1
|
Frangogiannis NG. The fate and role of the pericytes in myocardial diseases. Eur J Clin Invest 2024; 54:e14204. [PMID: 38586936 DOI: 10.1111/eci.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The adult mammalian heart contains a large population of pericytes that play important roles in homeostasis and disease. In the normal heart, pericytes regulate microvascular permeability and flow. Myocardial diseases are associated with marked alterations in pericyte phenotype and function. This review manuscript discusses the role of pericytes in cardiac homeostasis and disease. Following myocardial infarction (MI), cardiac pericytes participate in all phases of cardiac repair. During the inflammatory phase, pericytes may secrete cytokines and chemokines and may regulate leukocyte trafficking, through formation of intercellular gaps that serve as exit points for inflammatory cells. Moreover, pericyte contraction induces microvascular constriction, contributing to the pathogenesis of 'no-reflow' in ischemia and reperfusion. During the proliferative phase, pericytes are activated by growth factors, such as transforming growth factor (TGF)-β and contribute to fibrosis, predominantly through secretion of fibrogenic mediators. A fraction of pericytes acquires fibroblast identity but contributes only to a small percentage of infarct fibroblasts and myofibroblasts. As the scar matures, pericytes form a coat around infarct neovessels, promoting stabilization of the vasculature. Pericytes may also be involved in the pathogenesis of chronic heart failure, by regulating inflammation, fibrosis, angiogenesis and myocardial perfusion. Pericytes are also important targets of viral infections (such as SARS-CoV2) and may be implicated in the pathogenesis of cardiac complications of COVID19. Considering their role in myocardial inflammation, fibrosis and angiogenesis, pericytes may be promising therapeutic targets in myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Ramses R, Kennedy S, Good R, Oldroyd KG, Mcginty S. Performance of drug-coated balloons in coronary and below-the-knee arteries: Anatomical, physiological and pathological considerations. Vascul Pharmacol 2024; 155:107366. [PMID: 38479462 DOI: 10.1016/j.vph.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Below-the-knee (infrapopliteal) atherosclerotic disease, which presents as chronic limb-threatening ischemia (CLTI) in nearly 50% of patients, represents a treatment challenge when it comes to the endovascular intervention arm of management. Due to reduced tissue perfusion, patients usually experience pain at rest and atrophic changes correlated to the extent of the compromised perfusion. Unfortunately, the prognosis remains unsatisfactory with 30% of patients requiring major amputation and a mortality rate of 25% within 1 year. To date, randomized multicentre trials of endovascular intervention have shown that drug-eluting stents (DES) increase patency rate and lower target lesion revascularization rate compared to plain balloon angioplasty and bare-metal stents. The majority of these trials recruited patients with focal infrapopliteal lesions, while most patients requiring endovascular intervention have complex and diffuse atherosclerotic disease. Moreover, due to the nature of the infrapopliteal arteries, the use of long DES is limited. Following recent results of drug-coated balloons (DCBs) in the treatment of femoropopliteal and coronary arteries, it was hoped that similar effective results would be achieved in the infrapopliteal arteries. In reality, multicentre trials have failed to support the proposed hypothesis and no advantage was found in using DCBs in comparison to plain balloon angioplasty. This review aims to explore anatomical, physiological and pathological differences between lesions of the infrapopliteal and coronary arteries to explain the differences in outcome when using DCBs.
Collapse
Affiliation(s)
- Rafic Ramses
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy; Division of Biomedical Engineering, University of Glasgow, United Kingdom
| | - Simon Kennedy
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Richard Good
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom; West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Glasgow, United Kingdom
| | - Keith G Oldroyd
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom; West of Scotland Regional Heart & Lung Centre, Golden Jubilee National Hospital, Glasgow, United Kingdom
| | - Sean Mcginty
- Division of Biomedical Engineering, University of Glasgow, United Kingdom.
| |
Collapse
|
3
|
Kazemi Asl S, Rahimzadegan M, Kazemi Asl A. Pharmacogenomics-based systematic review of coronary artery disease based on personalized medicine procedure. Heliyon 2024; 10:e28983. [PMID: 38601677 PMCID: PMC11004819 DOI: 10.1016/j.heliyon.2024.e28983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronary artery disease (CAD) is the most common reason for mortality and disability-adjusted life years (DALYs) lost globally. This study aimed to suggest a new gene list for the treatment of CAD by a systematic review of bioinformatics analyses of pharmacogenomics impacts of potential genes and variants. Methods PubMed search was filtered by the title including Coronary Artery Disease during 2020-2023. To find the genes with pharmacogenetic impact on the CAD, additional filtrations were considered according to the variant annotations. Protein-Protein Interactions (PPIs), Gene-miRNA Interactions (GMIs), Protein-Drug Interactions (PDIs), and variant annotation assessments (VAAs) performed by STRING-MODEL (ver. 12), Cytoscape (ver. 3.10), miRTargetLink.2., NetworkAnalyst (ver 0.3.0), and PharmGKB. Results Results revealed 5618 publications, 1290 papers were qualified, and finally, 650 papers were included. 4608 protein-coding genes were extracted, among them, 1432 unique genes were distinguished and 530 evidence-based repeated genes remained. 71 genes showed a pharmacogenetics-related variant annotation in at least (entirely 6331 annotations). Variant annotation assessment (VAA) showed 532 potential variants for the final report, and finally, the concluding PGs list represented 175 variants. Based on the function and MAF, 57 nonsynonymous variants of 29 Pharmacogenomics-related genes were associated with CAD. Conclusion Conclusively, evaluating circulating miR33a in individuals' plasma with CAD, and genotyping of rs2230806, rs2230808, rs2487032, rs12003906, rs2472507, rs2515629, and rs4149297 (ABCA1 variants) lead to precisely prescribing of well-known drugs. Also, the findings of this review can be used in both whole-genome sequencing (WGS) and whole-exome sequencing (WES) analysis in the prognosis and diagnosis of CAD.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hussain SW, Ramsaran E. Development of Multi-Vessel Coronary No-Reflow Following Elective Percutaneous Intervention in One Vessel. Cureus 2023; 15:e48182. [PMID: 38046694 PMCID: PMC10693477 DOI: 10.7759/cureus.48182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Percutaneous coronary intervention (PCI) is a frequently performed procedure that can have minor or major complications. One of the more serious complications of PCI is the development of coronary no-reflow. No-reflow signifies reduced or absent coronary flow in the distal coronary circulation in the absence of flow-limiting lesions. We present a case of a middle-aged man who presented as an outpatient for elective coronary angiography due to angina pectoris and a high-risk exercise stress test. Coronary angiography demonstrated significant single-vessel disease with lesions in the proximal and mid-segments of the left anterior descending (LAD) coronary artery. Successful placement of drug-eluting stents in the LAD was followed by a severe drop in blood pressure, worsening chest pain, and ST elevation on telemetry. Immediate angiography showed the development of no-reflow in both the LAD and left circumflex coronary arteries. Ionotropic and intravenous anti-platelet agents were administered with simultaneous placement of an intra-aortic balloon pump, restoring normal flow in both arteries. No-reflow occurs most commonly following PCI in certain lesion subsets, and it is usually seen only in the vessel in which the PCI was performed (culprit vessel). It is important to realize that this phenomenon can occur in other circumstances since immediate recognition and treatment can be lifesaving.
Collapse
Affiliation(s)
- Syed W Hussain
- Department of Cardiology, Saint Vincent Hospital/UMass Chan Medical School, Worcester, USA
| | - Eddison Ramsaran
- Department of Cardiovascular Medicine, Saint Vincent Hospital, UMass Chan Medical School, Worcester, USA
| |
Collapse
|
5
|
Ndrepepa G, Kastrati A. Coronary No-Reflow after Primary Percutaneous Coronary Intervention-Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. J Clin Med 2023; 12:5592. [PMID: 37685660 PMCID: PMC10488607 DOI: 10.3390/jcm12175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Coronary no-reflow (CNR) is a frequent phenomenon that develops in patients with ST-segment elevation myocardial infarction (STEMI) following reperfusion therapy. CNR is highly dynamic, develops gradually (over hours) and persists for days to weeks after reperfusion. Microvascular obstruction (MVO) developing as a consequence of myocardial ischemia, distal embolization and reperfusion-related injury is the main pathophysiological mechanism of CNR. The frequency of CNR or MVO after primary PCI differs widely depending on the sensitivity of the tools used for diagnosis and timing of examination. Coronary angiography is readily available and most convenient to diagnose CNR but it is highly conservative and underestimates the true frequency of CNR. Cardiac magnetic resonance (CMR) imaging is the most sensitive method to diagnose MVO and CNR that provides information on the presence, localization and extent of MVO. CMR imaging detects intramyocardial hemorrhage and accurately estimates the infarct size. MVO and CNR markedly negate the benefits of reperfusion therapy and contribute to poor clinical outcomes including adverse remodeling of left ventricle, worsening or new congestive heart failure and reduced survival. Despite extensive research and the use of therapies that target almost all known pathophysiological mechanisms of CNR, no therapy has been found that prevents or reverses CNR and provides consistent clinical benefit in patients with STEMI undergoing reperfusion. Currently, the prevention or alleviation of MVO and CNR remain unmet goals in the therapy of STEMI that continue to be under intense research.
Collapse
Affiliation(s)
- Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
6
|
Tona F, Vadori M, Civieri G, Masiero G, Iop L, Antonelli G, Perazzolo Marra M, Bianco F, Cecere A, Lorenzoni G, Naumova N, Bernava G, Basso D, Plebani M, Cozzi E, Iliceto S. Association of autoantibodies targeting endothelin type-A receptors with no-reflow in ST-elevation myocardial infarction. Atherosclerosis 2023; 378:117179. [PMID: 37422357 DOI: 10.1016/j.atherosclerosis.2023.06.970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND AIMS No-reflow (NR), where the coronary artery is patent after treatment of ST-elevation myocardial infarction (STEMI) but tissue perfusion is not restored, is associated with worse outcomes. We aimed to investigate the relationship between autoantibodies activating endothelin-1 receptor type A (ETAR-AAs) and NR after primary percutaneous coronary intervention (PPCI) in STEMI. METHODS We studied 50 patients (age 59 ± 11 years, 40 males) with STEMI who underwent PPCI within 6 h after the onset of symptoms. Blood samples were obtained from all patients within 12 h following PPCI for ETAR-AA level measurement. The seropositive threshold was provided by the manufacturer (>10 U/ml). NR was assessed by cardiac magnetic resonance imaging (MVO, microvascular obstruction). As a control group, 40 healthy subjects matched for age and sex were recruited from the general population. RESULTS MVO was observed in 24 patients (48%). The prevalence of MVO was higher in patients with ETAR-AAs seropositivity (72% vs. 38%, p = 0.03). ETAR-AAs were higher in patients with MVO (8.9 U/mL (interquartile range [IQR] 6.8-16.2 U/mL) vs. 5.7 U/mL [IQR 4.3-7.7 U/mL], p = 0.003). ETAR-AAs seropositivity was independently associated with MVO (OR 3.2, 95% CI 1.3-7.1; p = 0.03). We identified ≥6.74 U/mL as the best cut-off for prediction of MVO (sensitivity 79%; specificity 65%; NPV 71%; PPV 74%; accuracy 72%). CONCLUSIONS The ETAR-AAs seropositivity is associated with NR in STEMI patients. These findings may open up new options in the management of myocardial infarction even if confirmation in a larger trial is needed.
Collapse
Affiliation(s)
- Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy.
| | - Marta Vadori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giulia Masiero
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Laura Iop
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | | | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Federica Bianco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Annagrazia Cecere
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Natalia Naumova
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giacomo Bernava
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| |
Collapse
|
7
|
Maslov LN, Naryzhnaya NV, Popov SV, Mukhomedzyanov AV, Derkachev IA, Kurbatov BK, Krylatov AV, Fu F, Pei J, Ryabov VV, Vyshlov EV, Gusakova SV, Boshchenko AA, Sarybaev A. A historical literature review of coronary microvascular obstruction and intra-myocardial hemorrhage as functional/structural phenomena. J Biomed Res 2023; 37:281-302. [PMID: 37503711 PMCID: PMC10387746 DOI: 10.7555/jbr.37.20230021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The analysis of experimental data demonstrates that platelets and neutrophils are involved in the no-reflow phenomenon, also known as microvascular obstruction (MVO). However, studies performed in the isolated perfused hearts subjected to ischemia/reperfusion (I/R) do not suggest the involvement of microembolization and microthrombi in this phenomenon. The intracoronary administration of alteplase has been found to have no effect on the occurrence of MVO in patients with acute myocardial infarction. Consequently, the major events preceding the appearance of MVO in coronary arteries are independent of microthrombi, platelets, and neutrophils. Endothelial cells appear to be the target where ischemia can disrupt the endothelium-dependent vasodilation of coronary arteries. However, reperfusion triggers more pronounced damage, possibly mediated by pyroptosis. MVO and intra-myocardial hemorrhage contribute to the adverse post-infarction myocardial remodeling. Therefore, pharmacological agents used to treat MVO should prevent endothelial injury and induce relaxation of smooth muscles. Ischemic conditioning protocols have been shown to prevent MVO, with L-type Ca 2+ channel blockers appearing the most effective in treating MVO.
Collapse
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Boris K Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Vyacheslav V Ryabov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Evgenii V Vyshlov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | | | - Alla A Boshchenko
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Akpay Sarybaev
- National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| |
Collapse
|
8
|
Walkon LL, Strubbe-Rivera JO, Bazil JN. Calcium Overload and Mitochondrial Metabolism. Biomolecules 2022; 12:1891. [PMID: 36551319 PMCID: PMC9775684 DOI: 10.3390/biom12121891] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria calcium is a double-edged sword. While low levels of calcium are essential to maintain optimal rates of ATP production, extreme levels of calcium overcoming the mitochondrial calcium retention capacity leads to loss of mitochondrial function. In moderate amounts, however, ATP synthesis rates are inhibited in a calcium-titratable manner. While the consequences of extreme calcium overload are well-known, the effects on mitochondrial function in the moderately loaded range remain enigmatic. These observations are associated with changes in the mitochondria ultrastructure and cristae network. The present mini review/perspective follows up on previous studies using well-established cryo-electron microscopy and poses an explanation for the observable depressed ATP synthesis rates in mitochondria during calcium-overloaded states. The results presented herein suggest that the inhibition of oxidative phosphorylation is not caused by a direct decoupling of energy metabolism via the opening of a calcium-sensitive, proteinaceous pore but rather a separate but related calcium-dependent phenomenon. Such inhibition during calcium-overloaded states points towards mitochondrial ultrastructural modifications, enzyme activity changes, or an interplay between both events.
Collapse
Affiliation(s)
- Lauren L. Walkon
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Jasiel O. Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Vyas R, Changal KH, Bhuta S, Pasadyn V, Katterle K, Niedoba MJ, Vora K, Dharmakumar R, Gupta R. Impact of Intramyocardial Hemorrhage on Clinical Outcomes in ST-Elevation Myocardial Infarction: A Systematic Review and Meta-analysis. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100444. [PMID: 39132339 PMCID: PMC11307811 DOI: 10.1016/j.jscai.2022.100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 08/13/2024]
Abstract
Background Intramyocardial hemorrhage (IMH) occurs after ST-elevation myocardial infarction (STEMI) and has been documented using cardiac magnetic resonance imaging. The prevalence and prognostic significance of IMH are not well described, and the small sample size has limited prior studies. Methods We performed a comprehensive literature search of multiple databases to identify studies that compared outcomes in STEMI patients with or without IMH. The outcomes studied were major adverse cardiovascular events (MACE), infarct size, thrombolysis in myocardial infarction (TIMI) flow after percutaneous coronary intervention (PCI), left ventricular end-diastolic volume (LVEDV), left ventricular ejection fraction (LVEF), and mortality. Odds ratios (ORs) and standardized mean differences with corresponding 95% CIs were calculated using a random effects model. Results Eighteen studies, including 2824 patients who experienced STEMI (1078 with IMH and 1746 without IMH), were included. The average prevalence of IMH was 39%. There is a significant association between IMH and subsequent MACE (OR, 2.63; 95% CI, 1.79-3.86; P < .00001), as well as IMH and TIMI grade <3 after PCI (OR, 1.75; 95% CI, 1.14-2.68; P = .05). We also found a significant association between IMH and the use of glycoprotein IIb/IIIa inhibitors (OR, 2.34; 95% CI, 1.42-3.85; P = .0008). IMH has a positive association with infarct size (standardized mean difference, 2.19; 95% CI, 1.53-2.86; P < .00001) and LVEDV (standardized mean difference, 0.7; 95% CI, 0.41-0.99; P < .00001) and a negative association with LVEF (standardized mean difference, -0.89; 95% CI, -1.15 to -0.63; P = .01). Predictors of IMH include male sex, smoking, and left anterior descending infarct. Conclusions Intramyocardial hemorrhage is prevalent in approximately 40% of patients who experience STEMI. IMH is a significant predictor of MACE and is associated with larger infarct size, higher LVEDV, and lower LVEF after STEMI.
Collapse
Affiliation(s)
- Rohit Vyas
- Division of Cardiovascular Medicine, University of Toledo, Toledo, Ohio
| | - Khalid H. Changal
- Division of Cardiovascular Medicine, University of Toledo, Toledo, Ohio
| | - Sapan Bhuta
- Department of Internal Medicine, University of Toledo, Toledo, Ohio
| | - Vanessa Pasadyn
- Department of Internal Medicine, University of Toledo, Toledo, Ohio
| | - Konrad Katterle
- Department of Internal Medicine, University of Toledo, Toledo, Ohio
| | | | - Keyur Vora
- Department of Medicine and Cardiovascular Institute, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rohan Dharmakumar
- Department of Medicine and Cardiovascular Institute, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rajesh Gupta
- Division of Cardiovascular Medicine, University of Toledo, Toledo, Ohio
| |
Collapse
|
10
|
Methner C, Cao Z, Mishra A, Kaul S. Mechanism and potential treatment of the "no reflow" phenomenon after acute myocardial infarction: role of pericytes and GPR39. Am J Physiol Heart Circ Physiol 2021; 321:H1030-H1041. [PMID: 34623177 DOI: 10.1152/ajpheart.00312.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
The "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction (AMI) but tissue perfusion is not restored, is associated with worse outcome. The mechanism of no reflow is unknown. We hypothesized that pericytes contraction, in an attempt to maintain a constant capillary hydrostatic pressure during reduced coronary perfusion pressure, causes capillary constriction leading to no reflow and that this effect is mediated through the orphan receptor, GPR39, present in pericytes. We created AMI (coronary occlusion followed by reperfusion) in GPR39 knock out mice and littermate controls. In a separate set of experiments, we treated wild-type mice undergoing coronary occlusion with vehicle or VC43, a specific inhibitor of GPR39, before reperfusion. We found that no reflow zones were significantly smaller in the GPR39 knockouts compared with controls. Both no reflow and infarct size were also markedly smaller in animals treated with VC43 compared with vehicle. Immunohistochemistry revealed greater capillary density and larger capillary diameter at pericyte locations in the GPR39-knockout and VC43-treated mice compared with controls. We conclude that GPR39-mediated pericyte contraction during reduced coronary perfusion pressure causes capillary constriction resulting in no reflow during AMI and that smaller no reflow zones in GPR39-knockout and VC43-treated animals are associated with smaller infarct sizes. These results elucidate the mechanism of no reflow in AMI, as well as providing a therapeutic pathway for the condition.NEW & NOTEWORTHY The mechanism of "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction but tissue perfusion is not restored, is unknown. This condition is associated with worse outcome. Here, we show that GPR39-mediated pericyte contraction during reduced coronary perfusion pressure causes capillary constriction resulting in no reflow. Smaller no-reflow zones in GPR39-knockout animals and those treated with a GPR39 inhibitor are associated with smaller infarct size. These results could have important therapeutic implications.
Collapse
Affiliation(s)
- Carmen Methner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Neurology, Jungers Center for Neurosciences Research, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
11
|
Holtackers RJ, Wildberger JE, Wintersperger BJ, Chiribiri A. Impact of Field Strength in Clinical Cardiac Magnetic Resonance Imaging. Invest Radiol 2021; 56:764-772. [PMID: 34261084 DOI: 10.1097/rli.0000000000000809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACT Cardiac magnetic resonance imaging (MRI) is widely applied for the noninvasive assessment of cardiac structure and function, and for tissue characterization. For more than 2 decades, 1.5 T has been considered the field strength of choice for cardiac MRI. Although the number of 3-T systems significantly increased in the past 10 years and numerous new developments were made, challenges seem to remain that hamper a widespread clinical use of 3-T MR systems for cardiac applications. As the number of clinical cardiac applications is increasing, with each having their own benefits at both field strengths, no "holy grail" field strength exists for cardiac MRI that one should ideally use. This review describes the physical differences between 1.5 and 3 T, as well as the effect of these differences on major (routine) cardiac MRI applications, including functional imaging, edema imaging, late gadolinium enhancement, first-pass stress perfusion, myocardial mapping, and phase contrast flow imaging. For each application, the advantages and limitations at both 1.5 and 3 T are discussed. Solutions and alternatives are provided to overcome potential limitations. Finally, we briefly elaborate on the potential use of alternative field strengths (ie, below 1.5 T and above 3 T) for cardiac MRI and conclude with field strength recommendations for the future of cardiac MRI.
Collapse
|
12
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Verdoia M, Viglione F, Boggio A, Stefani D, Panarotto N, Malabaila A, Rolla R, Soldà PL, De Luca G. Vitamin D deficiency is associated with impaired reperfusion in STEMI patients undergoing primary percutaneous coronary intervention. Vascul Pharmacol 2021; 140:106897. [PMID: 34274529 DOI: 10.1016/j.vph.2021.106897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Vitamin D displays a broad spectrum of cardioprotective effects, preventing oxidative stress, inflammation and thrombosis and improving endothelial function. Previous studies have associated vitamin D deficiency with more extended and severe coronary artery disease (CAD) and worse outcome, and especially among patients with ST-segment elevation myocardial infarction (STEMI). However, few data have been reported on the association of vitamin D levels with the angiographic findings and epicardial reperfusion in STEMI patients undergoing primary percutaneous coronary intervention (pPCI), that was therefore the aim of the present study. METHODS AND RESULTS A consecutive cohort of patients admitted for STEMI and treated with pPCI were included. The levels of 25(OH)D were assessed at admission by chemiluminescence immunoassay kit LIAISON® Vitamin D assay (Diasorin Inc). Hypovitaminosis D was defined for 25(OH)D < 10 ng/ml. We included in our study 450 patients, divided according to tertiles values of 25(OH)D. Lower vitamin D was associated to a higher use of diuretics (p = 0.02), higher levels of white blood cells and glycemia (p < 0.001), lower prevalence of lesions on bifurcations (p = 0.03) and smaller diameter of the target coronary vessel (p = 0.03). Procedural characteristics and pre-procedural TIMI flow were not different according to vitamin D levels, but for a higher rate of impaired epicardial reperfusion (12.8% vs 8.1% vs 5.3%, p = 0.03, adjusted OR[95%CI] = 2.6[1.05-6.6], p = 0.04 for I vs III tertile), requiring higher use of adenosine (p = 0.006) and glycoprotein IIbIIIa inhibitors (p = 0.01). CONCLUSION The present study shows that among patients with STEMI undergoing pPCI, lower levels of vitamin D are independently associated with impaired reperfusion, Future dedicated studies will shed light on the prognostic implications of hypovitaminosis D in these patients and the potential therapeutic perspectives.
Collapse
Affiliation(s)
- Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Filippo Viglione
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Boggio
- Clinical Chemistry Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Daniele Stefani
- Clinical Chemistry Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Nicolò Panarotto
- Clinical Chemistry Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Aurelio Malabaila
- Clinical Chemistry Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Roberta Rolla
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy; Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Università del Piemonte Orientale, Novara, Italy
| | - Pier Luigi Soldà
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, Biella, Italy
| | - Giuseppe De Luca
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Università del Piemonte Orientale, Novara, Italy.
| | | |
Collapse
|
14
|
Aggarwal P, Rekwal L, Sinha SK, Nath RK, Khanra D, Singh AP. Predictors of no-reflow phenomenon following percutaneous coronary intervention for ST-segment elevation myocardial infarction. Ann Cardiol Angeiol (Paris) 2021; 70:136-142. [PMID: 33962782 DOI: 10.1016/j.ancard.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/03/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES No reflow during percutaneous coronary intervention (PCI) is a complex issue with serious outcomes. Multiple studies have studied predictors of no-reflow during primary PCI, but data on patients with the late presentation is sparse, which constitutes the majority of patients in peripheral centers. This study aimed to determine predictors of no-reflow during PCI in patients with ST-segment elevation myocardial infarction (STEMI) in 7 days. METHODS It was a single-center prospective case-control study performed at a tertiary care center and included 958 patients with STEMI who underwent PCI within 7 days of symptom onset. Baseline and angiographic data of patients undergoing PCI were recorded and patients divided into reflow and no-reflow group. RESULTS Of 958 who underwent PCI, 182 (18.9%) showed no-reflow by myocardial blush grade (MBG)<2. No-reflow group had a higher mean age (66.46±10.71 vs. 61.36±9.94 years), lower systolic blood pressure (SBP) on admission (100.61±26.66 vs. 112.23±24.35, P<0.0001), a higher level of peak Troponin I level (9.37±2.81 vs. 7.66±3.11ng/dL, P<0.0001), low left ventricular ejection fraction (36.71±3.89 vs. 39.58±4.28% respectively P<0.0001). Among angiographic data and procedural features, multivariable logistic regression analysis identified that advanced age, reperfusion time>6hours, SBP<100mmHg on admission, functional status of Killip class for heart failure≥3, lower EF (≤35%), low initial myocardial blush grade (≤1) before PCI, long target lesion length, larger reference diameter of vessel (>3.5mm) and high thrombus burden on angiography were found to be independent predictors of no-reflow (P<0.05). CONCLUSION No-reflow phenomenon after PCI for STEMI is complex and multifactorial and can be identified by simple clinical, angiographic, and procedural features. Preprocedural characters of the lesion and early perfusion decides the fate of the outcome.
Collapse
Affiliation(s)
- P Aggarwal
- ABVIMS and Dr RML Hospital, New Delhi, India.
| | - L Rekwal
- LPS Institute of Cardiology, Kanpur, India.
| | - S K Sinha
- LPS Institute of Cardiology, Kanpur, India.
| | - R K Nath
- ABVIMS and Dr RML Hospital, New Delhi, India.
| | | | - A P Singh
- ABVIMS and Dr RML Hospital, New Delhi, India.
| |
Collapse
|
15
|
Smulders MW, Van Assche LMR, Bekkers SCAM, Nijveldt R, Beijnink CWH, Kim HW, Hayes B, Parker MA, Kaolawanich Y, Judd RM, Kim RJ. Epicardial Surface Area of Infarction: A Stable Surrogate of Microvascular Obstruction in Acute Myocardial Infarction. Circ Cardiovasc Imaging 2021; 14:e010918. [PMID: 33586449 DOI: 10.1161/circimaging.120.010918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Microvascular obstruction (MO) is a pathophysiologic complication of acute myocardial infarction that portends poor prognosis; however, it is transient and disappears with infarct healing. Much remains unknown regarding its pathophysiology and whether there are predictors of MO that could function as stable surrogates. We tested for clinical and cardiovascular magnetic resonance predictors of MO to gain insight into its pathophysiology and to find a stable surrogate. METHODS Three hundred two consecutive patients from 2 centers underwent cardiovascular magnetic resonance within 2 weeks of first acute myocardial infarction. Three measures of infarct morphology: infarct size, transmurality, and a new index-the epicardial surface area (EpiSA) of full-thickness infarction-were quantified on delayed-enhancement cardiovascular magnetic resonance. RESULTS Considering all clinical characteristics, only measures of infarct morphology were independent predictors of MO. EpiSA was the strongest predictor of MO and provided incremental predictive value beyond that of infarct size and transmurality (P<0.0001). In patients with 3-month follow-up cardiovascular magnetic resonance (n=81), EpiSA extent remained stable while MO disappeared, and EpiSA was a predictor of adverse ventricular remodeling. After 20 months of follow-up, 11 died and 1 had heart transplantation. Patients with an EpiSA larger than the median value (≥6%) had worse outcome than those with less than the median value (adverse events: 6.4% versus 1.9%, P=0.045). CONCLUSIONS The EpiSA of infarction is a novel index of infarct morphology which accurately predicts MO during the first 2 weeks of MI, but unlike MO, does not disappear with infarct healing. This index has potential as a stable surrogate of the presence of acute MO and may be useful as a predictor of adverse remodeling and outcome which is less dependent on the time window of patient assessment.
Collapse
Affiliation(s)
- Martijn W Smulders
- Department of Cardiology, Maastricht University Medical Center, the Netherlands (M.W.S., S.C.A.M.B.)
| | - Lowie M R Van Assche
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| | - Sebastiaan C A M Bekkers
- Department of Cardiology, Maastricht University Medical Center, the Netherlands (M.W.S., S.C.A.M.B.)
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands (R.N., C.W.H.B.)
| | - Casper W H Beijnink
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands (R.N., C.W.H.B.)
| | - Han W Kim
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| | - Brenda Hayes
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| | - Michele A Parker
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| | - Yodying Kaolawanich
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| | - Robert M Judd
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| | - Raymond J Kim
- Duke Cardiovascular Magnetic Resonance Center, Department of Medicine and Radiology, Duke University Medical Center, Durham, NC (L.M.R.V.A., H.W.K., B.H., M.A.P., Y.K., R.M.J., R.J.K.)
| |
Collapse
|
16
|
Veres G, Bai Y, Stark KA, Schmidt H, Radovits T, Loganathan S, Korkmaz-Icöz S, Szabó G. Pharmacological activation of soluble guanylate cyclase improves vascular graft function. Interact Cardiovasc Thorac Surg 2021; 32:803-811. [PMID: 33515043 DOI: 10.1093/icvts/ivaa329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Ischaemia-reperfusion injury impairs the nitric oxide/soluble guanylate cyclase/cyclic guanosine monophosphate (cGMP) signalling pathway and leads to vascular dysfunction. We assessed the hypothesis that the soluble guanylate cyclase activator cinaciguat would protect the vascular graft against ischaemia-reperfusion injury. METHODS In the treatment groups, rats (n = 8/group) were pretreated with either intravenous saline or intravenous cinaciguat (10 mg/kg) 2 h before an aortic transplant. Aortic grafts were stored for 2 h in saline and transplanted into the abdominal aorta of the recipients. Two hours after the transplant, the grafts were harvested and mounted in an organ bath. Vascular function of the grafts was investigated in the organ bath. Terminal deoxynucleotidyl transferase dUTP nick end labelling, cluster of differentiation 31, caspase-3, endothelial nitric oxide synthase, cGMP, nitrotyrosine and vascular cell adhesion molecule 1 immunochemical reactions were also investigated. RESULTS Pretreatment with cinaciguat significantly improved endothelium-dependent maximal relaxation 2 h after reperfusion compared with the saline group (maximal relaxation control: 96.5 ± 1%, saline: 40.4 ± 3% vs cinaciguat: 54.7 ± 2%; P < 0.05). Pretreatment with cinaciguat significantly reduced DNA fragmentation and nitro-oxidative stress; decreased the caspase-3 and vascular cell adhesion molecule 1 scores; and increased endothelial nitric oxide synthase, cGMP and cluster of differentiation 31 scores. CONCLUSIONS Our results demonstrated that enhancement of cGMP signalling by pharmacological activation of the soluble guanylate cyclase activator cinaciguat might represent a beneficial therapy for treating endothelial dysfunction of arterial bypass graft during cardiac surgery.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yang Bai
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Klára Aliz Stark
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Harald Schmidt
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
The shifted balance of arginine metabolites in acute myocardial infarction patients and its clinical relevance. Sci Rep 2021; 11:83. [PMID: 33420142 PMCID: PMC7794337 DOI: 10.1038/s41598-020-80230-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
The arginine metabolism as a target for cardioprotection in patients with ST-segment elevation myocardial infarction (STEMI) remains insufficiently understood. Arginine, ornithine, citrulline, asymmetric dimethylarginine (ADMA) and proline plasma levels were measured using liquid chromatography and tandem mass spectrometry in 70 consecutive STEMI patients upon admission and at 6-month follow-up and were compared with left ventricular function, volumes, and infarct characteristics determined by cardiac magnetic resonance imaging, and with 5-year clinical outcomes. Baseline median concentration of arginine was higher by 49% (P = 0.002) when compared to 6-month measurements and was correlated with an ischemia risk area (R = 0.34, P = 0.004) and infarct size (R = 0.33, P = 0.006). Following ischemia median citrulline/arginine index decreased when compared with 6-month result (P = 0.002), while citrulline/ornithine and arginine/ADMA ratios maintained unchanged indicating a shift of arginine metabolism from nitric oxide synthase (NOS) towards arginase. The 6-month arginine concentration reached the area under the ROC curve of 0.67 (95% confidence interval 0.54–0.81) for prediction of death, myocardial infarction or heart failure hospitalization and its value of < 29 µM was associated with lower event free survival (P = 0.02). In STEMI patients, during ischemia conversion of elevated plasma arginine was shifted from NOS towards arginase. Decreased 6-month arginine concentrations were associated with worse long-term outcomes.
Collapse
|
18
|
Liu X, Dong H, Huang B, Miao H, Xu Z, Yuan Y, Qiu F, Chen J, Zhang H, Liu Z, Quan X, Zhu L, Zhang Z. Native Coronary Collateral Microcirculation Reserve in Rat Hearts. J Am Heart Assoc 2020; 8:e011220. [PMID: 30819021 PMCID: PMC6474916 DOI: 10.1161/jaha.118.011220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background We occasionally noticed that native collateral blood flow showed a recessive trend in the early stages of acute myocardial infarction in rats, which greatly interferes with the accurate assessment of native collateral circulation levels. Here, we sought to recognize the coronary collateral circulation system in depth, especially the microcirculation part, on this basis. Methods and Results In this study, we detected native collateral flow with positron emission tomography perfusion imaging in rats and found that the native flow is relatively abundant when it is initially recruited. However, this flow is extremely unstable in the early stage of acute myocardial infarction and quickly fails. We used tracers to mark the collateral in an ischemic area and a massive preformed collateral network was labeled. The ultrastructures of these collateral microvessels are flawed, which contributes to extensive leakage and consequent interstitial edema in the ischemic region. Conclusions An unrecognized short-lived native coronary collateral microcirculation reserve is widely distributed in rat hearts. Recession of collateral blood flow transported by coronary collateral microcirculation reserve contributes to instability of native collateral blood flow in the early stage of acute myocardial infarction. The immature structure determines that these microvessels are short-lived and provide conditions for the development of early interstitial edema in acute myocardial infarction.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hongyan Dong
- Morphological Research Experiment CenterXuzhou Medical UniversityXuzhouChina
| | - Bing Huang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Haoran Miao
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhiwei Xu
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Fan Qiu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Jiali Chen
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hao Zhang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhiwei Liu
- Morphological Research Experiment CenterXuzhou Medical UniversityXuzhouChina
| | - Xiaoyu Quan
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Lidong Zhu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
19
|
Agrawal H, Choy HHK, Liu J, Auyoung M, Albert MA. Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:e185-e192. [PMID: 32579480 DOI: 10.1161/atvbaha.120.313608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Harsh Agrawal
- From the Center for the Study of Adversity and Cardiovascular Disease (NURTURE Center), Division of Cardiology, Department of Medicine, University of California San Francisco (H.A., M.A.A.)
| | - Ho-Hin K Choy
- Division of Cardiology, Department of Medicine, California Pacific Medical Center, San Francisco (H.-h.K.C., J.L., M.A.)
| | - Jason Liu
- Division of Cardiology, Department of Medicine, California Pacific Medical Center, San Francisco (H.-h.K.C., J.L., M.A.)
| | - Matthew Auyoung
- Division of Cardiology, Department of Medicine, California Pacific Medical Center, San Francisco (H.-h.K.C., J.L., M.A.)
| | - Michelle A Albert
- From the Center for the Study of Adversity and Cardiovascular Disease (NURTURE Center), Division of Cardiology, Department of Medicine, University of California San Francisco (H.A., M.A.A.)
| |
Collapse
|
20
|
Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns RJM, Berry C, Riksen NP, Escaned J, van Royen N. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res 2020; 116:787-805. [PMID: 31710673 PMCID: PMC7061278 DOI: 10.1093/cvr/cvz301] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Early mechanical reperfusion of the epicardial coronary artery by primary percutaneous coronary intervention (PCI) is the guideline-recommended treatment for ST-elevation myocardial infarction (STEMI). Successful restoration of epicardial coronary blood flow can be achieved in over 95% of PCI procedures. However, despite angiographically complete epicardial coronary artery patency, in about half of the patients perfusion to the distal coronary microvasculature is not fully restored, which is associated with increased morbidity and mortality. The exact pathophysiological mechanism of post-ischaemic coronary microvascular dysfunction (CMD) is still debated. Therefore, the current review discusses invasive and non-invasive techniques for the diagnosis and quantification of CMD in STEMI in the clinical setting as well as results from experimental in vitro and in vivo models focusing on ischaemic-, reperfusion-, and inflammatory damage to the coronary microvascular endothelial cells. Finally, we discuss future opportunities to prevent or treat CMD in STEMI patients.
Collapse
Affiliation(s)
- Lara S F Konijnenberg
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J Duncker
- Department of Radiology and Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Robert-Jan M van Geuns
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Colin Berry
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos IDISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
Corban MT, Khorramirouz R, Yang SW, Lewis BR, Bois J, Foley T, Lerman LO, Oh JK, Lerman A. Non-infarct related artery microvascular obstruction is associated with worse persistent diastolic dysfunction in patients with revascularized ST elevation myocardial infarction. Int J Cardiol 2020; 300:27-33. [DOI: 10.1016/j.ijcard.2019.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
|
22
|
Michaud K, Basso C, d'Amati G, Giordano C, Kholová I, Preston SD, Rizzo S, Sabatasso S, Sheppard MN, Vink A, van der Wal AC. Diagnosis of myocardial infarction at autopsy: AECVP reappraisal in the light of the current clinical classification. Virchows Arch 2020; 476:179-194. [PMID: 31522288 PMCID: PMC7028821 DOI: 10.1007/s00428-019-02662-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/24/2023]
Abstract
Ischemic heart disease is one of the leading causes of morbidity and death worldwide. Consequently, myocardial infarctions are often encountered in clinical and forensic autopsies, and diagnosis can be challenging, especially in the absence of an acute coronary occlusion. Precise histopathological identification and timing of myocardial infarction in humans often remains uncertain while it can be of crucial importance, especially in a forensic setting when third person involvement or medical responsibilities are in question. A proper post-mortem diagnosis requires not only up-to-date knowledge of the ischemic coronary and myocardial pathology, but also a correct interpretation of such findings in relation to the clinical scenario of the deceased. For these reasons, it is important for pathologists to be familiar with the different clinically defined types of myocardial infarction and to discriminate myocardial infarction from other forms of myocardial injury. This article reviews present knowledge and post-mortem diagnostic methods, including post-mortem imaging, to reveal the different types of myocardial injury and the clinical-pathological correlations with currently defined types of myocardial infarction.
Collapse
Affiliation(s)
- Katarzyna Michaud
- University Center of Legal Medicine Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Chemin de la Vulliette 4, CH - 1000, Lausanne 25, Switzerland.
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - Ivana Kholová
- Pathology, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Stefania Rizzo
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sara Sabatasso
- University Center of Legal Medicine Lausanne-Geneva, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Mary N Sheppard
- Department of Cardiovascular Pathology, Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's Medical School, London, UK
| | - Aryan Vink
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Allard C van der Wal
- Amsterdam UMC, Academic Medical Center, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Role of Orai1 and L-type Ca V1.2 channels in Endothelin-1 mediated coronary contraction under ischemia and reperfusion. Cell Calcium 2020; 86:102157. [PMID: 31926404 DOI: 10.1016/j.ceca.2019.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Ischemia and Reperfusion (I/R) injuries are associated with coronary artery hypercontracture. They are mainly originated by an exacerbated response to agonists released by endothelium such as Endothelin (ET-1), involving the alteration in intracellular calcium handling. Recent evidences have highlighted the implication of Store-Operated Calcium Channels (SOCC) in intracellular calcium homeostasis in coronary artery. However, little is known about the role of SOCC in the regulation of coronary vascular tone under I/R. The aim of this study was to evaluate the role of SOCC and l-type Ca2+ channels (LTCC) in coronary artery vasoconstriction originated by ET-1 in I/R. We used Left Anterior Descendent coronary artery (LAD) rings, isolated from Wistar rats, to study the contractility and intracellular Ca2+ concentration ([Ca2+]i) under a simulated I/R protocol. We observed that responses to high-KCL induced depolarization and caffeine-induced Ca2+ release are attenuated in coronary artery under I/R. Furthermore, ET-1 addition in ischemia promotes transient and small rise of [Ca2+]i and coronary vascular tone. Meanwhile, these effects are significantly potentiated during reperfusion. The resulting ET-1-induced vasoconstrictions and [Ca2+]i increase were abolished by; GSK-7975A and gadolinium, inhibitors of SOCC; and nifedipine a widely used inhibitor of LTCC. Interestingly, using in situ Proximity Ligation Assay (PLA) in isolated coronary smooth muscle cells we found significant colocalization of LTCC CaV1.2 isoform with Orai1, the pore forming subunit of SOCC, and TRPC1 under I/R. Our data suggest that hypercontraction of coronary artery induced by ET-1 after I/R involves the co-activation of LTCC and SOCC, which colocalize significantly in the sarcolemma of coronary smooth muscle cells.
Collapse
|
24
|
Sezer M, van Royen N, Umman B, Bugra Z, Bulluck H, Hausenloy DJ, Umman S. Coronary Microvascular Injury in Reperfused Acute Myocardial Infarction: A View From an Integrative Perspective. J Am Heart Assoc 2019; 7:e009949. [PMID: 30608201 PMCID: PMC6404180 DOI: 10.1161/jaha.118.009949] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Murat Sezer
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | | | - Berrin Umman
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Zehra Bugra
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Heerajnarain Bulluck
- 3 The Hatter Cardiovascular Institute Institute of Cardiovascular Science University College London London United Kingdom.,4 Papworth Hospital NHS Trust Cambridge United Kingdom
| | - Derek J Hausenloy
- 3 The Hatter Cardiovascular Institute Institute of Cardiovascular Science University College London London United Kingdom.,4 Papworth Hospital NHS Trust Cambridge United Kingdom.,5 National Heart Research Institute Singapore National Heart Centre Singapore Singapore.,6 Cardiovascular and Metabolic Disorders Program Duke-National University of Singapore Singapore.,7 Yong Loo Lin School of Medicine National University Singapore Singapore.,8 The National Institute of Health Research University College London Hospitals Biomedical Research Centre London United Kingdom.,9 Barts Heart Centre St Bartholomew's Hospital London United Kingdom
| | - Sabahattin Umman
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| |
Collapse
|
25
|
|
26
|
Montisci R, Ruscazio M, Tona F, Corbetti F, Sarais C, Marchetti MF, Cacciavillani L, Iliceto S, Perazzolo Marra M, Meloni L. Coronary flow reserve is related to the extension and transmurality of myocardial necrosis and predicts functional recovery after acute myocardial infarction. Echocardiography 2019; 36:844-853. [PMID: 31002185 DOI: 10.1111/echo.14337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Few studies have examined the effect of transmurality of myocardial necrosis on coronary microcirculation. The aim of this study was to examine the influence of cardiac magnetic resonance-derived (GE-MRI) structural determinants of coronary flow reserve (CFR) after anterior myocardial infarction (STEMI), and their predictive value on regional functional recovery. METHODS Noninvasive CFR and GE-MRI were studied in 37 anterior STEMI patients after primary coronary angioplasty. The wall motion score index in the left descending anterior coronary artery territory (A-WMSI) was calculated at admission and follow-up (FU). Recovery of regional left ventricular (LV) function was defined as the difference in A-WMSI at admission and FU. The necrosis score index (NSI) and transmurality score index (TSI) by GE-MRI were calculated in the risk area. Baseline (BMR) and hyperemic (HMR) microvascular resistance, arteriolar resistance index (ARI), and coronary resistance reserve (CRR) were calculated at the Doppler echocardiography. RESULTS Bivariate analysis indicated that the CPK and troponin I peak, heart rate, NSI, TSI, BMR, the ARI, and CRR were related to CFR. Multivariable analysis revealed that TSI was the only independent determinant of CFR. The CFR value of >2.27, identified as optimal by ROC analysis, was 77% specific and 73% sensitive with accuracy of 76% in identifying patients with functional recovery. CONCLUSIONS Preservation of microvascular function after AMI is related to the extent of transmurality of myocardial necrosis, is an important factor influencing regional LV recovery, and can be monitored by noninvasive CFR.
Collapse
Affiliation(s)
- Roberta Montisci
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Ruscazio
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Tona
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Cristiano Sarais
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Maria Francesca Marchetti
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Luisa Cacciavillani
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Martina Perazzolo Marra
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Luigi Meloni
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
Senior R, Pradhan J. Myocardial contrast echocardiography – Use in viability assessment and acute myocardial infarction. JOURNAL OF THE INDIAN ACADEMY OF ECHOCARDIOGRAPHY & CARDIOVASCULAR IMAGING 2019. [DOI: 10.4103/jiae.jiae_36_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Matsuura R, Miyagawa S, Fukushima S, Goto T, Harada A, Shimozaki Y, Yamaki K, Sanami S, Kikuta J, Ishii M, Sawa Y. Intravital imaging with two-photon microscopy reveals cellular dynamics in the ischeamia-reperfused rat heart. Sci Rep 2018; 8:15991. [PMID: 30375442 PMCID: PMC6207786 DOI: 10.1038/s41598-018-34295-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Recent advances in intravital microscopy have provided insight into dynamic biological events at the cellular level in both healthy and pathological tissue. However, real-time in vivo cellular imaging of the beating heart has not been fully established, mainly due to the difficulty of obtaining clear images through cycles of cardiac and respiratory motion. Here we report the successful recording of clear in vivo moving images of the beating rat heart by two-photon microscopy facilitated by cardiothoracic surgery and a novel cardiac stabiliser. Subcellular dynamics of the major cardiac components including the myocardium and its subcellular structures (i.e., nuclei and myofibrils) and mitochondrial distribution in cardiac myocytes were visualised for 4-5 h in green fluorescent protein-expressing transgenic Lewis rats at 15 frames/s. We also observed ischaemia/reperfusion (I/R) injury-induced suppression of the contraction/relaxation cycle and the consequent increase in cell permeability and leukocyte accumulation in cardiac tissue. I/R injury was induced in other transgenic mouse lines to further clarify the biological events in cardiac tissue. This imaging system can serve as an alternative modality for real time monitoring in animal models and cardiological drug screening, and can contribute to the development of more effective treatments for cardiac diseases.
Collapse
Affiliation(s)
- Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takasumi Goto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Shimozaki
- Research and Development Division for Advanced Technology, Research and Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Kazumasa Yamaki
- Research and Development Division for Advanced Technology, Research and Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Sho Sanami
- Research and Development Division for Advanced Technology, Research and Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
29
|
Abstract
The no-reflow phenomenon refers to the observation that when an organ is made ischemic by occlusion of a large artery supplying it, restoration of patency in that artery does not restore perfusion to the microvasculature supplying the parenchyma of that organ. This has been observed after prolonged arterial occlusions in the heart (30–90 min), brain, skin, and kidney. In experimental models, zones of no reflow in the heart are characterized by ultrastructural microvascular damage, including focal endothelial swelling obstructing the lumen of small vessels. Blood elements such as neutrophil plugs, platelets, and stacking of erythrocytes have also been implicated. No reflow is associated with poor healing of the myocardial infarction. In patients, no reflow is associated with a poor clinical outcome independent of infarct size, suggesting that therapy for no reflow may be an important approach to improving outcome for ST elevation myocardial infarction. No reflow occurs after reperfusion of experimental cerebral ischemia and may be observed after only 5-min episodes of ischemia. Aggregation of blood elements may play a greater role than in cardiac no reflow. No reflow in the brain may involve cortical spreading depression with disturbed local vascular control and high, vasculotonic levels of extracellular K+ concentration, postischemic swelling in endothelial cells and abutting end feet of pericytes, pericyte contraction and death, interstitial edema with collapse of cerebral capillaries, and inflammatory reaction. New guidelines suggesting that reperfusion for stroke may be considered as late as 24 h after the onset of symptoms suggest that clinicians may be seeing more no reflow in the future.
Collapse
Affiliation(s)
- Robert A. Kloner
- Huntington Medical Research Institutes, Pasadena, California
- Cardiovascular Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kevin S. King
- Huntington Medical Research Institutes, Pasadena, California
| | - Michael G. Harrington
- Huntington Medical Research Institutes, Pasadena, California
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
30
|
Lavin B, Protti A, Lorrio S, Dong X, Phinikaridou A, Botnar RM, Shah A. MRI with gadofosveset: A potential marker for permeability in myocardial infarction. Atherosclerosis 2018; 275:400-408. [PMID: 29735362 PMCID: PMC6100880 DOI: 10.1016/j.atherosclerosis.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Acute ischemia is associated with myocardial endothelial damage and microvessel formation, resulting in leakage of plasma albumin into the myocardial extravascular space. In this study, we tested whether an albumin-binding intravascular contrast agent (gadofosveset) allows for improved quantification of myocardial permeability compared to the conventional extracellular contrast agent Gd-DTPA using late gadolinium enhancement (LGE) and T1 mapping in vivo. METHODS MI was induced in C57BL/6 mice (n = 6) and cardiac magnetic resonance imaging (CMR) was performed at 3, 10 and 21 days post-MI using Gd-DTPA and 24 h later using gadofosveset. Functional, LGE and T1 mapping protocols were performed 45 min post-injection of the contrast agent. RESULTS LGE images showed that both contrast agents provided similar measurements of infarct area at all time points following MI. Importantly, the myocardial R1 measurements after administration of gadofosveset were higher in the acute phase-day 3 (R1 [s-1] = 6.29 ± 0.29) compared to the maturation phase-days 10 and 21 (R1 [s-1] = 4.76 ± 0.30 and 4.48 ± 0.14), suggesting that the uptake of this agent could be used to stage myocardial remodeling. No differences in myocardial R1 were observed after administration of Gd-DTPA at different time points post-MI (R1 [s-1] = 3d: 3.77 ± 0.37; 10d: 2.74 ± 0.06; 21d: 3.35 ± 0.26). The MRI results were validated by ex vivo histology that showed albumin leakage in the myocardium in the acute phase and microvessel formation at later stages. CONCLUSIONS We demonstrate the merits of an albumin-binding contrast agent for monitoring changes in myocardial permeability between acute ischemia and chronic post-MI myocardial remodeling.
Collapse
Affiliation(s)
- Begoña Lavin
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom.
| | - Andrea Protti
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom; Cardiovascular Division, James Black Centre, King's College Hospital Denmark Hill London, London, SE5 9NU, United Kingdom
| | - Silvia Lorrio
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - Xuebin Dong
- Cardiovascular Division, James Black Centre, King's College Hospital Denmark Hill London, London, SE5 9NU, United Kingdom
| | - Alkystis Phinikaridou
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK; The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Ajay Shah
- The British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, United Kingdom; Cardiovascular Division, James Black Centre, King's College Hospital Denmark Hill London, London, SE5 9NU, United Kingdom
| |
Collapse
|
31
|
Abstract
ST-segment elevation myocardial infarction is a major cause of morbidity and mortality worldwide. Reperfusion injury (RI) following the opening of an occluded coronary artery mitigates the effect of reperfusion by further accentuating ischemic damage and increasing infarct size. Experimental studies have shown that nearly 50% of final infarct size is attributable to RI, an elusive phenomenon that remains resistant to treatment. This review proposes a hypothesis to explain the failure of strategies that have been used in an attempt to prevent RI. This hypothesis suggests that, after a certain duration of myocardial ischemia in the affected myocardium, three phases of myocardial damage occur: reversible ischemia, irreversible ischemia, and necrosis. In the reversible ischemia phase, cellular adaptive responses remain functional, and cellular repair and thus recovery of cellular functions is possible, whereas in the irreversible ischemia phase protective maneuvers fail to confer cytoprotection. Preventive therapies for RI fail because they cannot prevent cell death once cells have entered the irreversible ischemia phase, although they may succeed in postponing cell death. Failure to salvage myocardium with irreversible ischemia in addition to postponement and change in the mode of cell death (mainly from necrosis to apoptosis) by various RI preventive strategies may be the key to understanding the failure of these strategies in the clinical setting, despite their success in the reduction of infarct size in the experimental setting. Early reperfusion before large amounts of myocardium at risk reach the stage of irreversible ischemia is the best strategy for reduction of RI-related myocardial damage.
Collapse
|
32
|
Kloner RA, Dai W, Hale SL. No-Reflow Phenomenon. A New Target for Therapy of Acute Myocardial Infarction Independent of Myocardial Infarct Size. J Cardiovasc Pharmacol Ther 2018; 23:273-276. [DOI: 10.1177/1074248418764467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Robert A. Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Sharon L. Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
| |
Collapse
|
33
|
Wang Z, Ren L, Liu N, Peng J. Utility of Hematological Parameters in Predicting No-Reflow Phenomenon After Primary Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction. Clin Appl Thromb Hemost 2018; 24:1177-1183. [PMID: 29552915 PMCID: PMC6714744 DOI: 10.1177/1076029618761005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Because the no-reflow phenomenon in patients with ST- segment elevation myocardial infarction can lead to poor outcomes and early identification of patients at high risk may alter the clinical outcome, we aimed to study possible differences in the predictive utility among hematological parameters for early identification of patients at high risk of the no-reflow phenomenon during the primary percutaneous coronary intervention. Methods: A total of 612 patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention were enrolled. The patients were divided into 2 groups: no-reflow and normal reflow. Hematological parameters were measured on admission. Sensitivity, specificity, positive and negative predictive values, and receiver–operating characteristic areas under the curve were determined to evaluate the predictive values of these parameters. Results: The patients in the no-reflow group had a significantly higher neutrophil count, neutrophil–lymphocyte ratio, platelet–lymphocyte ratio, and mean platelet volume-to-lymphocyte ratio when compared to the normal reflow patients. We identified mean platelet volume-to-lymphocyte ratio to have a moderate predictive value and high specificity (66.8%) for the no-reflow phenomenon. Neutrophil–lymphocyte ratio provided the largest area under the curve for predicting no reflow. Regarding the predictive utility for no reflow, the comparison showed no statically significant differences among evaluated hematological parameters. Conclusion: For the prediction of no reflow, mean platelet volume-to-lymphocyte ratio yielded moderate performance. No hematological parameter on admission had persuasive superior capacities to predict no-reflow in patients receiving the primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- Zuoyan Wang
- 1 Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lihui Ren
- 1 Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Na Liu
- 2 Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianjun Peng
- 1 Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Patel H, Mazur W, Williams KA, Kalra DK. Myocardial viability–State of the art: Is it still relevant and how to best assess it with imaging? Trends Cardiovasc Med 2018; 28:24-37. [DOI: 10.1016/j.tcm.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
35
|
Leenders GJ, Smeets MB, van den Boomen M, Berben M, Nabben M, van Strijp D, Strijkers GJ, Prompers JJ, Arslan F, Nicolay K, Vandoorne K. Statins Promote Cardiac Infarct Healing by Modulating Endothelial Barrier Function Revealed by Contrast-Enhanced Magnetic Resonance Imaging. Arterioscler Thromb Vasc Biol 2017; 38:186-194. [PMID: 29146749 DOI: 10.1161/atvbaha.117.310339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The endothelium has a crucial role in wound healing, acting as a barrier to control transit of leukocytes. Endothelial barrier function is impaired in atherosclerosis preceding myocardial infarction (MI). Besides lowering lipids, statins modulate endothelial function. Here, we noninvasively tested whether statins affect permeability at the inflammatory (day 3) and the reparative (day 7) phase of infarct healing post-MI using contrast-enhanced cardiac magnetic resonance imaging (MRI). APPROACH AND RESULTS Noninvasive permeability mapping by MRI after MI in C57BL/6, atherosclerotic ApoE-/-, and statin-treated ApoE-/- mice was correlated to subsequent left ventricular outcome by structural and functional cardiac MRI. Ex vivo histology, flow cytometry, and quantitative polymerase chain reaction were performed on infarct regions. Increased vascular permeability at ApoE-/- infarcts was observed compared with C57BL/6 infarcts, predicting enhanced left ventricular dilation at day 21 post-MI by MRI volumetry. Statin treatment improved vascular barrier function at ApoE-/- infarcts, indicated by reduced permeability. The infarcted tissue of ApoE-/- mice 3 days post-MI displayed an unbalanced Vegfa(vascular endothelial growth factor A)/Angpt1 (angiopoetin-1) expression ratio (explaining leakage-prone vessels), associated with higher amounts of CD45+ leukocytes and inflammatory LY6Chi monocytes. Statins reversed the unbalanced Vegfa/Angpt1 expression, normalizing endothelial barrier function at the infarct and blocking the augmented recruitment of inflammatory leukocytes in statin-treated ApoE-/- mice. CONCLUSIONS Statins lowered permeability and reduced the transit of unfavorable inflammatory leukocytes into the infarcted tissue, consequently improving left ventricular outcome.
Collapse
Affiliation(s)
- Geert J Leenders
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Mirjam B Smeets
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Maaike van den Boomen
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Monique Berben
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Miranda Nabben
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Dianne van Strijp
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Gustav J Strijkers
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Jeanine J Prompers
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Fatih Arslan
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Klaas Nicolay
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Katrien Vandoorne
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.).
| |
Collapse
|
36
|
Carberry J, Carrick D, Haig C, Ahmed N, Mordi I, McEntegart M, Petrie MC, Eteiba H, Hood S, Watkins S, Lindsay M, Davie A, Mahrous A, Ford I, Sattar N, Welsh P, Radjenovic A, Oldroyd KG, Berry C. Persistent Iron Within the Infarct Core After ST-Segment Elevation Myocardial Infarction: Implications for Left Ventricular Remodeling and Health Outcomes. JACC Cardiovasc Imaging 2017; 11:1248-1256. [PMID: 29153575 PMCID: PMC6130225 DOI: 10.1016/j.jcmg.2017.08.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Objectives This study sought to determine the incidence and prognostic significance of persistent iron in patients post–ST-segment elevation myocardial infarction (STEMI). Background The clinical significance of persistent iron within the infarct core after STEMI complicated by acute myocardial hemorrhage is poorly understood. Methods Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [Detection and Significance of Heart Injury in ST Elevation Myocardial Infarction]). Cardiac magnetic resonance imaging including T2* (observed time constant for the decay of transverse magnetization seen with gradient-echo sequences) mapping was performed at 2 days and 6 months post-STEMI. Myocardial hemorrhage or iron was defined as a hypointense infarct core with T2* signal <20 ms. Results A total of 203 patients (age 57 ± 11 years, n = 158 [78%] male) had evaluable T2* maps at 2 days and 6 months post-STEMI; 74 (36%) patients had myocardial hemorrhage at baseline, and 44 (59%) of these patients had persistent iron at 6 months. Clinical associates of persistent iron included heart rate (p = 0.009), the absence of a history of hypertension (p = 0.017), and infarct size (p = 0.028). The presence of persistent iron was associated with worsening left ventricular (LV) end-diastolic volume (regression coefficient: 21.10; 95% confidence interval [CI]: 10.92 to 31.27; p < 0.001) and worsening LV ejection fraction (regression coefficient: −6.47; 95% CI: −9.22 to −3.72; p < 0.001). Persistent iron was associated with the subsequent occurrence of all-cause death or heart failure (hazard ratio: 3.91; 95% CI: 1.37 to 11.14; p = 0.011) and major adverse cardiac events (hazard ratio: 3.24; 95% CI: 1.09 to 9.64; p = 0.035) (median follow-up duration 1,457 days [range 233 to 1,734 days]). Conclusions Persistent iron at 6 months post-STEMI is associated with worse LV and longer-term health outcomes. (Detection and Significance of Heart Injury in ST Elevation Myocardial Infarction [BHF MR-MI]; NCT02072850)
Collapse
Affiliation(s)
- Jaclyn Carberry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - David Carrick
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Scotland
| | - Caroline Haig
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, Scotland
| | - Nadeem Ahmed
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Ify Mordi
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Margaret McEntegart
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Mark C Petrie
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Hany Eteiba
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Stuart Hood
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Stuart Watkins
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Scotland
| | - Mitchell Lindsay
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Andrew Davie
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Ahmed Mahrous
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, Scotland
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Paul Welsh
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Aleksandra Radjenovic
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Keith G Oldroyd
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Scotland.
| |
Collapse
|
37
|
Lee M, Kong J. Current State of the Art in Approaches to Saphenous Vein Graft Interventions. Interv Cardiol 2017; 12:85-91. [PMID: 29588735 PMCID: PMC5808481 DOI: 10.15420/icr.2017:4:2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
Saphenous vein grafts (SVGs), used during coronary artery bypass graft surgery for severe coronary artery disease, are prone to degeneration and occlusion, leading to poor long-term patency compared with arterial grafts. Interventions used to treat SVG disease are susceptible to high rates of periprocedural MI and no-reflow. To minimise complications seen with these interventions, proper stents, embolic protection devices (EPDs) and pharmacological selection are crucial. Regarding stent selection, evidence has demonstrated superiority of drug-eluting stents over bare-metal stents in SVG intervention. The ACCF/AHA/SCA American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions guidelines recommend the use of EPDs during SVG intervention to decrease the risk of periprocedural MI, distal embolisation and no-reflow. The optimal pharmacological treatment for slow or no-reflow remains unclear, but various vasodilators show promise.
Collapse
|
38
|
Liu B, Zhang Y, Jia N, Lan M, Du L, Zhao D, He Q. Study of the Safety of Extracorporeal Cardiac Shock Wave Therapy: Observation of the Ultrastructures in Myocardial Cells by Transmission Electron Microscopy. J Cardiovasc Pharmacol Ther 2017; 23:79-88. [PMID: 28862043 DOI: 10.1177/1074248417725877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Extracorporeal cardiac shock wave therapy (CSWT) has been used to treat patients with severe coronary heart disease and cardiac failure with good results; however, the safety of this treatment is still controversial. Its safety in clinical setting and on microstructures has been confirmed, but the influence of shock wave on the ultrastructures of myocardial cells is not clear. In this study, 12 Sprague-Dawley rats were randomly divided into control (NC) and CSWT therapy (NC+SW) groups. The heart rate, blood pressure, serum troponin I (TNI), and cardiac ultrasound were evaluated, and the myocardial inflammatory responses and fibrosis changes were compared. The samples were observed by transmission electron microscopy to evaluate the changes in myocardial tissue ultrastructure. The CSWT had no significant influence on rat hemodynamics indices and serum TNI, did not affect left ventricular function, and did not cause myocardial inflammatory response and fibrosis changes. The scores of myocardial ultrastructure damage in the NC and NC+SW groups were 1.39 ± 0.982 and 2.42 ± 1.009, respectively ( P = .103). The CSWT did not cause significant additional damage to myocardial ultrastructures. The safety of CWST has been preliminarily proved at the clinical, microstructure, and ultrastructure levels, but its long-term safety needs further exploration.
Collapse
Affiliation(s)
- Bing Liu
- 1 Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,2 Department of Cardiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Yunhe Zhang
- 3 Department of Geriatric Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Na Jia
- 2 Department of Cardiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Ming Lan
- 2 Department of Cardiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Ling Du
- 1 Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,2 Department of Cardiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Dachun Zhao
- 4 Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Qing He
- 1 Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,2 Department of Cardiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| |
Collapse
|
39
|
|
40
|
Zhang R, Chen S, Zhao Q, Sun M, Yu B, Hou J. Fragmented QRS complex is a prognostic marker of microvascular reperfusion and changes in LV function occur in patients with ST elevation myocardial infarction who underwent primary percutaneous coronary intervention. Exp Ther Med 2017; 13:3231-3238. [PMID: 28588675 PMCID: PMC5450773 DOI: 10.3892/etm.2017.4380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the in-hospital and long-term prognostic value of fragmented QRS complex (fQRS) for microvascular reperfusion and changes in left ventricular (LV) function in patients with ST elevation myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention (PCI). A total of 216 patients with STEMI undergoing primary PCI were included in the current study. Patients were divided into two groups based on the presence (n=126) or absence (n=90) of fQRS following electrocardiograms (ECGs) on admission. Following primary PCI and follow up, patients were divided into four groups based on new onset, resolution, persistence and absence of fQRS. Major adverse cardiac events were defined to include cardiovascular death, arrhythmia, heart failure, reinfarction and target vessel revascularization. The percentage of patients with heart failure and microvascular reperfusion differed significantly between the fQRS(+) and fQRS(−) groups. Levels of N-terminal pro-brain natriuretic peptide (NT-proBNP), Peak creatine kinase-MB (CK-MB) and Troponin I levels were observed to be significantly higher in the fQRS(+) group compared with the fQRS(−) group. In univariate logistic regression analysis, left ventricular ejection fraction (LVEF), NT-proBNP, Troponin I, Peak CK-MB and microvascular reperfusion were found to be associated with fQRS. Multivariate analysis identified that LVEF, NT-proBNP, Troponin I and microvascular reperfusion may be independent predictors of fQRS. The presence of fQRS was demonstrated to be associated with left ventricular dysfunction at follow up assessments. The presence of fQRS was not only significantly associated with myocardial microvascular reperfusion and left ventricular function, but was also a prognostic marker in STEMI.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Shuyuan Chen
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Qi Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Meng Sun
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| | - Jingbo Hou
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
41
|
Yang Y, Yang M, Ai F, Huang C. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats. Biol Trace Elem Res 2017; 177:345-352. [PMID: 27873288 DOI: 10.1007/s12011-016-0896-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Abstract
The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Network Medical, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ming Yang
- Department of Network Medical, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Fen Ai
- Emergency Department, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
42
|
Abstract
The atherosclerotic coronary vasculature is not only the culprit but also a victim of myocardial ischemia/reperfusion injury. Manifestations of such injury are increased vascular permeability and edema, endothelial dysfunction and impaired vasomotion, microembolization of atherothrombotic debris, stasis with intravascular cell aggregates, and finally, in its most severe form, capillary destruction with hemorrhage. In animal experiments, local and remote ischemic pre- and postconditioning not only reduce infarct size but also these manifestations of coronary vascular injury, as do drugs which recruit signal transduction steps of conditioning. Clinically, no-reflow is frequently seen after interventional reperfusion, and it carries an adverse prognosis. The translation of cardioprotective interventions to clinical practice has been difficult to date. Only 4 drugs (brain natriuretic peptide, exenatide, metoprolol, and esmolol) stand unchallenged to date in reducing infarct size in patients with reperfused acute myocardial infarction; unfortunately, for these drugs, no information on their impact on the ischemic/reperfused coronary circulation is available.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Essen, Essen, Germany.
| |
Collapse
|
43
|
Nield LE, Dragulescu A, MacColl C, Manlhiot C, Brun H, McCrindle BW, Kuipers B, Caldarone CA, Miner SES, Mertens L. Coronary artery Doppler patterns are associated with clinical outcomes post-arterial switch operation for transposition of the great arteries. Eur Heart J Cardiovasc Imaging 2017; 19:461-468. [DOI: 10.1093/ehjci/jex050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lynne E Nield
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Andreea Dragulescu
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Christine MacColl
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Cedric Manlhiot
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Henrik Brun
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Brian W McCrindle
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Bart Kuipers
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Christopher A Caldarone
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Steven E S Miner
- University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Luc Mertens
- Division of Cardiology, The Hospital for Sick Children, Labatt Family Heart Centre, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
44
|
Karogiannis N, Senior R. Contrast echocardiography for detection of myocardial perfusion abnormalities. Herz 2017; 42:287-294. [DOI: 10.1007/s00059-017-4536-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Teren A, Kirsten H, Beutner F, Scholz M, Holdt LM, Teupser D, Gutberlet M, Thiery J, Schuler G, Eitel I. Alteration of Multiple Leukocyte Gene Expression Networks is Linked with Magnetic Resonance Markers of Prognosis After Acute ST-Elevation Myocardial Infarction. Sci Rep 2017; 7:41705. [PMID: 28155873 PMCID: PMC5290530 DOI: 10.1038/srep41705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023] Open
Abstract
Prognostic relevant pathways of leukocyte involvement in human myocardial ischemic-reperfusion injury are largely unknown. We enrolled 136 patients with ST-elevation myocardial infarction (STEMI) after primary angioplasty within 12 h after onset of symptoms. Following reperfusion, whole blood was collected within a median time interval of 20 h (interquartile range: 15-25 h) for genome-wide gene expression analysis. Subsequent CMR scans were performed using a standard protocol to determine infarct size (IS), area at risk (AAR), myocardial salvage index (MSI) and the extent of late microvascular obstruction (lateMO). We found 398 genes associated with lateMO and two genes with IS. Neither AAR, nor MSI showed significant correlations with gene expression. Genes correlating with lateMO were strongly related to several canonical pathways, including positive regulation of T-cell activation (p = 3.44 × 10-5), and regulation of inflammatory response (p = 1.86 × 10-3). Network analysis of multiple gene expression alterations associated with larger lateMO identified the following functional consequences: facilitated utilisation and decreased concentration of free fatty acid, repressed cell differentiation, enhanced phagocyte movement, increased cell death, vascular disease and compensatory vasculogenesis. In conclusion, the extent of lateMO after acute, reperfused STEMI correlated with altered activation of multiple genes related to fatty acid utilisation, lymphocyte differentiation, phagocyte mobilisation, cell survival, and vascular dysfunction.
Collapse
Affiliation(s)
- A Teren
- Department of Cardiology/Internal Medicine, Heart Center, University of Leipzig, Germany.,LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - H Kirsten
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Medical Informatics, Statistic and Epidemiology, University of Leipzig, Germany.,IZI, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - F Beutner
- Department of Cardiology/Internal Medicine, Heart Center, University of Leipzig, Germany.,LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - M Scholz
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Medical Informatics, Statistic and Epidemiology, University of Leipzig, Germany
| | - L M Holdt
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Laboratory Medicine, University Hospital Munich (LMU) and Ludwig-Maximilian- University Munich, Germany
| | - D Teupser
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Laboratory Medicine, University Hospital Munich (LMU) and Ludwig-Maximilian- University Munich, Germany
| | - M Gutberlet
- Department of Diagnostic and Interventional Radiology, Heart Center, University of Leipzig, Germany
| | - J Thiery
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - G Schuler
- Department of Cardiology/Internal Medicine, Heart Center, University of Leipzig, Germany.,LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - I Eitel
- University Heart Center Lübeck, University of Lübeck, Medical Clinic II (Cardiology, Angiology and Intensive Care Medicine), Lübeck, Germany
| |
Collapse
|
46
|
Hammer-Hansen S, Leung SW, Hsu LY, Wilson JR, Taylor J, Greve AM, Thune JJ, Køber L, Kellman P, Arai AE. Early Gadolinium Enhancement for Determination of Area at Risk: A Preclinical Validation Study. JACC Cardiovasc Imaging 2017; 10:130-139. [PMID: 27665165 PMCID: PMC5384795 DOI: 10.1016/j.jcmg.2016.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/14/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of this study was to determine whether early gadolinium enhancement (EGE) by cardiac magnetic resonance (CMR) in a canine model of reperfused myocardial infarction depicts the area at risk (AAR) as determined by microsphere blood flow analysis. BACKGROUND It remains controversial whether only the irreversibly injured myocardium enhances when CMR is performed in the setting of acute myocardial infarction. Recently, EGE has been proposed as a measure of the AAR in acute myocardial infarction because it correlates well with T2-weighted imaging of the AAR, but this still requires pathological validation. METHODS Eleven dogs underwent 2 h of coronary artery occlusion and 48 h of reperfusion before imaging at 1.5-T. EGE imaging was performed 3 min after contrast administration with coverage of the entire left ventricle. Late gadolinium enhancement imaging was performed between 10 and 15 min after contrast injection. AAR was defined as myocardium with blood flow <2 SD from remote myocardium determined by microspheres during occlusion. The size of infarction was determined with triphenyltetrazolium chloride. RESULTS There was no significant difference in the size of enhancement by EGE compared with the size of AAR by microspheres (44.1 ± 15.8% vs. 42.7 ± 9.2%; p = 0.61), with good correlation (r = 0.88; p < 0.001) and good agreement by Bland-Altman analysis (mean bias 1.4 ± 17.4%). There was no difference in the size of enhancement by EGE compared with enhancement on native T1 and T2 maps. The size of EGE was significantly greater than the infarct by triphenyltetrazolium chloride (44.1 ± 15.8% vs. 20.7 ± 14.4%; p < 0.001) and late gadolinium enhancement (44.1 ± 15.8% vs. 23.5 ± 12.7%; p < 0.001). CONCLUSIONS At 3 min post-contrast, EGE correlated well with the AAR by microspheres and CMR and was greater than infarct size. Thus, EGE enhances both reversibly and irreversibly injured myocardium.
Collapse
Affiliation(s)
- Sophia Hammer-Hansen
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Steve W Leung
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Department of Medicine and Radiology, Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Li-Yueh Hsu
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Joel R Wilson
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Department of Medicine and Radiology, Division of Cardiovascular Medicine, University of California-San Diego, San Diego, California
| | - Joni Taylor
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Anders M Greve
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Jens Jakob Thune
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Lars Køber
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Peter Kellman
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
47
|
Ferrari R, Balla C, Malagù M, Guardigli G, Morciano G, Bertini M, Biscaglia S, Campo G. Reperfusion Damage - A Story of Success, Failure, and Hope. Circ J 2016; 81:131-141. [PMID: 27941300 DOI: 10.1253/circj.cj-16-1124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue salvage of severely ischemic myocardium requires timely reperfusion by thrombolysis, angioplasty, or bypass. However, recovery of left ventricular function is rare. It may be absent or, even worse, reperfusion can induce further damage. Laboratory studies have shown convincingly that reperfusion can increase injury over and above that attributable to the pre-existing ischemia, precipitating arrhythmias, suppressing the recovery of contractile function ("stunning") and possibly even causing cell death in potentially salvable ischemic tissue. The mechanisms of reperfusion injury have been widely studied and, in the laboratory, it can be attenuated or prevented. Disappointingly, this is not the case in the clinic, particularly after thrombolysis or primary angioplasty. In contrast, excellent results have been achieved by surgeons by means of cardioplegia and hypothermia. For the interventionist, the issue is more complex as, contrary to cardiac surgery where the cardioplegia can be applied before ischemia and the heart can be stopped, during an angioplasty the heart still has to beat to support the circulation. We analyze in detail all these issues.
Collapse
Affiliation(s)
- Roberto Ferrari
- Cardiovascular and LTTA Centre, Azienda Ospedaliera-Universitaria di Ferrara
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tokuda T, Hirano K, Sakamoto Y, Takimura H, Kobayashi N, Araki M, Yamawaki M, Ito Y. Incidence and clinical outcomes of the slow-flow phenomenon after infrapopliteal balloon angioplasty. J Vasc Surg 2016; 65:1047-1054. [PMID: 27865638 DOI: 10.1016/j.jvs.2016.08.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study investigated the incidence and clinical relevance of the slow-flow phenomenon after infrapopliteal balloon angioplasty. METHODS This retrospective, single-center study included 161 consecutive patients with critical limb ischemia (173 limbs) who underwent endovascular treatment for infrapopliteal lesions between January 2012 and May 2015. The overall technical success rate was 88%. Of these lesions, 30 limbs presented with slow flow after angioplasty. RESULTS Total occlusion (90% vs 63%; P < .01) and severe calcification (43% vs 8%; P < .01) were more common in the slow-flow group. Kaplan-Meier curve analysis revealed that freedom from major amputation (60% vs 86%; log-rank, P < .01) and wound healing at 2 years (77% vs 91%; log-rank, P = .03) were significantly less common in the slow-flow group. Univariate Cox proportional hazard analysis identified Rutherford class 6 (hazard ratio [HR], 6.4; 95% confidence interval [CI], 2.8-15.8; P < .01), the slow-flow phenomenon (HR, 3.9; 95% CI, 1.6-8.9; P < .01), and hemodialysis (HR, 3.2; 95% CI, 1.2-11.1; P = .02) as independent predictors of major amputation and Rutherford class 6 (HR, 0.3; 95% CI, 0.2-0.6; P < .01), the slow-flow phenomenon (HR, 0.5; 95% CI, 0.3-0.9; P = .02), and pedal arch (HR, 1.6; 95% CI, 1.0-2.5; P = .04) as predictors of wound healing. CONCLUSIONS The slow-flow phenomenon after infrapopliteal balloon angioplasty occurred in 18.6% of limbs. This phenomenon may result in poor outcomes.
Collapse
Affiliation(s)
- Takahiro Tokuda
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan.
| | - Keisuke Hirano
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| | - Yasunari Sakamoto
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| | - Hideyuki Takimura
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| | - Norihiro Kobayashi
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| | - Motoharu Araki
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| | - Masahiro Yamawaki
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| | - Yoshiaki Ito
- Department of Cardiovascular Medicine, Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
49
|
Vandoorne K, Vandsburger MH, Jacobs I, Han Y, Dafni H, Nicolay K, Strijkers GJ. Noninvasive mapping of endothelial dysfunction in myocardial ischemia by magnetic resonance imaging using an albumin-based contrast agent. NMR IN BIOMEDICINE 2016; 29:1500-1510. [PMID: 27604064 DOI: 10.1002/nbm.3599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 05/28/2023]
Abstract
Noninvasive preclinical methods for the characterization of myocardial vascular function are crucial to an understanding of the dynamics of ischemic cardiac disease. Ischemic heart disease is associated with myocardial endothelial dysfunction, resulting in leakage of plasma albumin into the extravascular space. These features can be harnessed in a novel noninvasive three-dimensional magnetic resonance imaging method to measure fractional blood volume (fBV) and vascular permeability (permeability-surface area product, PS) using labeled albumin as a blood pool contrast agent. C57BL/6 mice were imaged before and 3 days after myocardial infarction (MI). Following the quantification of endogenous myocardial R1 , the dynamics of intravenously injected albumin-based contrast agent, extravasating from permeable myocardial blood vessels, were tracked on short-axis magnetic resonance images of the entire heart. This study successfully discriminated between infarcted and remote regions at 3 days post-infarct, based on a reduced fBV and increased PS in the infarcted region. These findings were confirmed using ex vivo fluorescence imaging and histology. We have demonstrated a novel method to quantify blood volume and permeability in the infarcted myocardium, providing an imaging biomarker for the assessment of endothelial dysfunction. This method has the potential to three-dimensionally visualize subtle changes in myocardial permeability and to track endothelial function for longitudinal cardiac studies determining pathophysiological processes during infarct healing.
Collapse
Affiliation(s)
- Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | | | - I Jacobs
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Y Han
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hagit Dafni
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Biomedical Engineering and Physics, Academic Medical Center (AMC), Amsterdam, the Netherlands
| |
Collapse
|
50
|
Hargrave B, Varghese F, Barabutis N, Catravas J, Zemlin C. Nanosecond pulsed platelet-rich plasma (nsPRP) improves mechanical and electrical cardiac function following myocardial reperfusion injury. Physiol Rep 2016; 4:4/4/e12710. [PMID: 26908713 PMCID: PMC4816896 DOI: 10.14814/phy2.12710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet‐rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat‐shock proteins and altered mitochondrial function under conditions of oxidative stress. Mouse hearts underwent 30 min of global ischemia and 1 h of reperfusion in situ. Rabbit hearts underwent 30 min of ischemia in vivo and were reperfused for 14 days. Hearts treated with nsPRP expressed significantly higher levels of Hsp27 and Hsp70 compared to hearts treated with vehicle. Also, pretreatment of cultured H9c2 cells with nsPRP significantly enhanced the “spare respiratory capacity (SRC)” also referred to as “respiratory reserve capacity” and ATP production in response to the uncoupler FCCP. These results suggest a cardioprotective effect of nsPRP on the ischemic heart during reperfusion.
Collapse
Affiliation(s)
- Barbara Hargrave
- Department of Medical Diagnostics and Translational Science, Old Dominion University, Norfolk, Virginia Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Frency Varghese
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia Department of Electrical Engineering, Old Dominion University, Norfolk, Virginia
| | - Nektarios Barabutis
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - John Catravas
- Department of Medical Diagnostics and Translational Science, Old Dominion University, Norfolk, Virginia Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Christian Zemlin
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia Department of Electrical Engineering, Old Dominion University, Norfolk, Virginia
| |
Collapse
|