1
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
2
|
Liu Y, Wei X, Wang L, Yang Y, Xu L, Sun T, Yang L, Cai S, Liu X, Qin Z, Bin L, Sun S, Lu Y, Cui J, Liu Z, Wu J. Efficacy and safety of transcutaneous auricular vagus nerve stimulation for frequent premature ventricular complexes: rationale and design of the TASC-V trial. BMC Complement Med Ther 2024; 24:288. [PMID: 39075454 PMCID: PMC11285463 DOI: 10.1186/s12906-024-04568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Premature Ventricular Complexes (PVCs) are very common in clinical practice, with frequent PVCs (more than 30 beats per hour) or polymorphic PVCs significantly increasing the risk of mortality. Previous studies have shown that vagus nerve stimulation improves ventricular arrhythmias. Stimulation of the auricular distribution of the vagus nerve has proven to be a simple, safe, and effective method to activate the vagus nerve. Transcutaneous au ricular vagus nerve stimulation (taVNS) has shown promise in both clinical and experimental setting for PVCs; however, high-quality clinical studies are lacking, resulting in insufficient evidence of efficacy. METHODS The study is a prospective, randomized, parallel-controlled trial with a 1:1 ratio between the two groups. Patients will be randomized to either the treatment group (taVNS) or the control group (Sham-taVNS) with a 6-week treatment and a subsequent 12-week follow-up period. The primary outcome is the proportion of patients with a ≥ 50% reduction in the number of PVCs monitored by 24-hour Holter. Secondary outcomes include the proportion of patients with a ≥ 75% reduction in PVCs, as well as the changes in premature ventricular beats, total heartbeats, and supraventricular premature beats recorded by 24-hour Holter. Additional assessments compared score changes in PVCs-related symptoms, as well as the score change of self-rating anxiety scale (SAS), self-rating depression scale (SDS), and 36-item short form health survey (SF-36). DISCUSSION The TASC-V trial will help to reveal the efficacy and safety of taVNS for frequent PVCs, offering new clinical evidence for the clinical practice. TRIAL REGISTRATION Clinicaltrials.gov: NCT04415203 (Registration Date: May 30, 2020).
Collapse
Affiliation(s)
- Yu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xinyao Wei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lixin Wang
- Peking University Third Hospital Yanqing Hospital, Beijing, 102199, China
| | - Yanling Yang
- Peking University Third Hospital Yanqing Hospital, Beijing, 102199, China
| | - Liya Xu
- Beijing Longfu Hospital, Beijing, 100010, China
| | - Tianheng Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Li Yang
- Peking University Third Hospital Yanqing Hospital, Beijing, 102199, China
| | - Song Cai
- Beijing Longfu Hospital, Beijing, 100010, China
| | - Xiaojie Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zongshi Qin
- Peking University Clinical Research Institute, Beijing, 100083, China
| | - Lulu Bin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shaoxin Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yao Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiaming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhishun Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jiani Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
3
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
4
|
Abstract
Autonomic imbalance with a sympathetic dominance is acknowledged to be a critical determinant of the pathophysiology of chronic heart failure with reduced ejection fraction (HFrEF), regardless of the etiology. Consequently, therapeutic interventions directly targeting the cardiac autonomic nervous system, generally referred to as neuromodulation strategies, have gained increasing interest and have been intensively studied at both the pre-clinical level and the clinical level. This review will focus on device-based neuromodulation in the setting of HFrEF. It will first provide some general principles about electrical neuromodulation and discuss specifically the complex issue of dose-response with this therapeutic approach. The paper will thereafter summarize the rationale, the pre-clinical and the clinical data, as well as the future prospectives of the three most studied form of device-based neuromodulation in HFrEF. These include cervical vagal nerve stimulation (cVNS), baroreflex activation therapy (BAT), and spinal cord stimulation (SCS). BAT has been approved by the Food and Drug Administration for use in patients with HfrEF, while the other two approaches are still considered investigational; VNS is currently being investigated in a large phase III Study.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Department of Veteran's Affairs Medical Center , Charleston, SC , USA
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| |
Collapse
|
5
|
La Rovere MT, Gorini A, Schwartz PJ. Stress, the autonomic nervous system, and sudden death. Auton Neurosci 2021; 237:102921. [PMID: 34823148 DOI: 10.1016/j.autneu.2021.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The existence of an important relationship between stress, the autonomic nervous system, and sudden cardiac death (SCD) has been long recognized. In the present essay we review the large number of conditions, acting at individual or at population level, that have been causally associated to SCD and discuss the mechanistic and translational value of the studies exploring such associations. These conditions include external stressors (earthquakes, wars) and internal stressors (anger, fear, loss of a loved one) and emotions of even opposite sign. Most situations confirm the time-honored view that increases in sympathetic activity are proarrhythmic whereas increases in vagal activity are protective; however, we will also show and discuss a condition in which the culprit appears to be the excess of vagal activity. The physiologic rationale underlying the most typical situations is on one hand the profibrillatory effect of the increase in the heterogeneity of repolarization secondary to the release of norepinephrine, and on the other the combined effect of acetylcholine to lower heart rate and to antagonize the cardiac effects of norepinephrine at ventricular level. An interesting facet of this potentially lethal relationship is that the elements involved are by no means always exceptional, and they can actually represent part of our everyday life.
Collapse
Affiliation(s)
- Maria Teresa La Rovere
- Department of Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Montescano, Pavia, Italy.
| | - Alessandra Gorini
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.
| |
Collapse
|
6
|
Abstract
Vagal nerve stimulation (VNS) has a strong pathophysiological rationale as a potentially beneficial treatment for heart failure with reduced ejection fraction. Despite several promising preclinical studies and pilot clinical studies, the two large, controlled trials—NECTAR-HF and INOVATE-HF—failed to demonstrate the expected benefit. It is likely that clinical application of VNS in phase III studies was performed before a sufficient degree of understanding of the complex pathophysiology of autonomic electrical modulation had been achieved, therefore leading to an underestimation of its potential benefit. More knowledge on the complex dose–response issue of VNS (i.e., pulse amplitude, frequency, duration and duty cycle) has been gathered since these trials and a new randomized study is currently underway with an adaptive design and a refined approach in an attempt to deliver the proper dose to a more selected group of patients.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Department of Medical Sciences, Citta della Salute e della Scienza Hospital, University of Turin, Corso Bramante 88, 10126, Turin, Italy.
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Department of Medical Sciences, Citta della Salute e della Scienza Hospital, University of Turin, Corso Bramante 88, 10126, Turin, Italy
| |
Collapse
|
7
|
Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci Bull 2020; 37:853-862. [PMID: 33355897 DOI: 10.1007/s12264-020-00619-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Whether in the West or the East, the connection between the ear and the rest of the body has been explored for a long time. Especially in the past century or more, the relevant theoretical and applied research on the ear has greatly promoted the development of ear therapy, and finally the concept of transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed. The purpose of taVNS is to treat a disease non-invasively by applying electrical current to the cutaneous receptive field formed by the auricular branch of the vagus nerve in the outer ear. In the past two decades, taVNS has been a topic of basic, clinical, and transformation research. It has been applied as an alternative to drug treatment for a variety of diseases. Based on the rapid understanding of the application of taVNS to human health and disease, some limitations in the development of this field have also been gradually exposed. Here, we comprehensively review the origin and research status of the field.
Collapse
|
8
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Liu C, Jiang H, Yu L, S Po S. Vagal Stimulation and Arrhythmias. J Atr Fibrillation 2020; 13:2398. [PMID: 33024499 DOI: 10.4022/jafib.2398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
Collapse
Affiliation(s)
- Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, O K USA
| |
Collapse
|
10
|
La Rovere MT, Porta A, Schwartz PJ. Autonomic Control of the Heart and Its Clinical Impact. A Personal Perspective. Front Physiol 2020; 11:582. [PMID: 32670079 PMCID: PMC7328903 DOI: 10.3389/fphys.2020.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
This essay covers several aspects of the autonomic control of the heart, all relevant to cardiovascular pathophysiology with a direct impact on clinical outcomes. Ischemic heart disease, heart failure, channelopathies, and life-threatening arrhythmias are in the picture. Beginning with an overview on some of the events that marked the oscillations in the medical interest for the autonomic nervous system, our text explores specific areas, including experimental and clinical work focused on understanding the different roles of tonic and reflex sympathetic and vagal activity. The role of the baroreceptors, not just for the direct control of circulation but also because of the clinical value of interpreting alterations (spontaneous or induced) in their function, is discussed. The importance of the autonomic nervous system for gaining insights on risk stratification and for providing specific antiarrhythmic protection is also considered. Examples are the interventions to decrease sympathetic activity and/or to increase vagal activity. The non-invasive analysis of the RR and QT intervals provides additional information. The three of us have collaborated in several studies and each of us contributes with very specific and independent areas of expertise. Here, we have focused on those areas to which we have directly contributed and hence speak with personal experience. This is not an attempt to provide a neutral and general overview on the autonomic nervous system; rather, it represents our effort to share and provide the readers with our own personal views matured after many years of research in this field.
Collapse
Affiliation(s)
- Maria Teresa La Rovere
- Department of Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Montescano (Pavia), Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
11
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
12
|
Wang Y, Po SS, Scherlag BJ, Yu L, Jiang H. The role of low-level vagus nerve stimulation in cardiac therapy. Expert Rev Med Devices 2019; 16:675-682. [PMID: 31306049 DOI: 10.1080/17434440.2019.1643234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: Cardiovascular diseases are accompanied by autonomic nervous system (ANS) imbalance which is characterized by decreased vagal tone. Preclinical and clinical studies have revealed that increasing vagal activity via vagus nerve stimulation (VNS) could protect the heart. Based on these studies, VNS has emerged as a potential non-pharmaceutical treatment strategy. Although it's still difficult to find the optimal stimulus parameters, however, in arrhythmia model, it is reported that low-level VNS (LL-VNS) exacts paradoxical effects from the high-level VNS. Thus, the concept of LL-VNS is introduced. Areas covered: Animal and human studies have discussed the safety and efficacy of VNS and LL-VNS, and this review will discuss the research data in cardiovascular diseases, including atrial arrhythmia, ventricular arrhythmia, ischemia/reperfusion injury, heart failure, and hypertension. Expert opinion: In this regard, various clinical studies have been performed to verify the safety and efficacy of VNS. It is shown that VNS is well-tolerated and safe, but the results of its efficacy are conflicting, which may well block the translational process of VNS. The appearance of LL-VNS brings new idea and inspiration, suggesting an important role of subthreshold stimulation. A better understanding of the LL-VNS will contribute to translational research of VNS.
Collapse
Affiliation(s)
- Yuhong Wang
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China.,b Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University , Harbin , China
| | - Sunny S Po
- c Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Benjamin J Scherlag
- c Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Lilei Yu
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China
| | - Hong Jiang
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China
| |
Collapse
|
13
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
14
|
Jamali HK, Waqar F, Gerson MC. Cardiac autonomic innervation. J Nucl Cardiol 2017; 24:1558-1570. [PMID: 27844333 DOI: 10.1007/s12350-016-0725-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
The autonomic nervous system plays a key role in regulating changes in the cardiovascular system and its adaptation to various human body functions. The sympathetic arm of the autonomic nervous system is associated with the fight and flight response, while the parasympathetic division is responsible for the restorative effects on heart rate, blood pressure, and contractility. Disorders involving these two divisions can lead to, and are seen as, a manifestation of most common cardiovascular disorders. Over the last few decades, extensive research has been performed establishing imaging techniques to quantify the autonomic dysfunction associated with various cardiovascular disorders. Additionally, several techniques have been tested with variable success in modulating the cardiac autonomic nervous system as treatment for these disorders. In this review, we summarize basic anatomy, physiology, and pathophysiology of the cardiac autonomic nervous system including adrenergic receptors. We have also discussed several imaging modalities available to aid in diagnosis of cardiac autonomic dysfunction and autonomic modulation techniques, including pharmacologic and device-based therapies, that have been or are being tested currently.
Collapse
Affiliation(s)
- Hina K Jamali
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, P.O. Box 670542, Cincinnati, OH, USA
| | - Fahad Waqar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, P.O. Box 670542, Cincinnati, OH, USA
| | - Myron C Gerson
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, P.O. Box 670542, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Vaseghi M, Salavatian S, Rajendran PS, Yagishita D, Woodward WR, Hamon D, Yamakawa K, Irie T, Habecker BA, Shivkumar K. Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI Insight 2017; 2:86715. [PMID: 28814663 DOI: 10.1172/jci.insight.86715] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/06/2017] [Indexed: 01/22/2023] Open
Abstract
Myocardial infarction causes sympathetic activation and parasympathetic dysfunction, which increase risk of sudden death due to ventricular arrhythmias. Mechanisms underlying parasympathetic dysfunction are unclear. The aim of this study was to delineate consequences of myocardial infarction on parasympathetic myocardial neurotransmitter levels and the function of parasympathetic cardiac ganglia neurons, and to assess electrophysiological effects of vagal nerve stimulation on ventricular arrhythmias in a chronic porcine infarct model. While norepinephrine levels decreased, cardiac acetylcholine levels remained preserved in border zones and viable myocardium of infarcted hearts. In vivo neuronal recordings demonstrated abnormalities in firing frequency of parasympathetic neurons of infarcted animals. Neurons that were activated by parasympathetic stimulation had low basal firing frequency, while neurons that were suppressed by left vagal nerve stimulation had abnormally high basal activity. Myocardial infarction increased sympathetic inputs to parasympathetic convergent neurons. However, the underlying parasympathetic cardiac neuronal network remained intact. Augmenting parasympathetic drive with vagal nerve stimulation reduced ventricular arrhythmia inducibility by decreasing ventricular excitability and heterogeneity of repolarization of infarct border zones, an area with known proarrhythmic potential. Preserved acetylcholine levels and intact parasympathetic neuronal pathways can explain the electrical stabilization of infarct border zones with vagal nerve stimulation, providing insight into its antiarrhythmic benefit.
Collapse
Affiliation(s)
- Marmar Vaseghi
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and.,Molecular Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, California, USA
| | - Siamak Salavatian
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and.,Molecular Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, California, USA
| | - Pradeep S Rajendran
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and.,Molecular Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, California, USA
| | - Daigo Yagishita
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and
| | | | - David Hamon
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and
| | | | - Tadanobu Irie
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and
| | - Beth A Habecker
- Department of Physiology & Pharmacology and.,Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center.,Neurocardiology Research Center of Excellence, and.,Molecular Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
Naryzhnaya NV, Mukhamedzyanov AV, Lasukova TV, Maslov LN. Involvement of Autonomic Nervous System in Antiarrhythmic Effect of Intermittent Hypobaric Hypoxia. Bull Exp Biol Med 2017; 163:299-301. [PMID: 28744643 DOI: 10.1007/s10517-017-3789-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 11/29/2022]
Abstract
We studied the involvement of the autonomic nervous system in the antiarrhythmic effect of intermittent hypobaric hypoxia modeled by daily placing the rats into an altitude chamber at 405 mm Hg (5000 m above sea level). The antiarrhythmic effect of hypoxia was observed on the model of acute coronary occlusion/reperfusion in vivo, but not during simulation of total ischemia/reperfusion of the isolated myocardium. Intravenous injection of ganglionic blocker hexamethonium (30 mg/kg) 15 min prior to in vivo coronary occlusion modeling abolished the antiarrhythmic effect of intermittent hypobaric hypoxia, which suggests that this effect is mediated via activation of the autonomic nervous system.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Research Institute of Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - A V Mukhamedzyanov
- Research Institute of Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - T V Lasukova
- Research Institute of Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Department of Medical and Biological Sciences, Tomsk State Pedagogical University, Tomsk, Russia
| | - L N Maslov
- Research Institute of Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
17
|
Libbus I, Nearing BD, Amurthur B, KenKnight BH, Verrier RL. Quantitative evaluation of heartbeat interval time series using Poincaré analysis reveals distinct patterns of heart rate dynamics during cycles of vagus nerve stimulation in patients with heart failure. J Electrocardiol 2017. [PMID: 28625397 DOI: 10.1016/j.jelectrocard.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimization of stimulation parameters is essential to maximizing therapeutic efficacy and minimizing side effects. METHODS The ANTHEM-HF study enrolled patients with heart failure who received chronic autonomic regulation therapy (ART) with an implantable vagus nerve stimulation (VNS) system on either the right (n=30) or left side (n=29). Acute effects of continuously cycling VNS on R-R interval dynamics were evaluated using post hoc Poincaré analysis of ECG recordings collected during multiple titration sessions over an 8-12week period. During each titration session, VNS intensity associated with maximum tolerable dose was determined. Poincaré plots of R-R interval time series were created for epochs when VNS cycled from OFF to ON at varying intensity levels. RESULTS VNS produced an immediate, relatively small change in beat-to-beat distribution of R-R intervals during the 14-sec ON time, which was correlated with stimulation current amplitude (r=0.85, p=0.05). During titration of right-sided stimulation, there was a strong correlation (r=0.91, p=0.01) between stimulus intensity and the Poincaré parameter of standard deviation, SD1, which is associated with high-frequency heart rate variability. The effect of VNS on instantaneous heart rate was indicated by a shift in the centroid of the beat-to-beat cloud distribution demarcated by the encircling ellipse. As anticipated, left-sided stimulation did not alter any Poincaré parameter except at high stimulation intensities (≥2mA). CONCLUSION Quantitative Poincaré analysis reveals a tight coupling in beat-to-beat dynamics during VNS ON cycles that is directly related to stimulation intensity, providing a useful measurement for confirming autonomic engagement.
Collapse
Affiliation(s)
| | - Bruce D Nearing
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Richard L Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [PMID: 28366738 DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|
19
|
Richards JR, Hollander JE, Ramoska EA, Fareed FN, Sand IC, Izquierdo Gómez MM, Lange RA. β-Blockers, Cocaine, and the Unopposed α-Stimulation Phenomenon. J Cardiovasc Pharmacol Ther 2016; 22:239-249. [PMID: 28399647 DOI: 10.1177/1074248416681644] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cocaine abuse remains a significant worldwide health problem. Patients with cardiovascular toxicity from cocaine abuse frequently present to the emergency department for treatment. These patients may be tachycardic, hypertensive, agitated, and have chest pain. Several pharmacological options exist for treatment of cocaine-induced cardiovascular toxicity. For the past 3 decades, the phenomenon of unopposed α-stimulation after β-blocker use in cocaine-positive patients has been cited as an absolute contraindication, despite limited and inconsistent clinical evidence. In this review, the authors of the original studies, case reports, and systematic review in which unopposed α-stimulation was believed to be a factor investigate the pathophysiology, pharmacology, and published evidence behind the unopposed α-stimulation phenomenon. We also investigate other potential explanations for unopposed α-stimulation, including the unique and deleterious pharmacologic properties of cocaine in the absence of β-blockers. The safety and efficacy of the mixed β-/α-blockers labetalol and carvedilol are also discussed in relation to unopposed α-stimulation.
Collapse
Affiliation(s)
- John R Richards
- 1 Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Judd E Hollander
- 2 Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Ramoska
- 3 Department of Emergency Medicine, Drexel University, Philadelphia, PA, USA
| | - Fareed N Fareed
- 4 Emergency Medical Associates, EmCare Partners Group, Parsippany, NJ, USA
| | | | | | - Richard A Lange
- 7 Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
20
|
Arsenos P, Manis G, Gatzoulis KA, Dilaveris P, Gialernios T, Angelis A, Papadopoulos A, Venieri E, Trikas A, Tousoulis D. Deceleration Capacity of Heart Rate Predicts Arrhythmic and Total Mortality in Heart Failure Patients. Ann Noninvasive Electrocardiol 2016; 21:508-518. [PMID: 27038287 PMCID: PMC6931782 DOI: 10.1111/anec.12343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Deceleration capacity (DC) of heart rate proved an independent mortality predictor in postmyocardial infarction patients. The original method (DCorig) may produce negative values (9% in our analyzed sample). We aimed to improve the method and to investigate if DC also predicts the arrhythmic mortality. METHODS Time series from 221 heart failure patients was analyzed with DCorig and a new variant, the DCsgn, in which decelerations are characterized based on windows of four consecutive beats and not on anchors. After 41.2 months, 69 patients experienced sudden cardiac death (SCD) surrogate end points, while 61 died. RESULTS (SCD+ vs SCD-group) DCorig: 3.7 ± 1.6 ms versus 4.6 ± 2.6 ms (P = 0.020) and DCsgn: 4.9 ± 1.7 ms versus 6.1 ± 2.2 ms (P < 0.001). After Cox regression (gender, age, left ventricular ejection fraction, filtered QRS, NSVT≥1/24h, VPBs≥240/24h, mean 24-h QTc, and each DC index added on the model separately), DCsgn (continuous) was an independent SCD predictor (hazard ratio [H.R.]: 0.742, 95% confidence intervals (C.I.): 0.631-0.871, P < 0.001). DCsgn ≤ 5.373 (dichotomous) presented 1.815 H.R. for SCD (95% C.I.: 1.080-3.049, P = 0.024), areas under curves (AUC)/receiver operator characteristic (ROC): 0.62 (DCorig) and 0.66 (DCsgn), P = 0.190 (chi-square). Results for deceased versus alive group: DCorig: 3.2 ± 2.0 ms versus 4.8 ± 2.4 ms (P < 0.001) and DCsgn: 4.6 ± 1.4 ms versus 6.2 ± 2.2 ms (P < 0.001). In Cox regression, DCsgn (continuous) presented H.R.: 0.686 (95% C.I. 0.546-0.862, P = 0.001) and DCsgn ≤ 5.373 (dichotomous) presented an H.R.: 2.443 for total mortality (TM) (95% C.I. 1.269-4.703, P = 0.008). AUC/ROC 0.71 (DCorig) and 0.73 (DCsgn), P = 0.402. CONCLUSIONS DC predicts both SCD and TM. DCsgn avoids the negative values, improving the method in a nonstatistical important level.
Collapse
Affiliation(s)
- Petros Arsenos
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - George Manis
- Department of Computer Science and EngineeringUniversity of IoanninaIoanninaGreece
| | - Konstantinos A. Gatzoulis
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Polychronis Dilaveris
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Theodoros Gialernios
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Athanasios Angelis
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Achileas Papadopoulos
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Erifili Venieri
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | | - Dimitris Tousoulis
- First Division of Cardiology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
21
|
Kalla M, Herring N, Paterson DJ. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton Neurosci 2016; 199:29-37. [PMID: 27590099 PMCID: PMC5334443 DOI: 10.1016/j.autneu.2016.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
A hallmark of cardiovascular disease is cardiac autonomic dysregulation. The phenotype of impaired parasympathetic responsiveness and sympathetic hyperactivity in experimental animal models is also well documented in large scale human studies in the setting of heart failure and myocardial infarction, and is predictive of morbidity and mortality. Despite advances in emergency revascularisation strategies for myocardial infarction, device therapy for heart failure and secondary prevention pharmacotherapies, mortality from malignant ventricular arrhythmia remains high. Patients at highest risk or those with haemodynamically significant ventricular arrhythmia can be treated with catheter ablation and implantable cardioverter defibrillators, but the morbidity and reduction in quality of life due to the burden of ventricular arrhythmia and shock therapy persists. Therefore, future therapies must aim to target the underlying pathophysiology that contributes to the generation of ventricular arrhythmia. This review explores recent advances in mechanistic research in both limbs of the autonomic nervous system and potential avenues for translation into clinical therapy. In addition, we also discuss the relationship of these findings in the context of the reported efficacy of current neuromodulatory strategies in the management of ventricular arrhythmia. We review advances in mechanistic research in the cardiac autonomic nervous system. This is discussed in relation to neuromodulatory therapy for ventricular arrhythmia. Neuromodulation therapies can influence both neurotransmitters and co-transmitters. This may therefore improve on conventional medical treatment.
Collapse
Affiliation(s)
| | - Neil Herring
- Corresponding author at: Burdon Sanderson Cardiac Science Centre, Dept. of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX13PT, UK.Burdon Sanderson Cardiac Science CentreDept. of Physiology, Anatomy and GeneticsUniversity of OxfordParks RoadOX13PTUK
| | | |
Collapse
|
22
|
Ng GA. Neuro-cardiac interaction in malignant ventricular arrhythmia and sudden cardiac death. Auton Neurosci 2016; 199:66-79. [DOI: 10.1016/j.autneu.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022]
|
23
|
NEARING BRUCED, LIBBUS IMAD, AMURTHUR BADRI, KENKNIGHT BRUCEH, VERRIER RICHARDL. Acute Autonomic Engagement Assessed by Heart Rate Dynamics During Vagus Nerve Stimulation in Patients With Heart Failure in the ANTHEM‐HF Trial. J Cardiovasc Electrophysiol 2016; 27:1072-7. [DOI: 10.1111/jce.13017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- BRUCE D. NEARING
- Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts USA
| | | | | | | | - RICHARD L. VERRIER
- Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
24
|
Guiraud D, Andreu D, Bonnet S, Carrault G, Couderc P, Hagège A, Henry C, Hernandez A, Karam N, Le Rolle V, Mabo P, Maciejasz P, Malbert CH, Marijon E, Maubert S, Picq C, Rossel O, Bonnet JL. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation. J Neural Eng 2016; 13:041002. [PMID: 27351347 DOI: 10.1088/1741-2560/13/4/041002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. APPROACH This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. MAIN RESULTS We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.
Collapse
Affiliation(s)
- David Guiraud
- Inria, DEMAR, Montpellier, France. University of Montpellier, DEMAR, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kalla M, Chotalia M, Coughlan C, Hao G, Crabtree MJ, Tomek J, Bub G, Paterson DJ, Herring N. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. J Physiol 2016; 594:3981-92. [PMID: 26752781 PMCID: PMC4794549 DOI: 10.1113/jp271588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Animal studies suggest an anti-fibrillatory action of the vagus nerve on the ventricle, although the exact mechanism is controversial. Using a Langendorff perfused rat heart, we show that the acetylcholine analogue carbamylcholine raises ventricular fibrillation threshold (VFT) and flattens the electrical restitution curve. The anti-fibrillatory action of carbamylcholine was prevented by the nicotinic receptor antagonist mecamylamine, inhibitors of neuronal nitric oxide synthase (nNOS) and soluble guanylyl cyclase (sGC), and can be mimicked by the nitric oxide (NO) donor sodium nitroprusside. Carbamylcholine increased NO metabolite content in the coronary effluent and this was prevented by mecamylamine. The anti-fibrillatory action of both carbamylcholine and sodium nitroprusside was ultimately dependent on muscarinic receptor stimulation as all effects were blocked by atropine. These data demonstrate a protective effect of carbamylcholine on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS-sGC dependent pathway. ABSTRACT Implantable cardiac vagal nerve stimulators are a promising treatment for ventricular arrhythmia in patients with heart failure. Animal studies suggest the anti-fibrillatory effect may be nitric oxide (NO) dependent, although the exact site of action is controversial. We investigated whether a stable analogue of acetylcholine could raise ventricular fibrillation threshold (VFT), and whether this was dependent on NO generation and/or muscarinic/nicotinic receptor stimulation. VFT was determined in Langendorff perfused rat hearts by burst pacing until sustained VF was induced. Carbamylcholine (CCh, 200 nmol l(-1) , n = 9) significantly (P < 0.05) reduced heart rate from 292 ± 8 to 224 ± 6 b.p.m. Independent of this heart rate change, CCh caused a significant increase in VFT (control 1.5 ± 0.3 mA, CCh 2.4 ± 0.4 mA, wash 1.1 ± 0.2 mA) and flattened the restitution curve (n = 6) derived from optically mapped action potentials. The effect of CCh on VFT was abolished by a muscarinic (atropine, 0.1 μmol l(-1) , n = 6) or a nicotinic receptor antagonist (mecamylamine, 10 μmol l(-1) , n = 6). CCh significantly increased NOx content in coronary effluent (n = 8), but not in the presence of mecamylamine (n = 8). The neuronal nitric oxide synthase inhibitor AAAN (N-(4S)-4-amino-5-[aminoethyl]aminopentyl-N'-nitroguanidine; 10 μmol l(-1) , n = 6) or soluble guanylate cyclase (sGC) inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 10 μmol l(-1) , n = 6) prevented the rise in VFT with CCh. The NO donor sodium nitrprusside (10 μmol l(-1) , n = 8) mimicked the action of CCh on VFT, an effect that was also blocked by atropine (n = 10). These data demonstrate a protective effect of CCh on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS/sGC-dependent pathway.
Collapse
Affiliation(s)
- Manish Kalla
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Minesh Chotalia
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Charles Coughlan
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Guoliang Hao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Mark J Crabtree
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Gil Bub
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
|
27
|
Eisenmann ED, Rorabaugh BR, Zoladz PR. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents. Front Psychiatry 2016; 7:71. [PMID: 27199778 PMCID: PMC4843048 DOI: 10.3389/fpsyt.2016.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.
Collapse
Affiliation(s)
- Eric D Eisenmann
- Department of Psychology, Sociology and Criminal Justice, Ohio Northern University , Ada, OH , USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University , Ada, OH , USA
| | - Phillip R Zoladz
- Department of Psychology, Sociology and Criminal Justice, Ohio Northern University , Ada, OH , USA
| |
Collapse
|
28
|
Huang WA, Shivkumar K, Vaseghi M. Device-based autonomic modulation in arrhythmia patients: the role of vagal nerve stimulation. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2015; 17:379. [PMID: 25894588 DOI: 10.1007/s11936-015-0379-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Vagal nerve stimulation (VNS) has shown promise as an adjunctive therapy for management of cardiac arrhythmias by targeting the cardiac parasympathetic nervous system. VNS has been evaluated in the setting of ischemia-driven ventricular arrhythmias and atrial arrhythmias, as well as a treatment option for heart failure. As better understanding of the complexities of the cardiac autonomic nervous system is obtained, vagal nerve stimulation will likely become a powerful tool in the current cardiovascular therapeutic armamentarium.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | | |
Collapse
|
29
|
Pinna GD, Maestri R, La Rovere MT. Assessment of baroreflex sensitivity from spontaneous oscillations of blood pressure and heart rate: proven clinical value? Physiol Meas 2015; 36:741-53. [PMID: 25798657 DOI: 10.1088/0967-3334/36/4/741] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The baroreceptor-heart rate reflex (baroreflex sensitivity, BRS) is a key mechanism contributing to the neural regulation of the cardiovascular system. Several methods have been proposed so far to assess BRS by analyzing the spontaneous beat-to-beat fluctuations of arterial blood pressure and heart rate. These methods are inherently simple, non-invasive and low-cost. This study is an attempt to address the question of whether spontaneous baroreflex methods have proven to be of value in the clinical setting. In the first part of this article, we critically review most representative clinical studies using spontaneous BRS techniques either for risk stratification or treatment evaluation, these being major issues in the clinical management of the patients. In the second part, we address two important aspects of spontaneous BRS measurements: measurability and reliability. Estimation of BRS in the studies selected for the review was performed according to the sequence, transfer function, alpha-index and phase-rectified signal averaging method. Arterial blood pressure was recorded non-invasively during supine, short-term (<30 min) laboratory recordings. The conclusion from this review is that spontaneous BRS techniques have been shown to be of great value in clinical practice but further work is needed to confirm the validity of previous findings and to widen the field of clinical applications. Measurability and reliability can be a major issue in the measurement of spontaneous BRS, particularly in some patient populations like post-myocardial infarction and heart failure patents. Main causes of poor measurability are: non-sinus rhythm, a high rate of ectopic beats and the need for recorded time series of RR interval and arterial blood pressure to satisfy the constraints of the different BRS estimation algorithms. As for reliability, within-subject variability is rather high in the measurements of spontaneous BRS and, therefore, should be carefully taken into account when BRS measurements are used to detect treatment effects in individual patients.
Collapse
Affiliation(s)
- Gian Domenico Pinna
- Department of Biomedical Engineering, Fondazione S. Maugeri-IRCCS, Montescano, Italy
| | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Anxiety is a common experience among patients with acute coronary syndrome (ACS) that can have a negative impact on health outcomes. Nonetheless, the negative role of anxiety remains underappreciated, as reflected by clinicians' underrecognition and undertreatment of anxious hospitalized and nonhospitalized patients with ACS. Underappreciation of the role of anxiety is possibly related to inadequate understanding of the mechanisms whereby anxiety may adversely affect health outcomes. PURPOSE The aim of this study was to synthesize the evidence about potential mechanisms by which anxiety and adverse health outcomes are related. CONCLUSIONS A biobehavioral model links anxiety to the development of thrombogenic and arrhythmic events in patients with ACS. Biologically, anxiety may interfere with the immune system, lipid profile, automatic nervous system balance, and the coagulation cascade, whereas behaviorally, anxiety may adversely affect adoption of healthy habits and cardiac risk-reducing behaviors. The biological and behavioral pathways complement each other in the production of poor outcomes. CLINICAL IMPLICATIONS Anxiety requires more attention from clinical cardiology. The adverse impact of anxiety on health outcomes could be avoided by efficient assessment and treatment of anxiety.
Collapse
|
31
|
Vanoli E, Pentimalli F, Botto G. Vagomimetic effects of fingolimod: physiology and clinical implications. CNS Neurosci Ther 2014; 20:496-502. [PMID: 24836740 PMCID: PMC4204275 DOI: 10.1111/cns.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 01/01/2023] Open
Abstract
Fingolimod is a sphingosine 1-phosphate (S1P) receptor modulator approved to treat relapsing-remitting multiple sclerosis (MS). Initiation of treatment with fingolimod has been found to produce transient bradycardia and/or slowing of atrioventricular impulse conduction in a small proportion of patients. This effect is thought to be due to the interaction of fingolimod with S1P receptors on the surface membrane of atrial myocytes causing a vagomimetic effect, similar to the action of acetylcholine on muscarinic receptors. As a precaution, patients are under electrocardiogram (ECG) monitoring for 6 h after receiving their first dose. Fingolimod is contraindicated in patients with overt or concealed cardiac diseases. However, the Fingolimod Initiation and caRdiac Safety Trial (FIRST), which was designed specifically to investigate the cardiac profile of fingolimod, did not show an increased risk of clinically relevant cardiac events with fingolimod. This review examines the electrophysiology and pathophysiology of cardiac impulse formation in the context of fingolimod. It concludes that these vagomimetic effects should be considered benign and should not prevent the effective use of fingolimod in the treatment of patients with MS.
Collapse
Affiliation(s)
- Emilio Vanoli
- Cardiology Section, Department of Molecular Medicine, University of Pavia, Pavia, Italy; Cardiovascular Department, IRCCS Multimedica, Sesto San Giovanni, Italy
| | | | | |
Collapse
|
32
|
Abstract
This review highlights the importance of neural mechanisms capable of protecting the heart against lethal ischemia/reperfusion injury. Increased parasympathetic (vagal) activity limits myocardial infarction, and recent data suggest that activation of autonomic reflex pathways contributes to powerful innate mechanisms of cardioprotection underlying the remote ischemic conditioning phenomena.
Collapse
Affiliation(s)
- Andrey Gourine
- Department of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; and
| | | |
Collapse
|
33
|
Yamakawa K, So EL, Rajendran PS, Hoang JD, Makkar N, Mahajan A, Shivkumar K, Vaseghi M. Electrophysiological effects of right and left vagal nerve stimulation on the ventricular myocardium. Am J Physiol Heart Circ Physiol 2014; 307:H722-31. [PMID: 25015962 DOI: 10.1152/ajpheart.00279.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vagal nerve stimulation (VNS) has been proposed as a cardioprotective intervention. However, regional ventricular electrophysiological effects of VNS are not well characterized. The purpose of this study was to evaluate effects of right and left VNS on electrophysiological properties of the ventricles and hemodynamic parameters. In Yorkshire pigs, a 56-electrode sock was used for epicardial (n = 12) activation recovery interval (ARI) recordings and a 64-electrode catheter for endocardial (n = 9) ARI recordings at baseline and during VNS. Hemodynamic recordings were obtained using a conductance catheter. Right and left VNS decreased heart rate (84 ± 5 to 71 ± 5 beats/min and 84 ± 4 to 73 ± 5 beats/min), left ventricular pressure (89 ± 9 to 77 ± 9 mmHg and 91 ± 9 to 83 ± 9 mmHg), and dP/dtmax (1,660 ± 154 to 1,490 ± 160 mmHg/s and 1,595 ± 155 to 1,416 ± 134 mmHg/s) and prolonged ARI (327 ± 18 to 350 ± 23 ms and 327 ± 16 to 347 ± 21 ms, P < 0.05 vs. baseline for all parameters and P = not significant for right VNS vs. left VNS). No anterior-posterior-lateral regional differences in the prolongation of ARI during right or left VNS were found. However, endocardial ARI prolonged more than epicardial ARI, and apical ARI prolonged more than basal ARI during both right and left VNS. Changes in dP/dtmax showed the strongest correlation with ventricular ARI effects (R(2) = 0.81, P < 0.0001) than either heart rate (R(2) = 0.58, P < 0.01) or left ventricular pressure (R(2) = 0.52, P < 0.05). Therefore, right and left VNS have similar effects on ventricular ARI, in contrast to sympathetic stimulation, which shows regional differences. The decrease in inotropy correlates best with ventricular electrophysiological effects.
Collapse
Affiliation(s)
- Kentaro Yamakawa
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Eileen L So
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California
| | - Pradeep S Rajendran
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Program, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Jonathan D Hoang
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nupur Makkar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California
| | - Aman Mahajan
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Program, David Geffen School of Medicine at UCLA, Los Angeles, California; and Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Program, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Marmar Vaseghi
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Program, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| |
Collapse
|
34
|
La Rovere MT, Pinna GD. Beneficial effects of physical activity on baroreflex control in the elderly. Ann Noninvasive Electrocardiol 2014; 19:303-10. [PMID: 24844457 DOI: 10.1111/anec.12170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The baroreflex mechanisms, by controlling autonomic outflow to the heart and circulation, contribute importantly to neural circulatory control. The main function of the baroreflex is to prevent wide fluctuations in arterial blood pressure and to maintain the physiological homeostasis under basal resting conditions and in response to acute stress. Baroreflex-mediated changes in autonomic outflow affect heart rate, myocardial contractility, and peripheral vascular resistance. The baroreflex control of heart rate is of particular interest in pathological conditions, since it has been associated with increased propensity for cardiac mortality and sudden death. Aging is associated with significant cardiovascular modifications. The changes in baroreflex function that occur with age have been systematically studied by several methodological approaches. The available evidence indicates a reduced arterial baroreflex control of heart rate favoring an increase in sympathetic and a decrease in parasympathetic drive to the heart as well as an impairment in the baroreceptor control of blood pressure. Both kinds of changes have resultant clinical implications. Exercise training can modulate the age-related decline in baroreflex function and the attending abnormalities in autonomic control, thus accounting for some of the beneficial effects of physical activity in reducing the risk of cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Maria Teresa La Rovere
- Department of Cardiology and Biomedical Engineering, Fondazione "Salvatore Maugeri," IRCCS, Istituto Scientifico di Montescano (Pavia), Italy
| | | |
Collapse
|
35
|
Konickx LA, Bingham K, Eddleston M. Is oxygen required before atropine administration in organophosphorus or carbamate pesticide poisoning? - A cohort study. Clin Toxicol (Phila) 2014; 52:531-7. [PMID: 24810796 PMCID: PMC4134047 DOI: 10.3109/15563650.2014.915411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Early and adequate atropine administration in organophosphorus (OP) or carbamate insecticide poisoning improves outcome. However, some authors advise that oxygen must be given before atropine due to the risk of inducing ventricular dysrhythmias in hypoxic patients. Because oxygen is frequently unavailable in district hospitals of rural Asia, where the majority of patients with insecticide poisoning present, this guidance has significant implications for patient care. The published evidence for this advice is weak. We therefore performed a patient cohort analysis to look for early cardiac deaths in patients poisoned by anticholinesterase pesticides. Methods We analysed a prospective Sri Lankan cohort of OP or carbamate-poisoned patients treated with early atropine without the benefit of oxygen for evidence of early deaths. The incidence of fatal primary cardiac arrests within 3 h of admission was used as a sensitive (but non-specific) marker of possible ventricular dysrhythmias. Results The cohort consisted of 1957 patients. The incidence of a primary cardiac death within 3 h of atropine administration was 4 (0.2%) of 1957 patients. The majority of deaths occurred at a later time point from respiratory complications of poisoning. Conclusion We found no evidence of a high number of early deaths in an observational study of 1957 patients routinely given atropine before oxygen that might support guidance that oxygen must be given before atropine. The published literature indicates that early and rapid administration of atropine during resuscitation is life-saving. Therefore, whether oxygen is available or not, early atropinisation of OP- and carbamate-poisoned patients should be performed.
Collapse
Affiliation(s)
- L A Konickx
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh , UK
| | | | | |
Collapse
|
36
|
Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation--tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail Rev 2014; 18:389-408. [PMID: 22678767 PMCID: PMC3677978 DOI: 10.1007/s10741-012-9314-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical physiology teaches that vagal post-ganglionic nerves modulate the heart via acetylcholine acting at muscarinic receptors, whilst it is accepted that vagus nerve stimulation (VNS) slows heart rate, atrioventricular conduction and decreases atrial contraction; there is continued controversy as to whether the vagus has any significant direct effect on ventricular performance. Despite this, there is a significant body of evidence from experimental and clinical studies, demonstrating that the vagus nerve has an anti-arrhythmic action, protecting against induced and spontaneously occurring ventricular arrhythmias. Over 100 years ago Einbrodt first demonstrated that direct cervical VNS significantly increased the threshold for experimentally induced ventricular fibrillation. A large body of evidence has subsequently been collected supporting the existence of an anti-arrhythmic effect of the vagus on the ventricle. The development of prognostic indicators of heart rate variability and baroreceptor reflex sensitivity—measures of parasympathetic tone and reflex activation respectively—and the more recent interest in chronic VNS therapy are a direct consequence of the earlier experimental studies. Despite this, mechanisms underlying the anti-arrhythmic actions of the vagus nerve have not been fully characterised and are not well understood. This review summarises historical and recently published data to highlight the importance of this powerful endogenous protective phenomenon.
Collapse
|
37
|
De Ferrari GM. Vagal Stimulation in Heart Failure. J Cardiovasc Transl Res 2014; 7:310-20. [DOI: 10.1007/s12265-014-9540-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023]
|
38
|
Abstract
There is continuing belief that cardiac parasympathetic postganglionic fibres are sparse or absent from the ventricles. This review of the literature shows that the supposition is a myth. Early studies considered that fine silver-stained fibres coursing amongst ventricle myocardial cells were most likely cardiac parasympathetic postganglionic fibres. The conclusions were later supported by acetyl cholinesterase staining using a method that appeared not to be associated with noradrenaline nerve fibres. The conclusion is critically examined in the light of several recent histological studies using the acetyl cholinesterase method and also a more definitive technique (CHAT), that suggest a widespread location of parasympathetic ganglia and a relatively dense parasympathetic innervation of ventricular muscle in a range of mammals including man. The many studies demonstrating acetylcholine release in the ventricle on vagal nerve stimulation and a high density of acetylcholine M2 receptors is in accord with this as are tests of ventricular performance from many physiological studies. Selective control of cardiac functions by anatomically segregated parasympathetic ganglia is discussed. It is argued that the influence of vagal stimulation on ventricular myocardial action potential refractory period, duration, force and rhythm is evidence that vagal fibres have close apposition to myocardial fibres. This is supported by clear evidence of accentuated antagonism between sympathetic activity and vagal activity in the ventricle and also by direct effects of vagal activity independent of sympathetic activity. The idea of differential control of atrial and ventricular physiology by vagal C and vagal B preganglionic fibres is examined as well as differences in chemical phenotypes and their function. The latter is reflected in medullary and supramedullary control. Reference is made to the importance of this knowledge to understanding the normal physiology of cardiac autonomic control and significance to pathology.
Collapse
Affiliation(s)
- J H Coote
- J. H. Coote: School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
39
|
Thoracic epidural anesthesia for coronary bypass surgery affects autonomic neural function and arrhythmias. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2013; 1:83-7. [PMID: 22436549 DOI: 10.1097/01.gim.0000198517.54063.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND : In recent years, the invasiveness of coronary reconstruction has been markedly reduced. Awake off-pump coronary artery bypass (AOCAB), coronary bypass surgery with thoracic epidural anesthesia (TEA) without general anesthesia and cardiopulmonary bypass), has been reported in the literature. Because the details of this technique are still unclear, we evaluated its usefulness by examining the autonomic neural state and the incidence of arrhythmia. METHODS : Fifty-five patients who underwent elective coronary artery bypass grafting (CABG) between April and December 2003 were included in the study. Patients who underwent CABG under high TEA alone comprised group A, those who underwent CABG under general anesthesia combined with TEA comprised group B, and those who underwent CABG under general anesthesia alone comprised group C. Holter electrocardiography was performed before and after surgery, and perioperative electrocardiograms were recorded (before surgery and during surgery, postoperative days 0-3, and postoperative day 7). On obtained electrocardiograms, the autonomic neural state was evaluated by analysis of heart rate variability, and the incidence of atrial fibrillation. RESULTS : Concerning the autonomic neural state, sympathetic inhibition was observed during TEA in both groups A and B. After discontinuation of TEA, sympathetic activity recovered. Vagal activity was not inhibited in group A, but decreased during surgery and gradually recovered after surgery in group B. Evaluation of the balance between sympathetic and vagal activities showed that sympathetic activity became predominant rapidly on postoperative day 2 in group B but gradually after surgery in group A. The incidence of postoperative atrial fibrillation was the highest in group B. CONCLUSIONS : In AOCAB, because there is no vagal inhibition, vagal dominance can be maintained after surgery. This may be associated with the lower incidence of postoperative atrial fibrillation in group A compared with group B. Further studies are necessary to evaluate the details of AOCAB.
Collapse
|
40
|
Abstract
Heart rate variability (HRV) non-invasively assesses the activity of the autonomic nervous system. During the past 30 years, an increasing number of studies have related the imbalance of the autonomic nervous system (as assessed by HRV) to several pathophysiogical conditions, particularly in the setting of cardiovascular disease. Sudden death, coronary artery disease, heart failure, or merely cardiovascular risk factors (smoking, diabetes, hyperlipidemia, and hypertension) are the best-known clinical circumstances that can affect and/or be affected by the autonomic nervous system. Analyses of HRV variables have been proposed as a component of the clinical evaluation for patient risk stratification due to its independent prognostic information. Yet the potential for HRV to be used widely in clinical practice remains to be established.
Collapse
Affiliation(s)
- Borejda Xhyheri
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale. University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
41
|
Abstract
The arterial baroreflex is an important determinant of the neural regulation of the cardiovascular system. It has been recognised that baroreflex-mediated sympathoexcitation contributes to the development and progression of many cardiovascular disorders. Accordingly, the quantitative estimation of the arterial baroreceptor-heart rate reflex (baroreflex sensitivity, BRS), has been regarded as a synthetic index of neural regulation at the sinus atrial node. The evaluation of BRS has been shown to provide clinical and prognostic information in a variety of cardiovascular diseases, including myocardial infarction and heart failure that are reviewed in the present article.
Collapse
|
42
|
Naggar I, Uchida S, Kamran H, Lazar J, Stewart M. Autonomic boundary conditions for ventricular fibrillation and their implications for a novel defibrillation technique. J Physiol Sci 2012; 62:479-92. [PMID: 22893479 PMCID: PMC10717413 DOI: 10.1007/s12576-012-0225-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
The sympathetic and parasympathetic divisions of the autonomic nervous system modulate cardiac rhythm and the probability of arrhythmia occurrence. Both increased sympathetic drive and hypoxia increase the likelihood for ventricular fibrillation (VF). Vagus nerve stimulation (VNS) can protect from fatal arrhythmias via cholinergic and nitrergic action. We sought to determine boundary conditions for VF and defibrillation by autonomic manipulations accompanied or not by hypoxic changes in urethane-anesthetized rats. VF was induced with (1) vagotomy, (2) systemic high-dose (>15 mg/kg) isoproterenol, and (3) hypoxemia. When VNS (50 Hz) produced cardiac standstill, it converted every VF episode (59/59). A nitric oxide synthase inhibitor did not reduce VNS efficacy (13/14 episodes converted), but addition of atropine reduced VNS efficacy (11/27 episodes converted). VF can be induced by autonomic derangements only under constrained conditions, including sympathetic over-activation, reduced parasympathetic input, and hypoxemia. VNS can provide an alternative method to defibrillate via its cholinergic action.
Collapse
Affiliation(s)
- Isaac Naggar
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203 USA
- Program in Neural and Behavioral Sciences, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Sae Uchida
- Department of the Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Haroon Kamran
- Division of Cardiovascular Medicine, Department of Medicine, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Jason Lazar
- Division of Cardiovascular Medicine, Department of Medicine, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Mark Stewart
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203 USA
- Program in Neural and Behavioral Sciences, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
- Department of Neurology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| |
Collapse
|
43
|
Inagaki M, Kawada T, Lie M, Zheng C, Sunagawa K, Sugimachi M. Intravascular parasympathetic cardiac nerve stimulation prevents ventricular arrhythmias during acute myocardial ischemia. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:7076-9. [PMID: 17281905 DOI: 10.1109/iembs.2005.1616136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UNLABELLED Although previous animal studies clearly demonstrated antiarrhythmic effects of vagal stimulation during acute myocardial ischemia, highly invasive nature of vagal stimulation limited its clinical use. Recently, intravascular parasympathetic cardiac nerve stimulation (IPS) has emerged as a novel approach to the cardiac autonomic nervous system. We hypothesized that IPS might prevent ventricular arrhythmias during acute myocardial ischemia. METHODS The IPS (36 V, 10 Hz) was performed in superior vena cava using an expandable electrode-basket catheter. In 18 open-chest dogs, left anterior descending coronary artery ligation was performed without IPS (control group, n= 6), with IPS (IPS group, n= 6) and with IPS and right atrial pacing at 180/min (IPS+P group, n=6). The ECGs were monitored for 60 min. The incidence and severity of ventricular arrhythmias were analyzed. RESULTS The IPS significantly decreased the frequency of premature ventricular contractions (control group: 9.1 ± 4.6/min, IPS group: 0.2 ± 0.4 /min, IPS+P group: 10.6 ± 4.2 / min; p<0.05). The frequency of ventricular tachycardia was lower in IPS group (0 ± 0 /min) than in control group (0.15 ± 0.18 /min, p<0.05) and than in IPS+P group (0.17 ± 0.12 /min, p<0.05). The incidence of ventricular fibrillation was lower in IPS group (0%) than in control group (33.3%) and than in IPS+P group (33.3%). CONCLUSIONS The IPS suppressed ventricular arrhythmias during acute ischemia mainly through its bradycardiac effect.
Collapse
Affiliation(s)
- M Inagaki
- Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Suita, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The autonomic nervous system exerts a modulating effect on the risk of sudden cardiac death (SCD) in the setting of ischemic heart disease. The mechanism by which sympathetic tone increases the risk of ventricular arrhythmias is not known, though regional sympathetic denervation at and apical to the site of transmural infarction may result in regional supersensitivity to circulating catecholamines and play a role in ventricular arrhythmogenesis. [(123)I]MIBG scintigraphy enables noninvasive determination of regional cardiac denervation and may be a useful tool for probing the role of sympathetic nervous system in SCD. Increased vagal tone is generally protective against SCD. Newer tests such as baroreflex slope testing and various techniques for determination of heart rate variability, which provide indices of vagal tone, may have greater predictive value and are powerful tools in assessing the role of autonomic nervous system in SCD.
Collapse
|
45
|
Isoprenaline increases the slopes of restitution trajectory in the conscious rabbit with ischemic heart failure. J Biol Phys 2011; 36:299-315. [PMID: 21629591 DOI: 10.1007/s10867-009-9185-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022] Open
Abstract
Roughly speaking, restitution is the dependence of recovery time of cardiac electrical activity on heart rate. Increased restitution slope is theorized to be predictive of sudden death after heart injury such as from coronary artery occlusion (ischemia). Adrenaline analogs are known to increase restitution slope in normal hearts, but their effects in failing hearts are unknown. Twenty-six rabbits underwent coronary ligation (n = 15) or sham surgery (n = 11) and implantation of a lead in the heart for recording electrocardiograms. Eight weeks later, unanesthetized rabbits were given 0.25-2.0 ml of 1 μmol/L isoprenaline intravenously, which increased heart rate. Heart rate was quantified by time between QRS peaks (RR) and heart activity duration by R to T peak time (QTp). Ligated rabbits (n = 6) had lower ejection fraction than sham rabbits (n = 7, p < 0.0001) indicative of heart failure, but similar baseline RR (269 ± 15 vs 292 ± 23 ms, p = 0.07), QTp (104 ± 17 vs 91 ± 9 ms, p = 0.1), and isoprenaline-induced minimum RR (204 ± 11 vs 208 ± 6 ms, p = 0.4). The trajectory of QTp vs TQ plots displayed hysteresis and regions of negative slope. The slope of the positive slope region was >1 in ligated rabbits (1.27 ± 0.66) and <1 in sham rabbits (0.35 ± 0.14, p = 0.004). The absolute value of the negative slope was greater in ligated rabbits (- 0.81 ± 0.52 vs - 0.35 ± 0.14, p = 0.04). Isoprenaline increased heart rate and slopes of restitution trajectory in failing hearts. The dynamics of restitution trajectory may hold clues for sudden death in heart failure patients.
Collapse
|
46
|
Brack KE, Coote JH, Ng GA. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res 2011; 91:437-46. [PMID: 21576131 DOI: 10.1093/cvr/cvr105] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The role of the vagus in the ventricle is controversial, although the vagus can protect against ventricular fibrillation (VF) via nitric oxide (NO). This study aims to determine whether the mechanisms involved are dependent on post-ganglionic release and muscarinic receptor activation. For this purpose, NO release and electrophysiological effects of vagus nerve stimulation (VNS) were evaluated in relation to acetylcholine and vasoactive intestinal peptide (VIP). In addition, the role of the coronary endothelium and afferent nerves was tested. METHODS AND RESULTS Using the isolated innervated rabbit heart, we measured ventricular NO release using 4,5-diaminofluorescein (DAF-2) fluorescence and ventricular fibrillation threshold (VFT) during VNS after muscarinic, ganglionic, and VIP inhibition [atropine, hexamethonium, and VIP (6-28), respectively] and after Triton-X endothelial functional dysfunction. The vagal-mediated increases in NO and VFT were not significantly affected (P> 0.05) during (i) atropine perfusion [increase in NO: 196.8 ± 35.2 mV (control) vs. 156.1 ± 20.3 mV (atropine) and VFT 3.1 ± 0.5 mA (control) vs. 2.7 ± 0.4 mA (atropine)], (ii) VIP inhibition-increase in NO: 243.0 ± 42.4 mV (control) vs. 203.9 ± 28.5 mV [VIP(6-28)] and VFT 3.3 ± 0.3 mA (control) vs. 3.9 ± 0.6 mA [VIP(6-28)], or (iii) after endothelial functional dysfunction [increase in NO: 127.7 ± 31.7 mV (control) vs. 172.1 ± 31.5 mV (Triton-X) and VFT 2.6 ± 0.4 mA (control) vs. 2.5 ± 0.5 mA (Triton-X)]. However, the vagal effects were inhibited during ganglionic blockade [increase in NO: 175.1 ± 38.1 mV (control) vs. 0.6 ± 25.3 mV (hexamethonium) and VFT 3.3 ± 0.5 mA (control) vs. -0.3 ± 0.3 mA (hexamethonium)]. CONCLUSIONS We show that the vagal anti-fibrillatory action in the rabbit ventricle occurs via post-ganglionic efferent nerve fibres, independent of muscarinic receptor activation, VIP, and the endothelium. Together with our previous publications, our data support the possibility of a novel ventricular nitrergic parasympathetic innervation and highlight potential for new therapeutic targets to treat ventricular dysrhythmias.
Collapse
Affiliation(s)
- Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology Group, University of Leicester, Glenfield Hospital, Leicester, UK
| | | | | |
Collapse
|
47
|
Das UN. Vagal nerve stimulation in prevention and management of coronary heart disease. World J Cardiol 2011; 3:105-10. [PMID: 21526047 PMCID: PMC3082733 DOI: 10.4330/wjc.v3.i4.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/27/2011] [Accepted: 04/03/2011] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) that is due to atherosclerosis is associated with low-grade systemic inflammation. Congestive cardiac failure and arrhythmias that are responsible for mortality in CHD can be suppressed by appropriate vagal stimulation that is anti-inflammatory in nature. Acetylcholine, the principal vagal neurotransmitter, is a potent anti-inflammatory molecule. Polyunsaturated fatty acids (PUFAs) augment acetylcholine release, while acetylcholine can enhance the formation of prostacyclin, lipoxins, resolvins, protectins and maresins from PUFAs, which are anti-inflammatory and anti-arrhythmic molecules. Furthermore, plasma and tissue levels of PUFAs are low in those with CHD and atherosclerosis. Hence, vagal nerve stimulation is beneficial in the prevention of CHD and cardiac arrhythmias. Thus, measurement of catecholamines, acetylcholine, various PUFAs, and their products lipoxins, resolvins, protectins and maresins in the plasma and peripheral leukocytes, and vagal tone by heart rate variation could be useful in the prediction, prevention and management of CHD and cardiac arrhythmias.
Collapse
Affiliation(s)
- Undurti N Das
- Undurti N Das, UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, United States.
| |
Collapse
|
48
|
SHA YONG, SCHERLAG BENJAMINJ, YU LILEI, SHENG XIA, JACKMAN WARRENM, LAZZARA RALPH, PO SUNNYS. Low-Level Right Vagal Stimulation: Anticholinergic and Antiadrenergic Effects. J Cardiovasc Electrophysiol 2011; 22:1147-53. [DOI: 10.1111/j.1540-8167.2011.02070.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
De Ferrari GM, Schwartz PJ. Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev 2010; 16:195-203. [DOI: 10.1007/s10741-010-9216-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Billman GE. Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Physiol Heart Circ Physiol 2009; 297:H1171-93. [PMID: 19684184 DOI: 10.1152/ajpheart.00534.2009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sudden cardiac death resulting from ventricular tachyarrhythmias remains the leading cause of death in industrially developed countries, accounting for between 300,000 and 500,000 deaths each year in the United States. Yet, despite the enormity of this problem, both the identification of factors contributing to ventricular fibrillation as well as the development of safe and effective antiarrhythmic agents remain elusive. Subnormal cardiac parasympathetic regulation coupled with an elevated cardiac sympathetic activation may allow for the formation of malignant ventricular arrhythmias. In particular, myocardial infarction can reduce cardiac parasympathetic regulation and alter beta-adrenoceptor subtype expression enhancing beta(2)-adrenoceptor sensitivity that can lead to intracellular calcium dysregulation and arrhythmias. As such, myocardial infarction can induce a remodeling of cardiac autonomic regulation that may be required to maintain cardiac pump function. If alterations in cardiac autonomic regulation play an important role in the genesis of life-threatening arrhythmias, then one would predict that interventions designed to either augment parasympathetic activity and/or reduce cardiac adrenergic activity would also protect against ventricular fibrillation. Recently, studies using a canine model of sudden death demonstrate that endurance exercise training (treadmill running) enhanced cardiac parasympathetic regulation (increased heart rate variability), restored a more normal beta-adrenoceptor balance (i.e., reduced beta(2)-adrenoceptor sensitivity and expression), and protected against ventricular fibrillation induced by acute myocardial ischemia. Thus exercise training may reverse the autonomic neural remodeling induced by myocardial infarction and thereby enhance the electrical stability of the heart in individuals shown to be at an increased risk for sudden cardiac death.
Collapse
Affiliation(s)
- George E Billman
- Dept of Physiology and Cell Biology, The Ohio State Univ, Columbus, OH 43210-1218, USA.
| |
Collapse
|