1
|
Wang P, Yang JQ, Xu DD, Zhang SJ, Lu S, Ji Y. Madecassoside mitigates acute myocardial infarction injury by activating the PKCB/SPARC signaling pathway. Acta Pharmacol Sin 2025; 46:1624-1638. [PMID: 39779968 PMCID: PMC12098729 DOI: 10.1038/s41401-024-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection. In this study, we investigated the therapeutic effects of the saponin compound madecassoside in the treatment of MI, and underlying molecular mechanisms. The acute MI model was established in male mice by ligation of the left anterior descending coronary artery. The mice were treated with madecassoside (20 mg· kg-1 ·d-1, i.g.) for 14 days. After sacrificing the mice, hearts were harvested for analysis. We showed that madecassoside administration significantly mitigated cardiac function decline in MI mice by promoting angiogenesis and inhibiting myocardial cell apoptosis and fibrosis. By conducting systems pharmacology and RNA sequencing, we demonstrated that madecassoside upregulated SPARC gene expression by activating protein kinase C-β (PKCB) that had a strong promoting effect on endothelial cell angiogenesis, thus playing a crucial protective role against MI. We showed that inhibition of SPARC gene significantly reduced madecassoside-stimulated migration and tube formation of endothelial cells in vitro; co-administration of the PKCB-specific inhibitor ruboxistaurin (10 mg· kg-1 ·d-1, i.g.) abolished the cardioprotective effect of madecassoside in MI mice, validating the critical role of the PKCB/SPARC signaling pathway. This study demonstrates that madecassoside regulates the PKCB/SPARC pathway, promotes the proliferation and regeneration of vascular endothelial cells, and effectively alleviates the symptoms of MI.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ji-Qin Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dan-Dan Xu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Si-Jia Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, 150000, China
| | - Shan Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
2
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
3
|
Zhu JY, Han Y, Yang JY, Wang DP, Gao LJ, Sun T, Feng YL, He ZM, Zhou B, Cao JM. Discovering new hub genes of dilated cardiomyopathy. ESC Heart Fail 2025. [PMID: 40074718 DOI: 10.1002/ehf2.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
AIMS Dilated cardiomyopathy (DCM) has a poor prognosis and exhibits a complex and diverse aetiology and genetic profile. The genes responsible for the pathogenesis of DCM have not been fully identified. The present study aimed to explore new hub genes of DCM by mining the human DCM databases and further by experimental validation. METHODS Two gene expression profiles of human DCM (GSE9800 and GSE120895) in the Gene Expression Omnibus (GEO) database were analysed to identify the differentially expressed genes (DEGs) (DCM vs. normal) and to obtain the common DEGs (cDEGs, between GSE9800 and GSE120895) using bioinformatic methods. The cDEGs were subjected to Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) networks and functional modules were constructed to screen the hub genes. The screened hub genes were identified using the Online Mendelian Inheritance in Man (OMIM) dataset, and their transcription and translation levels were further verified by real-time quantitative PCR (RT-qPCR) and western blotting using doxorubicin (DOX)-treated H9C2 cardiomyocytes that simulate the cellular pathology of DCM, with phosphate-buffered saline (PBS)-treated H9C2 cells as a normal control. RESULTS A total of 47 cDEGs were screened out, and 19 DCM-associated hub genes were identified. Among the 19 hub genes, 6 genes (NFKBIB, PSMC4, PSMD3, RAD21, PRNP and STAT2) have not yet been reported as associated with DCM. Among the six genes, NFKBIB and PRNP showed up-regulations, whereas PSMC4, PSMD3 and RAD21 exhibited down-regulations in their mRNA and protein expression levels in DOX-treated H9C2 cardiomyocytes compared with the control H9C2 cells (all P < 0.05). The remaining STAT2 showed a significant up-regulation in its protein expression (P < 0.05), while its mRNA up-regulation did not reach a statistical significance (P = 0.1082). CONCLUSIONS Six new hub genes of DCM (NFKBIB, PSMC4, PSMD3, RAD21, PRNP and STAT2) were identified by bioinformatic analysis and experimental validation in this study. These hub genes or their products may potentially be new diagnostic biomarkers or therapeutic targets for DCM.
Collapse
Affiliation(s)
- Jun-Yan Zhu
- Department of Radiotherapy, The First Hospital of Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Han
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jing-Yu Yang
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Gao
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Teng Sun
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan-Lin Feng
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhong-Mei He
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bin Zhou
- Department of Medical Service, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- MOE Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Amirrad F, La V, Ohadi S, Albotaif M, Webster S, Pru JK, Shamloo K, Mohieldin AM, Nauli SM. PGRMC2 is a pressure-volume regulator critical for myocardial responses to stress in mice. Nat Commun 2025; 16:2422. [PMID: 40069180 PMCID: PMC11897200 DOI: 10.1038/s41467-025-57707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Progesterone receptors are classified into nuclear and membrane-bound receptor families. Previous unbiased proteomic studies indicate a potential association between cardiac diseases and the progesterone receptor membrane-bound component-2 (PGRMC2); however, the role of PGRMC2 in the heart remains unknown. In this study, we use a heart-specific knockout (KO) mouse model (MyH6•Pgrmc2flox/flox) in which the Pgrmc2 gene was selectively deleted in cardiomyocytes. Here we show that PGRMC2 serves as a mediator of steroid hormones for rapid calcium signaling in cardiomyocytes to maintain cardiac contraction, sufficient stroke volume, and adequate cardiac output by regulating the cardiac pressure-volume relationship. The KO hearts from male and female mice exhibit an impairment in pressure-volume relationship. Under hypoxic conditions, this pressure-volume dysregulation progresses to congestive left and right ventricular failure in the KO hearts. Overall, we propose that PGRMC2 is a cardiac pressure-volume regulator to maintain normal cardiac physiology, especially during hypoxic stress.
Collapse
Affiliation(s)
- Farideh Amirrad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
- Department of Pharmaceutical Sciences, Marshall B. Ketchum University, Fullerton, USA
| | - Vivian La
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
| | - Sharareh Ohadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
| | - Miram Albotaif
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
| | - Sha Webster
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
| | - James K Pru
- Department of Animal Sciences, University of Wyoming, Laramie, WY, USA
| | - Kiumars Shamloo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
| | - Ashraf M Mohieldin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA
- College of Graduate Studies, California Northstate University, Elk Grove, CA, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA.
- Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
6
|
Chakraborty A, Paynter A, Szendrey M, Cornwell JD, Li W, Guo J, Yang T, Du Y, Wang T, Zhang S. Ubiquitination is involved in PKC-mediated degradation of cell surface Kv1.5 channels. J Biol Chem 2024; 300:107483. [PMID: 38897569 PMCID: PMC11301065 DOI: 10.1016/j.jbc.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis, and immunocytochemical staining, we demonstrate that ubiquitination is involved in the PMA-mediated degradation of mature Kv1.5 channels. Since the expression of the Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that the N-terminus alone did not but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amanda Paynter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Yuan Du
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Ishii T, Kobayakawa T, Matsuda K, Nigorikawa K, Bolah P, Noborio A, Tsuji K, Ohashi N, Yoshimura K, Nomura W, Mitsuya H, Maeda K, Tamamura H. Discovery of Potent DAG-Lactone Derivatives as HIV Latency Reversing Agents. ACS Infect Dis 2024; 10:2250-2261. [PMID: 38771724 DOI: 10.1021/acsinfecdis.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative 3, with high HIV-1 latency-reversing activity, based on YSE028 (2) as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity. Compound 9a, with a dimethyl group at the α-position of the ester group, exerted twice higher HIV-1 latency reversing activity than compound 3, and compound 26, with the isoxazole moiety, was significantly active. In addition, DAG-lactone derivatives with moderate hydrophobicity and potent biostability showed high biological activity.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Kiyomi Nigorikawa
- Department of Genome and Biomolecular Engineering for Drug Discovery, School of Pharmaceutical Sciences and Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Peter Bolah
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Airi Noborio
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Wataru Nomura
- Department of Genome and Biomolecular Engineering for Drug Discovery, School of Pharmaceutical Sciences and Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
8
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Visanji M, Venegas-Pino DE, Werstuck GH. Understanding One Half of the Sex Difference Equation: The Modulatory Effects of Testosterone on Diabetic Cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:551-561. [PMID: 38061627 DOI: 10.1016/j.ajpath.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Diabetes is a prevalent disease, primarily characterized by high blood sugar (hyperglycemia). Significantly higher rates of myocardial dysfunction have been noted in individuals with diabetes, even in those without coronary artery disease or high blood pressure (hypertension). Numerous molecular mechanisms have been identified through which diabetes contributes to the pathology of diabetic cardiomyopathy, which presents as cardiac hypertrophy and fibrosis. At the cellular level, oxidative stress and inflammation in cardiomyocytes are triggered by hyperglycemia. Although males are generally more likely to develop cardiovascular disease than females, diabetic males are less likely to develop diabetic cardiomyopathy than are diabetic females. One reason for these differences may be the higher levels of serum testosterone in males compared with females. Although testosterone appears to protect against cardiomyocyte oxidative stress and exacerbate hypertrophy, its role in inflammation and fibrosis is much less clear. Additional preclinical and clinical studies will be required to delineate testosterone's effect on the diabetic heart.
Collapse
Affiliation(s)
- Mika'il Visanji
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Dattani A, Singh A, McCann GP, Gulsin GS. Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target. J Cardiovasc Dev Dis 2023; 11:12. [PMID: 38248882 PMCID: PMC10817027 DOI: 10.3390/jcdd11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes (T2D) is a multisystem disease with rapidly increasing global prevalence. Heart failure has emerged as a major complication of T2D. Dysregulated myocardial calcium handling is evident in the failing heart and this may be a key driver of cardiomyopathy in T2D, but until recently this has only been demonstrated in animal models. In this review, we describe the physiological concepts behind calcium handling within the cardiomyocyte and the application of novel imaging techniques for the quantification of myocardial calcium uptake. We take an in-depth look at the evidence for the impairment of calcium handling in T2D using pre-clinical models as well as in vivo studies, following which we discuss potential novel therapeutic approaches targeting dysregulated myocardial calcium handling in T2D.
Collapse
Affiliation(s)
- Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester LE3 9QP, UK; (A.S.); (G.P.M.); (G.S.G.)
| | | | | | | |
Collapse
|
11
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
12
|
Saad NS, Mashali MA, Repas SJ, Janssen PML. Altering Calcium Sensitivity in Heart Failure: A Crossroads of Disease Etiology and Therapeutic Innovation. Int J Mol Sci 2023; 24:17577. [PMID: 38139404 PMCID: PMC10744146 DOI: 10.3390/ijms242417577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Heart failure (HF) presents a significant clinical challenge, with current treatments mainly easing symptoms without stopping disease progression. The targeting of calcium (Ca2+) regulation is emerging as a key area for innovative HF treatments that could significantly alter disease outcomes and enhance cardiac function. In this review, we aim to explore the implications of altered Ca2+ sensitivity, a key determinant of cardiac muscle force, in HF, including its roles during systole and diastole and its association with different HF types-HF with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). We further highlight the role of the two rate constants kon (Ca2+ binding to Troponin C) and koff (its dissociation) to fully comprehend how changes in Ca2+ sensitivity impact heart function. Additionally, we examine how increased Ca2+ sensitivity, while boosting systolic function, also presents diastolic risks, potentially leading to arrhythmias and sudden cardiac death. This suggests that strategies aimed at moderating myofilament Ca2+ sensitivity could revolutionize anti-arrhythmic approaches, reshaping the HF treatment landscape. In conclusion, we emphasize the need for precision in therapeutic approaches targeting Ca2+ sensitivity and call for comprehensive research into the complex interactions between Ca2+ regulation, myofilament sensitivity, and their clinical manifestations in HF.
Collapse
Affiliation(s)
- Nancy S. Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohammed A. Mashali
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22514, Egypt
| | - Steven J. Repas
- Department of Emergency Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45324, USA;
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Ishii T, Kobayakawa T, Matsuda K, Tsuji K, Ohashi N, Nakahata S, Noborio A, Yoshimura K, Mitsuya H, Maeda K, Tamamura H. Synthesis and evaluation of DAG-lactone derivatives with HIV-1 latency reversing activity. Eur J Med Chem 2023; 256:115449. [PMID: 37224601 PMCID: PMC10683555 DOI: 10.1016/j.ejmech.2023.115449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cells latently infected with human immunodeficiency virus type 1 (HIV-1) prevent people living with HIV-1 from obtaining a cure to the infectious disease. Latency reversing agents (LRAs) such as protein kinase C (PKC) activators and histone deacetylase (HDAC) inhibitors can reactivate cells latently infected with HIV-1. Several trials based on treatment with HDAC inhibitors alone, however, failed to reduce the number of latent HIV-1 reservoirs. Herein, we have focused on a diacylglycerol (DAG)-lactone derivative, YSE028 (1), which is a PKC activator with latency reversing activity and no significant cytotoxicity. Caspase-3 activation of YSE028 (1) led to cell apoptosis, specifically in HIV-1 latently infected cells. Structure-activity relationship studies of YSE028 (1) have produced several useful derivatives. Among these, compound 2 is approximately ten times more potent than YSE028 (1) in reactivation of cells latently infected with HIV-1. The activity of DAG-lactone derivatives was correlated with the binding affinity for PKC and the stability against esterase-mediated hydrolysis.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan; AIDS Clinical Center, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Airi Noborio
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
14
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
15
|
Genome-Wide DNA Methylation Signatures Predict the Early Asymptomatic Doxorubicin-Induced Cardiotoxicity in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246291. [PMID: 34944912 PMCID: PMC8699582 DOI: 10.3390/cancers13246291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This study aimed to determine whether the methylation signature of peripheral blood mononuclear cells (PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip. We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are needed to confirm these findings.
Collapse
|
16
|
Tsuji K, Ishii T, Kobayakawa T, Ohashi N, Nomura W, Tamamura H. Fluorescence resonance energy transfer-based screening for protein kinase C ligands using 6-methoxynaphthalene-labeled 1,2-diacylglycerol-lactones. Org Biomol Chem 2021; 19:8264-8271. [PMID: 34338277 DOI: 10.1039/d1ob00814e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein kinase C (PKC) is associated with a central cellular signal transduction pathway and disorders such as cancer and Alzheimer-type dementia and is therefore a target for the treatment of these diseases. The development of simple methods suitable for high-throughput screening to find potent PKC ligands is desirable. We have developed an assay based on fluorescence-quenching screening with a solvatochromic fluorophore attached to a competitive probe and its alternative method based on Förster/fluorescence resonance energy transfer (FRET) phenomena. Here, an improved FRET-based PKC binding assay using a diacylglycerol (DAG) lactone labeled with a donor fluorescent dye, 6-methoxynaphthalene (6MN), was developed. The 6MN-labeled DAG-lactone has a higher binding affinity for the PKCδ C1b domain and the fluorescent PKCδ C1b domain labeled by fluorescein as an acceptor fluorescent dye (Fl-δC1b) than the diethylaminocoumarin (DEAC)-labeled DAG-lactone. The combination of the 6MN-labeled DAG-lactone and Fl-δC1b showed a change in fluorescence response larger than that of the DEAC-labeled DAG-lactone and Fl-δC1b. The IC50 values of known PKC ligands calculated by the present FRET-based method using 6MN-labeled DAG-lactone agree well with the Ki values obtained by the conventional radioisotope-based assays. Some false positive compounds, identified by the previous solvatochromic fluorophore-based method, were found to be negative by this method. The present FRET-based PKC binding assay is more sensitive and could be more useful.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
17
|
Nicolas HA, Hua K, Quigley H, Ivare J, Tesson F, Akimenko MA. A CRISPR/Cas9 zebrafish lamin A/C mutant model of muscular laminopathy. Dev Dyn 2021; 251:645-661. [PMID: 34599606 DOI: 10.1002/dvdy.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.
Collapse
Affiliation(s)
- Hannah A Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Khang Hua
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Hailey Quigley
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Ivare
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Li R, Qi Y, Yuan Q, Xu L, Gao M, Xu Y, Han X, Yin L, Liu C. Protective effects of dioscin against isoproterenol-induced cardiac hypertrophy via adjusting PKCε/ERK-mediated oxidative stress. Eur J Pharmacol 2021; 907:174277. [PMID: 34171391 DOI: 10.1016/j.ejphar.2021.174277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
Cardiac hypertrophy (CH) plays a central role in cardiac remodeling and is an independent risk factor for cardiac events. It is imperative to find drugs with protective effect on CH. Dioscin, one natural product, shows various pharmacological activities, and PKCepsilon (PKCε) plays an important role in the physiological hypertrophic responses. Thus, we aimed to investigate the possible protective effect of dioscin on CH through PKCε. In the present study, the isoproterenol (ISO)-induced H9C2 cells and primary cardiomyocytes models, and the ISO-induced rat model were established, and the pharmacodynamics and mechanism of dioscin were investigated. In vitro results prompted that, dioscin significantly improved ISO-induced cardiomyocyte hypertrophy, decreased the levels of cell size, protein content of single cell, reactive oxygen species, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC). Moreover, in vivo, changes in histopathological of the animals caused by ISO are improved by dioscin. And dioscin decreased the index of CH and the levels of CK, MDA, LDH, and increased the levels of GSH, SOD and GSH-Px. Mechanism research showed that dioscin inhibited the expression levels of PKCε, and affected the expression levels of p-MEK, p-ERK, Nrf2, Keap1 and HO-1 to inhibit oxidative stress. In addition, the results of ISO-induced CH in PKCε siRNA transfected H9C2 cells and C57BL/6 mice further showed that the protective effect of dioscin on CH, which was mediated by inhibition of PKCε/ERK signal pathway. In summary, dioscin can effectively inhibit CH by regulating PKCε-mediated oxidative stress, which should be considered as one potent candidate for new drug research and development to treat CH in the future.
Collapse
Affiliation(s)
- Ruomiao Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Qianhui Yuan
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China.
| | - Chuntong Liu
- Pharmaceutical Department, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
19
|
Capote AE, Batra A, Warren CM, Chowdhury SAK, Wolska BM, Solaro RJ, Rosas PC. B-arrestin-2 Signaling Is Important to Preserve Cardiac Function During Aging. Front Physiol 2021; 12:696852. [PMID: 34512376 PMCID: PMC8430342 DOI: 10.3389/fphys.2021.696852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Experiments reported here tested the hypothesis that β-arrestin-2 is an important element in the preservation of cardiac function during aging. We tested this hypothesis by aging β-arrestin-2 knock-out (KO) mice, and wild-type equivalent (WT) to 12-16months. We developed the rationale for these experiments on the basis that angiotensin II (ang II) signaling at ang II receptor type 1 (AT1R), which is a G-protein coupled receptor (GPCR) promotes both G-protein signaling as well as β-arrestin-2 signaling. β-arrestin-2 participates in GPCR desensitization, internalization, but also acts as a scaffold for adaptive signal transduction that may occur independently or in parallel to G-protein signaling. We have previously reported that biased ligands acting at the AT1R promote β-arrestin-2 signaling increasing cardiac contractility and reducing maladaptations in a mouse model of dilated cardiomyopathy. Although there is evidence that ang II induces maladaptive senescence in the cardiovascular system, a role for β-arrestin-2 signaling has not been studied in aging. By echocardiography, we found that compared to controls aged KO mice exhibited enlarged left atria and left ventricular diameters as well as depressed contractility parameters with preserved ejection fraction. Aged KO also exhibited depressed relaxation parameters when compared to WT controls at the same age. Moreover, cardiac dysfunction in aged KO mice was correlated with alterations in the phosphorylation of myofilament proteins, such as cardiac myosin binding protein-C, and myosin regulatory light chain. Our evidence provides novel insights into a role for β-arrestin-2 as an important signaling mechanism that preserves cardiac function during aging.
Collapse
Affiliation(s)
- Andrielle E. Capote
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamim A. K. Chowdhury
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M. Wolska
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Paola C. Rosas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
21
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
22
|
Du Y, Wang T, Guo J, Li W, Yang T, Szendrey M, Zhang S. Kv1.5 channels are regulated by PKC-mediated endocytic degradation. J Biol Chem 2021; 296:100514. [PMID: 33676894 PMCID: PMC8050386 DOI: 10.1016/j.jbc.2021.100514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5 plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. While the modulation of Kv1.5 function has been well studied, less is known about how the protein levels of Kv1.5 on the cell membrane are regulated. Here, through electrophysiological and biochemical analyses of Kv1.5 channels heterologously expressed in HEK293 cells and neonatal rat ventricular myocytes, as well as native Kv1.5 in human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocytes, we found that activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA, 10 nM) diminished Kv1.5 current (IKv1.5) and protein levels of Kv1.5 in the plasma membrane. Mechanistically, PKC activation led to monoubiquitination and degradation of the mature Kv1.5 proteins. Overexpression of Vps24, a protein that sorts transmembrane proteins into lysosomes via the multivesicular body (MVB) pathway, accelerated, whereas the lysosome inhibitor bafilomycin A1 completely prevented PKC-mediated Kv1.5 degradation. Kv1.5, but not Kv1.1, Kv1.2, Kv1.3, or Kv1.4, was uniquely sensitive to PMA treatment. Sequence alignments suggested that residues within the N terminus of Kv1.5 are essential for PKC-mediated Kv1.5 reduction. Using N-terminal truncation as well as site-directed mutagenesis, we identified that Thr15 is the target site for PKC that mediates endocytic degradation of Kv1.5 channels. These findings indicate that alteration of protein levels in the plasma membrane represents an important regulatory mechanism of Kv1.5 channel function under PKC activation conditions.
Collapse
Affiliation(s)
- Yuan Du
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
23
|
Karhu ST, Ruskoaho H, Talman V. Distinct Regulation of Cardiac Fibroblast Proliferation and Transdifferentiation by Classical and Novel Protein Kinase C Isoforms: Possible Implications for New Antifibrotic Therapies. Mol Pharmacol 2021; 99:104-113. [PMID: 33239332 DOI: 10.1124/molpharm.120.000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibrosis is characterized by accumulation and activation of fibroblasts and excessive production of extracellular matrix, which results in myocardial stiffening and eventually leads to heart failure. Although previous work suggests that protein kinase C (PKC) isoforms play a role in cardiac fibrosis and remodeling, the results are conflicting. Moreover, the potential of targeting PKC with pharmacological tools to inhibit pathologic fibrosis has not been fully evaluated. Here we investigated the effects of selected PKC agonists and inhibitors on cardiac fibroblast (CF) phenotype, proliferation, and gene expression using primary adult mouse CFs, which spontaneously transdifferentiate into myofibroblasts in culture. A 48-hour exposure to the potent PKC activator phorbol 12-myristate 13-acetate (PMA) at 10 nM concentration reduced the intensity of α-smooth muscle actin staining by 56% and periostin mRNA levels by 60% compared with control. The decreases were inhibited with the pan-PKC inhibitor Gö6983 and the inhibitor of classical PKC isoforms Gö6976, suggesting that classical PKCs regulate CF transdifferentiation. PMA also induced a 33% decrease in 5-bromo-2'-deoxyuridine-positive CFs, which was inhibited with Gö6983 but not with Gö6976, indicating that novel PKC isoforms (nPKCs) regulate CF proliferation. Moreover, PMA downregulated the expression of collagen-encoding genes Col1a1 and Col3a1 nPKC-dependently, showing that PKC activation attenuates matrix synthesis in CFs. The partial PKC agonist isophthalate derivative bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate induced parallel changes in phenotype, cell cycle activity, and gene expression. In conclusion, our results reveal distinct PKC-dependent regulation of CF transdifferentiation and proliferation and suggest that PKC agonists exhibit potential as an antifibrotic treatment. SIGNIFICANCE STATEMENT: Cardiac fibrosis is a pathological process that contributes to the development of heart failure. The molecular mechanisms regulating fibrosis in the heart are, however, not fully understood, which hinders the development of new therapies. Here, we demonstrate that classical and novel protein kinase C (PKC) isoforms distinctly regulate cardiac fibroblast transdifferentiation and proliferation, the two central processes in fibrosis. Our results indicate that pharmacological PKC activation may be a promising strategy to inhibit myocardial fibrosis.
Collapse
Affiliation(s)
- S Tuuli Karhu
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
24
|
Pohjolainen L, Easton J, Solanki R, Ruskoaho H, Talman V. Pharmacological Protein Kinase C Modulators Reveal a Pro-hypertrophic Role for Novel Protein Kinase C Isoforms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Pharmacol 2021; 11:553852. [PMID: 33584253 PMCID: PMC7874215 DOI: 10.3389/fphar.2020.553852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Hypertrophy of cardiomyocytes (CMs) is initially a compensatory mechanism to cardiac overload, but when prolonged, it leads to maladaptive myocardial remodeling, impairing cardiac function and causing heart failure. A key signaling molecule involved in cardiac hypertrophy is protein kinase C (PKC). However, the role of different PKC isoforms in mediating the hypertrophic response remains controversial. Both classical (cPKC) and novel (nPKC) isoforms have been suggested to play a critical role in rodents, whereas the role of PKC in hypertrophy of human CMs remains to be determined. Here, we aimed to investigate the effects of two different types of PKC activators, the isophthalate derivative HMI-1b11 and bryostatin-1, on CM hypertrophy and to elucidate the role of cPKCs and nPKCs in endothelin-1 (ET-1)-induced hypertrophy in vitro. Methods and Results: We used neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of pharmacological PKC modulators and ET-1. We used quantitative reverse transcription PCR to quantify hypertrophic gene expression and high-content analysis (HCA) to investigate CM morphology. In both cell types, ET-1, PKC activation (bryostatin-1 and HMI-1b11) and inhibition of cPKCs (Gö6976) increased hypertrophic gene expression. In NRVMs, these treatments also induced a hypertrophic phenotype as measured by increased recognition, intensity and area of α-actinin and F-actin fibers. Inhibition of all PKC isoforms with Gö6983 inhibited PKC agonist-induced hypertrophy, but could not fully block ET-1-induced hypertrophy. The mitogen-activated kinase kinase 1/2 inhibitor U0126 inhibited PKC agonist-induced hypertrophy fully and ET-1-induced hypertrophy partially. While ET-1 induced a clear increase in the percentage of pro-B-type natriuretic peptide-positive hiPSC-CMs, none of the phenotypic parameters used in HCA directly correlated with gene expression changes or with phenotypic changes observed in NRVMs. Conclusion: This work shows similar hypertrophic responses to PKC modulators in NRVMs and hiPSC-CMs. Pharmacological PKC activation induces CM hypertrophy via activation of novel PKC isoforms. This pro-hypertrophic effect of PKC activators should be considered when developing PKC-targeted compounds for e.g. cancer or Alzheimer’s disease. Furthermore, this study provides further evidence on distinct PKC-independent mechanisms of ET-1-induced hypertrophy both in NRVMs and hiPSC-CMs.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Easton
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Reesha Solanki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Irnaten M, Duff A, Clark A, O’Brien C. Intra-Cellular Calcium Signaling Pathways (PKC, RAS/RAF/MAPK, PI3K) in Lamina Cribrosa Cells in Glaucoma. J Clin Med 2020; 10:jcm10010062. [PMID: 33375386 PMCID: PMC7795259 DOI: 10.3390/jcm10010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The lamina cribrosa (LC) is a key site of fibrotic damage in glaucomatous optic neuropathy and the precise mechanisms of LC change remain unclear. Elevated Ca2+ is a major driver of fibrosis, and therefore intracellular Ca2+ signaling pathways are relevant glaucoma-related mechanisms that need to be studied. Protein kinase C (PKC), mitogen-activated MAPK kinases (p38 and p42/44-MAPK), and the PI3K/mTOR axis are key Ca2+ signal transducers in fibrosis and we therefore investigated their expression and activity in normal and glaucoma cultured LC cells. We show, using Western immune-blotting, that hyposmotic-induced cellular swelling activates PKCα, p42/p44, and p38 MAPKs, the activity is transient and biphasic as it peaks between 2 min and 10 min. The expression and activity of PKCα, p38 and p42/p44-MAPKs are significantly (p < 0.05) increased in glaucoma LC cells at basal level, and at different time-points after hyposmotic stretch. We also found elevated mRNA expression of mRNA expression of PI3K, IP3R, mTOR, and CaMKII in glaucoma LC cells. This study has identified abnormalities in multiple calcium signaling pathways (PKCα, MAPK, PI3K) in glaucoma LC cells, which might have significant functional and therapeutic implications in optic nerve head (ONH) fibrosis and cupping in glaucoma.
Collapse
Affiliation(s)
- Mustapha Irnaten
- Department Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
- Correspondence: ; Tel.: +353-851-334-932
| | - Aisling Duff
- Milton Medical Centre New South Wales, Milton, NSW 2538, Australia;
| | - Abbot Clark
- Department Pharmacology & Neuroscience and the North Texas Eye Research Institute, Health Science Center, Fort Worth, TX 76107, USA;
| | - Colm O’Brien
- Department Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland;
- School of Medicine and Medical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
26
|
Battault S, Renguet E, Van Steenbergen A, Horman S, Beauloye C, Bertrand L. Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Arch Cardiovasc Dis 2020; 113:736-748. [PMID: 33189592 DOI: 10.1016/j.acvd.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Besides coronary artery disease, which remains the main cause of heart failure in patients with diabetes, factors independent of coronary artery disease are involved in the development of heart failure in the onset of what is called diabetic cardiomyopathy. Among them, hyperglycaemia - a hallmark of type 2 diabetes - has both acute and chronic deleterious effects on myocardial function, and clearly participates in the establishment of diabetic cardiomyopathy. In the present review, we summarize the cellular and tissular events that occur in a heart exposed to hyperglycaemia, and depict the complex molecular mechanisms proposed to be involved in glucotoxicity. Finally, from a more translational perspective, different therapeutic strategies targeting hyperglycaemia-mediated molecular mechanisms will be detailed.
Collapse
Affiliation(s)
- Sylvain Battault
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Edith Renguet
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Anne Van Steenbergen
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Sandrine Horman
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Christophe Beauloye
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; Division of cardiology, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium.
| | - Luc Bertrand
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; WELBIO, B-1300 Wavre, Belgium.
| |
Collapse
|
27
|
Nicolas HA, Bertrand AT, Labib S, Mohamed-Uvaize M, Bolongo PM, Wu WY, Bilińska ZT, Bonne G, Akimenko MA, Tesson F. Protein Kinase C Alpha Cellular Distribution, Activity, and Proximity with Lamin A/C in Striated Muscle Laminopathies. Cells 2020; 9:cells9112388. [PMID: 33142761 PMCID: PMC7693451 DOI: 10.3390/cells9112388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α’s involvement in muscular laminopathies, PKC-α’s localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.
Collapse
Affiliation(s)
- Hannah A. Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, UMRS 974, G.H. Pitié-Salpêtrière, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Sarah Labib
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Musfira Mohamed-Uvaize
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Pierrette M. Bolongo
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Wen Yu Wu
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, UMRS 974, G.H. Pitié-Salpêtrière, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 7370)
| |
Collapse
|
28
|
Shugg T, Hudmon A, Overholser BR. Neurohormonal Regulation of I Ks in Heart Failure: Implications for Ventricular Arrhythmogenesis and Sudden Cardiac Death. J Am Heart Assoc 2020; 9:e016900. [PMID: 32865116 PMCID: PMC7726975 DOI: 10.1161/jaha.120.016900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heart failure (HF) results in sustained alterations in neurohormonal signaling, including enhanced signaling through the sympathetic nervous system and renin-angiotensin-aldosterone system pathways. While enhanced sympathetic nervous system and renin-angiotensin-aldosterone system activity initially help compensate for the failing myocardium, sustained signaling through these pathways ultimately contributes to HF pathophysiology. HF remains a leading cause of mortality, with arrhythmogenic sudden cardiac death comprising a common mechanism of HF-related death. The propensity for arrhythmia development in HF occurs secondary to cardiac electrical remodeling that involves pathological regulation of ventricular ion channels, including the slow component of the delayed rectifier potassium current, that contribute to action potential duration prolongation. To elucidate a mechanistic explanation for how HF-mediated electrical remodeling predisposes to arrhythmia development, a multitude of investigations have investigated the specific regulatory effects of HF-associated stimuli, including enhanced sympathetic nervous system and renin-angiotensin-aldosterone system signaling, on the slow component of the delayed rectifier potassium current. The objective of this review is to summarize the current knowledge related to the regulation of the slow component of the delayed rectifier potassium current in response to HF-associated stimuli, including the intracellular pathways involved and the specific regulatory mechanisms.
Collapse
Affiliation(s)
- Tyler Shugg
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIN
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue University College of PharmacyWest LafayetteIN
| | - Brian R. Overholser
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIN
- Department of Pharmacy PracticePurdue University College of PharmacyIndianapolisIN
| |
Collapse
|
29
|
Zhao Y, Huang G, Chen Z, Fan X, Huang T, Liu J, Zhang Q, Shen J, Li Z, Shi Y. Four Loci Are Associated with Cardiorespiratory Fitness and Endurance Performance in Young Chinese Females. Sci Rep 2020; 10:10117. [PMID: 32572135 PMCID: PMC7723046 DOI: 10.1038/s41598-020-67045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiorespiratory fitness (CRF) and endurance performance are characterized by a complex genetic trait with high heritability. Although research has identified many physiological and environmental correlates with CRF, the genetic architecture contributing to CRF remains unclear, especially in non-athlete population. A total of 762 Chinese young female participants were recruited and an endurance run test was used to determine CRF. We used a fixed model of genome-wide association studies (GWAS) for CRF. Genotyping was performed using the Affymetrix Axiom and illumina 1 M arrays. After quality control and imputation, a linear regression-based association analysis was conducted using a total of 5,149,327 variants. Four loci associated with CRF were identified to reach genome-wide significance (P < 5.0 × 10-8), which located in 15q21.3 (rs17240160, P = 1.73 × 10-9, GCOM1), 3q25.31 (rs819865, P = 8.56 × 10-9, GMPS), 21q22.3 (rs117828698, P = 9.59 × 10-9, COL18A1), and 17q24.2 (rs79806428, P = 3.85 × 10-8, PRKCA). These loci (GCOM1, GMPS, COL18A1 and PRKCA) associated with cardiorespiratory fitness and endurance performance in Chinese non-athlete young females. Our results suggest that these gene polymorphisms provide further genetic evidence for the polygenetic nature of cardiorespiratory endurance and be used as genetic biomarkers for future research.
Collapse
Affiliation(s)
- Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoyuan Huang
- Pott College of Science, Engineering and Education, University of Southern Indiana, Indiana, 47712, USA
| | - Zuosong Chen
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Fan
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Huang
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinsheng Liu
- School Infirmary, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingyi Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Affiliated Hospital of Qingdao University, Qingdao, 266003, China. .,Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China.
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, 830046, China.
| |
Collapse
|
30
|
Advanced glycation end products facilitate the proliferation and reduce early apoptosis of cardiac microvascular endothelial cells via PKCβ signaling pathway: Insight from diabetic cardiomyopathy. Anatol J Cardiol 2020; 23:141-150. [PMID: 32120359 PMCID: PMC7222633 DOI: 10.14744/anatoljcardiol.2019.21504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the effects of advanced glycation end products (AGEs) on the proliferation and apoptosis of cardiac microvascular endothelial cells (CMECs) in rats and their underlying signaling pathway. Methods: CMECs were isolated from Sprague–Dawley rats. We first examined the effects of AGEs on the proliferation and apoptosis of CMECs and then tested whether protein kinase C (PKC) β blockers could counteract the effects of AGEs. The PKC agonists phorbol 12-myristate 13-acetate (PMA) and PKCβ blockers were also used to verify whether PKC could act independently on CMECs. The receptor for AGEs (RAGE)–small interfering RNA (siRNA) transfection was used to verify the effect of AGEs on PKC. Following the above steps, we explained whether AGEs regulated the CMEC proliferation and early apoptosis through the PKCβ signaling pathway. Proliferation of CMECs was detected using the Cell Counting Kit-8 (CCK-8) assay, and early apoptosis was determined using the Annexin V- Fluorescein Isothiocyanate (FITC)/propidium iodide (PI) double staining. Expression of proliferation and apoptosis-related proteins and PKC phosphorylation were determined by western blotting analysis. Cell cycle distributions were assayed using a BD FACSCalibur cell-sorting system. Results: AGEs facilitated the proliferation of CMECs, upregulated phosphorylated extracellular signal regulated kinase (p-ERK), and accelerated the entry of cells from G1 phase to the S+G2/M phase, which was consistent with the upregulated cyclin D1 by AGEs. AGEs inhibited early apoptosis of CMECs by increasing the expression of survivin and decreasing the expression of cleaved-caspase3. All these effects can be reversed by PKCβ1/2inhibitors. In addition, AGE upregulated the RAGE expression and phosphorylation of PKCβ1/2 in CMECs, while the inhibition of RAGE reversed the phosphorylation, as well as the effects of AGEs on proliferation and apoptosis in CMECs. Conclusion: The study indicated that AGEs facilitated the proliferation and reduced early apoptosis of CMECs via the PKCβ signaling pathway.
Collapse
|
31
|
Niemeyer A, Rinne A, Kienitz MC. Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms. Cell Signal 2019; 64:109418. [DOI: 10.1016/j.cellsig.2019.109418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
|
32
|
Ronzier E, Parks XX, Qudsi H, Lopes CM. Statin-specific inhibition of Rab-GTPase regulates cPKC-mediated IKs internalization. Sci Rep 2019; 9:17747. [PMID: 31780674 PMCID: PMC6882895 DOI: 10.1038/s41598-019-53700-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Statins are prescribed for prevention and treatment of coronary artery disease. Statins have different cholesterol lowering abilities, with rosuvastatin and atorvastatin being the most effective, while statins like simvastatin and fluvastatin having lower effectiveness. Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab-GTPase proteins, a protein family important for the regulation of membrane-bound protein trafficking. Here we show that endosomal localization of Rab-GTPases (Rab5, Rab7 and Rab11) was inhibited in a statin-specific manner, with stronger effects by fluvastatin, followed by simvastatin and atorvastatin, and with a limited effect by rosuvastatin. Fluvastatin inhibition of Rab5 has been shown to mediate cPKC-dependent trafficking regulation of the cardiac delayed rectifier KCNQ1/KCNE1 channels. We observed statin-specific inhibition of channel regulation consistent with statin-specific Rab-GTPase inhibition both in heterologous systems and cardiomyocytes. Our results uncover a non-cholesterol-reducing statin-specific effect of statins. Because Rab-GTPases are important regulators of membrane trafficking they may underlie statin specific pleiotropic effects. Therefore, statin-specificity may allow better treatment tailoring.
Collapse
Affiliation(s)
- Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Haani Qudsi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
33
|
PKCβII specifically regulates KCNQ1/KCNE1 channel membrane localization. J Mol Cell Cardiol 2019; 138:283-290. [PMID: 31785237 DOI: 10.1016/j.yjmcc.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/06/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
The slow voltage-gated potassium channel (IKs) is composed of the KCNQ1 and KCNE1 subunits and is one of the major repolarizing currents in the heart. Activation of protein kinase C (PKC) has been linked to cardiac arrhythmias. Although PKC has been shown to be a regulator of a number of cardiac channels, including IKs, little is known about regulation of the channel by specific isoforms of PKC. Here we studied the role of different PKC isoforms on IKs channel membrane localization and function. Our studies focused on PKC isoforms that translocate to the plasma membrane in response to Gq-coupled receptor (GqPCR) stimulation: PKCα, PKCβI, PKCβII and PKCε. Prolonged stimulation of GqPCRs has been shown to decrease IKs membrane expression, but the specific role of each PKC isoform is unclear. Here we show that stimulation of calcium-dependent isoforms of PKC (cPKC) but not PKCε mimic receptor activation. In addition, we show that general PKCβ (LY-333531) and PKCβII inhibitors but not PKCα or PKCβI inhibitors blocked the effect of cPKC on the KCNQ1/KCNE1 channel. PKCβ inhibitors also blocked GqPCR-mediated decrease in channel membrane expression in cardiomyocytes. Direct activation of PKCβII using constitutively active PKCβII construct mimicked agonist-induced decrease in membrane expression and channel function, while dominant negative PKCβII showed no effect. This suggests that the KCNQ1/KCNE1 channel was not regulated by basal levels of PKCβII activity. Our results indicate that PKCβII is a specific regulator of IKs membrane localization. PKCβII expression and activation are strongly increased in many disease states, including heart disease and diabetes. Thus, our results suggest that PKCβII inhibition may protect against acquired QT prolongation associated with heart disease.
Collapse
|
34
|
Luzum JA, Ting C, Peterson EL, Gui H, Shugg T, Williams LK, Li L, Sadee W, Wang D, Lanfear DE. Association of Regulatory Genetic Variants for Protein Kinase Cα with Mortality and Drug Efficacy in Patients with Heart Failure. Cardiovasc Drugs Ther 2019; 33:693-700. [PMID: 31728800 DOI: 10.1007/s10557-019-06909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Protein kinase C alpha (gene: PRKCA) is a key regulator of cardiac contractility. Two genetic variants have recently been discovered to regulate PRKCA expression in failing human heart tissue (rs9909004 [T → C] and rs9303504 [C → G]). The association of those variants with clinical outcomes in patients with heart failure (HF), and their interaction with HF drug efficacy, is unknown. METHODS Patients with HF in a prospective registry starting in 2007 were genotyped by whole genome array (n = 951). The primary outcome was all-cause mortality. Cox proportional hazards models adjusted for established clinical risk factors and genomic ancestry tested the independent association of rs9909004 or rs9303504 and the variant interactions with cornerstone HF pharmacotherapies (beta-blockers or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers) in additive genetic models. RESULTS The minor allele of rs9909004, but not of rs9303504, was independently associated with a decreased risk for all-cause mortality: adjusted HR = 0.81 (95% CI = 0.67-0.98), p = 0.032. The variants did not significantly interact with mortality benefit associated with cornerstone HF pharmacotherapies (p > 0.1 for all). CONCLUSIONS A recently discovered cardiac-specific regulatory variant for PRKCA (rs9909004) was independently associated with a decreased risk for all-cause mortality in patients with HF. The variant did not interact with mortality benefit associated with cornerstone HF pharmacotherapies.
Collapse
Affiliation(s)
- Jasmine A Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA. .,Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.
| | - Christopher Ting
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Tyler Shugg
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Liang Li
- Department of Medical Genetics, Southern Medical University, Guangzhou, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.,Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
35
|
Ravichandran VS, Patel HJ, Pagani FD, Westfall MV. Cardiac contractile dysfunction and protein kinase C-mediated myofilament phosphorylation in disease and aging. J Gen Physiol 2019; 151:1070-1080. [PMID: 31366607 PMCID: PMC6719401 DOI: 10.1085/jgp.201912353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/25/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023] Open
Abstract
Increases in protein kinase C (PKC) are associated with diminished cardiac function, but the contribution of downstream myofilament phosphorylation is debated in human and animal models of heart failure. The current experiments evaluated PKC isoform expression, downstream cardiac troponin I (cTnI) S44 phosphorylation (p-S44), and contractile function in failing (F) human myocardium, and in rat models of cardiac dysfunction caused by pressure overload and aging. In F human myocardium, elevated PKCα expression and cTnI p-S44 developed before ventricular assist device implantation. Circulatory support partially reduced PKCα expression and cTnI p-S44 levels and improved cellular contractile function. Gene transfer of dominant negative PKCα (PKCαDN) into F human myocytes also improved contractile function and reduced cTnI p-S44. Heightened cTnI phosphorylation of the analogous residue accompanied reduced myocyte contractile function in a rat model of pressure overload and in aged Fischer 344 × Brown Norway F1 rats (≥26 mo). Together, these results indicate PKC-targeted cTnI p-S44 accompanies cardiac cellular dysfunction in human and animal models. Interfering with PKCα activity reduces downstream cTnI p-S44 levels and partially restores function, suggesting cTnI p-S44 may be a useful target to improve contractile function in the future.
Collapse
Affiliation(s)
- Vani S Ravichandran
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Margaret V Westfall
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
36
|
Pimenov OY, Galimova MH, Evdokimovskii EV, Averin AS, Nakipova OV, Reyes S, Alekseev AE. Myocardial α2-Adrenoceptors as Therapeutic Targets to Prevent Cardiac Hypertrophy and Heart Failure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
37
|
Brain signalling systems: A target for treating type I diabetes mellitus. Brain Res Bull 2019; 152:191-201. [PMID: 31325597 DOI: 10.1016/j.brainresbull.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
From early to later stages of Type I Diabetes Mellitus (TIDM), signalling molecules including brain indolamines and protein kinases are altered significantly, and that has been implicated in the Metabolic Disorders (MD) as well as impairment of retinal, renal, neuronal and cardiovascular systems. Considerable attention has been focused to the effects of diabetes on these signalling systems. However, the exact pathophysiological mechanisms of these signals are not completely understood in TIDM, but it is likely that hyperglycemia, acidosis, and insulin resistance play significant roles. Insulin maintains normal glycemic levels and it acts by binding to its receptor, so that it activates the receptor's tyrosine kinase activity, resulting in phosphorylation of several substrates. Those substrates provide binding/interaction sites for signalling molecules, including serine/threonine kinases and indolamines. For more than two decades, our research has been focused on the mechanisms of protein kinases, CaM Kinase and Serotonin transporter mediated alterations of indolamines in TIDM. In this review, we have also discussed how discrete areas of brain respond to insulin or some of the pharmacological agents that triggers or restores these signalling molecules, and it may be useful for the treatment of specific region wise changes/disorders of diabetic brain.
Collapse
|
38
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
39
|
Parks XX, Ronzier E, O-Uchi J, Lopes CM. Fluvastatin inhibits Rab5-mediated IKs internalization caused by chronic Ca 2+-dependent PKC activation. J Mol Cell Cardiol 2019; 129:314-325. [PMID: 30898664 DOI: 10.1016/j.yjmcc.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/26/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.
Collapse
Affiliation(s)
- Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Jin O-Uchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America; Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States of America
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America.
| |
Collapse
|
40
|
Nader M, Alsolme E, Alotaibi S, Alsomali R, Bakheet D, Dzimiri N. SLMAP-3 is downregulated in human dilated ventricles and its overexpression promotes cardiomyocyte response to adrenergic stimuli by increasing intracellular calcium. Can J Physiol Pharmacol 2019; 97:623-630. [PMID: 30856349 DOI: 10.1139/cjpp-2018-0660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Structural dilation of cardiomyocytes (CMs) imposes a decline in cardiac performance that precipitates cardiac failure and sudden death. Since membrane proteins are implicated in dilated cardiomyopathy and heart failure, we evaluated the expression of the sarcolemmal membrane-associated protein (SLMAP) in dilated cardiomyopathy and its effect on CM contraction. We found that all 3 SLMAP isoforms (SLMAP-1, -2, and -3) are expressed in CMs and are downregulated in human dilated ventricles. Knockdown of SLMAPs in cultured CMs transduced with recombinant adeno-associated viral particles releasing SLMAP-shRNA precipitated reduced spontaneous contractile rate that was not fully recovered in SLMAP-depleted CMs challenged with isoproterenol (ISO), thus phenotypically mimicking heart failure performance. Interestingly, the overexpression of the SLMAP-3 full-length isoform induced a positive chronotropic effect in CMs that was more pronounced in response to ISO insult (vs. ISO-treated naïve CMs). Confocal live imaging showed that H9c2 cardiac myoblasts overexpressing SLMAP-3 exhibit a higher intracellular calcium transient peak when treated with ISO (vs. ISO-treated cells carrying a control adeno-associated viral particle). Proteomics revealed that SLMAP-3 interacts with the regulator of CM contraction, striatin. Collectively, our data demonstrate that SLMAP-3 is a novel regulator of CM contraction rate and their response to adrenergic stimuli. Loss of SLMAPs phenotypically mimics cardiac failure and crystallizes SLMAPs as predictive of dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moni Nader
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Ebtehal Alsolme
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shahd Alotaibi
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Rahmah Alsomali
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Dana Bakheet
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Nduna Dzimiri
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Hu R, Morley MP, Brandimarto J, Tucker NR, Parsons VA, Zhao SD, Meder B, Katus HA, Rühle F, Stoll M, Villard E, Cambien F, Lin H, Smith NL, Felix JF, Vasan RS, van der Harst P, Newton-Cheh C, Li J, Kim CE, Hakonarson H, Hannenhalli S, Ashley EA, Moravec CS, Tang WHW, Maillet M, Molkentin JD, Ellinor PT, Margulies KB, Cappola TP. Genetic Reduction in Left Ventricular Protein Kinase C-α and Adverse Ventricular Remodeling in Human Subjects. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019. [PMID: 29540468 DOI: 10.1161/circgen.117.001901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhibition of PKC-α (protein kinase C-α) enhances contractility and cardioprotection in animal models, but effects in humans are unknown. Genotypes at rs9912468 strongly associate with PRKCA expression in the left ventricle, enabling genetic approaches to measure effects of reduced PKC-α in human populations. METHODS AND RESULTS We analyzed the cis expression quantitative trait locus for PRKCA marked by rs9912468 using 313 left ventricular specimens from European Ancestry patients. The forward strand minor allele (G) at rs9912468 is associated with reduced PKC-α transcript abundance (1.7-fold reduction in minor allele homozygotes, P=1×10-41). This association was cardiac specific in expression quantitative trait locus data sets that span 16 human tissues. Cardiac epigenomic data revealed a predicted enhancer in complete (R2=1.0) linkage disequilibrium with rs9912468 within intron 2 of PRKCA. We cloned this region and used reporter constructs to verify cardiac-specific enhancer activity in vitro in cardiac and noncardiac cells and in vivo in zebrafish. The PRKCA enhancer contains 2 common genetic variants and 4 haplotypes; the haplotype correlated with the rs9912468 PKC-α-lowering allele (G) showed lowest activity. In contrast to previous reports in animal models, the PKC-α-lowering allele is associated with adverse left ventricular remodeling (higher mass, larger diastolic dimension), reduced fractional shortening, and higher risk of dilated cardiomyopathy in human populations. CONCLUSIONS These findings support PKC-α as a regulator of the human heart but suggest that PKC-α inhibition may adversely affect the left ventricle depending on timing and duration. Pharmacological studies in human subjects are required to discern potential benefits and harms of PKC-α inhibitors as an approach to treat heart disease.
Collapse
Affiliation(s)
- Ray Hu
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Michael P Morley
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Jeffrey Brandimarto
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Nathan R Tucker
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Victoria A Parsons
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Sihai D Zhao
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Benjamin Meder
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Hugo A Katus
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Frank Rühle
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Monika Stoll
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Eric Villard
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - François Cambien
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Honghuang Lin
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Nicholas L Smith
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Janine F Felix
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Ramachandran S Vasan
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Pim van der Harst
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Christopher Newton-Cheh
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Jin Li
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Cecilia E Kim
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Hakon Hakonarson
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Sridhar Hannenhalli
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Euan A Ashley
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Christine S Moravec
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - W H Wilson Tang
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Marjorie Maillet
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Jeffery D Molkentin
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Patrick T Ellinor
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Kenneth B Margulies
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.)
| | - Thomas P Cappola
- From the Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (R.H., M.P.M., J.B., K.B.M., T.P.C.); Cardiovascular Research Center (N.R.T., V.A.P., P.T.E.) and Center for Human Genetic Research and Cardiovascular Research Center (C.N.-C.), Massachusetts General Hospital, Boston; Department of Statistics, University of Illinois at Urbana-Champaign (S.D.Z.); Heidelberg University Hospital, Germany (B.M., H.A.K.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (F.R., M.S.); INSERM UMRS1166-IACN, Hôpital Pitié-Salpêtrière, Paris, France (E.V., F.C.); Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands (J.F.F.); Boston University School of Medicine, MA (R.S.V.); Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (P.v.d.H.); Medical and Population Genetics Program, Broad Institute, Cambridge, MA (C.N.-C.); Center for Applied Genomics, Children's Hospital of Philadelphia, PA (J.L., C.E.K., H.H.); Center for Bioinformatics and Computational Biology, University of Maryland, College Park (S.H.); Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, CA (E.A.A.); Department of Cardiovascular Medicine, Cleveland Clinic, OH (C.S.M., W.H.W.T.); and Howard Hughes Medical Institute and Cincinnati Children's Hospital Medical Center, OH (M.M., J.D.M.).
| |
Collapse
|
42
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
43
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
44
|
Biesiadecki BJ, Westfall MV. Troponin I modulation of cardiac performance: Plasticity in the survival switch. Arch Biochem Biophys 2019; 664:9-14. [PMID: 30684464 DOI: 10.1016/j.abb.2019.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
Signaling complexes targeting the myofilament are essential in modulating cardiac performance. A central target of this signaling is cardiac troponin I (cTnI) phosphorylation. This review focuses on cTnI phosphorylation as a model for myofilament signaling, discussing key gaps and future directions towards understanding complex myofilament modulation of cardiac performance. Human heart cTnI is phosphorylated at 14 sites, giving rise to a complex modulatory network of varied functional responses. For example, while classical Ser23/24 phosphorylation mediates accelerated relaxation, protein kinase C phosphorylation of cTnI serves as a brake on contractile function. Additionally, the functional response of cTnI multi-site phosphorylation cannot necessarily be predicted from the response of individual sites alone. These complexities underscore the need for systematically evaluating single and multi-site phosphorylation on myofilament cellular and in vivo contractile function. Ultimately, a complete understanding of these multi-site responses requires work to establish site occupancy and dominance, kinase/phosphatase signaling balance, and the function of adaptive secondary phosphorylation. As cTnI phosphorylation is essential for modulating cardiac performance, future insight into the complex role of cTnI phosphorylation is important to establish sarcomere signaling in the healthy heart as well as identification of novel myofilament targets in the treatment of disease.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Margaret V Westfall
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Zhong X, Qian X, Chen G, Song X. The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 2019; 46:197-203. [PMID: 30372548 DOI: 10.1111/1440-1681.13048] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Zhong
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Xiaoqian Qian
- Department of Nephrology; Xin Hua Hospital Affiliated; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Guangping Chen
- Department of Physiology; Emory University School of Medicine; Atlanta Georgia
| | - Xiang Song
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| |
Collapse
|
46
|
Asensio-Lopez MDC, Lax A, Fernandez Del Palacio MJ, Sassi Y, Hajjar RJ, Pascual-Figal DA. Pharmacological inhibition of the mitochondrial NADPH oxidase 4/PKCα/Gal-3 pathway reduces left ventricular fibrosis following myocardial infarction. Transl Res 2018; 199:4-23. [PMID: 29753686 DOI: 10.1016/j.trsl.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022]
Abstract
Although the initial reparative fibrosis after myocardial infarction (MI) is crucial for preventing rupture of the ventricular wall, an exaggerated fibrotic response and reactive fibrosis outside the injured area are detrimental. Although metformin prevents adverse cardiac remodeling, as well as provides glycemic control, the underlying mechanisms remain poorly documented. This study describes the effect of mitochondrial NADPH oxidase 4 (mitoNox) and protein kinase C-alpha (PKCα) on the cardiac fibrosis and galectin 3 (Gal-3) expression. Randomly rats underwent MI, received metformin or saline solution. A model of biomechanical strain and co-culturewas used to enable cross talk between cardiomyocytes and fibroblasts. Long-term metformin treatment after MIwas associated with (1) a reduction in myocardial fibrosis and Gal-3 levels; (2) an increase in adenosine monophosphate-activated protein kinase (AMPK) α1/α2 levels; and (3) an inhibition of both mRNA expression and enzymatic activities of mitoNox and PKCα. These findings were replicated in the cellular model, where the silencing of AMPK expression blocked the ability of metformin to protect cardiomyocytes from strain. The use of specific inhibitors or small interference RNA provided evidence that PKCα is downstream of mitoNox, and that the activation of this pathway results in Gal-3 upregulation.The Gal-3 secreted by cardiomyocytes has a paracrine effect on cardiac fibroblasts, inducing their activation. In conclusion, a metformin-induced increase in AMPK improves myocardial remodeling post-MI, which is related to the inhibition of the mitoNox/PKCα/Gal-3 pathway. Manipulation of this pathway might offer new therapeutic options against adverse cardiac remodeling, in terms of preventing the activation of the present fibroblast population.
Collapse
Affiliation(s)
| | - Antonio Lax
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Domingo A Pascual-Figal
- Cardiology Department, Clinic and Universitary Hospital Virgen de la Arrixaca, Murcia, Spain; CIBER in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
47
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
48
|
Abstract
Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure.
Collapse
Affiliation(s)
- Raphael M Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK.
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana.
| | - Emanuel Cummings
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, University of Athens, Athens, Greece
| | - Jaipaul Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK
| |
Collapse
|
49
|
Jefferies JL. Targeting protein kinase C: A novel paradigm for heart failure therapy. PROGRESS IN PEDIATRIC CARDIOLOGY 2018. [DOI: 10.1016/j.ppedcard.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
50
|
Smyrnias I, Goodwin N, Wachten D, Skogestad J, Aronsen JM, Robinson EL, Demydenko K, Segonds-Pichon A, Oxley D, Sadayappan S, Sipido K, Bootman MD, Roderick HL. Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. J Mol Cell Cardiol 2018; 117:1-18. [DOI: 10.1016/j.yjmcc.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
|