.05), suggesting independent rare-variant effects. We present novel findings that common and rare variants in FTO, SERPINA12, and ITGAL predict PON1 activity. These results further link PON1 to diabetes and inflammation and may inform the role of HDL in human disease.
Collapse
Affiliation(s)
- Daniel S Kim
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang W, Lee Y, Lee CH. Review: the physiological and computational approaches for atherosclerosis treatment. Int J Cardiol 2012; 167:1664-76. [PMID: 23103138 DOI: 10.1016/j.ijcard.2012.09.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/23/2012] [Accepted: 09/26/2012] [Indexed: 01/13/2023]
Abstract
The cardiovascular disease has long been an issue that causes severe loss in population, especially those conditions associated with arterial malfunction, being attributable to atherosclerosis and subsequent thrombotic formation. This article reviews the physiological mechanisms that underline the transition from plaque formation in atherosclerotic process to platelet aggregation and eventually thrombosis. The physiological and computational approaches, such as percutaneous coronary intervention and stent design modeling, to detect, evaluate and mitigate this malicious progression were also discussed.
Collapse
Affiliation(s)
- Wuchen Wang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA
| | | | | |
Collapse
|