1
|
Kiseleva DG, Dzhabrailov VD, Aitova AA, Turchaninova EA, Tsvelaya VA, Kazakova MA, Plyusnina TY, Markin AM. Arrhythmogenic Potential of Myocardial Edema: The Interstitial Osmolality Induces Spiral Waves and Multiple Excitation Wavelets. Biomedicines 2024; 12:1770. [PMID: 39200234 PMCID: PMC11351629 DOI: 10.3390/biomedicines12081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Myocardial edema is a common symptom of pathological processes in the heart, causing aggravation of cardiovascular diseases and leading to irreversible myocardial remodeling. Patient-based studies show that myocardial edema is associated with arrhythmias. Currently, there are no studies that have examined how edema may influence changes in calcium dynamics in the functional syncytium. We performed optical mapping of calcium dynamics on a monolayer of neonatal rat cardiomyocytes with Fluo-4. The osmolality of the solutions was adjusted using the NaCl content. The initial Tyrode solution contained 140 mM NaCl (1T) and the hypoosmotic solutions contained 105 (0.75T) and 70 mM NaCl (0.5T). This study demonstrated a sharp decrease in the calcium wave propagation speed with a decrease in the solution osmolality. The successive decrease in osmolality also showed a transition from a normal wavefront to spiral wave and multiple wavelets of excitation with wave break. Our study demonstrated that, in a cellular model, hypoosmolality and, as a consequence, myocardial edema, could potentially lead to fatal ventricular arrhythmias, which to our knowledge has not been studied before. At 0.75T spiral waves appeared, whereas multiple wavelets of excitation occurred in 0.5T, which had not been recorded previously in a two-dimensional monolayer under conditions of cell edema without changes in the pacing protocol.
Collapse
Affiliation(s)
- Diana G. Kiseleva
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia;
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Vitalii D. Dzhabrailov
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aleria A. Aitova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| | - Elena A. Turchaninova
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Valeriya A. Tsvelaya
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Maria A. Kazakova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Tatiana Yu. Plyusnina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia;
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
2
|
Haq KT, McLean K, Salameh S, Swift LM, Posnack NG. Electroanatomical adaptations in the guinea pig heart from neonatal to adulthood. Europace 2024; 26:euae158. [PMID: 38864516 PMCID: PMC11218563 DOI: 10.1093/europace/euae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
AIMS Electroanatomical adaptations during the neonatal to adult phase have not been comprehensively studied in preclinical animal models. To explore the impact of age as a biological variable on cardiac electrophysiology, we employed neonatal and adult guinea pigs, which are a recognized animal model for developmental research. METHODS AND RESULTS Electrocardiogram recordings were collected in vivo from anaesthetized animals. A Langendorff-perfusion system was employed for the optical assessment of action potentials and calcium transients. Optical data sets were analysed using Kairosight 3.0 software. The allometric relationship between heart weight and body weight diminishes with age, it is strongest at the neonatal stage (R2 = 0.84) and abolished in older adults (R2 = 1E-06). Neonatal hearts exhibit circular activation, while adults show prototypical elliptical shapes. Neonatal conduction velocity (40.6 ± 4.0 cm/s) is slower than adults (younger: 61.6 ± 9.3 cm/s; older: 53.6 ± 9.2 cm/s). Neonatal hearts have a longer action potential duration (APD) and exhibit regional heterogeneity (left apex; APD30: 68.6 ± 5.6 ms, left basal; APD30: 62.8 ± 3.6), which was absent in adults. With dynamic pacing, neonatal hearts exhibit a flatter APD restitution slope (APD70: 0.29 ± 0.04) compared with older adults (0.49 ± 0.04). Similar restitution characteristics are observed with extrasystolic pacing, with a flatter slope in neonates (APD70: 0.54 ± 0.1) compared with adults (younger: 0.85 ± 0.4; older: 0.95 ± 0.7). Neonatal hearts display unidirectional excitation-contraction coupling, while adults exhibit bidirectionality. CONCLUSION Postnatal development is characterized by transient changes in electroanatomical properties. Age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. Understanding heart development is crucial to evaluating therapeutic eligibility, safety, and efficacy.
Collapse
Affiliation(s)
- Kazi T Haq
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Kate McLean
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
3
|
Haq KT, McLean K, Salameh S, Swift L, Posnack NG. Electroanatomical Adaptations in the Guinea Pig Heart from Neonatal to Adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577234. [PMID: 38352347 PMCID: PMC10862765 DOI: 10.1101/2024.01.26.577234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Electroanatomical adaptations during the neonatal to adult phase have not been comprehensively studied in preclinical animal models. To explore the impact of age as a biological variable on cardiac electrophysiology, we employed neonatal and adult guinea pigs, which are a recognized animal model for developmental research. Methods Healthy guinea pigs were categorized into three age groups (neonates, n=10; younger adults, n=13; and older adults, n=26). Electrocardiogram (ECG) recordings were collected in vivo from anesthetized animals (2-3% isoflurane). A Langendorff-perfusion system was employed for optical assessment of epicardial action potentials and calcium transients, using intact excised heart preparations. Optical data sets were analyzed and metric maps were constructed using Kairosight 3.0. Results The allometric relationship between heart weight and body weight diminishes with age, as it is strongest at the neonatal stage (R 2 = 0.84) and completely abolished in older adults (R 2 = 1E-06). Neonatal hearts exhibit circular activation waveforms, while adults show prototypical elliptical shapes. Neonatal conduction velocity (40.6±4.0 cm/s) is slower than adults (younger adults: 61.6±9.3 cm/s; older adults: 53.6±9.2 cm/s). Neonatal hearts have a longer action potential duration (APD) and exhibit regional heterogeneity (left apex; APD30: 68.6±5.6 ms, left basal; APD30: 62.8±3.6), which was absent in adult epicardium. With dynamic pacing, neonatal hearts exhibit a flatter APD restitution slope (APD70: 0.29±0.04) compared to older adults (0.49±0.04). Similar restitution characteristics are observed with extrasystolic pacing, with a flatter slope in neonatal hearts (APD70: 0.54±0.1) compared to adults (Younger adults: 0.85±0.4; Older adults: 0.95±0.7). Finally, neonatal hearts display unidirectional excitation-contraction coupling, while adults exhibit bidirectionality. Conclusion The transition from neonatal to adulthood in guinea pig hearts is characterized by transient changes in electroanatomic properties. Age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. Understanding postnatal heart development is crucial to evaluating therapeutic eligibility, safety, and efficacy. What is Known Age-specific cardiac electroanatomical characteristics have been documented in humans and some preclinical animal models. These age-specific patterns can influence cardiac physiology, pathology, and therapies for cardiovascular diseases. What the Study Adds Cardiac electroanatomical characteristics are age-specific in guinea pigs, a well-known preclinical model for developmental studies. Age-dependent adaptations in cardiac electrophysiology are readily observed in the electrocardiogram recordings and via optical mapping of epicardial action potentials and calcium transients. Our findings reveal unique activation and repolarization characteristics between neonatal and adult animals.
Collapse
|
4
|
Zaniboni M. The electrical restitution of the non-propagated cardiac ventricular action potential. Pflugers Arch 2024; 476:9-37. [PMID: 37783868 PMCID: PMC10758374 DOI: 10.1007/s00424-023-02866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Sudden changes in pacing cycle length are frequently associated with repolarization abnormalities initiating cardiac arrhythmias, and physiologists have long been interested in measuring the likelihood of these events before their manifestation. A marker of repolarization stability has been found in the electrical restitution (ER), the response of the ventricular action potential duration to a pre- or post-mature stimulation, graphically represented by the so-called ER curve. According to the restitution hypothesis (ERH), the slope of this curve provides a quantitative discrimination between stable repolarization and proneness to arrhythmias. ER has been studied at the body surface, whole organ, and tissue level, and ERH has soon become a key reference point in theoretical, clinical, and pharmacological studies concerning arrhythmia development, and, despite criticisms, it is still widely adopted. The ionic mechanism of ER and cellular applications of ERH are covered in the present review. The main criticism on ERH concerns its dependence from the way ER is measured. Over the years, in fact, several different experimental protocols have been established to measure ER, which are also described in this article. In reviewing the state-of-the art on cardiac cellular ER, I have introduced a notation specifying protocols and graphical representations, with the aim of unifying a sometime confusing nomenclature, and providing a physiological tool, better defined in its scope and limitations, to meet the growing expectations of clinical and pharmacological research.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma (Italy), Parco Area Delle Scienze, 11/A, 43124, Parma, Italy.
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Qu Z. Bistable spiral wave dynamics in electrically excitable media. Phys Rev E 2023; 108:064405. [PMID: 38243532 PMCID: PMC11338078 DOI: 10.1103/physreve.108.064405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024]
Abstract
We show that a positive feedback loop between sodium current inactivation and wave-front ramp-up speed causes a saddle-node bifurcation to result in bistable planar and spiral waves in electrically excitable media, in which both slow and fast waves are triggered by different stimulation protocols. Moreover, the two types of spiral wave conduction may interact to give rise to more complex spiral wave dynamics. The transitions between different spiral wave behaviors via saddle-node bifurcation can be a candidate mechanism for transitions widely seen in cardiac arrhythmias and neural diseases.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Levosimendan attenuates electrical alternans and prevents ventricular arrhythmia during therapeutic hypothermia in isolated rabbit hearts. Heart Rhythm 2023; 20:744-753. [PMID: 36804540 DOI: 10.1016/j.hrthm.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Therapeutic hypothermia (TH) increases the susceptibility to ventricular arrhythmias (VAs) by prolonging action potential duration (APD) and facilitating arrhythmogenic spatially discordant alternans (SDA). Levosimendan, a calcium sensitizer, has been reported to shorten APD by enhancing the adenosine triphosphate (ATP)-sensitive K current. OBJECTIVE The purpose of this study was to test the hypothesis that, during TH, levosimendan shortens the already prolonged APD, attenuates SDA, and prevents VA. METHODS Langendorff-perfused isolated rabbit hearts were subjected to TH (30°C) for 15 minutes, followed by treatment with either levosimendan 0.5 μM (n = 9) or vehicle (n = 8) for an additional 30 minutes under TH. Using an optical mapping system, epicardial APD was evaluated by S1 pacing. SDA threshold was defined as the longest pacing cycle length (PCL) that induces the phenomenon of SDA. Ventricular fibrillation (VF) inducibility was evaluated by burst pacing for 30 seconds at the shortest PCL that achieved 1:1 ventricular capture. RESULTS During TH, levosimendan shortened ventricular APD (PCL 400 ms; from 259 ± 8 ms to 241 ± 18 ms; P = .036) and decreased SDA threshold (from 327 ± 88 ms to 311 ± 68 ms; P = .011). VF inducibility was lowered from 39% ± 30% to 14% ± 12% with levosimendan (P = .018), whereas APD at PCL 400 ms (P = .161), SDA threshold (P = 1), and VF inducibility (P = .173) were not changed by vehicle. CONCLUSION During TH, levosimendan could protect hearts against VA by shortening APD and decreasing SDA threshold. Enhancing ATP-sensitive K current with levosimendan might be a novel approach to preventing VA during TH.
Collapse
|
7
|
Han H, Cheng LK, Paskaranandavadivel N. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles. Neurogastroenterol Motil 2022; 34:e14422. [PMID: 35726361 PMCID: PMC10078408 DOI: 10.1111/nmo.14422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Gastric bio-electrical slow waves are, in part, responsible for coordinating motility. Spatial dynamics about the recovery phase of slow wave recordings have not been thoroughly investigated due to the lack of suitable experimental techniques. METHODS A high-resolution multi-channel suction electrode array was developed and applied in pigs to acquire monophasic gastric slow waves. Signal characteristics were verified against biphasic slow waves recorded by conventional surface contact electrode arrays. Monophasic slow wave events were categorized into two groups based on their morphological characteristics, after which their amplitudes, activation to recovery intervals, and gradients were quantified and compared. Coverage of activation and recovery maps for both electrode types were calculated and compared. KEY RESULTS Monophasic slow waves had a more pronounced recovery phase with a higher gradient than biphasic slow waves (0.5 ± 0.1 vs. 0.3 ± 0.1 mV·s-1 ). Between the 2 groups of monophasic slow waves, there was a significant difference in amplitude (1.8 ± 0.5 vs. 1.1 ± 0.2 mV), activation time gradient (0.8 ± 0.2 vs. 0.3 ± 0.1 mV·s-1 ), and recovery time gradient (0.5 ± 0.1 vs. 0.3 ± 0.1 mV·s-1 ). For the suction and conventional contact electrode arrays, the recovery maps had reduced coverage compared to the activation maps (4 ± 6% and 43 ± 11%, respectively). CONCLUSIONS AND INFERENCES A novel high-resolution multi-channel suction electrode array was developed and applied in vivo to record monophasic gastric slow waves. Slow wave recovery phase analysis could be performed more efficiently on monophasic signals compared with biphasic signals, due to the more identifiable recovery phases.
Collapse
Affiliation(s)
- Henry Han
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, The University of Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
8
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
9
|
Choi Y, Lim B, Yang SY, Yang SH, Kwon OS, Kim D, Kim YG, Park JW, Yu HT, Kim TH, Yang PS, Uhm JS, Shim J, Kim SH, Sung JH, Choi JI, Joung B, Lee MH, Kim YH, Oh YS, Pak HN. Clinical Usefulness of Virtual Ablation Guided Catheter Ablation of Atrial Fibrillation Targeting Restitution Parameter-Guided Catheter Ablation: CUVIA-REGAB Prospective Randomized Study. Korean Circ J 2022; 52:699-711. [PMID: 35927040 PMCID: PMC9470491 DOI: 10.4070/kcj.2022.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We investigated whether extra-pulmonary vein (PV) ablation targeting a high maximal slope of the action potential duration restitution curve (Smax) improves the rhythm outcome of persistent atrial fibrillation (PeAF) ablation. METHODS In this open-label, multi-center, randomized, and controlled trial, 178 PeAF patients were randomized with 1:1 ratio to computational modeling-guided virtual Smax ablation (V-Smax) or empirical ablation (E-ABL) groups. Smax maps were generated by computational modeling based on atrial substrate maps acquired during clinical procedures in sinus rhythm. Smax maps were generated during the clinical PV isolation (PVI). The V-Smax group underwent an additional extra-PV ablation after PVI targeting the virtual high Smax sites. RESULTS After a mean follow-up period of 12.3±5.2 months, the clinical recurrence rates (25.6% vs. 23.9% in the V-Smax and the E-ABL group, p=0.880) or recurrence appearing as atrial tachycardia (11.1% vs. 5.7%, p=0.169) did not differ between the 2 groups. The post-ablation cardioversion rate was higher in the V-Smax group than E-ABL group (14.4% vs. 5.7%, p=0.027). Among antiarrhythmic drug-free patients (n=129), the AF freedom rate was 78.7% in the V-Smax group and 80.9% in the E-ABL group (p=0.776). The total procedure time was longer in the V-Smax group (p=0.008), but no significant difference was found in the major complication rates (p=0.497) between the groups. CONCLUSIONS Unlike a dominant frequency ablation, the computational modeling-guided V-Smax ablation did not improve the rhythm outcome of the PeAF ablation and had a longer procedure time. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02558699.
Collapse
Affiliation(s)
- Young Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byounghyun Lim
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Song-Yi Yang
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - So-Hyun Yang
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Oh-Seok Kwon
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Daehoon Kim
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Yun Gi Kim
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Je-Wook Park
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Hee Tae Yu
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Tae-Hoon Kim
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Pil-Sung Yang
- Department of Cardiology, Bundang CHA Hospital, CHA College of Medicine, Seoul, Korea
| | - Jae-Sun Uhm
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Jamin Shim
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Sung Hwan Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hoon Sung
- Department of Cardiology, Bundang CHA Hospital, CHA College of Medicine, Seoul, Korea
| | - Jong-Il Choi
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Boyoung Joung
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Moon-Hyoung Lee
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Young-Hoon Kim
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Yong-Seog Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hui-Nam Pak
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
10
|
Park JW, Lim B, Hwang I, Kwon OS, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Restitution Slope Affects the Outcome of Dominant Frequency Ablation in Persistent Atrial Fibrillation: CUVIA-AF2 Post-Hoc Analysis Based on Computational Modeling Study. Front Cardiovasc Med 2022; 9:838646. [PMID: 35310982 PMCID: PMC8927985 DOI: 10.3389/fcvm.2022.838646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough the dominant frequency (DF) localizes the reentrant drivers and the maximal slope of the action potential duration (APD) restitution curve (Smax) reflects the tendency of the wave-break, their interaction has never been studied. We hypothesized that DF ablation has different effects on atrial fibrillation (AF) depending on Smax.MethodsWe studied the DF and Smax in 25 realistic human persistent AF model samples (68% male, 60 ± 10 years old). Virtual AF was induced by ramp pacing measuring Smax, followed by spatiotemporal DF evaluation for 34 s. We assessed the DF ablation effect depending on Smax in both computational modeling and a previous clinical trial, CUVIA-AF (170 patients with persistent AF, 70.6% male, 60 ± 11 years old).ResultsMean DF had an inverse relationship with Smax regardless of AF acquisition timing (p < 0.001). Virtual DF ablations increased the defragmentation rate compared to pulmonary vein isolation (PVI) alone (p = 0.015), especially at Smax <1 (61.5 vs. 7.7%, p = 0.011). In post-DF ablation defragmentation episodes, DF was significantly higher (p = 0.002), and Smax was lower (p = 0.003) than in episodes without defragmentation. In the post-hoc analysis of CUVIA-AF2, we replicated the inverse relationship between Smax and DF (r = −0.47, p < 0.001), and we observed better rhythm outcomes of clinical DF ablations in addition to a PVI than of empirical PVI at Smax <1 [hazard ratio 0.45, 95% CI (0.22–0.89), p = 0.022; log-rank p = 0.021] but not at ≥ 1 (log-rank p = 0.177).ConclusionWe found an inverse relationship between DF and Smax and the outcome of DF ablation after PVI was superior at the condition with Smax <1 in both in-silico and clinical trials.
Collapse
|
11
|
Jenkins EV, Dharmaprani D, Schopp M, Quah JX, Tiver K, Mitchell L, Pope K, Ganesan AN. Understanding the origins of the basic equations of statistical fibrillatory dynamics. CHAOS (WOODBURY, N.Y.) 2022; 32:032101. [PMID: 35364849 DOI: 10.1063/5.0062095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms governing cardiac fibrillation remain unclear; however, it most likely represents a form of spatiotemporal chaos with conservative system dynamics. Renewal theory has recently been suggested as a statistical formulation with governing equations to quantify the formation and destruction of wavelets and rotors in fibrillatory dynamics. In this perspective Review, we aim to explain the origin of the renewal theory paradigm in spatiotemporal chaos. The ergodic nature of pattern formation in spatiotemporal chaos is demonstrated through the use of three chaotic systems: two classical systems and a simulation of cardiac fibrillation. The logistic map and the baker's transformation are used to demonstrate how the apparently random appearance of patterns in classical chaotic systems has macroscopic parameters that are predictable in a statistical sense. We demonstrate that the renewal theory approach developed for cardiac fibrillation statistically predicts pattern formation in these classical chaotic systems. Renewal theory provides governing equations to describe the apparently random formation and destruction of wavelets and rotors in atrial fibrillation (AF) and ventricular fibrillation (VF). This statistical framework for fibrillatory dynamics provides a holistic understanding of observed rotor and wavelet dynamics and is of conceptual significance in informing the clinical and mechanistic research of the rotor and multiple-wavelet mechanisms of AF and VF.
Collapse
Affiliation(s)
- Evan V Jenkins
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Madeline Schopp
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Jing Xian Quah
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Kathryn Tiver
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide 5042, Australia
| | - Lewis Mitchell
- School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Kenneth Pope
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
12
|
Chakraborty P, Massé S, Azam MA, Thollon C, Niri A, Lai PFH, Bouly M, Riazi S, Nanthakumar K. Effects of azumolene on arrhythmia substrate in a model of recurrent long-duration ventricular fibrillation. Biochem Biophys Res Commun 2022; 600:123-129. [PMID: 35219100 DOI: 10.1016/j.bbrc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Proarrhythmic risk of conventional anti-arrhythmic agents is linked to unintended modulation of membrane voltage dynamics. We have demonstrated that the anti-fibrillatory effect of azumolene is mediated via stabilization of the hyperphosphorylated ryanodine receptor (RyR2), leading to attenuation of diastolic calcium leak. However, the concomitant effects on membrane voltage dynamics have not been evaluated yet. METHODS After baseline optical mapping, Langendorff-perfused rabbit hearts treated with azumolene, or vehicle, were subjected to global ischemia-reperfusion (I/R) followed by two episodes of long-duration ventricular fibrillation (LDVF). Simultaneous dual epicardial calcium transient (CaT) and voltage dynamics were studied optically. RESULTS Pre-treatment with azumolene was associated with higher CaT amplitude alternans ratios (0.94 ± 0.02 vs. 0.78 ± 0.03 in control hearts, at 6 Hz; p = 0.005; and action potential amplitude alternans ratio (0.95 ± 0.02 vs. 0.78 ± 0.04 at 6.0 Hz; p = 0.02), and reduction of action potential duration (APD80) dispersion (9.0 ± 4.8 msec vs. 19.3 ± 6.6 msec at 6.0 Hz p = 0.02) and optical action potential upstroke rise time (26.3 ± 2.6 msec in control vs. 13.8 ± 0.6 msec at 6.0 Hz, p = 0.02) after LDVF. No change in action potential duration (APD) was noted with azumolene treatment. CONCLUSION In a model of ischemic recurrent LDVF, treatment with azumolene led to reduction of cardiac alternans, i.e., calcium and voltage alternans. Unlike conventional anti-arrhythmic agents, reduction of action potential upstroke rise time and preservation of action potential duration following azumolene treatment may reduce the proarrhythmia risk.
Collapse
Affiliation(s)
- Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Ahmed Niri
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Patrick F H Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Muriel Bouly
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Hoang-Trong MT, Ullah A, Lederer WJ, Jafri MS. Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms. MEMBRANES 2021; 11:794. [PMID: 34677560 PMCID: PMC8539281 DOI: 10.3390/membranes11100794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
Cardiac alternans is characterized by alternating weak and strong beats of the heart. This signaling at the cellular level may appear as alternating long and short action potentials (APs) that occur in synchrony with alternating large and small calcium transients, respectively. Previous studies have suggested that alternans manifests itself through either a voltage dependent mechanism based upon action potential restitution or as a calcium dependent mechanism based on refractoriness of calcium release. We use a novel model of cardiac excitation-contraction (EC) coupling in the rat ventricular myocyte that includes 20,000 calcium release units (CRU) each with 49 ryanodine receptors (RyR2s) and 7 L-type calcium channels that are all stochastically gated. The model suggests that at the cellular level in the case of alternans produced by rapid pacing, the mechanism requires a synergy of voltage- and calcium-dependent mechanisms. The rapid pacing reduces AP duration and magnitude reducing the number of L-type calcium channels activating individual CRUs during each AP and thus increases the population of CRUs that can be recruited stochastically. Elevated myoplasmic and sarcoplasmic reticulum (SR) calcium, [Ca2+]myo and [Ca2+]SR respectively, increases ryanodine receptor open probability (Po) according to our model used in this simulation and this increased the probability of activating additional CRUs. A CRU that opens in one beat is less likely to open the subsequent beat due to refractoriness caused by incomplete refilling of the junctional sarcoplasmic reticulum (jSR). Furthermore, the model includes estimates of changes in Na+ fluxes and [Na+]i and thus provides insight into how changes in electrical activity, [Na+]i and sodium-calcium exchanger activity can modulate alternans. The model thus tracks critical elements that can account for rate-dependent changes in [Na+]i and [Ca2+]myo and how they contribute to the generation of Ca2+ signaling alternans in the heart.
Collapse
Affiliation(s)
- Minh Tuan Hoang-Trong
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (M.T.H.-T.); (A.U.)
| | - Aman Ullah
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (M.T.H.-T.); (A.U.)
| | - William Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Mohsin Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (M.T.H.-T.); (A.U.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
14
|
Charrez B, Charwat V, Siemons B, Finsberg H, Miller EW, Edwards AG, Healy KE. In vitro safety "clinical trial" of the cardiac liability of drug polytherapy. Clin Transl Sci 2021; 14:1155-1165. [PMID: 33786981 PMCID: PMC8212738 DOI: 10.1111/cts.13038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Only a handful of US Food and Drug Administration (FDA) Emergency Use Authorizations exist for drug and biologic therapeutics that treat severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. Potential therapeutics include repurposed drugs, some with cardiac liabilities. We report on a chronic preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with repurposed hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock phase I safety clinical trial. The MPS contained human heart muscle derived from induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements, such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure (10 days) of heart muscle to HCQ alone elicited early afterdepolarizations and increased QT interval past 5 days. AZM alone elicited an increase in QT interval from day 7 onward, and arrhythmias were observed at days 8 and 10. Monotherapy results mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Biomarkers, most of them measurable in patients' serum, were identified for negative effects of monotherapy or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS correctly predicted clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe coronavirus disease 2019 (COVID-19) therapeutics.
Collapse
Affiliation(s)
- Bérénice Charrez
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of California at BerkeleyBerkeleyCaliforniaUSA
| | - Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of California at BerkeleyBerkeleyCaliforniaUSA
| | - Brian Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of California at BerkeleyBerkeleyCaliforniaUSA
| | | | - Evan W. Miller
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of California at BerkeleyBerkeleyCaliforniaUSA
| | - Andrew G. Edwards
- Department of PharmacologySchool of MedicineUniversity of California at DavisDavisCaliforniaUSA
| | - Kevin E. Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of California at BerkeleyBerkeleyCaliforniaUSA
- Department of Materials Science and EngineeringUniversity of California at BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
15
|
You T, Luo C, Zhang K, Zhang H. Electrophysiological Mechanisms Underlying T-Wave Alternans and Their Role in Arrhythmogenesis. Front Physiol 2021; 12:614946. [PMID: 33746768 PMCID: PMC7969788 DOI: 10.3389/fphys.2021.614946] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
T-wave alternans (TWA) reflects every-other-beat alterations in the morphology of the electrocardiogram ST segment or T wave in the setting of a constant heart rate, hence, in the absence of heart rate variability. It is believed to be associated with the dispersion of repolarization and has been used as a non-invasive marker for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death as numerous studies have shown. This review aims to provide up-to-date review on both experimental and simulation studies in elucidating possible mechanisms underlying the genesis of TWA at the cellular level, as well as the genesis of spatially concordant/discordant alternans at the tissue level, and their transition to cardiac arrhythmia. Recent progress and future perspectives in antiarrhythmic therapies associated with TWA are also discussed.
Collapse
Affiliation(s)
- Tingting You
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Kevin Zhang
- School of Medicine, Imperial College of London, London, United Kingdom
| | - Henggui Zhang
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Charrez B, Charwat V, Siemons B, Finsberg H, Miller E, Edwards AG, Healy KE. In Vitro Safety "Clinical Trial" of the Cardiac Liability of Hydroxychloroquine and Azithromycin as COVID19 Polytherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33398282 DOI: 10.1101/2020.12.21.423869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite global efforts, there are no effective FDA-approved medicines for the treatment of SARS-CoV-2 infection. Potential therapeutics focus on repurposed drugs, some with cardiac liabilities. Here we report on a preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock clinical trial. The MPS contained human heart muscle derived from patient-specific induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure to HCQ alone elicited early afterdepolarizations (EADs) and increased QT interval from day 6 onwards. AZM alone elicited an increase in QT interval from day 7 onwards and arrhythmias were observed at days 8 and 10. Monotherapy results closely mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8.. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Furthermore, biomarkers, most of them measurable in patients' serum, were identified for negative effects of single drug or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS can predict clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe COVID-19 therapeutics.
Collapse
|
17
|
Zasadny FM, Dyavanapalli J, Dowling NM, Mendelowitz D, Kay MW. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am J Physiol Heart Circ Physiol 2020; 319:H1358-H1368. [PMID: 33006920 PMCID: PMC7792708 DOI: 10.1152/ajpheart.00293.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity. METHODS We investigated electrophysiological rate adaptation in TAC rat hearts with and without daily chemogenetic activation of hypothalamic oxytocin neurons for downstream cardiac cholinergic neuron stimulation. Sprague Dawley rat hearts were excised, perfused, and optically mapped under dynamic pacing after 16 weeks of TAC with or without 12 weeks of daily chemogenetic treatment. Action potential duration (APD60) and conduction velocity (CV) maps were analyzed for regional rate adaptation to dynamic pacing. RESULTS At lower pacing rates, untreated TAC induced elevated LV epicardial APD60. Fitted APD60 steady state (APDss) was reduced in treated TAC hearts. At higher pacing rates, treatment heterogeneously reduced APD60 compared to untreated TAC hearts. Variance of conduction loss was reduced in treated hearts compared to untreated hearts during fast pacing. However, CV was markedly reduced in both treated and untreated TAC hearts throughout dynamic pacing. At 150msec pacing cycle length, APD60 v. diastolic interval (DI) dispersion was reduced in treated hearts compared to untreated hearts. CONCLUSIONS Chronic activation of cardiac cholinergic neurons improved electrophysiological adaptation to increases in pacing rate during development of TAC-induced heart failure. This provides insight into the electrophysiological benefits of cholinergic stimulation as a treatment for heart failure patients.
Collapse
Affiliation(s)
| | | | | | - David Mendelowitz
- Pharmacology and Physiology, George Washington University, United States
| | - Matthew W Kay
- Biomedical Engineering, George Washington University, United States
| |
Collapse
|
18
|
Comparison of Electromechanical Delay during Ventricular Tachycardia and Fibrillation under Different Conductivity Conditions Using Computational Modeling. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:9501985. [PMID: 32300375 PMCID: PMC7146094 DOI: 10.1155/2020/9501985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/25/2020] [Indexed: 01/27/2023]
Abstract
Electromechanical delay (EMD) is the time interval between local myocyte depolarization and the onset of myofiber shortening. Previously, researchers measured EMD during sinus rhythm and ectopic pacing in normal and heart failure conditions. However, to our knowledge, there are no reports regarding EMD during another type of rhythms or arrhythmia. The goal of this study was to quantify EMD during sinus rhythm, tachycardia, and ventricular fibrillation conditions. We hypothesized that EMD under sinus rhythm is longer due to isovolumetric contraction which is imprecise during arrhythmia. We used a realistic model of 3D electromechanical ventricles. During sinus rhythm, EMD was measured in the last cycle of cardiac systole under steady conditions. EMD under tachycardia and fibrillation conditions was measured during the entire simulation, resulting in multiple EMD values. We assessed EMD for the following 3 conduction velocities (CVs): 31 cm/s, 51 cm/s, and 69 cm/s. The average EMD during fibrillation condition was the shortest corresponding to 53.45 ms, 55.07 ms, and 50.77 ms, for the CVs of 31 cm/s, 51 cm/s, and 69 cm/s, respectively. The average EMD during tachycardia was 58.61 ms, 58.33 ms, and 52.50 ms for the three CVs. Under sinus rhythm with action potential duration restitution (APDR) slope 0.7, the average EMD was 66.35 ms, 66.41 ms, and 66.60 ms in line with the three CVs. This result supports our hypothesis that EMD under sinus rhythm is longer than that under tachyarrhythmia conditions. In conclusion, this study observed and quantified EMD under tachycardia and ventricular fibrillation conditions. This simulation study has widened our understanding of EMD in 3D ventricles under chaotic conditions.
Collapse
|
19
|
Heikhmakhtiar AK, Lee CH, Song KS, Lim KM. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry. Med Biol Eng Comput 2020; 58:977-990. [PMID: 32095980 DOI: 10.1007/s11517-020-02124-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
The understanding of cardiac arrhythmia under genetic mutations has grown in interest among researchers. Previous studies focused on the effect of the D172N mutation on electrophysiological behavior. In this study, we analyzed not only the electrophysiological activity but also the mechanical responses during normal sinus rhythm and reentry conditions by using computational modeling. We simulated four different ventricular conditions including normal case of ten Tusscher model 2006 (TTM), wild-type (WT), heterozygous (WT/D172N), and homozygous D172N mutation. The 2D simulation result (in wire-shaped mesh) showed the WT/D172N and D172N mutation shortened the action potential duration by 14%, and by 23%, respectively. The 3D electrophysiological simulation results showed that the electrical wavelength between TTM and WT conditions were identical. Under sinus rhythm condition, the WT/D172N and D172N reduced the pumping efficacy with a lower left ventricle (LV) and aortic pressures, stroke volume, ejection fraction, and cardiac output. Under the reentry conditions, the WT condition has a small probability of reentry. However, in the event of reentry, WT has shown the most severe condition. Furthermore, we found that the position of the rotor or the scroll wave substantially influenced the ventricular pumping efficacy during arrhythmia. If the rotor stays in the LV, it will cause very poor pumping performance. Graphical Abstract A model of a ventricular electromechanical system. This whole model was established to observe the effect of D172N KCNJ2 mutation on ventricular pumping behavior during sinus rhythm and reentry conditions. The model consists of two components; electrical component and mechanical component. The electrophysiological model based on ten Tusscher et al. with the IK1 D172N KCNJ2 mutation, and the myofilament dynamic (cross-bridge) model based on Rice et al. study. The 3D electrical component is a ventricular geometry based on MRI which composed of nodes representing single-cell with electrophysiological activation. The 3D ventricular mechanic is a finite element mesh composed of single-cells myofilament dynamic model. Both components were coupled with Ca2+ concentration. We used Gaussian points for the calcium interpolation from the electrical mesh to the mechanical mesh.
Collapse
Affiliation(s)
- Aulia Khamas Heikhmakhtiar
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Chung Hao Lee
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, USA
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
20
|
Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J. Early Signs of Critical Slowing Down in Heart Surface Electrograms of Ventricular Fibrillation Victims. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7303708 DOI: 10.1007/978-3-030-50423-6_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ventricular fibrillation (VF) is a dangerous type of cardiac arrhythmia which, without intervention, almost always results in sudden death. Implantable automatic defibrillators are among the most successful devices to prevent sudden death by automatically applying a shock to the heart when fibrillation occurs. However, the electric shock is very painful and could lead to dangerous situations when a patient is, for example, driving or biking. An early warning signal for VF could reduce the risk in such situations or, in the future, reduce the need for defibrillation altogether. Here, we test for the presence of critical slowing down (CSD), which has proven to be an early warning indicator for critical transitions in a range of different systems. CSD is characterized by a buildup of autocorrelation; we therefore study the residuals of heart surface electrocardiograms (ECGs) of patients that suffered VF to investigate if we can measure positive trends in autocorrelation. We consider several methods to extract these residuals from the original signals. For three out of four VF victims, we find a significant amount of positive autocorrelation trends in the residuals, which might be explained by CSD. We show that these positive trends may not be measurable from the original body surface ECGs, but only from certain areas around the heart surface. We argue that additional experimental studies involving heart surface ECG data of subjects that did not suffer VF are required to quantify the prediction accuracy of the promising results we get from the data of VF victims.
Collapse
|
21
|
Hernández-Romero I, Guillem MS, Figuera C, Atienza F, Fernández-Avilés F, M. Climent A. Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation. PLoS One 2019; 14:e0215951. [PMID: 31086382 PMCID: PMC6516663 DOI: 10.1371/journal.pone.0215951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alternans have been associated with the development of ventricular fibrillation and its control has been proposed as antiarrhythmic strategy. However, cardiac arrhythmias are a spatiotemporal phenomenon in which multiple factors are involved (e.g. calcium and voltage spatial alternans or heterogeneous conduction velocity) and how an antiarrhythmic drug modifies these factors is poorly understood. OBJECTIVE The objective of the present study is to evaluate the relation between spatial electrophysiological properties (i.e. spatial discordant alternans and conduction velocity) and the induction of ventricular fibrillation (VF) when a calcium blocker is applied. METHODS The mechanisms of initiation of VF were studied by simultaneous epicardial voltage and calcium optical mapping in isolated rabbit hearts using an incremental fast pacing protocol. The additional value of analyzing spatial phenomena in the generation of unidirectional blocks and reentries as precursors of VF was depicted. Specifically, the role of action potential duration (APD), calcium transients (CaT), spatial alternans and conduction velocity in the initiation of VF was evaluated during basal conditions and after the administration of verapamil. RESULTS Our results enhance the relation between (1) calcium spatial alternans and (2) slow conduction velocities with the dynamic creation of unidirectional blocks that allowed the induction of VF. In fact, the administration of verapamil demonstrated that calcium and not voltage spatial alternans were the main responsible for VF induction. CONCLUSIONS VF induction at high activation rates was linked with the concurrence of a low conduction velocity and high magnitude of calcium alternans, but not necessarily related with increases of APD. Verapamil can postpone the development of cardiac alternans and the apparition of ventricular arrhythmias.
Collapse
Affiliation(s)
- Ismael Hernández-Romero
- Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Carlos Figuera
- Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Madrid, Spain
| | - Felipe Atienza
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Andreu M. Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Osadchii OE. Effects of antiarrhythmics on the electrical restitution in perfused guinea-pig heart are critically determined by the applied cardiac pacing protocol. Exp Physiol 2019; 104:490-504. [PMID: 30758086 DOI: 10.1113/ep087531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 01/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are modifications in the restitution of ventricular action potential duration induced by antiarrhythmic drugs the same when assessed with premature extrastimulus application at variable coupling intervals (the standard stimulation protocol) and with steady state pacing at variable rates (the dynamic stimulation protocol)? What is the main finding and its importance? With class I and class III antiarrhythmics, the effects on electrical restitution determined with the standard stimulation protocol dissociate from those obtained during dynamic pacing. These findings indicate a limited value of the electrical restitution assessments based on extrasystolic stimulations alone, as performed in the clinical studies, in estimating the outcomes of antiarrhythmic drug therapies. ABSTRACT A steep slope of the ventricular action potential duration (APD) to diastolic interval (DI) relationships (the electrical restitution) can precipitate tachyarrhythmia, whereas a flattened slope is antiarrhythmic. The derangements in APD restitution responsible for transition of tachycardia to ventricular fibrillation can be assessed with cardiac pacing at progressively increasing rates (the dynamic stimulation protocol). Nevertheless, this method is not used clinically owing to the risk of inducing myocardial ischaemia. Instead, the restitution kinetics is determined with a premature extrastimulus application at variable coupling intervals (the standard stimulation protocol). Whether the two protocols are equivalent in estimating antiarrhythmic drug effects is uncertain. In this study, dofetilide and quinidine, the agents blocking repolarizing K+ currents, increased epicardial APD in perfused guinea-pig hearts, with effects being greater at long vs. short DIs. These changes were more pronounced during dynamic pacing compared to premature extrastimulations. Accordingly, although both agents markedly steepened the dynamic restitution, there was only a marginal increase in the standard restitution slope with dofetilide, and no effect with quinidine. Lidocaine and mexiletine, selective Na+ channel blockers, prolonged the effective refractory period without changing APD, and increased the minimum DI that enabled ventricular capture during extrastimulations. No change in the minimum DI was noted during dynamic pacing. Consequently, although lidocaine and mexiletine reduced the standard restitution slope, they failed to flatten the dynamic restitution. Overall, these findings imply a limited value of the electrical restitution assessments with premature extrastimulations alone in discriminating arrhythmic vs. antiarrhythmic changes during drug therapies.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, 9220, Aalborg, Denmark
| |
Collapse
|
23
|
Almeida TP, Schlindwein FS, Salinet J, Li X, Chu GS, Tuan JH, Stafford PJ, André Ng G, Soriano DC. Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis. CHAOS (WOODBURY, N.Y.) 2018; 28:085710. [PMID: 30180613 DOI: 10.1063/1.5024248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Atrial fibrillation (AF) is regarded as a complex arrhythmia, with one or more co-existing mechanisms, resulting in an intricate structure of atrial activations. Fractionated atrial electrograms (AEGs) were thought to represent arrhythmogenic tissue and hence have been suggested as targets for radiofrequency ablation. However, current methods for ablation target identification have resulted in suboptimal outcomes for persistent AF (persAF) treatment, possibly due to the complex spatiotemporal dynamics of these mechanisms. In the present work, we sought to characterize the dynamics of atrial tissue activations from AEGs collected during persAF using recurrence plots (RPs) and recurrence quantification analysis (RQA). 797 bipolar AEGs were collected from 18 persAF patients undergoing pulmonary vein isolation (PVI). Automated AEG classification (normal vs. fractionated) was performed using the CARTO criteria (Biosense Webster). For each AEG, RPs were evaluated in a phase space estimated following Takens' theorem. Seven RQA variables were obtained from the RPs: recurrence rate; determinism; average diagonal line length; Shannon entropy of diagonal length distribution; laminarity; trapping time; and Shannon entropy of vertical length distribution. The results show that the RQA variables were significantly affected by PVI, and that the variables were effective in discriminating normal vs. fractionated AEGs. Additionally, diagonal structures associated with deterministic behavior were still present in the RPs from fractionated AEGs, leading to a high residual determinism, which could be related to unstable periodic orbits and suggesting a possible chaotic behavior. Therefore, these results contribute to a nonlinear perspective of the spatiotemporal dynamics of persAF.
Collapse
Affiliation(s)
- Tiago P Almeida
- Aeronautics Institute of Technology, ITA, São José dos Campos 12228-900, Brazil
| | | | - João Salinet
- Engineering, Modelling and Applied Social Sciences Centre, Federal ABC University, Santo André 09606-045, Brazil
| | - Xin Li
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Gavin S Chu
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Jiun H Tuan
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, United Kingdom
| | - Peter J Stafford
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, United Kingdom
| | - G André Ng
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Diogo C Soriano
- Engineering, Modelling and Applied Social Sciences Centre, Federal ABC University, Santo André 09606-045, Brazil
| |
Collapse
|
24
|
Jin Q, Wu L, Dosdall DJ, Li L, Rogers JM, Ideker RE, Huang J. Effects of combination of sotalol and verapamil on initiation, maintenance, and termination of ventricular fibrillation in swine hearts. Cardiovasc Ther 2018; 36:e12326. [PMID: 29485248 DOI: 10.1111/1755-5922.12326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/24/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Sotalol and verapamil alone reduce reentry incidence during ventricular fibrillation (VF). We tested whether the combination of these two drugs had a synergistic effect on initiation, maintenance, and termination of VF. METHODS Six open-chest pigs received intravenous sotalol (1.5 mg/kg) followed by verapamil (0.136 mg/kg). VF threshold (VFT) was determined by a burst pacing protocol. Two 20 seconds episodes of VF were recorded from a 21 × 24 unipolar electrode plaque on the lateral posterior left ventricular epicardium before and after each drug. VF activation patterns were quantified. The duration of long duration VF (LDVF) maintenance was compared to our previously published data. RESULTS Sotalol alone and combined with verapamil significantly increased the VFT from 12.3 ± 4.1 to 20.3 ± 7.1 and 26.7 ± 8.6 mA compared with baseline (P < .05). Sotalol decreased the number of wavefronts by 20%, VF activation rate by 17% and conduction velocity 11%, while the addition of verapamil neutralized these effects. Addition of verapamil to sotalol further decreased the fractionation incidence from 14% to 29% and multiplicity from 24% to 31% compared with baseline. The combination of the two drugs increased the VF cycle length, decreased synchronicity, increased regularity index and shortened the duration of LDVF maintenance compared with our previous data of verapamil alone or no drug. Synchronicity index was lower and regularity index was higher in animals in which VF spontaneously terminated earlier than 10 minutes than in animals in which VF terminated longer than 10 minutes. CONCLUSION The combination of sotalol and verapamil increased VFT but accelerated LDVF termination.
Collapse
Affiliation(s)
- Qi Jin
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Wu
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Derek J Dosdall
- Department of Internal Medicine, CARMA Center, University of Utah, Salt Lake City, UT, USA
| | - Li Li
- Department of Internal Medicine, CARMA Center, University of Utah, Salt Lake City, UT, USA
| | - Jack M Rogers
- Cardiac Rhythm Management Laboratory, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raymond E Ideker
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jian Huang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals. PLoS One 2018; 13:e0191514. [PMID: 29352276 PMCID: PMC5774816 DOI: 10.1371/journal.pone.0191514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023] Open
Abstract
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates.
Collapse
|
26
|
Biton Y, Rabinovitch A, Braunstein D, Aviram I, Campbell K, Mironov S, Herron T, Jalife J, Berenfeld O. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation. CHAOS (WOODBURY, N.Y.) 2018; 28:013128. [PMID: 29390625 PMCID: PMC5786449 DOI: 10.1063/1.5021261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their preferential driving influence on fibrillatory modes.
Collapse
Affiliation(s)
- Yaacov Biton
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avinoam Rabinovitch
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Braunstein
- Physics Department, Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel
| | - Ira Aviram
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Katherine Campbell
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sergey Mironov
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Todd Herron
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
27
|
de Diego C, González-Torres L, Núñez JM, Centurión Inda R, Martin-Langerwerf DA, Sangio AD, Chochowski P, Casasnovas P, Blazquéz JC, Almendral J. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhythm 2017; 15:395-402. [PMID: 29146274 DOI: 10.1016/j.hrthm.2017.11.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin-neprilysin inhibition compared to angiotensin inhibition decreased sudden cardiac death in patients with reduced ejection fraction heart failure (rEFHF). The precise mechanism remains unclear. OBJECTIVE The purpose of this study was to explore the effect of angiotensin-neprilysin inhibition on ventricular arrhythmias compared to angiotensin inhibition in rEFHF patients with an implantable cardioverter-defibrillator (ICD) and remote monitoring. METHODS We prospectively included 120 patients with ICD and (1) New York Heart Association functional class ≥II; (2) left ventricular ejection fraction ≤40%; and (3) remote monitoring. For 9 months, patients received 100% angiotensin inhibition with angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB), beta-blockers, and mineraloid antagonist. Subsequently, ACEi or ARB was changed to sacubitril-valsartan in all patients, who were followed for 9 months. Appropriate shocks, nonsustained ventricular tachycardia (NSVT), premature ventricular contraction (PVC) burden, and biventricular pacing percentage were analyzed. RESULTS Patients were an average age of 69 ± 8 years and had mean left ventricular ejection fraction of 30.4% ± 4% (82% ischemic). Use of beta-blockers (98%), mineraloid antagonist (97%) and antiarrhythmic drugs was similar before and after sacubitril-valsartan. Sacubitril-valsartan significantly decreased NSVT episodes (5.4 ± 0.5 vs 15 ± 1.7 in angiotensin inhibition; P <.002), sustained ventricular tachycardia, and appropriate ICD shocks (0.8% vs 6.7% in angiotensin inhibition; P <.02). PVCs per hour decreased after sacubitril-valsartan (33 ± 12 vs 78 ± 15 in angiotensin inhibition; P <.0003) and was associated with increased biventricular pacing percentage (from 95% ± 6% to 98.8% ± 1.3%; P <.02). CONCLUSION Angiotensin-neprilysin inhibition decreased ventricular arrhythmias and appropriate ICD shocks in rEFHF patients under home monitoring compared to angiotensin inhibition.
Collapse
Affiliation(s)
- Carlos de Diego
- Hospital Universitario de Torrevieja, Alicante, Spain; Hospital Universitario de Elche Vinalopó, Universidad Católica de Murcia, Alicante, Spain.
| | - Luis González-Torres
- Hospital Universitario de Torrevieja, Alicante, Spain; Hospital Universitario de Elche Vinalopó, Universidad Católica de Murcia, Alicante, Spain
| | - José María Núñez
- Hospital Universitario de Elche Vinalopó, Universidad Católica de Murcia, Alicante, Spain
| | | | | | - Antonio D Sangio
- Hospital Universitario de Elche Vinalopó, Universidad Católica de Murcia, Alicante, Spain
| | | | | | | | - Jesús Almendral
- Grupo HM Hospitales, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
28
|
Weise LD, Panfilov AV. Mechanism for Mechanical Wave Break in the Heart Muscle. PHYSICAL REVIEW LETTERS 2017; 119:108101. [PMID: 28949179 DOI: 10.1103/physrevlett.119.108101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 06/07/2023]
Abstract
Using a reaction-diffusion-mechanics model we identify a mechanism for mechanical wave break in the heart muscle. For a wide range of strengths and durations an external mechanical load causes wave front dissipation leading to formation and breakup of spiral waves. We explain the mechanism, and discuss under which conditions it can cause or abolish cardiac arrhythmias.
Collapse
Affiliation(s)
- L D Weise
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, Ghent 9000, Belgium
- Theoretical Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - A V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, Ghent 9000, Belgium
| |
Collapse
|
29
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
30
|
Semenova NI, Strelkova GI, Anishchenko VS, Zakharova A. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators. CHAOS (WOODBURY, N.Y.) 2017; 27:061102. [PMID: 28679224 DOI: 10.1063/1.4985143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.
Collapse
Affiliation(s)
- N I Semenova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - G I Strelkova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - V S Anishchenko
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
31
|
Coronel R. Restitution slope is determined by the steady state action potential duration: law and disorder. Cardiovasc Res 2017; 113:705-707. [PMID: 28444140 DOI: 10.1093/cvr/cvx080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruben Coronel
- Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
32
|
Osadchii OE. Assessments of the QT/QRS restitution in perfused guinea-pig heart can discriminate safe and arrhythmogenic drugs. J Pharmacol Toxicol Methods 2017; 87:27-37. [PMID: 28552278 DOI: 10.1016/j.vascn.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Drug-induced arrhythmia remains a matter of serious clinical concern, partly due to low prognostic value of currently available arrhythmic biomarkers. METHODS This study examined whether arrhythmogenic risks can be predicted through assessments of the rate adaptation of QT interval, ventricular effective refractory period (ERP), or the QT/QRS ratio, in perfused guinea-pig hearts. RESULTS When the maximum restitution slope was taken as a metric of proarrhythmia, neither QT interval nor ERP measurements at progressively increased pacing rates were found to fully discriminate arrhythmogenic drugs (dofetilide, quinidine, flecainide, and procainamide) from those recognized as safe antiarrhythmics (lidocaine and mexiletine). For example, the slope of QT restitution was increased by dofetilide and quinidine, but remained unchanged by flecainide, procainamide, lidocaine, and mexiletine. With ERP rate adaptation, even though the restitution slope was increased by dofetilide, all class I agents reduced the slope value independently of their safety profile. The QRS measurements revealed variable drug effects, ranging from significant use-dependent conduction slowing (flecainide, quinidine, and procainamide) to only modest increase in QRS (lidocaine and mexiletine), or no change at all (dofetilide). However, with the QT/QRS rate adaptation, the restitution slope was significantly increased by all agents which have been reported to produce proarrhythmic effects (dofetilide, quinidine, flecainide, and procainamide), but not changed by lidocaine and mexiletine. DISCUSSION These findings suggest that the slope of the QT/QRS rate adaptation can be considered as a novel electrophysiological biomarker in predicting potential arrhythmic risks associated with pharmacotherapy in cardiac patients.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark; Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark.
| |
Collapse
|
33
|
Effects of Na+ channel blockers on the restitution of refractory period, conduction time, and excitation wavelength in perfused guinea-pig heart. PLoS One 2017; 12:e0172683. [PMID: 28231318 PMCID: PMC5322976 DOI: 10.1371/journal.pone.0172683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
Na+ channel blockers flecainide and quinidine can increase propensity to ventricular tachyarrhythmia, whereas lidocaine and mexiletine are recognized as safe antiarrhythmics. Clinically, ventricular fibrillation is often precipitated by transient tachycardia that reduces action potential duration, suggesting that a critical shortening of the excitation wavelength (EW) may contribute to the arrhythmic substrate. This study examined whether different INa blockers can produce contrasting effects on the rate adaptation of the EW, which would explain the difference in their safety profile. In perfused guinea-pig hearts, effective refractory periods (ERP), conduction times, and EW values were determined over a wide range of cardiac pacing intervals. All INa blockers tested were found to flatten the slope of ERP restitution, indicating antiarrhythmic tendency. However, with flecainide and quinidine, the beneficial changes in ERP were reversed owing to the use-dependent conduction slowing, thereby leading to significantly steepened restitution of the EW. In contrast, lidocaine and mexiletine had no effect on ventricular conduction, and therefore reduced the slope of the EW restitution, as expected from their effect on ERP. These findings suggest that the slope of the EW restitution is an important electrophysiological determinant which can discriminate INa blockers with proarrhythmic and antiarrhythmic profile.
Collapse
|
34
|
Antoniou CK, Dilaveris P, Manolakou P, Galanakos S, Magkas N, Gatzoulis K, Tousoulis D. QT Prolongation and Malignant Arrhythmia: How Serious a Problem? Eur Cardiol 2017; 12:112-120. [PMID: 30416582 DOI: 10.15420/ecr.2017:16:1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
QT prolongation constitutes one of the most frequently encountered electrical disorders of the myocardium. This is due not only to the presence of several associated congenital syndrome but also, and mainly, due to the QT-prolonging effects of several acquired conditions, such as ischaemia and heart failure, as well as multiple medications from widely different categories. Propensity of repolarization disturbances to arrhythmia appears to be inherent in the function of and electrophysiology of the myocardium. In the present review the issue of QT prolongation will be addressed in terms of pathophysiology, arrhythmogenesis, treatment and risk stratification approaches. Although already discussed in literature, it is hoped that the mechanistic approach of the present review will assist in improved understanding of the underlying changes in electrophysiology, as well as the rationale for current diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Panagiota Manolakou
- First Department of Cardiology, Korgialenion-Benakion/Hellenic Red Cross Hospital Athens, Greece
| | - Spyridon Galanakos
- First University Department of Cardiology, Hippokration Hospital Athens, Greece
| | - Nikolaos Magkas
- First University Department of Cardiology, Hippokration Hospital Athens, Greece
| | | | - Dimitrios Tousoulis
- First University Department of Cardiology, Hippokration Hospital Athens, Greece
| |
Collapse
|
35
|
Jalife J. Dynamics and Molecular Mechanisms of Ventricular Fibrillation in Structurally Normal Hearts. Card Electrophysiol Clin 2016; 8:601-612. [PMID: 27521093 DOI: 10.1016/j.ccep.2016.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ventricular fibrillation (VF) is the most severe cardiac rhythm disturbance and one of the most important immediate causes of sudden cardiac death. In the structurally normal heart, a small number of stable reentrant sources, perhaps 1 or 2, underlie the mechanism of VF, and the stabilization of the sources, their frequency, and the complexity of the turbulent waves they generate depend on the expression, spatial distribution, and intermolecular interactions of the 2 most important ion channels that control cardiac excitability: the inward rectifier potassium channel, Kir2.1, and the alpha subunit of the main cardiac sodium channel, NaV1.5.
Collapse
Affiliation(s)
- José Jalife
- Center for Arrhythmia Research, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Krummen DE, Ho G, Villongco CT, Hayase J, Schricker AA. Ventricular fibrillation: triggers, mechanisms and therapies. Future Cardiol 2016; 12:373-90. [PMID: 27120223 DOI: 10.2217/fca-2016-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ventricular fibrillation (VF) is a common, life-threatening arrhythmia responsible for significant morbidity and mortality. Due to challenges in safely mapping VF, a comprehensive understanding of its mechanisms remains elusive. Recent findings have provided new insights into mechanisms that sustain early VF. Notably, the central role of electrical rotors and catheter-based ablation of VF rotor substrate have been recently reported. In this article, we will review data regarding four stages of VF: initiation, transition, maintenance and evolution. We will discuss the particular mechanisms for each stage and therapies targeting these mechanisms. We also examine inherited arrhythmia syndromes, including the mechanisms and therapies specific to each. We hope that the overview of VF outlined in this work will assist other investigators in designing future therapies to interrupt this life-threatening arrhythmia.
Collapse
Affiliation(s)
- David E Krummen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Gordon Ho
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Christopher T Villongco
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Hayase
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Amir A Schricker
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
37
|
Seenivasan P, Easwaran S, Sridhar S, Sinha S. Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models. Front Physiol 2016; 6:390. [PMID: 26793114 PMCID: PMC4707587 DOI: 10.3389/fphys.2015.00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Disruptions in the normal rhythmic functioning of the heart, termed as arrhythmia, often result from qualitative changes in the excitation dynamics of the organ. The transitions between different types of arrhythmia are accompanied by alterations in the spatiotemporal pattern of electrical activity that can be measured by observing the time-intervals between successive excitations of different regions of the cardiac tissue. Using biophysically detailed models of cardiac activity we show that the distribution of these time-intervals exhibit a systematic change in their skewness during such dynamical transitions. Further, the leading digits of the normalized intervals appear to fit Benford's law better at these transition points. This raises the possibility of using these observations to design a clinical indicator for identifying changes in the nature of arrhythmia. More importantly, our results reveal an intriguing relation between the changing skewness of a distribution and its agreement with Benford's law, both of which have been independently proposed earlier as indicators of regime shift in dynamical systems.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Theoretical Physics Group, The Institute of Mathematical Sciences Chennai, India
| | - Soumya Easwaran
- Theoretical Physics Group, The Institute of Mathematical Sciences Chennai, India
| | - Seshan Sridhar
- Theoretical Physics Group, The Institute of Mathematical SciencesChennai, India; Scimergent Analytics and Education Pvt Ltd.Chennai, India
| | - Sitabhra Sinha
- Theoretical Physics Group, The Institute of Mathematical Sciences Chennai, India
| |
Collapse
|
38
|
Guryanov MI. Dominant and Non-Dominant Structure of Ventricular Fibrillation in Canine Heart. Bull Exp Biol Med 2016; 160:291-4. [PMID: 26742740 DOI: 10.1007/s10517-016-3153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 11/29/2022]
Abstract
Organized activity of the myocardium manifested in dominant frequency structure of EСG was typical of the first 10 min of ventricular fibrillation in canine heart. The first minute of fibrillation was characterized by the most pronounced changes in the structure of oscillation frequency and transition from domination of high frequency oscillations (13-17 Hz) to domination of medium (8-12 Hz) and then low frequency (4-7 Hz) oscillations. The second minute was characterized by transition from domination of low frequency oscillations to domination of low and medium frequency oscillations; minutes 3-10 were characterized by domination of low and medium frequency oscillations; after 10 min, non-dominant ventricular oscillations were recorded.
Collapse
Affiliation(s)
- M I Guryanov
- St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
39
|
Zheng Y, Wei D, Zhu X, Chen W, Fukuda K, Shimokawa H. Ventricular fibrillation mechanisms and cardiac restitutions: An investigation by simulation study on whole-heart model. Comput Biol Med 2015; 63:261-8. [DOI: 10.1016/j.compbiomed.2014.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 11/27/2022]
|
40
|
Jin Q, Dosdall DJ, Li L, Rogers JM, Ideker RE, Huang J. Verapamil reduces incidence of reentry during ventricular fibrillation in pigs. Am J Physiol Heart Circ Physiol 2014; 307:H1361-9. [PMID: 25172897 DOI: 10.1152/ajpheart.00256.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The characteristics of reentrant circuits during short duration ventricular fibrillation (SDVF; 20 s in duration) and the role of Ca(++) and rapid-activating delayed rectifier potassium currents during long duration ventricular fibrillation (LDVF; up to 10 min in duration) were investigated using verapamil and sotalol. Activation mapping of the LV epicardium with a 21 × 24 electrode plaque was performed in 12 open-chest pigs. Pigs were given either verapamil (0.136 mg/kg) or sotalol (1.5 mg/kg) and verapamil. Reentry patterns were quantified for SDVF, and, for LDVF, activation patterns were compared with our previously reported control LDVF data. Verapamil significantly increased conduction velocity around the reentrant core by 10% and reduced the reentrant cycle length by 15%, with a net reduction in reentry incidence of 70%. Sotolol had an opposite effect of decreasing the conduction velocity around the core by 6% but increasing the reentrant cycle length by 13%, with a net reduction of reentry incidence of 50%. After 200 s of VF, verapamil significantly slowed wavefront conduction velocity and activation rate compared with control data. Verapamil decreased the incidence of reentry in SDVF by accelerating conduction velocity to increase the likelihood of conduction block, possibly through increased sympathetic tone. The drug slowed activation rate and conduction velocity after 200 s of VF, suggesting that L-type Ca(++) channels remain active and may be important in the maintenance of LDVF. Sotalol in addition to verapamil caused no additional antiarrhythmic effect.
Collapse
Affiliation(s)
- Qi Jin
- Department of Cardiology, Shanghai Rui Jin Hospital, Jiao Tong University School of Medicine, Shanghai, People's Rebublic of China
| | - Derek J Dosdall
- Department of Internal Medicine, Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, Utah
| | - Li Li
- Department of Internal Medicine, Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, Utah
| | - Jack M Rogers
- Cardiac Rhythm Management Laboratory, Department of Biomedical Engineering, University of Alabama at Birmingham, Alabama
| | - Raymond E Ideker
- Cardiac Rhythm Management Laboratory, Department of Biomedical Engineering, University of Alabama at Birmingham, Alabama; Department of Medicine, University of Alabama at Birmingham, Alabama; and Department of Physiology, University of Alabama at Birmingham, Alabama
| | - Jian Huang
- Department of Medicine, University of Alabama at Birmingham, Alabama; and
| |
Collapse
|
41
|
Petrov VS, Osipov GV. Interaction-based transition from passivity to excitability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032916. [PMID: 25314513 DOI: 10.1103/physreve.90.032916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 06/04/2023]
Abstract
In this paper we study the process of transition from passive to excitable behavior due to interaction between nonlinear dynamical systems. We show that under certain conditions a passive unit may demonstrate qualitatively new excitable dynamics. We study the properties of an excitable medium constructed on the basis of the proposed transition. The effects are demonstrated with the realistic Luo-Rudy model. Application to the cardiac dynamics and functioning is discussed. The qualitative analytic and numerical description is also given for the phenomenological FitzHugh-Nagumo system.
Collapse
Affiliation(s)
- V S Petrov
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - G V Osipov
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| |
Collapse
|
42
|
Zhao D, Wei Y, Tang K, Yu X, Wen J, Zhang J, Xu Y. QT restitution properties during exercise in male patients with coronary artery disease. Ann Noninvasive Electrocardiol 2014; 19:358-65. [PMID: 25165790 DOI: 10.1111/anec.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The hypothesis of action potential duration restitution (APDR) suggests that wave break is mainly determined by the steepness of APDR curve. The purpose of this study was to investigate the QT restitution properties by a noninvasive method, exercise ECG test, in patients with and without left anterior descending coronary artery disease (CAD). METHODS Twenty-six male patients were divided into CAD group and control group based on the result of selective coronary angiography (SCA). Exercise tests were performed in each case before the SCA. Sequential QT intervals and preceding TQ intervals were measured, and QT restitution curve (QTRC) was constructed by plotting QT versus TQ intervals. RESULTS Within the physiological maximal heart rate, the maximal slope of QTRC in the CAD group (1.40 ± 0.41) was greater than that in the control group (0.84 ± 0.20, P = 0.002). The mean slope values of the CAD group was also statistically higher than that in the control group at the same TQ levels when the TQ interval decreased to less than 250 ms (P < 0.05). CAD patients had lower linear correlation coefficients of QT/TQ compared with the control group (0.86 ± 0.04 in the CAD group vs 0.91 ± 0.02 in the control group, P < 0.001). CONCLUSIONS Male patients with left anterior descending CAD had steeper QTRC than those without CAD. QTRC from exercise test ECG may be an effective noninvasive method for estimating the electrophysiological restitution properties of the ventricle.
Collapse
|
43
|
Angel N, Li L, Dosdall DJ. His bundle activates faster than ventricular myocardium during prolonged ventricular fibrillation. PLoS One 2014; 9:e101666. [PMID: 25036418 PMCID: PMC4103805 DOI: 10.1371/journal.pone.0101666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022] Open
Abstract
Background The Purkinje fiber system has recently been implicated as an important driver of the rapid activation rate during long duration ventricular fibrillation (VF>2 minutes). The goal of this study is to determine whether this activity propagates to or occurs in the proximal specialized conduction system during VF as well. Methods and Results An 8×8 array with 300 µm spaced electrodes was placed over the His bundles of isolated, perfused rabbit hearts (n = 12). Ventricular myocardial (VM) and His activations were differentiated by calculating Laplacian recordings from unipolar signals. Activation rates of the VM and His bundle were compared and the His bundle conduction velocity was measured during perfused VF followed by 8 minutes of unperfused VF. During perfused VF the average VM activation rate of 11.04 activations/sec was significantly higher than the His bundle activation rate of 6.88 activations/sec (p<0.05). However from 3–8 minutes of unperfused VF the His system activation rate (6.16, 5.53, 5.14, 5.22, 6.00, and 4.62 activations/sec significantly faster than the rate of the VM (4.67, 3.63, 2.94, 2.24, 3.45, and 2.31 activations/sec) (p<0.05). The conduction velocity of the His system immediately decreased to 94% of the sinus rate during perfused VF then gradually decreased to 67% of sinus rhythm conduction at 8 minutes of unperfused VF. Conclusion During prolonged VF the activation rate of the His bundle is faster than that of the VM. This suggests that the proximal conduction system, like the distal Purkinje system, may be an important driver during long duration VF and may be a target for interventional therapy.
Collapse
Affiliation(s)
- Nathan Angel
- Comprehensive Arrhythmia Research & Management Center, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States of America
| | - Li Li
- Comprehensive Arrhythmia Research & Management Center, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Derek J. Dosdall
- Comprehensive Arrhythmia Research & Management Center, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, United States of America
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States of America
- Center for Engineering Innovation, University of Utah, Salt Lake City, UT, United States of America
- * E-mail:
| |
Collapse
|
44
|
Dvir H, Zlochiver S. Stochastic cardiac pacing increases ventricular electrical stability--a computational study. Biophys J 2014; 105:533-42. [PMID: 23870274 DOI: 10.1016/j.bpj.2013.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022] Open
Abstract
The ventricular tissue is activated in a stochastic rather than in a deterministic rhythm due to the inherent heart rate variability (HRV). Low HRV is a known predictor for arrhythmia events and traditionally is attributed to autonomic nervous system tone damage. Yet, there is no model that directly assesses the antiarrhythmic effect of pacing stochasticity per se. One-dimensional (1D) and two-dimensional (2D) human ventricular tissues were modeled, and both deterministic and stochastic pacing protocols were applied. Action potential duration restitution (APDR) and conduction velocity restitution (CVR) curves were generated and analyzed, and the propensity and characteristics of action potential duration (APD) alternans were investigated. In the 1D model, pacing stochasticity was found to sustain a moderating effect on the APDR curve by reducing its slope, rendering the tissue less arrhythmogenic. Moreover, stochasticity was found to be a significant antagonist to the development of concordant APD alternans. These effects were generally amplified with increased variability in the pacing cycle intervals. In addition, in the 2D tissue configuration, stochastic pacing exerted a protective antiarrhythmic effect by reducing the spatial APD heterogeneity and converting discordant APD alternans to concordant ones. These results suggest that high cardiac pacing stochasticity is likely to reduce the risk of cardiac arrhythmias in patients.
Collapse
Affiliation(s)
- Hila Dvir
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
45
|
Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:459675. [PMID: 27379274 PMCID: PMC4897501 DOI: 10.1155/2014/459675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022]
Abstract
The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced.
Collapse
|
46
|
Hypokalemia promotes late phase 3 early afterdepolarization and recurrent ventricular fibrillation during isoproterenol infusion in Langendorff perfused rabbit ventricles. Heart Rhythm 2013; 11:697-706. [PMID: 24378768 DOI: 10.1016/j.hrthm.2013.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypokalemia and sympathetic activation are commonly associated with electrical storm (ES) in normal and diseased hearts. The mechanisms remain unclear. OBJECTIVE The purpose of this study was to test the hypothesis that late phase 3 early afterdepolarization (EAD) induced by IKATP activation underlies the mechanisms of ES during isoproterenol infusion and hypokalemia. METHODS Intracellular calcium (Cai) and membrane voltage were optically mapped in 32 Langendorff-perfused normal rabbit hearts. RESULTS Repeated episodes of electrically induced ventricular fibrillation (VF) at baseline did not result in spontaneous VF (SVF). During isoproterenol infusion, SVF occurred in 1 of 15 hearts (7%) studied in normal extracellular potassium ([K(+)]o, 4.5 mmol/L), 3 of 8 hearts (38%) in 2.0 mmol/L [K(+)]o, 9 of 10 hearts (90%) in 1.5 mmol/L [K(+)]o, and 7 of 7 hearts (100%) in 1.0 mmol/L [K(+)]o (P <.001). Optical mapping showed that isoproterenol and hypokalemia enhanced Cai transient duration (CaiTD) and heterogeneously shortened action potential duration (APD) after defibrillation, leading to late phase 3 EAD and SVF. IKATP blocker (glibenclamide, 5 μmol/L) reversed the post-defibrillation APD shortening and suppressed recurrent SVF in all hearts studied despite no evidence of ischemia. Nifedipine reliably prevented recurrent VF when given before, but not after, the development of VF. IKr blocker (E-4031) and small-conductance calcium-activated potassium channel blocker (apamin) failed to prevent recurrent SVF. CONCLUSION Beta-adrenergic stimulation and concomitant hypokalemia could cause nonischemic activation of IKATP, heterogeneous APD shortening, and prolongation of CaiTD to provoke late phase 3 EAD, triggered activity, and recurrent SVF. IKATP inhibition may be useful in managing ES during resistant hypokalemia.
Collapse
|
47
|
Osadchii OE. Procainamide and lidocaine produce dissimilar changes in ventricular repolarization and arrhythmogenicity in guinea-pig. Fundam Clin Pharmacol 2013; 28:382-93. [DOI: 10.1111/fcp.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences; University of Copenhagen; Blegdamsvej 3 Copenhagen N 2200 Denmark
- Department of Health Science and Technology; University of Aalborg; Fredrik Bajers Vej 7E Aalborg 9220 Denmark
| |
Collapse
|
48
|
Abstract
PURPOSE Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. METHODS The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. RESULTS Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. CONCLUSIONS Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
49
|
Osadchii OE. Quinidine elicits proarrhythmic changes in ventricular repolarization and refractoriness in guinea-pig. Can J Physiol Pharmacol 2013; 91:306-15. [DOI: 10.1139/cjpp-2012-0379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quinidine is a class Ia Na+ channel blocker that prolongs cardiac repolarization owing to the inhibition of IKr, the rapid component of the delayed rectifier current. Although quinidine may induce proarrhythmia, the contributing mechanisms remain incompletely understood. This study examined whether quinidine may set proarrhythmic substrate by inducing spatiotemporal abnormalities in repolarization and refractoriness. The monophasic action potential duration (APD), effective refractory periods (ERPs), and volume-conducted electrocardiograms (ECGs) were assessed in perfused guinea-pig hearts. Quinidine was found to produce the reverse rate-dependent prolongation of ventricular repolarization, which contributed to increased steepness of APD restitution. Throughout the epicardium, quinidine elicited a greater APD increase in the left ventricular chamber compared with the right ventricle, thereby enhancing spatial repolarization heterogeneities. Quinidine prolonged APD to a greater extent than ERP, thus extending the vulnerable window for ventricular re-excitation. This change was attributed to increased triangulation of epicardial action potential because of greater APD lengthening at 90% repolarization than at 30% repolarization. Over the transmural plane, quinidine evoked a greater ERP prolongation at endocardium than epicardium and increased dispersion of refractoriness. Premature ectopic beats and monomorphic ventricular tachycardia were observed in 50% of quinidine-treated heart preparations. In summary, abnormal changes in repolarization and refractoriness contribute greatly to proarrhythmic substrate upon quinidine infusion.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark
| |
Collapse
|
50
|
Chorro FJ, Ibañez-Catalá X, Trapero I, Such-Miquel L, Pelechano F, Cánoves J, Mainar L, Tormos A, Cerdá JM, Alberola A, Such L. Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 36:286-98. [PMID: 23240900 DOI: 10.1111/pace.12060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 10/14/2012] [Accepted: 10/23/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Selective local acceleration of myocardial activation during ventricular fibrillation (VF) contributes information on the interactions between neighboring zones during the arrhythmia. This study analyzes these interactions, centering the observations on an isthmus of myocardium between two radiofrequency (RF) lesions. METHODS In nine isolated rabbit hearts, a gap of preserved myocardium was established between two RF lesions in the anterolateral left ventricle (LV) wall. Before, during, and after increasing the spatial heterogeneity of VF by local myocardial stretching, VF epicardial recordings were obtained. RESULTS Local stretch in the anterior LV wall decreased the excitable window (17 ± 7 ms vs 26 ± 7 ms; P < 0.05) and increased the dominant frequency (DFr; 18.9 ± 5.0 Hz vs 15.2 ± 3.6 Hz; P < 0.05) in this zone, without changes in the non-stretched posterolateral zone (25 ± 4 ms vs 27 ± 6 ms, ns and 14.1 ± 2.7 Hz vs 14.3 ± 3.0 Hz, ns). The DFr ratio at both sides of the gap was inversely correlated to the excitable window ratio (R = -0.57; P = 0.002). Before (31% vs 26%), during (29% vs 22%), and after stretch suppression (35% vs 25%), the wavefronts passing through the gap from the posterolateral to the anterior LV wall were seen to predominate. The number of wavefronts that passed from the anterior to the posterolateral LV wall was related to the excitable window in this zone (R = 0.41; P = 0.03). CONCLUSIONS The VF acceleration induced in the stretched zone does not increase the flow of wavefronts toward the non-stretched zone in the adjacent gap of preserved myocardium. The absence of significant changes in the electrophysiological parameters of the non-stretched myocardium limits the arrival of wavefronts in this zone.
Collapse
Affiliation(s)
- Francisco J Chorro
- Service of Cardiology, Valencia University Clinic Hospital Incliva, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|