1
|
Sommer G, Rodríguez López C, Hirschkorn A, Calimano G, Marques-Lopes J, Milner TA, Glass MJ. Estrogen Receptor Beta Agonist Influences Presynaptic NMDA Receptor Distribution in the Paraventricular Hypothalamic Nucleus Following Hypertension in a Mouse Model of Perimenopause. BIOLOGY 2024; 13:819. [PMID: 39452127 PMCID: PMC11505520 DOI: 10.3390/biology13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in the paraventricular hypothalamic nucleus (PVN), a brain area critical for blood pressure regulation. However, recent evidence indicates that presynaptic NMDA receptors also play a role in neural plasticity. Here, using immuno-electron microscopy, we examine the influence of peri-AOF hypertension on the subcellular distribution of the essential NMDA GluN1 receptor subunit in PVN axon terminals in peri-AOF and in male mice. Hypertension was produced by 14-day slow-pressor angiotensin II (AngII) infusion. The involvement of estrogen signaling was investigated by co-administering an estrogen receptor beta (ERß) agonist. Although AngII induced hypertension in both peri-AOF and male mice, peri-AOF females showed higher cytoplasmic GluN1 levels. In peri-AOF females, activation of ERß blocked hypertension and increased plasmalemmal GluN1 in axon terminals. In contrast, stimulation of ERß did not inhibit hypertension or influence presynaptic GluN1 localization in males. These results indicate that sex-dependent recruitment of presynaptic NMDA receptors in the PVN is influenced by ERß signaling in mice during early ovarian failure.
Collapse
Affiliation(s)
- Garrett Sommer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Claudia Rodríguez López
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Adi Hirschkorn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Gianna Calimano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-HEALTH), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| |
Collapse
|
2
|
Appiah CB, Gardner JJ, Farmer GE, Cunningham RL, Cunningham JT. Chronic intermittent hypoxia-induced hypertension: the impact of sex hormones. Am J Physiol Regul Integr Comp Physiol 2024; 326:R333-R345. [PMID: 38406843 PMCID: PMC11381015 DOI: 10.1152/ajpregu.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Obstructive sleep apnea, a common form of sleep-disordered breathing, is characterized by intermittent cessations of breathing that reduce blood oxygen levels and contribute to the development of hypertension. Hypertension is a major complication of obstructive sleep apnea that elevates the risk of end-organ damage. Premenopausal women have a lower prevalence of obstructive sleep apnea and cardiovascular disease than men and postmenopausal women, suggesting that sex hormones play a role in the pathophysiology of sleep apnea-related hypertension. The lack of protection in men and postmenopausal women implicates estrogen and progesterone as protective agents but testosterone as a permissive agent in sleep apnea-induced hypertension. A better understanding of how sex hormones contribute to the pathophysiology of sleep apnea-induced hypertension is important for future research and possible hormone-based interventions. The effect of sex on the pathophysiology of sleep apnea and associated intermittent hypoxia-induced hypertension is of important consideration in the screening, diagnosis, and treatment of the disease and its cardiovascular complications. This review summarizes our current understanding of the impact of sex hormones on blood pressure regulation in sleep apnea with a focus on sex differences.
Collapse
Affiliation(s)
- Cephas B Appiah
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - George E Farmer
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Schwarz KG, Vicencio SC, Inestrosa NC, Villaseca P, Del Rio R. Autonomic nervous system dysfunction throughout menopausal transition: A potential mechanism underpinning cardiovascular and cognitive alterations during female ageing. J Physiol 2024; 602:263-280. [PMID: 38064358 DOI: 10.1113/jp285126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
Qi J, Fu LY, Liu KL, Li RJ, Qiao JA, Yu XJ, Yu JY, Li Y, Feng ZP, Yi QY, Jia H, Gao HL, Tan H, Kang YM. Resveratrol in the Hypothalamic Paraventricular Nucleus Attenuates Hypertension by Regulation of ROS and Neurotransmitters. Nutrients 2022; 14:nu14194177. [PMID: 36235829 PMCID: PMC9573276 DOI: 10.3390/nu14194177] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The hypothalamic paraventricular nucleus (PVN) is an important nucleus in the brain that plays a key role in regulating sympathetic nerve activity (SNA) and blood pressure. Silent mating-type information regulation 2 homolog-1 (sirtuin1, SIRT1) not only protects cardiovascular function but also reduces inflammation and oxidative stress in the periphery. However, its role in the central regulation of hypertension remains unknown. It is hypothesized that SIRT1 activation by resveratrol may reduce SNA and lower blood pressure through the regulation of intracellular reactive oxygen species (ROS) and neurotransmitters in the PVN. METHODS The two-kidney one-clip (2K1C) method was used to induce renovascular hypertension in male Sprague-Dawley rats. Then, bilaterally injections of vehicle (artificial cerebrospinal fluid, aCSF, 0.4 μL) or resveratrol (a SIRT1 agonist, 160 μmol/L, 0.4 μL) into rat PVN were performed for four weeks. RESULTS PVN SIRT1 expression was lower in the hypertension group than the sham surgery (SHAM) group. Activated SIRT1 within the PVN lowered systolic blood pressure and plasma norepinephrine (NE) levels. It was found that PVN of 2K1C animals injected with resveratrol exhibited increased expression of SIRT1, copper-zinc superoxide dismutase (SOD1), and glutamic acid decarboxylase (GAD67), as well as decreased activity of nuclear factor-kappa B (NF-κB) p65 and NAD(P)H oxidase (NOX), particularly NOX4. Treatment with resveratrol also decreased expression of ROS and tyrosine hydroxylase (TH). CONCLUSION Resveratrol within the PVN attenuates hypertension via the SIRT1/NF-κB pathway to decrease ROS and restore the balance of excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Rui-Juan Li
- Department of Infectious Diseases, The Second Affiliated Hospital, Air Force Military Medical University, Xi’an 710038, China
| | - Jin-An Qiao
- Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an 710002, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong Tan
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence: (H.T.); (Y.-M.K.); Tel./Fax: +86-2982657677 (Y.-M.K.)
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
- Correspondence: (H.T.); (Y.-M.K.); Tel./Fax: +86-2982657677 (Y.-M.K.)
| |
Collapse
|
6
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
7
|
DeLalio LJ, Stocker SD. Impact of anesthesia and sex on sympathetic efferent and hemodynamic responses to renal chemo- and mechanosensitive stimuli. J Neurophysiol 2021; 126:668-679. [PMID: 34259043 DOI: 10.1152/jn.00277.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 μM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 μM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.
Collapse
Affiliation(s)
- Leon J DeLalio
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Milner TA, Contoreggi NH, Yu F, Johnson MA, Wang G, Woods C, Mazid S, Van Kempen TA, Waters EM, McEwen BS, Korach KS, Glass MJ. Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. J Neurosci 2021; 41:5190-5205. [PMID: 33941651 PMCID: PMC8211546 DOI: 10.1523/jneurosci.0164-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor β (ERβ) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERβ agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERβ agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERβ neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERβ in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERβ signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Elizabeth M Waters
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Bruce S McEwen
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, North Carolina 27709
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
9
|
Jiang X, Chen Z, Yu X, Chen J, Sun C, Jing C, Xu L, Liu F, Ni W, Chen L. Lipopolysaccharide-induced depression is associated with estrogen receptor-α/SIRT1/NF-κB signaling pathway in old female mice. Neurochem Int 2021; 148:105097. [PMID: 34119591 DOI: 10.1016/j.neuint.2021.105097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
The present study aims to investigate the influence of sex/age on depressive-like behaviors in lipopolysaccharide (LPS)-challenged mice model, and explore the underlying mechanisms. Tail suspension test and forced swimming test were used to evaluate the depressive-like behaviors. SIRT1 mRNA expression was assessed by PCR. Levels of 17β-estradiol (E2), SIRT1, NF-κB, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) were detected by enzyme linked immunosorbent assay (ELISA). In the behavior tests, under the same LPS stimulation, significant depressive-like behavior was observed in young male mice but not in young female mice, however, female mice were more likely to be depressed than male mice in the old age. Moreover, we found age-related depression difference existed only in female mice. In the experiments of mechanism exploration in old female mice, E2 improved LPS-induced depressive-like behavior, and simultaneously elevated SIRT1 levels and downregulated expressions of NF-κB and inflammatory cytokines in the hippocampus and frontal cortex. Interestingly, ERα inhibition, not ERβ inhibition, abolished E2's function. Additionally, SIRT1 antagonist also reversed E2's effects on depressive-like behavior and the expressions of NF-κB and inflammatory cytokines. These results suggested that E2 could protect the old female mice from depression via E2/ERα/SIRT1/NF-κB signaling pathway. In other words, LPS-induced depression was associated with ER-α/SIRT1/NF-κB signaling pathway in old female mice. By comparing the results of mechanism exploration in old male mice and old female mice and the different expression levels of E2, SIRT1, NF-κB and inflammatory cytokines in young female mice and old female mice, we speculate that the age or gender-related depression difference may be associated with the different activation levels of the ERα/SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xi Jiang
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China; Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China.
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China.
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China.
| | - Jin Chen
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China
| | - Chonglu Sun
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Changfeng Jing
- Zhejiang University Mingzhou Hospital, Ningbo, 315000, China
| | - Lexing Xu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Wenjuan Ni
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| |
Collapse
|
10
|
Singh P, Song CY, Dutta SR, Gonzalez FJ, Malik KU. Central CYP1B1 (Cytochrome P450 1B1)-Estradiol Metabolite 2-Methoxyestradiol Protects From Hypertension and Neuroinflammation in Female Mice. Hypertension 2020; 75:1054-1062. [PMID: 32148125 PMCID: PMC7098446 DOI: 10.1161/hypertensionaha.119.14548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Previously, we showed that peripheral administration of 2-ME (2-methoxyestradiol), a CYP1B1 (cytochrome P450 1B1)-catechol-O-methyltransferase (COMT) generated metabolite of E2 (17β-Estradiol), protects against angiotensin II-induced hypertension in female mice. The demonstration that central E2 inhibits angiotensin II-induced hypertension, together with the expression of CYP1B1 in the brain, led us to hypothesize that E2-CYP1B1 generated metabolite 2-ME in the brain mediates its protective action against angiotensin II-induced hypertension in female mice. To test this hypothesis, we examined the effect of intracerebroventricularly (ICV) administered E2 in ovariectomized (OVX)-wild-type (Cyp1b1+/+) and OVX-Cyp1b1−/− mice on the action of systemic angiotensin II. ICV-E2 attenuated the angiotensin II-induced increase in mean arterial blood pressure, impairment of baroreflex sensitivity, and sympathetic activity in OVX-Cyp1b1+/+ but not in ICV-injected short interfering (si)RNA-COMT or OVX-Cyp1b1−/− mice. ICV-2-ME attenuated the angiotensin II-induced increase in blood pressure in OVX-Cyp1b1−/− mice; this effect was inhibited by ICV-siRNA estrogen receptor-α (ERα) and G protein-coupled estrogen receptor 1 (GPER1). ICV-E2 in OVX-Cyp1b1+/+ but not in OVX-Cyp1b1−/− mice and 2-ME in the OVX-Cyp1b1−/− inhibited angiotensin II-induced increase in reactive oxygen species production in the subfornical organ and paraventricular nucleus, activation of microglia and astrocyte, and neuroinflammation in paraventricular nucleus. Furthermore, central CYP1B1 gene disruption in Cyp1b1+/+ mice by ICV-adenovirus-GFP (green fluorescence protein)-CYP1B1-short hairpin (sh)RNA elevated, while reconstitution by adenovirus-GFP-CYP1B1-DNA in the paraventricular nucleus but not in subfornical organ in Cyp1b1−/− mice attenuated the angiotensin II-induced increase in systolic blood pressure. These data suggest that E2-CYP1B1-COMT generated metabolite 2-ME, most likely in the paraventricular nucleus via estrogen receptor-α and GPER1, protects against angiotensin II-induced hypertension and neuroinflammation in female mice.
Collapse
Affiliation(s)
- Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Shubha Ranjan Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| |
Collapse
|
11
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
12
|
Campos GV, de Noronha SR, de Souza AA, Lima PM, Abreu AR, Chianca-Jr D, de Menezes RC. Estrogen receptor β activation within dorsal raphe nucleus reverses anxiety-like behavior induced by food restriction in female rats. Behav Brain Res 2018; 357-358:57-64. [PMID: 29567265 DOI: 10.1016/j.bbr.2018.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Severe food restriction (FR), as observed in disorders like anorexia nervosa, has been associated to the reduction of estrogen levels, which in turn could lead to anxiety development. Estrogen receptors, mainly ERβ type, are commonly found in the dorsal raphe nucleus (DRN) neurons, an important nucleus related to anxiety modulation and the primary source of serotonin (5-HT) in the brain. Taking together, these findings suggest an involvement of estrogen in anxiety modulation during food restriction, possibly mediated by ERβ activation in serotonergic DRN neurons. Thus, the present study investigated the relationship between food restriction and anxiety-like behavior, and the involvement of DRN and ERβ on the modulation of anxiety-like behaviors in animals subjected to FR. For that, female Fischer rats were grouped in control group, with free access to food, or a FR group, which received 40% of control intake during 14 days. Animals were randomly treated with 17β-estradiol (E2), DPN (ERβ selective agonist), or their respective vehicles, PBS and DMSO. Behavioral tests were performed on Elevated T-Maze (ETM) and Open Field (OF). Our results suggest that FR probably reduced the estrogen levels, since the remained in the non-ovulatory cycle phases, and their uterine weight was lower when compared to control group. The FR rats showed increased inhibitory avoidance latency in theETM indicating that FR is associated with the development of an anxiety-like state. The injections of both E2 and DPN into DRN of FR animals had an anxiolytic effect. Those data suggest thatanxiety-like behavior induced by FR could be mediated by a reduction of ERβ activation in the DRN neurons, probably due to decreased estrogen levels.
Collapse
Affiliation(s)
- Glenda Viggiano Campos
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Sylvana Rendeiro de Noronha
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Aline Arlindo de Souza
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Paulo Marcelo Lima
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Aline Rezende Abreu
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Deoclecio Chianca-Jr
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Rodrigo Cunha de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
13
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
14
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Marques-Lopes J, Tesfaye E, Israilov S, Van Kempen TA, Wang G, Glass MJ, Pickel VM, Iadecola C, Waters EM, Milner TA. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology 2017; 104:239-256. [PMID: 27078860 PMCID: PMC5381723 DOI: 10.1159/000446073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Ephrath Tesfaye
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Sigal Israilov
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| |
Collapse
|
16
|
Hinton AO, Yang Y, Quick AP, Xu P, Reddy CL, Yan X, Reynolds CL, Tong Q, Zhu L, Xu J, Wehrens XHT, Xu Y, Reddy AK. SRC-1 Regulates Blood Pressure and Aortic Stiffness in Female Mice. PLoS One 2016; 11:e0168644. [PMID: 28006821 PMCID: PMC5179266 DOI: 10.1371/journal.pone.0168644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Framingham Heart Study suggests that dysfunction of steroid receptor coactivator-1 may be involved in the development of hypertension. However, there is no functional evidence linking steroid receptor coactivator-1 to the regulation of blood pressure. We used immunohistochemistry to map the expression of steroid receptor coactivator-1 protein in mouse brain, especially in regions implicated in the regulation of blood pressure. Steroid receptor coactivator-1 protein was found in central amygdala, medial amygdala, supraoptic nucleus, arcuate nucleus, ventromedial, dorsomedial, paraventricular hypothalamus, and nucleus of the solitary tract. To determine the effects of steroid receptor coactivator-1 protein on cardiovascular system we measured blood pressures, blood flow velocities, echocardiographic parameters, and aortic input impedance in female steroid receptor coactivator-1 knockout mice and their wild type littermates. Steroid receptor coactivator-1 knockout mice had higher blood pressures and increased aortic stiffness when compared to female wild type littermates. Additionally, the hearts of steroid receptor coactivator-1 knockout mice seem to consume higher energy as evidenced by increased impedance and higher heart rate pressure product when compared to female wild type littermates. Our results demonstrate that steroid receptor coactivator-1 may be functionally involved in the regulation of blood pressure and aortic stiffness through the regulation of sympathetic activation in various neuronal populations.
Collapse
Affiliation(s)
- Antentor Othrell Hinton
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yongjie Yang
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ann P. Quick
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pingwen Xu
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chitra L. Reddy
- Debakey High School for Health Professions, Houston, Texas, United States of America
| | - Xiaofeng Yan
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Corey L. Reynolds
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Advanced Technology/Core Laboratory, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Liangru Zhu
- Department of Gastroenterology, Union Hospital, Tongji Medical College and Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xander H. T. Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yong Xu
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AKR); (YX)
| | - Anilkumar K. Reddy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Cardiovascular Research, Department Medicine and DeBakey Heart Center, Baylor College of Medicine, Houston, Texas, United States of America
- Indus Instruments, Webster, Texas, United States of America
- * E-mail: (AKR); (YX)
| |
Collapse
|
17
|
Abstract
The central nervous system (CNS) in concert with the heart and vasculature is essential to maintaining cardiovascular (CV) homeostasis. In recent years, our understanding of CNS control of blood pressure regulation (and dysregulation leading to hypertension) has evolved substantially to include (i) the actions of signaling molecules that are not classically viewed as CV signaling molecules, some of which exert effects at CNS targets in a non-traditional manner, and (ii) CNS locations not traditionally viewed as central autonomic cardiovascular centers. This review summarizes recent work implicating immune signals and reproductive hormones, as well as gasotransmitters and reactive oxygen species in the pathogenesis of hypertension at traditional CV control centers. Additionally, recent work implicating non-conventional CNS structures in CV regulation is discussed.
Collapse
Affiliation(s)
- Pauline M Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| |
Collapse
|
18
|
Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. Clin Sci (Lond) 2015; 130:9-18. [DOI: 10.1042/cs20150654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.
Collapse
|
19
|
Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2158971. [PMID: 26640612 PMCID: PMC4657113 DOI: 10.1155/2016/2158971] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause.
Collapse
|
20
|
Neuronal and Endothelial Nitric Oxide Synthases in the Paraventricular Nucleus Modulate Sympathetic Overdrive in Insulin-Resistant Rats. PLoS One 2015; 10:e0140762. [PMID: 26485682 PMCID: PMC4613827 DOI: 10.1371/journal.pone.0140762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.
Collapse
|
21
|
Marques-Lopes J, Van Kempen T, Waters EM, Pickel VM, Iadecola C, Milner TA. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor β-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol 2015; 522:3075-90. [PMID: 24639345 DOI: 10.1002/cne.23569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
Abstract
The incidence of hypertension increases after menopause. Similar to humans, "slow-pressor" doses of angiotensin II (AngII) increase blood pressure in young males, but not in young female mice. However, AngII increases blood pressure in aged female mice, paralleling reproductive hormonal changes. These changes could influence receptor trafficking in central cardiovascular circuits and contribute to hypertension. Increased postsynaptic N-methyl-D-aspartate (NMDA) receptor activity in the hypothalamic paraventricular nucleus (PVN) is crucial for the sympathoexcitation driving AngII hypertension. Estrogen receptors β (ERβs) are present in PVN neurons. We tested the hypothesis that changes in ovarian hormones with age promote susceptibility to AngII hypertension, and influence NMDA receptor NR1 subunit trafficking in ERβ-containing PVN neurons. Transgenic mice expressing enhanced green fluorescent protein (EGFP) in ERβ-containing cells were implanted with osmotic minipumps delivering AngII (600 ng/kg/min) or saline for 2 weeks. AngII increased blood pressure in 2-month-old males and 18-month-old females, but not in 2-month-old females. By electron microscopy, NR1-silver-intensified immunogold (SIG) was mainly in ERβ-EGFP dendrites. At baseline, NR1-SIG density was greater in 2-month-old females than in 2-month-old males or 18-month-old females. After AngII infusion, NR1-SIG density was decreased in 2-month-old females, but increased in 2-month-old males and 18-month-old females. These findings suggest that, in young female mice, NR1 density is decreased in ERβ-PVN dendrites thus reducing NMDA receptor activity and preventing hypertension. Conversely, in young males and aged females, NR1 density is upregulated in ERβ-PVN dendrites and ultimately leads to the neurohumoral dysfunction driving hypertension.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, 10065
| | | | | | | | | | | |
Collapse
|
22
|
Gray SL, Lackey BR, Boone WR. Effects of Panax ginseng, zearalenol, and estradiol on sperm function. J Ginseng Res 2015; 40:251-9. [PMID: 27616901 PMCID: PMC5005360 DOI: 10.1016/j.jgr.2015.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 08/16/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function. METHODS The affinity of these compounds for estrogen receptor (ER)-alpha and beta (ERα and ERβ)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis. RESULTS Zearalenol-but not estradiol (E2)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone (P4) and ionophore. CONCLUSION Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including P4, E2, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - William R Boone
- ART Laboratories, Department of Obstetrics and Gynecology, Greenville Health System University Medical Group, Greenville, SC, USA
| |
Collapse
|
23
|
Abstract
The role of the brain in hypertension between the sexes is known to be important especially with regards to the effects of circulating sex hormones. A number of different brain regions important for regulation of sympathetic outflow and blood pressure express estrogen receptors (ERα and ERβ). Estradiol, acting predominantly via the ERα, inhibits angiotensin II activation of the area postrema and subfornical organ neurons and inhibits reactive oxygen generation that is required for the development of Angiotensin II-induced neurogenic hypertension. Estradiol activation of ERβ within the paraventricular nucleus and the rostral ventral lateral medulla inhibits these neurons and inhibits angiotensin II, or aldosterone induced increases in sympathetic outflow and hypertension. Understanding the cellular and molecular mechanisms underlying ERα and ERβ actions within key brain regions regulating blood pressure will be essential for the development of "next generation" selective estrogen receptor modulators (SERMS) that can be used clinically for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd Bldg 201, Rm 4103, Tucson, AZ, 85724, USA,
| | | | | |
Collapse
|
24
|
Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Genetic knockdown of estrogen receptor-alpha in the subfornical organ augments ANG II-induced hypertension in female mice. Am J Physiol Regul Integr Comp Physiol 2014; 308:R507-16. [PMID: 25552661 DOI: 10.1152/ajpregu.00406.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study tested the hypotheses that 1) ERα in the brain plays a key role in the estrogen-protective effects against ANG II-induced hypertension, and 2) that the subfornical organ (SFO) is a key site where ERα mediates these protective actions. In this study, a "floxed" ERα transgenic mouse line (ERα(flox)) was used to create models in which ERα was knocked down in the brain or just in the SFO. Female mice with ERα ablated in the nervous system (Nestin-ERα(-) mice) showed greater increases in blood pressure (BP) in response to ANG II. Furthermore, females with ERα knockdown specifically in the SFO [SFO adenovirus-Cre (Ad-Cre) injected ERα(flox) mice] also showed an enhanced pressor response to ANG II. Immunohistochemical (IHC), RT-PCR, and Western blot analyses revealed a marked reduction in the expression of ERα in nervous tissues and, in particular, in the SFO. These changes were not present in peripheral tissues in Nestin-ERα(-) mice or Ad-Cre-injected ERα(flox) mice. mRNA expression of components of the renin-angiotensin system in the lamina terminalis were upregulated in Nestin-ERα(-) mice. Moreover, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction of BP in Nestin-ERα(-) mice or SFO Ad-Cre-injected mice, suggesting that knockdown of ERα in the nervous system or the SFO alone augments central ANG II-induced increase in sympathetic tone. The results indicate that interfering with the action of estrogen on SFO ERα is sufficient to abolish the protective effects of estrogen against ANG II-induced hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China
| | - Terry G Beltz
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Fang Guo
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Meredith Hay
- Department of Physiology, University of Arizona, Tucson, Arizona; Evelyn F. McKnight Brain Institute, Tucson, Arizona; and
| | - Alan Kim Johnson
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and Department of Pharmacology, University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
25
|
Xue B, Johnson AK, Hay M. Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am J Physiol Regul Integr Comp Physiol 2013; 305:R459-63. [PMID: 23883676 DOI: 10.1152/ajpregu.00222.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Premenopausal women have lower blood pressure and a reduced incidence of cardiovascular disease compared with age-matched men. Similar sex differences have been seen across species and in multiple animal models of hypertension. While important progress over the last decade has been made in elucidating some of the mechanisms underlying these differences, there are still significant gaps in our knowledge. Understanding the cellular and molecular mechanisms responsible for sex differences in hypertension will be important for developing sex-specific therapies targeted toward the prevention and treatment of hypertension. Female sex hormones, especially estrogen, have been demonstrated to modulate the renin-angiotensin-aldosterone system (RAAS) and to have beneficial effects on cardiovascular function through actions not only on the kidney, heart, and vasculature, but also on the central nervous system (CNS). This review primarily focuses on the central regulatory actions of estrogen on brain nuclei involved in blood pressure regulation and the interactions between estrogen and the RAAS in the CNS by which estrogen plays an important protective role against the development of hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, The University of Iowa, Iowa, USA
| | | | | |
Collapse
|
26
|
Xue B, Zhang Z, Beltz TG, Johnson RF, Guo F, Hay M, Johnson AK. Estrogen receptor-β in the paraventricular nucleus and rostroventrolateral medulla plays an essential protective role in aldosterone/salt-induced hypertension in female rats. Hypertension 2013; 61:1255-62. [PMID: 23608653 DOI: 10.1161/hypertensionaha.111.00903] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The identification of the specific estrogen receptor (ER) subtypes that are involved in estrogen protection from hypertension and their specific locations in the central nervous system is critical to our understanding and design of effective estrogen replacement therapies in women. Using selective ER agonists and recombinant adeno-associated virus (AAV) carrying small interference (si) RNA to silence either ERα (AAV-siRNA-ERα) or ERβ (AAV-siRNA-ERβ), the present study investigated regional specificity of different ER subtypes in the protective actions of estrogen in aldosterone (Aldo)-induced hypertension. Intracerebroventricular infusions of either diarylpropionitrile, a selective ERβ agonist, or propyl-pyrazole-triol, a selective ERα agonist, attenuated Aldo/NaCl-induced hypertension in ovariectomized rats. In contrast, intracerebroventricular injections of siRNA-ERα or siRNA-ERβ augmented Aldo-induced hypertension in intact females. Site-specific paraventricular nucleus (PVN) or rostroventrolateral medulla (RVLM) injections of siRNA-ERβ augmented Aldo-induced hypertension. However, rats with PVN or RVLM injections of siRNA-ERα did not significantly increase blood pressure induced by Aldo. Real-time polymerase chain reaction analyses of the PVN and RVLM of siRNA-injected rat confirmed a marked reduction in the expression of ERα and ERβ. In cultured PVN neurons, silencing either ERα or ERβ by culturing PVN neurons with siRNA-ERα or siRNA-ERβ enhanced Aldo-induced reactive oxygen species production. Ganglionic blockade after Aldo infusion showed an increase in sympathetic activity in ERβ knockdown rats. These results indicate that both PVN and RVLM ERβ, but not ERα in these nuclei, contribute to the protective effects of estrogen against Aldo-induced hypertension. The brain regions responsible for the protective effects of estrogen interaction with ERα in Aldo-induced hypertension still need to be determined.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, The University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kao CH, Chang CZ, Su YF, Tsai YJ, Chang KP, Lin TK, Hwang SL, Lin CL. 17β-Estradiol attenuates secondary injury through activation of Akt signaling via estrogen receptor alpha in rat brain following subarachnoid hemorrhage. J Surg Res 2013; 183:e23-30. [PMID: 23465388 DOI: 10.1016/j.jss.2013.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apoptosis is implicated in vasospasm and the long-term sequelae of subarachnoid hemorrhage (SAH). This study tested the hypothesis that attenuation of SAH-induced apoptosis after 17β-estradiol (E2) treatment is associated with an increase in phosphorylation of Akt via estrogen receptor-α (ER-α) in rats. MATERIALS AND METHODS We examined the expression of phospho-Akt, ERα and ERβ, and apoptosis in cerebral cortex, hippocampus, and dentate gyrus in a two-hemorrhage SAH model in rats. We subcutaneously implanted other rats with a silicone rubber tube containing E2; they received daily injections of nonselective estrogen receptor antagonist (ICI 182,780), selective ERα-selective antagonist (methyl-piperidino-pyrazole), or ERβ-selective antagonist (R,R-tetrahydrochrysene) after the first hemorrhage. RESULTS At 7 d after the first SAH, protein levels of phospho-Akt and ERα were significantly decreased and caspase-3 was significantly increased in the dentate gyrus. The cell death assay revealed that DNA fragmentation was significantly increased in the dentate gyrus. Those actions were reversed by E2 and blocked by ICI 182,780 and methyl-piperidino-pyrazole, but not R,R-tetrahydrochrysene. However, there were no significant changes in the expression of the protein levels of phospho-Akt, ERα, ERβ, and caspase-3, and DNA fragmentation after SAH. CONCLUSIONS The present study shows that a beneficial effect of E2 in attenuating SAH-induced apoptosis is associated with activation of the expression of phospho-Akt and ERα, and alteration in caspase-3 protein expression via an ERα-dependent mechanism in the dentate gyrus. These data support further the investigation of E2 in the treatment of SAH in humans.
Collapse
Affiliation(s)
- Cheng-Hsing Kao
- Center for General Education, Southern Taiwan University of Technology, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Biancardi VC, Son SJ, Sonner PM, Zheng H, Patel KP, Stern JE. Contribution of central nervous system endothelial nitric oxide synthase to neurohumoral activation in heart failure rats. Hypertension 2011; 58:454-63. [PMID: 21825233 DOI: 10.1161/hypertensionaha.111.175810] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurohumoral activation, a hallmark in heart failure (HF), is linked to the progression and mortality of HF patients. Thus, elucidating its precise underlying mechanisms is of critical importance. Other than its classic peripheral vasodilatory actions, the gas NO is a pivotal neurotransmitter in the central nervous system control of the circulation. While accumulating evidence supports a contribution of blunted NO function to neurohumoral activation in HF, the precise cellular sources, and NO synthase (NOS) isoforms involved, remain unknown. Here, we used a multidisciplinary approach to study the expression, cellular distribution, and functional relevance of the endothelial NOS isoform within the hypothalamic paraventricular nucleus in sham and HF rats. Our results show high expression of endothelial NOS in the paraventricular nucleus (mostly confined to astroglial cells), which contributes to constitutive NO bioavailability, as well as tonic inhibition of presympathetic neuronal activity and sympathoexcitatory outflow from the paraventricular nucleus. A diminished endothelial NOS expression and endothelial NOS-derived NO availability were found in the paraventricular nucleus of HF rats, resulting, in turn, in blunted NO inhibitory actions on neuronal activity and sympathoexcitatory outflow. Taken together, our study supports blunted central nervous system endothelial NOS-derived NO as a pathophysiological mechanism underlying neurohumoral activation in HF.
Collapse
Affiliation(s)
- Vinicia C Biancardi
- Georgia Health Sciences University, Department of Physiology, 1120 15th St, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
29
|
Milner TA, Thompson LI, Wang G, Kievits JA, Martin E, Zhou P, McEwen BS, Pfaff DW, Waters EM. Distribution of estrogen receptor β containing cells in the brains of bacterial artificial chromosome transgenic mice. Brain Res 2010; 1351:74-96. [PMID: 20599828 DOI: 10.1016/j.brainres.2010.06.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 01/11/2023]
Abstract
In the brain, estrogen receptor beta (ERbeta) plays important roles in autonomic functions, stress reactivity and learning and memory processes. However, understanding the function of ERbeta has been restricted by the limited availability of specific antisera, by difficulties discriminating the discrete localization of ERbeta-immunoreactivity (ir) at the light microscopic level in many brain regions and the identification of ERbeta-containing neurons in neurophysiological and molecular studies. Here, we demonstrate that a Esr2 bacterial artificial chromosome (BAC) transgenic mouse line that expresses ERbeta identified by enhanced green fluorescent protein (EGFP) overcomes these shortcomings. Throughout the brain, ERbeta-EGFP was detected in the nuclei and cytoplasm of cells, the majority of which resembled neurons. EGFP often extended into dendritic processes and could be identified either natively or following intensification of EGFP using immunolabeling. The distribution of ERbeta-EGFP cells in brain closely corresponded to that reported for ERbeta protein and mRNA. In particular, ERbeta-EGFP cells were found in autonomic brain regions (i.e., hypothalamic paraventricular nucleus, rostral ventrolateral medulla and nucleus of the solitary tract), in regions associated with anxiety and stress behaviors (i.e., bed nucleus of the stria terminalis, amygdala, periaqueductal gray, raphe and parabrachial nuclei) and in regions involved in learning and memory processes (i.e., basal forebrain, cerebral cortex and hippocampus). Additionally, dual label light and electron microscopic studies in select brain areas demonstrate that cell containing ERbeta-EGFP colocalize with both nuclear and extranuclear ERbeta-immunoreactivity. These findings support the utility of Esr2 BAC transgenic reporter mice for future studies understanding the role of ERbeta in CNS function.
Collapse
Affiliation(s)
- Teresa A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Louisa I Thompson
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gang Wang
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | - Justin A Kievits
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | - Eugene Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ping Zhou
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
30
|
Dhillon SS, Belsham DD. Estrogen inhibits NPY secretion through membrane-associated estrogen receptor (ER)-α in clonal, immortalized hypothalamic neurons. Int J Obes (Lond) 2010; 35:198-207. [PMID: 20548307 DOI: 10.1038/ijo.2010.124] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Estrogen (E(2)) has an inhibitory effect on food intake by acting centrally in the hypothalamus, although it is not clear which hypothalamic neurons are involved in this process. Earlier studies from our lab and others have implicated neuropeptide Y (NPY) as an important central anorexigenic target of E(2). This study was designed to investigate whether E(2) can directly regulate NPY secretion and examine the cellular mechanisms and receptors responsible for this anorexigenic action of E(2). DESIGN Clonal, murine, hypothalamic neuronal cell models, mHypoE-42 and mHypoA-2/12, were investigated for NPY secretory responses to 17β-estradiol (E(2)) in the presence or absence of pharmacological inhibitors directed against the phosphatidylinositol-3-kinase (PI3K), mitogen-activated protein kinase (MAPK) and AMP-activated kinase (AMPK) pathways or to estrogen receptor (ER) specific agonists/antagonists. MEASUREMENTS The presence of hypothalamic markers and characterization of neuronal cell lines was completed with polymerase chain reaction. NPY levels were measured using an enzyme immunoassay (EIA). The expression of ER-α and caveolin-1 was analyzed using immunocytochemistry. RESULTS E(2) significantly decreased NPY secretion in both the mHypoE-42 and mHypoA-2/12 neurons. The E(2)-mediated repression of NPY secretion in the mHypoE-42 and mHypoA-2/12 neurons required ER-α, but not ER-β, as shown by studies using an ER-specific agonist/antagonists. Additionally, using immunocytochemistry we detected colocalization of ER-α and the membrane-associated signaling protein caveolin-1. Importantly, using E(2)-conjugated bovine serum albumin (E(2)-BSA) and ER antagonists, we were able to show that the E(2)-mediated decrease in NPY secretion occurred through membrane-bound ER-α. Finally, using a combination of pharmacological inhibitors, we found that inhibition of the PI3K or AMPK pathway blocked the E(2)-mediated decrease in NPY secretion. CONCLUSION These findings indicate that the central anorexigenic action of E(2) occurs at least partially through hypothalamic NPY-synthesizing neurons. This regulation of NPY secretion occurs through rapid signaling mechanisms through membrane bound ER-α.
Collapse
Affiliation(s)
- S S Dhillon
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
31
|
Rybalchenko V, Grillo MA, Gastinger MJ, Rybalchenko N, Payne AJ, Koulen P. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+. J Recept Signal Transduct Res 2010; 29:326-41. [PMID: 19899956 DOI: 10.3109/10799890903295168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ca(2+) release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca(2+)-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical "nongenomic" effects mediated by estrogen receptors (ER) include rapid Ca(2+) release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of colocalization between RyR type 2 (RyR2) and ER type beta (ER beta) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single-channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ER beta (ER beta 1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca(2+)] concentrations of 100 nM, suggesting a synergistic action of ER beta 1 and Ca(2+) in RyR activation, and a potential contribution to Ca(2+)-induced Ca(2+) release rather than to basal intracellular Ca(2+) concentration level at rest. This RyR/ER beta interaction has potential effects on cellular physiology, including roles of shorter ER beta isoforms and modulation of the RyR/ER beta complexes by exogenous estrogens.
Collapse
|
32
|
Spary EJ, Maqbool A, Batten TFC. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat 2009; 38:185-96. [PMID: 19505570 DOI: 10.1016/j.jchemneu.2009.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/05/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.
Collapse
Affiliation(s)
- Emma J Spary
- Division of Cardiovascular and Neuronal Remodelling, Worsley Building, LIGHT Institute, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
33
|
Naragoni S, Sankella S, Harris K, Gray WG. Phytoestrogens regulate mRNA and protein levels of guanine nucleotide-binding protein, beta-1 subunit (GNB1) in MCF-7 cells. J Cell Physiol 2009; 219:584-94. [PMID: 19170076 DOI: 10.1002/jcp.21699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Phytoestrogens (PEs) are non-steroidal ligands, which regulate the expression of number of estrogen receptor-dependent genes responsible for a variety of biological processes. Deciphering the molecular mechanism of action of these compounds is of great importance because it would increase our understanding of the role(s) these bioactive chemicals play in prevention and treatment of estrogen-based diseases. In this study, we applied suppression subtractive hybridization (SSH) to identify genes that are regulated by PEs through either the classic nuclear-based estrogen receptor or membrane-based estrogen receptor pathways. SSH, using mRNA from genistein (GE) treated MCF-7 cells as testers, resulted in a significant increase in GNB1 mRNA expression levels as compared with 10 nM 17beta estradiol or the no treatment control. GNB1 mRNA expression was up regulated two- to fivefold following exposure to 100.0 nM GE. Similarly, GNB1 protein expression was up regulated 12- to 14-fold. GE regulation of GNB1 was estrogen receptor-dependent, in the presence of the anti-estrogen ICI-182,780, both GNB1 mRNA and protein expression were inhibited. Analysis of the GNB1 promoter using ChIP assay showed a PE-dependent association of estrogen receptor alpha (ERalpha) and beta (ERbeta) to the GNB1 promoter. This association was specific for ERalpha since association was not observed when the cells were co-incubated with GE and the ERalpha antagonist, ICI. Our data demonstrate that the levels of G-protein, beta-1 subunit are regulated by PEs through an estrogen receptor pathway and further suggest that PEs may control the ratio of alpha-subunit to beta/gamma-subunits of the G-protein complex in cells. J. Cell. Physiol. 219: 584-594, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Srivatcha Naragoni
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana, USA
| | | | | | | |
Collapse
|
34
|
Xue B, Badaue-Passos D, Guo F, Gomez-Sanchez CE, Hay M, Johnson AK. Sex differences and central protective effect of 17beta-estradiol in the development of aldosterone/NaCl-induced hypertension. Am J Physiol Heart Circ Physiol 2009; 296:H1577-85. [PMID: 19270192 DOI: 10.1152/ajpheart.01255.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tested the hypotheses that male and female rats respond differently to subcutaneous infusions of aldosterone (Aldo; 1.8 microg.kg(-1).h(-1), 1% NaCl to drink; 28 days) and that central estrogen plays a protective role against the development of hypertension. In rats with blood pressure (BP) and heart rate (HR) measured by Data Sciences International telemetry, chronic Aldo/NaCl treatment induced a greater increase in BP in males (Delta25.4 +/- 2.4 mmHg) than in females (Delta7.1 +/- 2.2 mmHg). Gonadectomy augmented Aldo/NaCl-induced hypertension in females (Delta18.2 +/- 2.0 mmHg) but had no effect in males (Delta23.1 +/- 2.9 mmHg). Immunohistochemistry for Fra-like activity was higher in the paraventricular nucleus of intact males, castrated males, and ovariectomized (OVX) females compared with intact females after 28 days of Aldo/NaCl treatment. In intact males, central 17beta-estradiol (E(2)) inhibited the Aldo/NaCl increase in BP (Delta10.5 +/- 0.8) compared with that in central vehicle plus systemic Aldo/NaCl (Delta26.1 +/- 2.5 mmHg) rats. Combined administration of E(2) and estrogen receptor antagonist ICI182780 (ICI) blocked the protective effect of E(2) (Delta23.2 +/- 2.4 mmHg). In intact females central, but not peripheral, infusions of ICI augmented the Aldo/NaCl (Delta20.4 +/- 1.8 mmHg) BP increase. Finally, ganglionic blockade after Aldo infusions resulted in a smaller reduction in BP in intact females (-23.9 +/- 2.5 mmHg) and in central estrogen-treated males (-30.2 +/- 1.0 mmHg) compared with other groups (intact males, -39.3 +/- 3.4; castrated males, -41.8 +/- 1.9; intact males with central E(2) + ICI, -42.3 +/- 2.1; OVX females, -40.3 +/- 3.3; and intact females with central ICI, -39.1 +/- 1.3 mmHg). Chronic Aldo infusion produced increases in NaCl intake and decreases in HR that were both similar in all groups. Taken together, the results indicate that central estrogen plays a protective role in the development of Aldo/NaCl-induced hypertension and that this may result from reduced sympathetic outflow.
Collapse
Affiliation(s)
- Baojian Xue
- Dept. of Psychology, Univ. of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Tezini GC, Silveira LC, Maida KD, Blanco JHD, Souza HC. The effect of ovariectomy on cardiac autonomic control in rats submitted to aerobic physical training. Auton Neurosci 2008; 143:5-11. [DOI: 10.1016/j.autneu.2008.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/06/2008] [Accepted: 05/14/2008] [Indexed: 10/21/2022]
|
36
|
Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3K/Akt-dependent pathway in hypothalamic neurons. Neuropharmacology 2008; 55:878-85. [PMID: 18652836 DOI: 10.1016/j.neuropharm.2008.06.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/06/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022]
Abstract
Estrogen plays a role in restoring homeostatic balance during the stress response by altering hypothalamic function and NO production in the brain. While we know that estrogen acts on the hypothalamus to stimulate the NO system through an ERbeta-dependent mechanism in neurons, the molecular mechanisms responsible for these effects are unknown. Because phosphorylation of nNOS at Ser(1412) increases nNOS activity which leads to increased NO production, we investigated the effects of ERbeta activation on nNOS phosphorylation at Ser(1412) and NO production in primary hypothalamic neurons. Using the selective ERbeta agonist, DPN (10nM), we show that activation of ERbeta rapidly increases phosphorylation levels of nNOS at Ser(1412) and NO production. We also show that the PI3K pathway, but not the MAPK pathway, mediates the increases in levels of Ser(1412) phosphorylation and NO production induced by ERbeta activation, as the selective PI3K inhibitor, LY294002 (10microM), blocked the effects of ERbeta activation. Finally, we demonstrate that Src kinase acts upstream of the PI3K/Akt pathway based on our finding that the selective Src inhibitor, PP2 (10microM), blocked the increases in nNOS phosphorylation levels, NO production, and PI3K/Akt activity induced by ERbeta activation. Together, our results show that Src kinase mediates ERbeta-induced increases in phosphorylation levels of nNOS at Ser(1412) and NO production by activating the PI3K/Akt pathway. These findings provide novel insight into the signaling mechanisms through which E2 stimulates the NO system in hypothalamic neurons.
Collapse
|
37
|
Xue B, Zhao Y, Johnson AK, Hay M. Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol 2008; 295:H1025-H1032. [PMID: 18599599 DOI: 10.1152/ajpheart.00021.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
38
|
Shih HC, Lin CL, Wu SC, Kwan AL, Hong YR, Howng SL. Upregulation of estrogen receptor α and mediation of 17β-estradiol vasoprotective effects via estrogen receptor α in basilar arteries in rats after experimental subarachnoid hemorrhage. J Neurosurg 2008; 109:92-9. [DOI: 10.3171/jns/2008/109/7/0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The authors previously demonstrated that 17β-estradiol benzoate (E2) treatment prevents subarachnoid hemorrhage (SAH)–induced cerebral vasospasm and preserves endothelial nitric oxide synthase (eNOS) in male rats. Changes in the expression of estrogen receptor (ER) subtypes ERα and -β and their roles in the E2-mediated preservation of eNOS in SAH remain unknown. In the present study the effects of SAH on the expression of ERα and -β in the cerebral arteries were clarified, and the receptor roles in the E2-mediated preservation of eNOS expression in SAH were differentiated.
Methods
A 2-hemorrhage SAH model was induced by 2 autologous blood injections into the cisterna magna of adult male rats. The effect of SAH on ERα and -β expression was evaluated. Other rats subcutaneously received implanted Silastic tubes containing corn oil with E2 and daily injections of various doses of an ERα- (methyl-piperidinopyrazole [MPP]) or ERβ-selective antagonist (R,R-tetrahydrochrysene) after the first hemorrhage. The protein levels of ERα, ERβ, eNOS, and inducible nitric oxide synthase (iNOS) from basilar arteries were examined using Western blot analysis, and their mRNAs were evaluated by reverse transcription–polymerase chain reaction.
Results
The ERα but not the ERβ was upregulated in the basilar artery after SAH. Treatment with MPP eliminated E2-mediated effects in SAH, relieved cerebral vasospasm, preserved eNOS expression, and suppressed iNOS expression.
Conclusions
Estrogen receptor α is upregulated in the basilar artery after SAH. Note that E2 exerts its protective effects through ERα-dependent pathways to relieve cerebral vasospasm and preserve eNOS expression. A selective ERα agonist may be the drug of choice for the treatment of patients with SAH.
Collapse
Affiliation(s)
- Huei-Chuan Shih
- 1Graduate Institute of Medicine, College of Medicine
- 2School of Nursing, Mei-Ho Institute of Technology, Pingtung, Taiwan, Republic of China
| | - Chih-Lung Lin
- 3Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung; and
| | - Shu-Chuan Wu
- 3Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung; and
| | - Aij-Lie Kwan
- 3Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung; and
| | - Yi-Ren Hong
- 4Graduate Institute of Biochemistry, Kaohsiung Medical University
| | - Shen-Long Howng
- 1Graduate Institute of Medicine, College of Medicine
- 3Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung; and
| |
Collapse
|
39
|
Klinge CM, Wickramasinghe NS, Ivanova MM, Dougherty SM. Resveratrol stimulates nitric oxide production by increasing estrogen receptor alpha-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB J 2008; 22:2185-97. [PMID: 18296501 DOI: 10.1096/fj.07-103366] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epidemiological studies correlate moderate red wine consumption to reduced incidence of cardiovascular disease. Resveratrol is a polyphenolic compound in red wine that has cardioprotective effects in rodents. Although endothelial cell (EC) studies indicate that micromolar resveratrol has diverse biological activities, these concentrations are not physiologically relevant because human oral ingestion provides only brief exposure to nanomolar plasma levels. Previously, we reported that nanomolar resveratrol activated ERK1/2 signaling in bovine aortic ECs (BAECs). The goal of this study was to determine the mechanisms by which nanomolar resveratrol rapidly activates endothelial nitric oxide synthase (eNOS) in human umbilical vein ECs (HUVECs). We report for the first time that resveratrol increased interaction between estrogen receptor alpha (ER alpha), caveolin-1 (Cav-1) and c-Src, and increased phosphorylation of Cav-1, c-Src, and eNOS. Pretreatment with the lipid raft disruptor beta-methyl cyclodextrin or G alpha inhibitor pertussis toxin blocked resveratrol- and E(2)-induced eNOS activation and NO production. Depletion of endogenous ER alpha, not ERbeta, by siRNA attenuated resveratrol- and E(2)-induced ERK1/2, Src, and eNOS phosphorylation. Our data demonstrate that nanomolar resveratrol induces ER alpha-Cav-1-c-SRC interaction, resulting in NO production through a G alpha-protein-coupled mechanism. This study provides important new insights into mechanisms for the beneficial effects of resveratrol in ECs.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
40
|
Somponpun SJ. Neuroendocrine regulation of fluid and electrolyte balance by ovarian steroids: contributions from central oestrogen receptors. J Neuroendocrinol 2007; 19:809-18. [PMID: 17850463 DOI: 10.1111/j.1365-2826.2007.01587.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like other hormonally mediated mechanisms, maintenance of body fluid osmolality requires integrated responses from multiple signals at various tissue locales, a large number of which are open to modulation by circulating endocrine factors including the ovarian steroid, oestrogens (E(2)). However, the precise mechanism and the site of action of E(2) in regulating fluid osmolality are not properly understood. More importantly, the biological significance of this action is not clear and the physiological circumstances in which this modulation is engaged remain incomplete. The demonstration of oestrogen receptors (ER) in neural tissues that bear no direct relation to reproduction led us to examine and characterise the expression of ER in brain nuclei that are critical for the maintenance of fluid osmolality. In the rat, ERbeta is prominently expressed in the vasopressin magnocellular neuroendocrine cells of the hypothalamus, whereas ERalpha is localised extensively in the sensory circumventricular organ neurones in the basal forebrain. These nuclei are the primary brain sites that are engaged in defense of fluid perturbation, thus providing a neuroendocrine basis for oestrogenic influence on body fluid regulation. Plasticity in receptor expression that accompanies fluid disturbances at these central loci suggests the functional importance of the receptors and implicates E(2) as one of the fluid regulating hormones in water homeostasis.
Collapse
Affiliation(s)
- S J Somponpun
- Department of Clinical Investigation, Tripler Army Medical Center, Tripler AMC, HI 96859, USA.
| |
Collapse
|