1
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Mendiola PJ, O’Herron P, Xie K, Brands MW, Bush W, Patterson RE, Di Stefano V, Filosa JA. Blood pressure variability compromises vascular function in middle-aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619509. [PMID: 39484398 PMCID: PMC11526967 DOI: 10.1101/2024.10.21.619509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Blood pressure variability (BPV) has emerged as a novel risk factor for cognitive decline and dementia, independent of alterations in average blood pressure (BP). However, the underlying consequences of large BP fluctuations on the neurovascular complex are unknown. We developed a novel mouse model of BPV in middle-aged mice based on intermittent Angiotensin II infusions. Using radio telemetry, we demonstrated that the 24-hr BP averages of these mice were similar to controls, indicating BPV without hypertension. Chronic (20-25 days) BPV led to a blunted bradycardic response and cognitive deficits. Two-photon imaging of parenchymal arterioles showed enhanced pressure-evoked constrictions (myogenic response) in BPV mice. Sensory stimulus-evoked dilations (neurovascular coupling) were greater at higher BP levels in control mice, but this pressure-dependence was lost in BPV mice. Our findings support the notion that large BP variations impair vascular function at the neurovascular complex and contribute to cognitive decline.
Collapse
Affiliation(s)
- Perenkita J. Mendiola
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Philip O’Herron
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kun Xie
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Weston Bush
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rachel E. Patterson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Valeria Di Stefano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Flores-Tamez VA, Martín-Aragón Baudel M, Hong J, Taylor JL, Ren L, Le T, Syed AU, Moustafa Y, Singhrao N, Lemus-Martinez WR, Reddy GR, Ramer V, Man KNM, Bartels P, Chen-Izu Y, Chen CY, Simo S, Dickson EJ, Morotti S, Grandi E, Santana LF, Hell JW, Horne MC, Nieves-Cintrón M, Navedo MF. α1 C S1928 Phosphorylation of Ca V1.2 Channel Controls Vascular Reactivity and Blood Pressure. J Am Heart Assoc 2024; 13:e035375. [PMID: 39377203 DOI: 10.1161/jaha.124.035375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Increased vascular CaV1.2 channel function causes enhanced arterial tone during hypertension. This is mediated by elevations in angiotensin II/protein kinase C signaling. Yet, the mechanisms underlying these changes are unclear. We hypothesize that α1C phosphorylation at serine 1928 (S1928) is a key event mediating increased CaV1.2 channel function and vascular reactivity during angiotensin II signaling and hypertension. METHODS AND RESULTS The hypothesis was examined in freshly isolated mesenteric arteries and arterial myocytes from control and angiotensin II-infused mice. Specific techniques include superresolution imaging, proximity ligation assay, patch-clamp electrophysiology, Ca2+ imaging, pressure myography, laser speckle imaging, and blood pressure telemetry. Hierarchical "nested" and appropriate parametric or nonparametric t test and ANOVAs were used to assess statistical differences. We found that angiotensin II redistributed the CaV1.2 pore-forming α1C subunit into larger clusters. This was correlated with elevated CaV1.2 channel activity and cooperativity, global intracellular Ca2+ and contraction of arterial myocytes, enhanced myogenic tone, and altered blood flow in wild-type mice. These angiotensin II-induced changes were prevented/ameliorated in cells/arteries from S1928 mutated to alanine knockin mice, which contain a negative modulation of the α1C S1928 phosphorylation site. In angiotensin II-induced hypertension, increased α1C clustering, CaV1.2 activity and cooperativity, myogenic tone, and blood pressure in wild-type cells/tissue/mice were averted/reduced in S1928 mutated to alanine samples. CONCLUSIONS Results suggest an essential role for α1C S1928 phosphorylation in regulating channel distribution, activity and gating modality, and vascular function during angiotensin II signaling and hypertension. Phosphorylation of this single vascular α1C amino acid could be a risk factor for hypertension that may be targeted for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Junyoung Hong
- Department of Pharmacology University of California Davis Davis CA USA
| | - Jade L Taylor
- Department of Pharmacology University of California Davis Davis CA USA
| | - Lu Ren
- Department of Pharmacology University of California Davis Davis CA USA
| | - Thanhmai Le
- Department of Pharmacology University of California Davis Davis CA USA
| | - Arsalan U Syed
- Department of Pharmacology University of California Davis Davis CA USA
| | - Yumna Moustafa
- Department of Pharmacology University of California Davis Davis CA USA
| | - Navid Singhrao
- Department of Pharmacology University of California Davis Davis CA USA
| | | | - Gopireddy R Reddy
- Department of Pharmacology University of California Davis Davis CA USA
| | - Victoria Ramer
- Department of Pharmacology University of California Davis Davis CA USA
| | - Kwun Nok Mimi Man
- Department of Pharmacology University of California Davis Davis CA USA
| | - Peter Bartels
- Department of Pharmacology University of California Davis Davis CA USA
| | - Ye Chen-Izu
- Department of Pharmacology University of California Davis Davis CA USA
| | - Chao-Yin Chen
- Department of Pharmacology University of California Davis Davis CA USA
| | - Sergi Simo
- Department of Cell Biology & Human Anatomy University of California Davis Davis CA USA
| | - Eamonn J Dickson
- Department of Physiology & Membrane Biology University of California Davis Davis CA USA
| | - Stefano Morotti
- Department of Pharmacology University of California Davis Davis CA USA
| | - Eleonora Grandi
- Department of Pharmacology University of California Davis Davis CA USA
| | - L Fernando Santana
- Department of Physiology & Membrane Biology University of California Davis Davis CA USA
| | - Johannes W Hell
- Department of Pharmacology University of California Davis Davis CA USA
| | - Mary C Horne
- Department of Pharmacology University of California Davis Davis CA USA
| | | | - Manuel F Navedo
- Department of Pharmacology University of California Davis Davis CA USA
| |
Collapse
|
4
|
Poore CP, Yang J, Wei S, Fhu CK, Bichler Z, Wang J, Soong TW, Liao P. Enhanced isradipine sensitivity in vascular smooth muscle cells due to hypoxia-induced Ca v1.2 splicing and RbFox1/Fox2 downregulation. FEBS J 2024; 291:4265-4285. [PMID: 38794806 DOI: 10.1111/febs.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Calcium influx via the L-type voltage-gated Cav1.2 calcium channel in smooth muscle cells regulates vascular contraction. Calcium channel blockers (CCBs) are widely used to treat hypertension by inhibiting Cav1.2 channels. Using the vascular smooth muscle cell line, A7r5 and primary culture of cerebral vascular smooth muscle cells, we found that the expression and function of Cav1.2 channels are downregulated during hypoxia. Furthermore, hypoxia induces structural changes in Cav1.2 channels via alternative splicing. The expression of exon 9* is upregulated, whereas exon 33 is downregulated. Such structural alterations of Cav1.2 channels are caused by the decreased expression of RNA-binding proteins RNA-binding protein fox-1 homolog 1 and 2 (RbFox1 and RbFox2). Overexpression of RbFox1 and RbFox2 prevents hypoxia-induced exon 9* inclusion and exon 33 exclusion. Importantly, such structural alterations of the Cav1.2 channel partly contribute to the enhanced sensitivity of Cav1.2 to isradipine (a CCB) under hypoxia. Overexpression of RbFox1 and RbFox2 successfully reduces isradipine sensitivity in hypoxic smooth muscle cells. Our results suggest a new strategy to manage ischemic diseases such as stroke and myocardial infarction.
Collapse
MESH Headings
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Alternative Splicing
- Down-Regulation
- Rats
- Cell Hypoxia/genetics
- Exons/genetics
- Mice
- Calcium Channel Blockers/pharmacology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shunhui Wei
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Chee Kong Fhu
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Zoë Bichler
- Neurobehavioural Phenotyping Core, Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| |
Collapse
|
5
|
Zhang Y, Xu Z, Shan M, Cao J, Zhou Y, Chen Y, Shi L. Arterial Smooth Muscle Cell AKAP150 Mediates Exercise-Induced Repression of Ca V1.2 Channel Function in Cerebral Arteries of Hypertensive Rats. Arterioscler Thromb Vasc Biol 2024; 44:1202-1221. [PMID: 38602101 DOI: 10.1161/atvbaha.124.319543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Hypertension is a major, prevalent risk factor for the development and progression of cerebrovascular disease. Regular exercise has been recommended as an excellent choice for the large population of individuals with mild-to-moderate elevations in blood pressure, but the mechanisms that underlie its vascular-protective and antihypertensive effects remain unknown. Here, we describe a mechanism by which myocyte AKAP150 (A-kinase anchoring protein 150) inhibition induced by exercise training alleviates voltage-dependent L-type Ca2+ channel (CaV1.2) activity and restores cerebral arterial function in hypertension. METHODS Spontaneously hypertensive rats and newly generated smooth muscle-specific AKAP150 knockin mice were used to assess the role of myocyte AKAP150/CaV1.2 channel in regulating cerebral artery function after exercise intervention. RESULTS Activation of the AKAP150/PKCα (protein kinase Cα) signaling increased CaV1.2 activity and Ca2+ influx of cerebral arterial myocyte, thus enhancing vascular tone in spontaneously hypertensive rats. Smooth muscle-specific AKAP150 knockin mice were hypertensive with higher CaV1.2 channel activity and increased vascular tone. Furthermore, treatment of Ang II (angiotensin II) resulted in a more pronounced increase in blood pressure in smooth muscle-specific AKAP150 knockin mice. Exercise training significantly reduced arterial myocyte AKAP150 expression and alleviated CaV1.2 channel activity, thus restoring cerebral arterial function in spontaneously hypertensive rats and smooth muscle-specific AKAP150 knockin mice. AT1R (AT1 receptor) and AKAP150 were interacted closely in arterial myocytes. Exercise decreased the circulating Ang II and Ang II-involved AT1R-AKAP150 association in myocytes of hypertension. CONCLUSIONS The current study demonstrates that aerobic exercise ameliorates CaV1.2 channel function via inhibiting myocyte AKAP150, which contributes to reduced cerebral arterial tone in hypertension.
Collapse
MESH Headings
- Animals
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Rats, Inbred SHR
- Hypertension/physiopathology
- Hypertension/metabolism
- Hypertension/genetics
- Cerebral Arteries/metabolism
- Cerebral Arteries/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Physical Conditioning, Animal/physiology
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-alpha/genetics
- Calcium Signaling
- Mice, Inbred C57BL
- Mice
- Rats
- Rats, Inbred WKY
- Angiotensin II
- Blood Pressure
- Signal Transduction
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport (Y. Zhang, L.S.), Beijing Sport University, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education (Y. Zhang, L.S.), Beijing Sport University, China
| | - Zhaoxia Xu
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Meiling Shan
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Jiaqi Cao
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Yang Zhou
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Yu Chen
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Lijun Shi
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport (Y. Zhang, L.S.), Beijing Sport University, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education (Y. Zhang, L.S.), Beijing Sport University, China
| |
Collapse
|
6
|
Sullivan MN, Thakore P, Krishnan V, Alphonsa S, Li W, Feng Earley Y, Earley S. Endothelial cell TRPA1 activity exacerbates cerebral hemorrhage during severe hypertension. Front Mol Biosci 2023; 10:1129435. [PMID: 36793787 PMCID: PMC9922848 DOI: 10.3389/fmolb.2023.1129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: Hypoxia-induced dilation of cerebral arteries orchestrated by Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) cation channels on endothelial cells is neuroprotective during ischemic stroke, but it is unknown if the channel has a similar impact during hemorrhagic stroke. TRPA1 channels are endogenously activated by lipid peroxide metabolites generated by reactive oxygen species (ROS). Uncontrolled hypertension, a primary risk factor for the development of hemorrhagic stroke, is associated with increased ROS production and oxidative stress. Therefore, we hypothesized that TRPA1 channel activity is increased during hemorrhagic stroke. Methods: Severe, chronic hypertension was induced in control (Trpa1 fl/fl) and endothelial cell-specific TRPA1 knockout (Trpa1-ecKO) mice using a combination of chronic angiotensin II administration, a high-salt diet, and the addition of a nitric oxide synthase inhibitor to drinking water. Blood pressure was measured in awake, freely-moving mice using surgically placed radiotelemetry transmitters. TRPA1-dependent cerebral artery dilation was evaluated with pressure myography, and expression of TRPA1 and NADPH oxidase (NOX) isoforms in arteries from both groups was determined using PCR and Western blotting techniques. In addition, ROS generation capacity was evaluated using a lucigenin assay. Histology was performed to examine intracerebral hemorrhage lesion size and location. Results: All animals became hypertensive, and a majority developed intracerebral hemorrhages or died of unknown causes. Baseline blood pressure and responses to the hypertensive stimulus did not differ between groups. Expression of TRPA1 in cerebral arteries from control mice was not altered after 28 days of treatment, but expression of three NOX isoforms and the capacity for ROS generation was increased in hypertensive animals. NOX-dependent activation of TRPA1 channels dilated cerebral arteries from hypertensive animals to a greater extent compared with controls. The number of intracerebral hemorrhage lesions in hypertensive animals did not differ between control and Trpa1-ecKO animals but were significantly smaller in Trpa1-ecKO mice. Morbidity and mortality did not differ between groups. Discussion: We conclude that endothelial cell TRPA1 channel activity increases cerebral blood flow during hypertension resulting in increased extravasation of blood during intracerebral hemorrhage events; however, this effect does not impact overall survival. Our data suggest that blocking TRPA1 channels may not be helpful for treating hypertension-associated hemorrhagic stroke in a clinical setting.
Collapse
Affiliation(s)
- Michelle N. Sullivan
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Vivek Krishnan
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Sushma Alphonsa
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yumei Feng Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
7
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
8
|
Jesus RLC, Silva ILP, Araújo FA, Moraes RA, Silva LB, Brito DS, Lima GBC, Alves QL, Silva DF. 7-Hydroxycoumarin Induces Vasorelaxation in Animals with Essential Hypertension: Focus on Potassium Channels and Intracellular Ca 2+ Mobilization. Molecules 2022; 27:7324. [PMID: 36364149 PMCID: PMC9655823 DOI: 10.3390/molecules27217324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular diseases (CVD) are the deadliest noncommunicable disease worldwide. Hypertension is the most prevalent risk factor for the development of CVD. Although there is a wide range of antihypertensive drugs, there still remains a lack of blood pressure control options for hypertensive patients. Additionally, natural products remain crucial to the design of new drugs. The natural product 7-hydroxycoumarin (7-HC) exhibits pharmacological properties linked to antihypertensive mechanisms of action. This study aimed to evaluate the vascular effects of 7-HC in an experimental model of essential hypertension. The isometric tension measurements assessed the relaxant effect induced by 7-HC (0.001 μM-300 μM) in superior mesenteric arteries isolated from hypertensive rats (SHR, 200-300 g). Our results suggest that the relaxant effect induced by 7-HC rely on K+-channels (KATP, BKCa, and, to a lesser extent, Kv) activation and also on Ca2+ influx from sarcolemma and sarcoplasmic reticulum mobilization (inositol 1,4,5-triphosphate (IP3) and ryanodine receptors). Moreover, 7-HC diminishes the mesenteric artery's responsiveness to α1-adrenergic agonist challenge and improves the actions of the muscarinic agonist and NO donor. The present work demonstrated that the relaxant mechanism of 7-HC in SHR involves endothelium-independent vasorelaxant factors. Additionally, 7-HC reduced vasoconstriction of the sympathetic agonist while improving vascular endothelium-dependent and independent relaxation.
Collapse
Affiliation(s)
- Rafael L. C. Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Isnar L. P. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Fênix A. Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Raiana A. Moraes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Liliane B. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Daniele S. Brito
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Gabriela B. C. Lima
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Quiara L. Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Darizy F. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| |
Collapse
|
9
|
Vascular Ca V1.2 channels in diabetes. CURRENT TOPICS IN MEMBRANES 2022; 90:65-93. [PMID: 36368875 DOI: 10.1016/bs.ctm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.
Collapse
|
10
|
Daghbouche-Rubio N, López-López JR, Pérez-García MT, Cidad P. Vascular smooth muscle ion channels in essential hypertension. Front Physiol 2022; 13:1016175. [PMID: 36213221 PMCID: PMC9540222 DOI: 10.3389/fphys.2022.1016175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is a highly prevalent chronic disease and the major risk factor for cardiovascular diseases, the leading cause of death worldwide. Hypertension is characterized by an increased vascular tone determined by the contractile state of vascular smooth muscle cells that depends on intracellular calcium levels. The interplay of ion channels determine VSMCs membrane potential and thus intracellular calcium that controls the degree of contraction, vascular tone and blood pressure. Changes in ion channels expression and function have been linked to hypertension, but the mechanisms and molecular entities involved are not completely clear. Furthermore, the literature shows discrepancies regarding the contribution of different ion channels to hypertension probably due to differences both in the vascular preparation and in the model of hypertension employed. Animal models are essential to study this multifactorial disease but it is also critical to know their characteristics to interpret properly the results obtained. In this review we summarize previous studies, using the hypertensive mouse (BPH) and its normotensive control (BPN), focused on the identified changes in the expression and function of different families of ion channels. We will focus on L-type voltage-dependent Ca2+ channels (Cav1.2), canonical transient receptor potential channels and four different classes of K+ channels: voltage-activated (Kv), large conductance Ca2+-activated (BK), inward rectifiers (Kir) and ATP-sensitive (KATP) K+ channels. We will describe the role of these channels in hypertension and we will discuss the importance of integrating individual changes in a global context to understand the complex interplay of ion channels in hypertension.
Collapse
|
11
|
Dahl Salt-Resistant Rat Is Protected against Hypertension during Diet-Induced Obesity. Nutrients 2022; 14:nu14183843. [PMID: 36145220 PMCID: PMC9506364 DOI: 10.3390/nu14183843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) frequently causes obesity-induced hypertension. Because Dahl salt-resistant rats are protected against hypertension after high-salt or high-fructose intake, it is of interest whether this model also protects against hypertension after diet-induced obesity. We tested the hypothesis that Dahl salt-resistant rat protects against hypertension during diet-induced obesity. Dahl salt-sensitive (SS) and Dahl salt-resistant (SR) rats were fed a HFD (60% fat) or a chow diet (CD; 8% fat) for 12 weeks. We measured blood pressure using the tail-cuff method. The paraffin sections of thoracic perivascular adipose tissue (tPVAT) were stained with hematoxylin/eosin and trichrome. The expression of genes in the tPVAT and kidneys were measured by reverse transcription-quantitative polymerase chain reaction. The HFD induced hypertension in SS (p < 0.01) but not SR rats, although it increased body weight gain (p < 0.05) and tPVAT weight (p < 0.01) in both rats. The HFD did not affect the expression of genes related to any of the adipocyte markers in both rats, although SR rats had reduced beige adipocyte marker Tmem26 levels (p < 0.01) and increased anti-inflammatory cytokine adiponectin (p < 0.05) as compared with SS rat. The HFD did not affect the mRNA expression of contractile factors in the tPVAT of SS and SR rats. SR rats are protected against hypertension during diet-induced obesity. This result implies that the genetic trait determining salt sensitivity may also determine fructose and fat sensitivity and that it is associated with the prevention of hypertension.
Collapse
|
12
|
Pereira da Silva EA, Martín-Aragón Baudel M, Navedo MF, Nieves-Cintrón M. Ion channel molecular complexes in vascular smooth muscle. Front Physiol 2022; 13:999369. [PMID: 36091375 PMCID: PMC9459047 DOI: 10.3389/fphys.2022.999369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Ion channels that influence membrane potential and intracellular calcium concentration control vascular smooth muscle excitability. Voltage-gated calcium channels (VGCC), transient receptor potential (TRP) channels, voltage (KV), and Ca2+-activated K+ (BK) channels are key regulators of vascular smooth muscle excitability and contractility. These channels are regulated by various signaling cues, including protein kinases and phosphatases. The effects of these ubiquitous signaling molecules often depend on the formation of macromolecular complexes that provide a platform for targeting and compartmentalizing signaling events to specific substrates. This manuscript summarizes our current understanding of specific molecular complexes involving VGCC, TRP, and KV and BK channels and their contribution to regulating vascular physiology.
Collapse
|
13
|
Salazar-Enciso R, Guerrero-Hernández A, Gómez AM, Benitah JP, Rueda A. Aldosterone-Induced Sarco/Endoplasmic Reticulum Ca2+ Pump Upregulation Counterbalances Cav1.2-Mediated Ca2+ Influx in Mesenteric Arteries. Front Physiol 2022; 13:834220. [PMID: 35360237 PMCID: PMC8963271 DOI: 10.3389/fphys.2022.834220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.
Collapse
Affiliation(s)
- Rogelio Salazar-Enciso
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Agustín Guerrero-Hernández
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- *Correspondence: Angélica Rueda,
| |
Collapse
|
14
|
Chronic exercise mediates epigenetic suppression of L-type Ca2+ channel and BKCa channel in mesenteric arteries of hypertensive rats. J Hypertens 2021; 38:1763-1776. [PMID: 32384389 DOI: 10.1097/hjh.0000000000002457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Regular exercise is a lifestyle intervention for controlling hypertension and has an improving effect on vascular function. Voltage-gated L-type Ca (LTCC) and large-conductance Ca-activated K (BKCa) channels are two principal mediators of vascular smooth muscle cell contractility and arterial tone. The present study tested the hypothesis that DNA methylation dynamics plays a key role in exercise-induced reprogramming and downregulation of LTCC and BKCa channel in mesenteric arteries from spontaneously hypertensive rats (SHRs). METHODS SHRs and Wistar-Kyoto (WKY) rats were subjected to exercise training or kept sedentary, and vascular molecular and functional properties were evaluated. RESULTS Exercise inhibited hypertension-induced upregulation of LTCC and BKCa channel function in mesenteric arteries by repressing LTCC α1c and BKCa β1 subunit expression. In accordance, exercise triggered hypermethylation of α1c and β1 gene in SHR, with concomitant decreasing TET1, increasing DNMT1 and DNMT3b expression in mesenteric arteries, as well as altering peripheral α-KG and S-adenosylmethionine/ S-adenosylhomocysteine ratio. Acting synergistically, these exercise-induced functional and molecular amelioration could allow for attenuating hypertension-induced elevation in arterial blood pressure. CONCLUSION Our results indicate that exercise suppresses LTCC and BKCa channel function via hypermethylation of α1c and β1 subunits, which contributes to the restoration of mesenteric arterial function and vasodilation during hypertension.
Collapse
|
15
|
Kowalska M, Fijałkowski Ł, Kubacka M, Sałat K, Grześk G, Nowaczyk J, Nowaczyk A. Antiepileptic Drug Tiagabine Does Not Directly Target Key Cardiac Ion Channels Kv11.1, Nav1.5 and Cav1.2. Molecules 2021; 26:3522. [PMID: 34207748 PMCID: PMC8226520 DOI: 10.3390/molecules26123522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Tiagabine is an antiepileptic drug used for the treatment of partial seizures in humans. Recently, this drug has been found useful in several non-epileptic conditions, including anxiety, chronic pain and sleep disorders. Since tachycardia-an impairment of cardiac rhythm due to cardiac ion channel dysfunction-is one of the most commonly reported non-neurological adverse effects of this drug, in the present paper we have undertaken pharmacological and numerical studies to assess a potential cardiovascular risk associated with the use of tiagabine. A chemical interaction of tiagabine with a model of human voltage-gated ion channels (VGICs) is described using the molecular docking method. The obtained in silico results imply that the adverse effects reported so far in the clinical cardiological of tiagabine could not be directly attributed to its interactions with VGICs. This is also confirmed by the results from the isolated organ studies (i.e., calcium entry blocking properties test) and in vivo (electrocardiogram study) assays of the present research. It was found that tachycardia and other tiagabine-induced cardiac complications are not due to a direct effect of this drug on ventricular depolarization and repolarization.
Collapse
Affiliation(s)
- Magdalena Kowalska
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.K.); (Ł.F.)
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.K.); (Ł.F.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (M.K.); (K.S.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (M.K.); (K.S.)
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| | - Jacek Nowaczyk
- Physical Chemistry and Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.K.); (Ł.F.)
| |
Collapse
|
16
|
Huang L, Chu Y, Huang X, Ma S, Lin K, Huang K, Sun H, Yang Z. Association between gene polymorphisms of voltage-dependent Ca 2+ channels and hypertension in the Dai people of China: a case-control study. BMC MEDICAL GENETICS 2020; 21:44. [PMID: 32111194 PMCID: PMC7049211 DOI: 10.1186/s12881-020-0982-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormal calcium homeostasis related to the development of hypertension. As the key regulator of intracellular calcium concentration, voltage-dependent calcium channels (VDCCs), the variations in these genes may have important effects on the development of hypertension. Here we evaluate VDCCs variability with respect to hypertension in the Dai ethnic group of China. METHODS A total of 1034 samples from Dai individuals were collected, of which 495 were used as cases, and 539 were used as controls. Blood pressure was measured using a standard mercury measurement method, three times with a rest for 5 min, and the average was used for analyses. Seventeen single nucleotide polymorphisms (SNPs) in the four protein-coding genes (CACNA1A, CACNA1C, CACNA1S, CACNB2) of VDCCs were identified by multiplex PCR-SNP typing technique. Chi-square tests and regression models were used to analyse the associations of SNPs with hypertension. RESULTS The results of chi-square tests showed that the allele frequencies of 5 SNPs were significantly different between the case and the control groups (P < 0.05), but the statistical significance was lost after Bonferroni's correction. However, after adjusting for BMI, age, sex and other factors by logistic regression analyses, the results showed that 5 SNPs consistent with chi-square tests (rs2365293, rs17539088, rs16917217, rs61839222 and rs10425859) were still statistically positive. CONCLUSIONS This finding suggested that the significant association of these SNPs with hypertension may be noteworthy in future studies.
Collapse
Affiliation(s)
- Lifan Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan Chu
- Department of General Surgery of the 2nd People Hospital of Yunnan Province, Kunming, China
| | - Xiaoqin Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaohui Ma
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Keqin Lin
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kai Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hao Sun
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zhaoqing Yang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|
17
|
Hu Z, Li G, Wang JW, Chong SY, Yu D, Wang X, Soon JL, Liang MC, Wong YP, Huang N, Colecraft HM, Liao P, Soong TW. Regulation of Blood Pressure by Targeting Ca V1.2-Galectin-1 Protein Interaction. Circulation 2019; 138:1431-1445. [PMID: 29650545 DOI: 10.1161/circulationaha.117.031231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVβ subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVβ binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVβ and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Guang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (G.L.)
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore.,Department of Surgery, Yong Loo Lin School of Medicine (J.-W.W., S.Y.C., X.W.), National University of Singapore.,Cardiovascular Research Institute, National University Heart Center, National University Health Systems, Centre for Translational Medicine, Singapore (J.-W.W., S.Y.C., X.W.)
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine (J.-W.W., S.Y.C., X.W.), National University of Singapore.,Cardiovascular Research Institute, National University Heart Center, National University Health Systems, Centre for Translational Medicine, Singapore (J.-W.W., S.Y.C., X.W.)
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine (J.-W.W., S.Y.C., X.W.), National University of Singapore.,Cardiovascular Research Institute, National University Heart Center, National University Health Systems, Centre for Translational Medicine, Singapore (J.-W.W., S.Y.C., X.W.)
| | | | - Mui Cheng Liang
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Yuk Peng Wong
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Na Huang
- National Heart Centre Singapore (J.L.S., N.H.)
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York (H.M.C.)
| | | | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore.,Neurobiology/Ageing Programme (T.W.S.), National University of Singapore.,Graduate School for Integrative Sciences and Engineering (T.W.S.), National University of Singapore.,National Neuroscience Institute, Singapore (T.W.S.)
| |
Collapse
|
18
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
19
|
Stannov SU, Brasen JC, Salomonsson M, Holstein‐Rathlou N, Sorensen CM. Interactions between renal vascular resistance and endothelium-derived hyperpolarization in hypertensive rats in vivo. Physiol Rep 2019; 7:e14168. [PMID: 31368238 PMCID: PMC6669277 DOI: 10.14814/phy2.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelium derived signaling mechanisms play an important role in regulating vascular tone and endothelial dysfunction is often found in hypertension. Endothelium-derived hyperpolarization (EDH) plays a significant role in smaller renal arteries and arterioles, but its significance in vivo in hypertension is unresolved. The aim of this study was to characterize the EDH-induced renal vasodilation in normotensive and hypertensive rats during acute intrarenal infusion of ACh. Our hypothesis was that the increased renal vascular resistance (RVR) found early in hypertension would significantly correlate with reduced EDH-induced vasodilation. In isoflurane-anesthetized 12-week-old normo- and hypertensive rats blood pressure and renal blood flow (RBF) was measured continuously. RBF responses to acute intrarenal ACh infusions were measured before and after inhibition of NO and prostacyclin. Additionally, RVR was decreased or increased using inhibition or activation of adrenergic receptors or by use of papaverine and angiotensin II. Intrarenal infusion of ACh elicited a larger increase in RBF in hypertensive rats compared to normotensive rats suggesting that endothelial dysfunction is not present in 12-week-old hypertensive rats. The EDH-induced renal vasodilation (after inhibition of NO and prostacyclin) was similar between normo- and hypertensive rats. Reducing RVR by inhibition of α1 -adrenergic receptors significantly increased the renal EDH response in hypertensive rats, but a similar increase was found after activating α-adrenergic receptors using norepinephrine. The results show that renal EDH is present and functional in 12-week-old normo- and hypertensive rats. Interestingly, both activation and inactivation of α1 -adrenergic receptors elicited an increase in the renal EDH-induced vasodilation.
Collapse
Affiliation(s)
- Søs U. Stannov
- Institute of Biomedical Sciences, Heart, Renal and CirculationUniversity of CopenhagenCopenhagenDenmark
| | - Jens Christian Brasen
- Institute of Biomedical Sciences, Heart, Renal and CirculationUniversity of CopenhagenCopenhagenDenmark
- Department of Electrical EngineeringTechnical University of DenmarkLyngbyDenmark
| | | | | | - Charlotte M. Sorensen
- Institute of Biomedical Sciences, Heart, Renal and CirculationUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
20
|
Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol 2019; 39:e146-e156. [DOI: 10.1161/atvbaha.119.312004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun Cheng
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Jing Wen
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Na Wang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Claire Wang
- Gonville and Caius College, University of Cambridge, United Kingdom (C.W.)
| | - Qingbo Xu
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yan Yang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| |
Collapse
|
21
|
Zhong Y, Feng X, Xu T, Yang C, Zhang W, Chen X, Fan X, Lu L, Zhang M, Li L, Xu Z. Inherited risk plus prenatal insult caused malignant dysfunction in mesenteric arteries in adolescent SHR offspring. PLoS One 2019; 14:e0215994. [PMID: 31017969 PMCID: PMC6481862 DOI: 10.1371/journal.pone.0215994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Prenatal hypoxia can induce cardiovascular diseases in the offspring. This study determined whether and how prenatal hypoxia may cause malignant hypertension and impaired vascular functions in spontaneous hypertension rat (SHR) offspring at adolescent stage. Pregnant SHR were placed in a hypoxic chamber (11% O2) or normal environment (21% O2) from gestational day 6 until birth. Body weight and blood pressure (BP) of SHR offspring were measured every week from 5 weeks old. Mesenteric arteries were tested. Gestational hypoxia resulted in growth restriction during 6-12 weeks and a significant elevation in systolic pressure in adolescent offspring at 12 weeks old. Notably, endothelial vasodilatation of mesenteric arteries was impaired in SHR adolescent offspring exposed to prenatal hypoxia, vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were reduced, as well as plasma nitric oxide levels and expression of endothelial nitric oxide synthase (eNOS) in vessels were decreased. Moreover, mesenteric arteries in SHR offspring following prenatal hypoxia showed enhanced constriction responses to phenylephrine (PE), associated with up-regulated activities of L-type calcium channel (Ca2+-dependent), RhoA/Rock pathway signaling (Ca2+-sensitization), and intracellular Ca2+ flow. Pressurized myograph demonstrated altered mechanical properties with aggravated stiffness in vessels, while histological analysis revealed vascular structural disorganization in prenatal hypoxia offspring. The results demonstrated that blood pressure and vascular function in young SHR offspring were affected by prenatal hypoxia, providing new information on development of hypertension in adolescent offspring with inherited hypertensive backgrounds.
Collapse
Affiliation(s)
- Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Obstetrics and Gynecology, Municipal Hospital, Suzhou, Jiangsu, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorong Fan
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhang
- Obstetrics and Gynecology, Tengzhou Central People’s Hospital, Zaozhuang, Shandong, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (ZX); (LL)
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Prenatal Biology, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail: (ZX); (LL)
| |
Collapse
|
22
|
Li X, Feng X, Lu L, He A, Liu B, Zhang Y, Shi R, Liu Y, Chen X, Sun M, Xu Z. Prenatal hypoxia plus postnatal high-fat diet exacerbated vascular dysfunction via up-regulated vascular Cav1.2 channels in offspring rats. J Cell Mol Med 2018; 23:1183-1196. [PMID: 30556291 PMCID: PMC6349350 DOI: 10.1111/jcmm.14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to examine whether and how postnatal high‐fat diet had additional impact on promoting vascular dysfunction in the offspring exposed to prenatal hypoxia. Methods and Results Pregnant Sprague‐Dawley rats were randomly assigned to hypoxia (10.5% oxygen) or normoxia (21% O2) groups from gestation days 5‐21. A subset of male offspring was placed on a high‐fat diet (HF, 45% fat) from 4‐16 weeks of age. Prenatal hypoxia induced a decrease in birth weight. In offspring‐fed HF diet, prenatal hypoxia was associated with increased fasting plasma triglyceride, total cholesterol, free fatty acids, and low‐density lipoprotein‐cholesterol. Compared with the other three groups, prenatal hypoxic offspring with high‐fat diet showed a significant increase in blood pressure, phenylephrine‐mediated vasoconstrictions, L‐type voltage‐gated Ca2+ (Cav1.2) channel currents, and elevated mRNA and protein expression of Cav1.2 α1 subunit in mesenteric arteries or myocytes. The large‐conductance Ca2+‐activated K+ (BK) channels currents and the BK channel units (β1, not α‐subunits) were significantly increased in mesenteric arteries or myocytes in HF offspring independent of prenatal hypoxia factor. Conclusion The results demonstrated that prenatal hypoxia followed by postnatal HF caused vascular dysfunction through ion channel remodelling in myocytes.
Collapse
Affiliation(s)
- Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ruixiu Shi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Loma Linda, California
| |
Collapse
|
23
|
Behuliak M, Bencze M, Polgárová K, Kuneš J, Vaněčková I, Zicha J. Hemodynamic Response to Gabapentin in Conscious Spontaneously Hypertensive Rats. Hypertension 2018; 72:676-685. [DOI: 10.1161/hypertensionaha.118.09909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michal Behuliak
- From the Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague
| | - Michal Bencze
- From the Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague
| | - Kamila Polgárová
- From the Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague
| | - Jaroslav Kuneš
- From the Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague
| | - Ivana Vaněčková
- From the Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague
| | - Josef Zicha
- From the Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague
| |
Collapse
|
24
|
Contribution of L-type Ca2+ channel-sarcoplasmic reticulum coupling to depolarization-induced arterial contraction in spontaneously hypertensive rats. Hypertens Res 2018; 41:730-737. [DOI: 10.1038/s41440-018-0076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 02/25/2018] [Indexed: 11/08/2022]
|
25
|
Hill BJF, Dalton RJ, Joseph BK, Thakali KM, Rusch NJ. 17β-estradiol reduces Ca v 1.2 channel abundance and attenuates Ca 2+ -dependent contractions in coronary arteries. Pharmacol Res Perspect 2018; 5. [PMID: 28971605 PMCID: PMC5625162 DOI: 10.1002/prp2.358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
One mechanism by which the female sex may protect against elevated coronary vascular tone is inhibition of Ca2+ entry into arterial smooth muscle cells (ASMCs). In vitro findings confirm that high estrogen concentrations directly inhibit voltage‐dependent Cav1.2 channels in coronary ASMCs. For this study, we hypothesized that the nonacute, in vitro exposure of coronary arteries to a low concentration of 17β‐estradiol (17βE) reduces the expression of Cav1.2 channel proteins in coronary ASMCs. Segments of the right coronary artery obtained from sexually mature female pigs were mounted for isometric tension recording. As expected, our results indicate that high concentrations (≥10 μmol/L) of 17βE acutely attenuated Ca2+‐dependent contractions to depolarizing KCl stimuli. Interestingly, culturing coronary arteries for 24 h in a 10,000‐fold lower concentration (1 nmol/L) of 17βE also attenuated KCl‐induced contractions and reduced the contractile response to the Cav1.2 agonist, FPL64176, by 50%. Western blots revealed that 1 nmol/L 17βE decreased protein expression of the pore‐forming α1C subunit (Cavα) of the Cav1.2 channel by 35%; this response did not depend on an intact endothelium. The 17βE‐induced loss of Cavα protein in coronary arteries was prevented by the estrogen ERα/ERβ antagonist, ICI 182,780, whereas the GPER antagonist, G15, did not prevent it. There was no effect of 1 nmol/L 17βE on Cavα transcript expression. We conclude that 17βE reduces Cav1.2 channel abundance in isolated coronary arteries by a posttranscriptional process. This unrecognized effect of estrogen may confer physiological protection against the development of abnormal Ca2+‐dependent coronary vascular tone.
Collapse
Affiliation(s)
- Brent J F Hill
- Department of Biology, University of Central Arkansas Conway, Conway, Arkansas
| | - Robin J Dalton
- Department of Biology, University of Central Arkansas Conway, Conway, Arkansas
| | - Biny K Joseph
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Keshari M Thakali
- Arkansas Children's Nutrition Center & Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
26
|
Liu B, Shi R, Li X, Liu Y, Feng X, Chen X, Fan X, Zhang Y, Zhang W, Tang J, Zhou X, Li N, Lu X, Xu Z. Downregulation of L-Type Voltage-Gated Ca 2+, Voltage-Gated K +, and Large-Conductance Ca 2+-Activated K + Channels in Vascular Myocytes From Salt-Loading Offspring Rats Exposed to Prenatal Hypoxia. J Am Heart Assoc 2018; 7:JAHA.117.008148. [PMID: 29545262 PMCID: PMC5907567 DOI: 10.1161/jaha.117.008148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Prenatal hypoxia is suggested to be associated with increased risks of hypertension in offspring. This study tested whether prenatal hypoxia resulted in salt‐sensitive offspring and its related mechanisms of vascular ion channel remodeling. Methods and Results Pregnant rats were housed in a normoxic (21% O2) or hypoxic (10.5% O2) chamber from gestation days 5 to 21. A subset of male offspring received a high‐salt diet (8% NaCl) from 4 to 12 weeks after birth. Blood pressure was significantly increased only in the salt‐loading offspring exposed to prenatal hypoxia, not in the offspring that received regular diets and in control offspring provided with high‐salt diets. In mesenteric artery myocytes from the salt‐loading offspring with prenatal hypoxia, depolarized resting membrane potential was associated with decreased density of L‐type voltage‐gated Ca2+ (Cav1.2) and voltage‐gated K+ channel currents and decreased calcium sensitive to the large‐conductance Ca2+‐activated K+ channels. Protein expression of the L‐type voltage‐gated Ca2+ α1C subunit, large‐conductance calcium‐activated K+ channel (β1, not α subunits), and voltage‐gated K+ channel (KV2.1, not KV1.5 subunits) was also decreased in the arteries of salt‐loading offspring with prenatal hypoxia. Conclusions The results demonstrated that chronic prenatal hypoxia may program salt‐sensitive hypertension in male offspring, providing new information of ion channel remodeling in hypertensive myocytes. This information paves the way for early prevention and treatments of salt‐induced hypertension related to developmental problems in fetal origins.
Collapse
Affiliation(s)
- Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ruixiu Shi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaorong Fan
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiyuan Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China .,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA
| |
Collapse
|
27
|
Guo X, Kashihara T, Nakada T, Aoyama T, Yamada M. PDGF-induced migration of synthetic vascular smooth muscle cells through c-Src-activated L-type Ca 2+ channels with full-length Ca V1.2 C-terminus. Pflugers Arch 2018; 470:909-921. [PMID: 29441404 DOI: 10.1007/s00424-018-2114-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/06/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a CaV1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased CaV1.2 channel currents without altering CaV1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of CaV1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length CaV1.2 (CaV1.2FL) is expressed much more abundantly than truncated CaV1.2. In a heterologous expression system, c-Src activated CaV1.2 channels composed of CaV1.2FL but not truncated CaV1.2 (CaV1.2Δ1763) or CaV1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of CaV1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with CaV1.2Δ1763, c-Src could more efficiently bind to and phosphorylate CaV1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational CaV1.2 modifications.
Collapse
Affiliation(s)
- Xiaoguang Guo
- Department of Molecular Pharmacology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Toshihide Kashihara
- Department of Molecular Pharmacology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tsutomu Nakada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
28
|
Alternative Splicing of L-type Ca V1.2 Calcium Channels: Implications in Cardiovascular Diseases. Genes (Basel) 2017; 8:genes8120344. [PMID: 29186814 PMCID: PMC5748662 DOI: 10.3390/genes8120344] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023] Open
Abstract
L-type CaV1.2 calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alteration of CaV1.2 channel function has been implicated in multiple cardiovascular diseases, such as hypertension and cardiac hypertrophy. Alternative splicing is a post-transcriptional mechanism that expands CaV1.2 channel structures to modify function, pharmacological and biophysical property such as calcium/voltage-dependent inactivation (C/VDI), or to influence its post-translational modulation by interacting proteins such as Galectin-1. Alternative splicing has generated functionally diverse CaV1.2 isoforms that can be developmentally regulated in the heart, or under pathophysiological conditions such as in heart failure. More importantly, alternative splicing of certain exons of CaV1.2 has been reported to be regulated by splicing factors such as RNA-binding Fox-1 homolog 1/2 (Rbfox 1/2), polypyrimidine tract-binding protein (PTBP1) and RNA-binding motif protein 20 (RBM20). Understanding how CaV1.2 channel function is remodelled in disease will provide better information to guide the development of more targeted approaches to discover therapeutic agents for cardiovascular diseases.
Collapse
|
29
|
The effects of anti-hypertensive drugs and the mechanism of hypertension in vascular smooth muscle cell-specific ATP2B1 knockout mice. Hypertens Res 2017; 41:80-87. [PMID: 29046519 PMCID: PMC5811637 DOI: 10.1038/hr.2017.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/21/2017] [Accepted: 07/27/2017] [Indexed: 01/11/2023]
Abstract
ATP2B1 is a gene associated with hypertension. We reported previously that mice lacking ATP2B1 in vascular smooth muscle cells (VSMC ATP2B1 KO mice) exhibited high blood pressure and increased intracellular calcium concentration. The present study was designed to investigate whether lack of the ATP2B1 gene causes a higher response to calcium channel blockers (CCBs) than to other types of anti-hypertensive drugs. Both VSMC ATP2B1 KO and control mice were administered anti-hypertensive drugs while monitoring blood pressure shifts. We also examined the association of nitric oxide synthase (NOS) activity in those mice to investigate whether another mechanism of hypertension existed. VSMC ATP2B1 KO mice exhibited significantly greater anti-hypertensive effects with a single injection of nicardipine, but the effects of an angiotensin II receptor blocker (ARB), an α-blocker and amlodipine on blood pressure were all similar to control mice. However, long-term treatment with amlodipine, but not an ARB, significantly decreased the blood pressure of KO mice compared with control mice. Both mRNA and protein expression levels of the L-type calcium channel were significantly upregulated in KO VSMCs. There were no alterations in neural NOS protein expression of VSMCs or in urinary NO production between the two groups. VSMC ATP2B1 KO mice had a higher response to CCBs for blood pressure-lowering effects than other anti-hypertensive drugs. These results mean that increased intracellular calcium concentration in VSMCs due to lack of ATP2B1 and subsequent activation of L-type calcium channels mainly affects blood pressure and suggests increased susceptibility to CCBs in this type of hypertension.
Collapse
|
30
|
Gomart S, Gaudreau-Ménard C, Jespers P, Dilek OG, Hupkens E, Hanthazi A, Naeije R, Melot C, Labranche N, Dewachter L, Mc Entee K. Leptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores. PLoS One 2017; 12:e0169205. [PMID: 28085954 PMCID: PMC5234800 DOI: 10.1371/journal.pone.0169205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
Decreased leptin-induced endothelium-dependent vasodilation has been reported in spontaneously hypertensive rats (SHR). Here, we report leptin-induced vasoconstriction in endothelium-denuded pulmonary artery and thoracic aorta from SHR and sought to characterize calcium handling underlying these mechanisms. Vasoreactivity to leptin was evaluated on pulmonary artery and thoracic aorta rings from 18 weeks old male SHR with or without calcium free medium, caffeine + thapsigargin + carbonyl cyanide-4-trifluoromethoxyphenylhydrazone emptying intracellular calcium stores, nifedipine a voltage-gated calcium channel inhibitor, SKF-96365 a transient receptor potential cation channels (TRPC) inhibitor, wortmaninn, a phosphatidylinositide 3-kinases (PI3K) inhibitor, or PD98059 a mitogen-activated protein kinase kinase (MAPKK) inhibitor. Calcium imaging was performed on cultured vascular smooth muscle cells incubated with leptin in presence or not of wortmaninn or PD98059. Leptin induced vasoconstriction in denuded pulmonary artery and thoracic aorta from SHR. Response was abolished when intra- or extracellular calcium stores were emptied, after blocking TRPC or voltage-dependent calcium channels or when using MAPKK or PI3K inhibitors. In vascular smooth muscle cells, leptin increased intracellular calcium. This rise was higher in SHR and abolished by MAPKK or PI3K inhibitors. TRPC6 gene expression was upregulated in arteries from SHR. Leptin-induced vasoconstriction in denuded arteries of SHR requires intracellular stores and is TRPC- and voltage-gated calcium channels dependent. Intracellular calcium increase is more pronounced in spontaneously hypertensive rats.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium/metabolism
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Hypertension/physiopathology
- Leptin/administration & dosage
- Leptin/metabolism
- Male
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Wistar
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Samantha Gomart
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Caroline Gaudreau-Ménard
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Pascale Jespers
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Omer Gurkan Dilek
- Faculty of Veterinary Medicine, Department of Anatomy, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Emeline Hupkens
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Aliénor Hanthazi
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Christian Melot
- Emergency Department, Erasme University Hospital, and Biostatistics Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Nathalie Labranche
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus La Plaine, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Kathleen Mc Entee
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- * E-mail:
| |
Collapse
|
31
|
Liao J, Zhang Y, Ye F, Zhang L, Chen Y, Zeng F, Shi L. Epigenetic regulation of L-type voltage-gated Ca 2+ channels in mesenteric arteries of aging hypertensive rats. Hypertens Res 2016; 40:441-449. [PMID: 27881847 DOI: 10.1038/hr.2016.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/18/2016] [Accepted: 10/16/2016] [Indexed: 01/26/2023]
Abstract
Accumulating evidence has shown that epigenetic regulation is involved in hypertension and aging. L-type voltage-gated Ca2+ channels (LTCCs), the dominant channels in vascular myocytes, greatly contribute to arteriole contraction and blood pressure (BP) control. We investigated the dynamic changes and epigenetic regulation of LTCC in the mesenteric arteries of aging hypertensive rats. LTCC function was evaluated by using microvascular rings and whole-cell patch-clamp in the mesenteric arteries of male Wistar-Kyoto rats and spontaneously hypertensive rats at established hypertension (3 month old) and an aging stage (16 month old), respectively. The expression of the LTCC α1C subunit was determined in the rat mesenteric microcirculation. The expression of miR-328, which targets α1C mRNA, and the DNA methylation status at the promoter region of the α1C gene (CACNA1C) were also determined. In vitro experiments were performed to assess α1C expression after transfection of the miR-328 mimic into cultured vascular smooth muscle cells (VSMCs). The results showed that hypertension superimposed with aging aggravated BP and vascular remodeling. Both LTCC function and expression were significantly increased in hypertensive arteries and downregulated with aging. miR-328 expression was inhibited in hypertension, but increased with aging. There was no significant difference in the mean DNA methylation of CACNA1C among groups, whereas methylation was enhanced in the hypertensive group at specific sites on a CpG island located upstream of the gene promoter. Overexpression of miR-328 inhibited the α1C level of cultured VSMCs within 48 h. The results of the present study indicate that the dysfunction of LTCCs may exert an epigenetic influence at both pre- and post-transcriptional levels during hypertension pathogenesis and aging progression. miR-328 negatively regulated LTCC expression in both aging and hypertension.
Collapse
Affiliation(s)
- Jingwen Liao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China.,Department of Sport and Health Sciences, Guangzhou Institute of Physical Education, Guangzhou, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fang Ye
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lin Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
32
|
Tamargo J, Ruilope LM. Investigational calcium channel blockers for the treatment of hypertension. Expert Opin Investig Drugs 2016; 25:1295-1309. [DOI: 10.1080/13543784.2016.1241764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J Tamargo
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain. CIBER of Cardiovascular Diseases
| | | |
Collapse
|
33
|
DuPont JJ, McCurley A, Davel AP, McCarthy J, Bender SB, Hong K, Yang Y, Yoo JK, Aronovitz M, Baur WE, Christou DD, Hill MA, Jaffe IZ. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight 2016; 1:e88942. [PMID: 27683672 DOI: 10.1172/jci.insight.88942] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amy McCurley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Joseph McCarthy
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kwangseok Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Wendy E Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Shi L, Zhang Y, Liu Y, Gu B, Cao R, Chen Y, Zhao T. Exercise Prevents Upregulation of RyRs-BKCa Coupling in Cerebral Arterial Smooth Muscle Cells From Spontaneously Hypertensive Rats. Arterioscler Thromb Vasc Biol 2016; 36:1607-17. [PMID: 27339460 DOI: 10.1161/atvbaha.116.307745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Regular exercise is an effective nonpharmacological means of preventing and controlling hypertension. However, the molecular mechanisms underlying its effects remain undetermined. The hypothesis that hypertension increases the functional coupling of large-conductance Ca(2+)-activated K(+) (BKCa) channels with ryanodine receptors in spontaneously hypertensive rats (SHR) as a compensatory response to an increase in intracellular Ca(2+) concentration in cerebral artery smooth muscle cells was assessed here. It was further hypothesized that exercise training would prevent this increase in functional coupling. APPROACH AND RESULTS SHR and Wistar-Kyoto (WKY) rats were randomly assigned to sedentary groups (SHR-SED and WKY-SED) and exercise training groups (SHR-EX and WKY-EX). Cerebral artery smooth muscle cells displayed spontaneous transient outward currents at membrane potentials more positive than -40 mV. The amplitude of spontaneous transient outward currents together with the spontaneous Ca(2+) sparks in isolated cerebral artery smooth muscle cells was significantly higher in SHR-SED than in WKY-SED. Moreover, hypertension displayed increased whole-cell BKCa, voltage-gated Ca(2+) channel, but decreased KV currents in cerebral artery smooth muscle cells. In SHRs, the activity of the single BKCa channel increased markedly, and the protein expression of BKCa (β1, but not α-subunit) also increased, but KV1.2 decreased significantly. Exercise training ameliorated all of these functional and molecular alterations in hypertensive rats. CONCLUSIONS These data indicate that hypertension leads to enhanced functional coupling of ryanodine receptors-BKCa to buffer pressure-induced constriction of cerebral arteries, which attributes not only to an upregulation of BKCa β1-subunit function but also to an increase of Ca(2+) release from ryanodine receptors. However, regular aerobic exercise efficiently prevents augmented coupling and so alleviates the pathological compensation and restores cerebral arterial function.
Collapse
Affiliation(s)
- Lijun Shi
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China.
| | - Yanyan Zhang
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China
| | - Yujia Liu
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China
| | - Boya Gu
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China
| | - Run Cao
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China
| | - Yu Chen
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China
| | - Tengteng Zhao
- From the Department of Exercise Physiology, Beijing Sport University, Beijing, P.R. China
| |
Collapse
|
35
|
Albarwani SA, Mansour F, Khan AA, Al-Lawati I, Al-Kaabi A, Al-Busaidi AM, Al-Hadhrami S, Al-Husseini I, Al-Siyabi S, Tanira MO. Aging Reduces L-Type Calcium Channel Current and the Vasodilatory Response of Small Mesenteric Arteries to Calcium Channel Blockers. Front Physiol 2016; 7:171. [PMID: 27242545 PMCID: PMC4873501 DOI: 10.3389/fphys.2016.00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Calcium channel blockers (CCBs) are widely used to treat cardiovascular disease (CVD) including hypertension. As aging is an independent risk factor for CVD, the use of CCBs increases with increasing age. Hence, this study was designed to evaluate the effect of aging on the sensitivity of small mesenteric arteries to L-type voltage-gated calcium channel (LTCC) blockers and also to investigate whether there was a concomitant change in calcium current density. Third order mesenteric arteries from male F344 rats, aged 2.5-3 months (young) and 22-26 months (old) were mounted on wire myograph to measure the tension during isometric contraction. Arteries were contracted with 100 mM KCl and were then relaxed in a cumulative concentration-response dependent manner with nifedipine (0.1 nM-1 μM), verapamil (0.1 nM-10 μM), or diltiazem (0.1 nM-10 μM). Relaxation-concentration response curves produced by cumulative concentrations of three different CCBs in arteries of old rats were shifted to the right with statistically significant IC50s. pIC50 ± s.e.m: (8.37 ± 0.06 vs. 8.04 ± 0.05, 7.40 ± 0.07 vs. 6.81 ± 0.04, and 6.58 ± 0.07 vs. 6.34 ± 0.06) in young vs. old. It was observed that the maximal contractions induced by phenylephrine and reversed by sodium nitroprusside were not different between young and old groups. However, Bay K 8644 (1 μM) increased resting tension by 23 ± 4.8% in young arteries and 4.7 ± 1.6% in old arteries. LTCC current density were also significantly lower in old arteries (-2.77 ± 0.45 pA/pF) compared to young arteries (-4.5 ± 0.40 pA/pF); with similar steady-state activation and inactivation curves. Parallel to this reduction, the expression of Cav1.2 protein was reduced by 57 ± 5% in arteries from old rats compared to those from young rats. In conclusion, our results suggest that aging reduces the response of small mesenteric arteries to the vasodilatory effect of the CCBs and this may be due to, at least in part, reduced current density of LTCC.
Collapse
Affiliation(s)
- Sulayma A Albarwani
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Fathi Mansour
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Abdul Aleem Khan
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Intisar Al-Lawati
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Abdulla Al-Kaabi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Al-Manar Al-Busaidi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Safa Al-Hadhrami
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Isehaq Al-Husseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Sultan Al-Siyabi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| | - Musbah O Tanira
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University Muscat, Oman
| |
Collapse
|
36
|
Li W, Lv J, Wu J, Zhou X, Jiang L, Zhu X, Tu Q, Tang J, Liu Y, He A, Zhong Y, Xu Z. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring. Mol Nutr Food Res 2016; 60:1684-94. [PMID: 26991838 DOI: 10.1002/mnfr.201500998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jue Wu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lin Jiang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaolin Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qing Tu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
- Center for Prenatal Biology, Loma Linda University, CA, USA
| |
Collapse
|
37
|
MISÁRKOVÁ E, BEHULIAK M, BENCZE M, ZICHA J. Excitation-Contraction Coupling and Excitation-Transcription Coupling in Blood Vessels: Their Possible Interactions in Hypertensive Vascular Remodeling. Physiol Res 2016; 65:173-91. [DOI: 10.33549/physiolres.933317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) display considerable phenotype plasticity which can be studied in vivo on vascular remodeling which occurs during acute or chronic vascular injury. In differentiated cells, which represent contractile phenotype, there are characteristic rapid transient changes of intracellular Ca2+ concentration ([Ca2+]i), while the resting cytosolic [Ca2+]i concentration is low. It is mainly caused by two components of the Ca2+ signaling pathways: Ca2+ entry via L-type voltage-dependent Ca2+ channels and dynamic involvement of intracellular stores. Proliferative VSMC phenotype is characterized by long-lasting [Ca2+]i oscillations accompanied by sustained elevation of basal [Ca2+]i. During the switch from contractile to proliferative phenotype there is a general transition from voltage-dependent Ca2+ entry to voltage-independent Ca2+ entry into the cell. These changes are due to the altered gene expression which is dependent on specific transcription factors activated by various stimuli. It is an open question whether abnormal VSMC phenotype reported in rats with genetic hypertension (such as spontaneously hypertensive rats) might be partially caused by a shift from contractile to proliferative VSMC phenotype.
Collapse
Affiliation(s)
| | | | | | - J. ZICHA
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
38
|
No apparent role for T-type Ca²⁺ channels in renal autoregulation. Pflugers Arch 2015; 468:541-50. [PMID: 26658945 DOI: 10.1007/s00424-015-1770-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully elucidated due to lack of selective pharmacological inhibitors. The role of T- and L-type calcium channels in the response to acute increases in RPP in T-type channel knockout mice (CaV3.1) and normo- and hypertensive rats was examined. Changes in afferent arteriolar diameter in the kidneys from wild-type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels significantly attenuated renal autoregulation in both strains. These findings are supported by in vivo studies where blockade of T-type channels had no effect on changes in the renal vascular resistance after acute increases in RPP in normo- and hypertensive rats. These findings show that genetic deletion of T-type channels CaV3.1 or treatment with low concentrations of mibefradil does not affect renal autoregulation. Thus, T-type calcium channels are not involved in renal autoregulation in response to acute increases in RPP.
Collapse
|
39
|
Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7. J Hypertens 2015; 33:2431-42. [DOI: 10.1097/hjh.0000000000000723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Cox RH, Fromme S. Expression of Calcium Channel Subunit Variants in Small Mesenteric Arteries of WKY and SHR. Am J Hypertens 2015; 28:1229-39. [PMID: 25820242 DOI: 10.1093/ajh/hpv024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 02/03/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Enhanced function of dihydropyridine-sensitive Ca2+ channels (CaV) in hypertensive arterial myocytes (HAM) is well accepted. Increased protein expression of pore forming α1-subunits contributes to this effect, but cannot explain all of the differences in CaV properties in HAM. We hypothesized that differences in expression of CaV subunits and/or their splice variants also contribute. METHODS RNA, protein, and myocytes were isolated from small mesenteric arteries (SMA) of 20-week-old male WKY and SHR and analyzed by polymerase chain reaction (PCR), sequencing, immunoblotting, and patch clamp methods. RESULTS Cav1.2 α1, β2c, and α2δ1d were the dominant subunits expressed in both WKY and SHR with a smaller amount of β3a. Real-time PCR indicated that the mRNA abundance of β3a and α2δ1 but not total Cav1.2 α1 or β2c were significantly larger in SHR. Analysis of alternative splicing of Cav1.2 α1 showed no differences in abundance of mutually exclusive exons1b, 8, 21 and 32 or alternative exons33 and 45. However, inclusion of exon9* was higher and a 73 nucleotide (nt) deletion in exon15 (exon15Δ73) was lower in SHR. Immunoblot analysis showed higher protein levels of Cav1.2 α1 (1.61±0.05), β3 (1.80±0.32), and α2δ1 (1.80±0.24) but not β2 in SHR. CONCLUSIONS The lower abundance of exon15Δ73 transcripts in SHR results in a larger fraction of total Cav1.2 mRNA coding for full-length CaV protein, and the higher abundance of exon9* transcripts and CaVβ3a protein likely contribute to differences in gating and kinetics of CaV currents in SHR. Functional studies of Ca2+ currents in native SMA myocytes and HEK cells transiently transfected with CaV subunits support these conclusions.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| | - Samantha Fromme
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| |
Collapse
|
41
|
Martinsen A, Dessy C, Morel N. Regulation of calcium channels in smooth muscle: new insights into the role of myosin light chain kinase. Channels (Austin) 2015; 8:402-13. [PMID: 25483583 DOI: 10.4161/19336950.2014.950537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca(2+) flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca(2+) channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca(2+) channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca(2+) entry in VSM is described in the present review.
Collapse
Key Words
- CaM, calmodulin
- ER, endoplasmic reticulum
- MLCK, myosin light chain kinase
- Myosin light chain kinase
- ROC, receptor-operated Ca2+ (channel)
- SMC, smooth muscle cell
- SOC, store-operated Ca2+ (channel)
- SR, sarcoplasmic reticulum
- TRP
- TRP, transient receptor potential (channel)
- VOC, voltage-operated Ca2+ (channel)
- VSM, vascular smooth muscle
- VSMC, vascular smooth muscle cell
- [Ca2+]cyt, cytosolic Ca2+ concentration
- siRNA, small interfering RNA
- vascular smooth muscle
- voltage-dependent calcium channels
Collapse
Affiliation(s)
- A Martinsen
- a Cell physiology; IoNS; UCLouvain ; Brussels , Belgium
| | | | | |
Collapse
|
42
|
Li N, Li Y, Gao Q, Li D, Tang J, Sun M, Zhang P, Liu B, Mao C, Xu Z. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring. Sci Rep 2015; 5:13225. [PMID: 26277840 PMCID: PMC4642531 DOI: 10.1038/srep13225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023] Open
Abstract
Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2+-activated K+ (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca2+ sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca2+]i fluorescence and vasoconstriction testing showed reduced Ca2+, leading to diminished BKCa activation via ryanodine receptor Ca2+ release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins.
Collapse
Affiliation(s)
- Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Dawei Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- 1] Institute for Fetology, First Hospital of Soochow University, Suzhou, China [2] Center for Perinatal Biology, Loma Linda University, California, USA
| |
Collapse
|
43
|
Willets JM, Nash CA, Rainbow RD, Nelson CP, Challiss RAJ. Defining the roles of arrestin2 and arrestin3 in vasoconstrictor receptor desensitization in hypertension. Am J Physiol Cell Physiol 2015; 309:C179-89. [PMID: 25972452 PMCID: PMC4525080 DOI: 10.1152/ajpcell.00079.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
Abstract
Prolonged vasoconstrictor-stimulated phospholipase C activity can induce arterial constriction, hypertension, and smooth muscle hypertrophy/hyperplasia. Arrestin proteins are recruited by agonist-occupied G protein-coupled receptors to terminate signaling and counteract changes in vascular tone. Here we determine whether the development of hypertension affects arrestin expression in resistance arteries and how such changes alter arterial contractile signaling and function. Arrestin2/3 expression was increased in mesenteric arteries of 12-wk-old spontaneously hypertensive rats (SHR) compared with normotensive Wistar-Kyoto (WKY) controls, while no differences in arrestin expression were observed between 6-wk-old SHR and WKY animals. In mesenteric artery myography experiments, high extracellular K(+)-stimulated contractions were increased in both 6- and 12-wk-old SHR animals. Concentration-response experiments for uridine 5'-triphosphate (UTP) acting through P2Y receptors displayed a leftward shift in 12-wk, but not 6-wk-old animals. Desensitization of UTP-stimulated vessel contractions was increased in 12-wk-old (but not 6-wk-old) SHR animals. Dual IP3/Ca(2+) imaging in mesenteric arterial cells showed that desensitization of UTP and endothelin-1 (ET1) responses was enhanced in 12-wk-old (but not 6-wk-old) SHR compared with WKY rats. siRNA-mediated depletion of arrestin2 for UTP and arrestin3 for ET1, reversed the desensitization of PLC signaling. In conclusion, arrestin2 and 3 expression is elevated in resistance arteries during the emergence of the early hypertensive phenotype, which underlies an enhanced ability to desensitize vasoconstrictor signaling and vessel contraction. Such regulatory changes may act to compensate for increased vasoconstrictor-induced vessel contraction.
Collapse
Affiliation(s)
- Jonathon M Willets
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom; and
| | - Craig A Nash
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom; and
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Carl P Nelson
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom; and
| | - R A John Challiss
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom; and
| |
Collapse
|
44
|
Gordienko D, Povstyan O, Sukhanova K, Raphaël M, Harhun M, Dyskina Y, Lehen'kyi V, Jama A, Lu ZL, Skryma R, Prevarskaya N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res 2014; 105:131-42. [PMID: 25514930 DOI: 10.1093/cvr/cvu249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. METHODS AND RESULTS We compared the expression of pertinent genes and P2XR-linked Ca(2+) entry and Ca(2+) release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca(2+) entry and Ca(2+) release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca(2+) load. The SR Ca(2+) load reduction is caused by attenuated Ca(2+) uptake via down-regulated sarco-/endoplasmic reticulum Ca(2+)-ATPase 2b and elevated Ca(2+) leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca(2+)-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. CONCLUSIONS Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.
Collapse
Affiliation(s)
- Dmitri Gordienko
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleksandr Povstyan
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Khrystyna Sukhanova
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Maylis Raphaël
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Maksym Harhun
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine Division of Basic Medical Sciences, St. George's, University of London, London, UK
| | - Yulia Dyskina
- Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - V'yacheslav Lehen'kyi
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Abdirahman Jama
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Zhi-Liang Lu
- MRC, Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Roman Skryma
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| | - Natalia Prevarskaya
- INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université des Sciences et Technologies de Lille, Batiment SN3, Villeneuve d'Ascq 59655, France
| |
Collapse
|
45
|
Zicha J, Behuliak M, Pintérová M, Bencze M, Kuneš J, Vaněčková I. The interaction of calcium entry and calcium sensitization in the control of vascular tone and blood pressure of normotensive and hypertensive rats. Physiol Res 2014; 63:S19-27. [PMID: 24564658 DOI: 10.33549/physiolres.932639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased systemic vascular resistance is responsible for blood pressure (BP) elevation in most forms of human or experimental hypertension. The enhanced contractility of structurally remodeled resistance arterioles is mediated by enhanced calcium entry (through L type voltage-dependent calcium channels - L-VDCC) and/or augmented calcium sensitization (mediated by RhoA/Rho kinase pathway). It is rather difficult to evaluate separately the role of these two pathways in BP control because BP response to the blockade of either pathway is always dependent on the concomitant activity of the complementary pathway. Moreover, vasoconstrictor systems enhance the activity of both pathways, while vasodilators attenuate them. The basal fasudil-sensitive calcium sensitization determined in rats deprived of endogenous renin-angiotensin system (RAS) and sympathetic nervous system (SNS) in which calcium entry was dose-dependently increased by L-VDCC opener BAY K8644, is smaller in spontaneously hypertensive rats (SHR) than in normotensive Wistar-Kyoto (WKY) rats. In contrast, if endogenous RAS and SNS were present in intact rats, fasudil caused a greater BP fall in SHR than WKY rats. Our in vivo experiments indicated that the endogenous pressor systems (RAS and SNS) augment calcium sensitization mediated by RhoA/Rho kinase pathway, whereas the endogenous vasodilator systems (such as nitric oxide) attenuate this pathway. However, the modulation of calcium entry and calcium sensitization by nitric oxide is strain-dependent because NO deficiency significantly augments low calcium entry in WKY and low calcium sensitization in SHR. Further in vivo and in vitro experiments should clarify the interrelationships between endogenous vasoactive systems and the contribution of calcium entry and/or calcium sensitization to BP maintenance in various forms of experimental hypertension.
Collapse
Affiliation(s)
- J Zicha
- Department of Experimental Hypertension, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
46
|
Youm JB, Park KS, Jang YJ, Leem CH. Effects of streptozotocin and unilateral nephrectomy on L-type Ca2+ channels and membrane capacitance in arteriolar smooth muscle cells. Pflugers Arch 2014; 467:1689-97. [DOI: 10.1007/s00424-014-1604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
|
47
|
|
48
|
Antibodies in the pathogenesis of hypertension. BIOMED RESEARCH INTERNATIONAL 2014; 2014:504045. [PMID: 25050352 PMCID: PMC4090532 DOI: 10.1155/2014/504045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Abstract
It has long been known that circulating levels of IgG and IgM antibodies are elevated in patients with essential and pregnancy-related hypertension. Recent studies indicate these antibodies target, and in many cases activate, G-protein coupled receptors and ion channels. Prominent among these protein targets are AT1 receptors, α1-adrenoceptors, β1-adrenoceptors, and L-type voltage operated Ca2+ channels, all of which are known to play key roles in the regulation of blood pressure through modulation of vascular tone, cardiac output, and/or Na+/water reabsorption in the kidneys. This suggests that elevated antibody production may be a causal mechanism in at least some cases of hypertension. In this brief review, we will further describe the protein targets of the antibodies that are elevated in individuals with essential and pregnancy-related hypertension and the likely pathophysiological consequences of antibody binding to these targets. We will speculate on the potential mechanisms that underlie elevated antibody levels in hypertensive individuals and, finally, we will outline the therapeutic opportunities that could arise with a better understanding of how and why antibodies are produced in hypertension.
Collapse
|
49
|
Michiels CF, Van Hove CE, Martinet W, De Meyer GRY, Fransen P. L-type Ca2+ channel blockers inhibit the window contraction of mouse aorta segments with high affinity. Eur J Pharmacol 2014; 738:170-8. [PMID: 24886884 DOI: 10.1016/j.ejphar.2014.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022]
Abstract
L-type calcium channel blockers (LCCBs) reduce blood pressure more effectively in hypertensive than in normotensive subjects and are more effective in vascular smooth muscle (VSM) than in cardiac muscle. This has been explained by the depolarized resting potential of VSM in comparison with heart muscle cells and during hypertension, because both favor the "high affinity" inactivated state of the L-type calcium channel (LCC). Depolarized resting potentials, however, also increase Ca(2+) influx via window, non-inactivating LCC. The present study investigated whether these channels can be effectively blocked by nifedipine, verapamil or diltiazem, as representatives of different LCCB classes. C57Bl6 mouse aortic segments were depolarized by 50mM K(+) to attain similar degree of inactivation. The depolarization evoked biphasic contractions with the slow force component displaying higher sensitivity to LCCBs than the fast component. Removal of the fast force component increased, whereas stimulation of Ca(2+) influx with the dihydropyridine BAY K8644, a structural analog of nifedipine, decreased the efficacy of the LCCBs. Addition of LCCBs during the contraction caused concentration-dependent relaxation, which was independent of the presence of a fast force component, but still showed lower sensitivity in the presence of BAY K8644. Our data suggest that steady-state contractions by depolarization with 50mM K(+) are completely due to window Ca(2+) influx, which is preferentially inhibited by LCCBs. Furthermore, results point to interactions between the LCCB receptors and Ca(2+) ions or BAY K8644. The high affinity for open, non-inactivating LCC may play a dominant role in the anti-hypertensive effects of LCCBs.
Collapse
Affiliation(s)
- Cédéric F Michiels
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Cor E Van Hove
- Laboratory of Pharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
50
|
Stanford SC. Psychostimulants, antidepressants and neurokinin-1 receptor antagonists ('motor disinhibitors') have overlapping, but distinct, effects on monoamine transmission: the involvement of L-type Ca2+ channels and implications for the treatment of ADHD. Neuropharmacology 2014; 87:9-18. [PMID: 24727210 DOI: 10.1016/j.neuropharm.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/15/2022]
Abstract
Both psychostimulants and antidepressants target monoamine transporters and, as a consequence, augment monoamine transmission. These two groups of drugs also increase motor activity in preclinical behavioural screens for antidepressants. Substance P-preferring receptor (NK1R) antagonists similarly increase both motor activity in these tests and monoamine transmission in the brain. In this article, the neurochemical and behavioural responses to these three groups of drugs are compared. It becomes evident that NK1R antagonists represent a distinct class of compounds ('motor disinhibitors') that differ substantially from both psychostimulants and antidepressants, especially during states of heightened arousal or stress. Also, all three groups of drugs influence the activation of voltage-gated Ca(v)1.2 and Ca(v)1.3 L-type channels (LTCCs) in the brain, albeit in different ways. This article discusses evidence that points to disruption of these functional interactions between NK1R and LTCCs as a contributing factor in the cognitive and behavioural abnormalities that are prominent features of Attention Deficit Hyperactivity Disorder (ADHD). Arising from this is the interesting possibility that the hyperactivity and impulsivity (as in ADHD) and psychomotor retardation (as in depression) reflect opposite poles of a behavioural continuum. A better understanding of this pharmacological network could help explain why psychostimulants augment motor behaviour during stress (e.g., in preclinical screens for antidepressants) and yet reduce locomotor activity and impulsivity in ADHD. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|