1
|
ArabiDarrehDor G, Kramer GC, Burmeister DM, Salinas J, Hahn JO. A mathematical model for simulation of cardiovascular, renal, and hormonal responses to burn injury and resuscitation. Front Physiol 2024; 15:1467351. [PMID: 39421439 PMCID: PMC11484069 DOI: 10.3389/fphys.2024.1467351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Treating extensive burn injury requires an individually tailored resuscitation protocol that includes hourly-titrated intravenous fluid infusion to avert both hypovolemic shock and edema. Due to the complexity of burn pathophysiology and significant variability in treatment protocols, there is an ongoing effort to optimize burn resuscitation. The goal of this work is to contribute to this effort by developing a mathematical model of burn pathophysiology and resuscitation for in silico testing of burn resuscitation protocols and decision-support systems. Methods In our previous work, we developed and validated a mathematical model consisting of volume kinetics, burn-induced perturbations, and kidney function. In this work, we expanded our previous mathematical model to incorporate novel mathematical models of cardiovascular system and hormonal system (renin-angiotensin-aldosterone (RAAS) system and antidiuretic hormone) which affect blood volume and pressure regulation. We also developed a detailed mathematical model of kidney function to regulate blood volume, pressure, and sodium levels, including components for glomerular filtration rate, reabsorption rates in nephron tubules, Tubuglomerular feedback, and myogenic mechanisms. We trained and validated the expanded mathematical model using experimental data from 15 pigs and 9 sheep with extensive burns to quantitatively evaluate its prediction accuracy for hematocrit, cardiac output, mean arterial pressure, central venous pressure, serum sodium levels, and urinary output. We then trained and tested the mathematical model using a clinical dataset of 233 human burn patients with demographic data and urinary output measurements. Results The mathematical model could predict all tested variables very well, while internal variables and estimated parameters were consistent with the literature. Discussion To the best of our knowledge, this is the first mathematical model of burn injury and resuscitation which is extensively validated to replicate actual burn patients. Hence, this in silico platform may complement large animal pre-clinical testing of burn resuscitation protocols. Beyond its primary purpose, the mathematical model can be used as a training tool for healthcare providers delivering insight into the pathophysiology of burn shock, and offering novel mathematical models of human physiology which can be independently used for other purposes and contexts.
Collapse
Affiliation(s)
| | - George C. Kramer
- Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - David M. Burmeister
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Jose Salinas
- U. S. Army Institute of Surgical Research, San Antonio, TX, United States
| | - Jin-Oh Hahn
- Mechanical Engineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
2
|
Varda L, Ekart R, Lainscak M, Maver U, Bevc S. Clinical Properties and Non-Clinical Testing of Mineralocorticoid Receptor Antagonists in In Vitro Cell Models. Int J Mol Sci 2024; 25:9088. [PMID: 39201774 PMCID: PMC11354261 DOI: 10.3390/ijms25169088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are one of the renin-angiotensin-aldosterone system inhibitors widely used in clinical practice. While spironolactone and eplerenone have a long-standing profile in clinical medicine, finerenone is a novel agent within the MRA class. It has a higher specificity for mineralocorticoid receptors, eliciting less pronounced adverse effects. Although approved for clinical use in patients with chronic kidney disease and heart failure, intensive non-clinical research aims to further elucidate its mechanism of action, including dose-related selectivity. Within the field, animal models remain the gold standard for non-clinical testing of drug pharmacological and toxicological properties. Their role, however, has been challenged by recent advances in in vitro models, mainly through sophisticated analytical tools and developments in data analysis. Currently, in vitro models are gaining momentum as possible platforms for advanced pharmacological and pathophysiological studies. This article focuses on past, current, and possibly future in vitro cell models research with clinically relevant MRAs.
Collapse
Affiliation(s)
- Luka Varda
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (L.V.); (R.E.)
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (L.V.); (R.E.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
| | - Mitja Lainscak
- Division of Cardiology, Murska Sobota General Hospital, Ulica Dr. Vrbnjaka 6, 9000 Murska Sobota, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Uroš Maver
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Culver SA, Suleman N, Kavuru V, Siragy HM. Renal Hypokalemia: An Endocrine Perspective. J Clin Endocrinol Metab 2024; 109:1694-1706. [PMID: 38546505 DOI: 10.1210/clinem/dgae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/18/2024]
Abstract
The majority of disorders that cause renal potassium wasting present with abnormalities in adrenal hormone secretion. While these findings frequently lead patients to seek endocrine evaluation, clinicians often struggle to accurately diagnose these conditions, delaying treatment and adversely impacting patient care. At the same time, growing insight into the genetic and molecular basis of these disorders continues to improve their diagnosis and management. In this review, we outline a practical integrated approach to the evaluation of renal hypokalemia syndromes that are seen in endocrine practice while highlighting recent advances in understanding of the genetics and pathophysiology behind them.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Nawar Suleman
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Varun Kavuru
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
5
|
Bayne S, LeFevre J, Olstinske K, Ravindran S, Munusamy S. Renoprotective Effects of Mineralocorticoid Receptor Antagonists Against Diabetic Kidney Disease. Adv Biol (Weinh) 2024; 8:e2300496. [PMID: 38065929 DOI: 10.1002/adbi.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Indexed: 03/16/2024]
Abstract
Diabetic kidney disease (DKD) is a growing epidemic worldwide and a leading cause of end-stage kidney disease. Mineralocorticoid receptor (MR) blockade using Finerenone is a recently approved therapeutic approach to slow down the progression of DKD in patients with type 2 diabetes in addition to other therapies such as angiotensin-II converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), sodium-glucose co-transporter 2 (SGLT2) inhibitors, and glucagon-like peptide 1 (GLP-1) analogs. This review elaborates on the pathophysiologic pathways activated by aldosterone (the human mineralocorticoid) in DKD, the pharmacology of three different generations of mineralocorticoid receptor antagonists (MRAs), specifically, spironolactone, eplerenone, and finerenone, and the mechanisms by which these MRAs elicit their protective effects on the kidney under diabetic settings.
Collapse
Affiliation(s)
- Sarah Bayne
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| | - James LeFevre
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| | - Kayla Olstinske
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| | | | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, Drake University College of Pharmacy and Health Sciences, Des Moines, IA, 50311, USA
| |
Collapse
|
6
|
Azzam O, Nejad SH, Carnagarin R, Nolde JM, Galindo-Kiuchi M, Schlaich MP. Taming resistant hypertension: The promise of novel pharmacologic approaches and renal denervation. Br J Pharmacol 2024; 181:319-339. [PMID: 37715452 DOI: 10.1111/bph.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023] Open
Abstract
Resistant hypertension is associated with an exceedingly high cardiovascular risk and there remains an unmet therapeutic need driven by pathophysiologic pathways unaddressed by guideline-recommended therapy. While spironolactone is widely considered as the preferable fourth-line drug, its broad application is limited by its side effect profile, especially off-target steroid receptor-mediated effects and hyperkalaemia in at-risk subpopulations. Recent landmark trials have reported promising safety and efficacy results for a number of novel compounds targeting relevant pathophysiologic pathways that remain unopposed by contemporary drugs. These include the dual endothelin receptor antagonist, aprocitentan, the aldosterone synthase inhibitor, baxdrostat and the nonsteroidal mineralocorticoid receptor antagonist finerenone. Furthermore, the evidence base for consideration of catheter-based renal denervation as a safe and effective adjunct therapeutic approach across the clinical spectrum of hypertension has been further substantiated. This review will summarise the recently published evidence on novel antihypertensive drugs and renal denervation in the context of resistant hypertension.
Collapse
Affiliation(s)
- Omar Azzam
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Marcio Galindo-Kiuchi
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Wang Y, LaRocque LM, Ruiz JA, Rodriguez EL, Sands JM, Klein JD. Aldosterone Contributes to Vasopressin Escape through Changes in Water and Urea Transport. Biomedicines 2023; 11:1844. [PMID: 37509484 PMCID: PMC10376660 DOI: 10.3390/biomedicines11071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hyponatremia (hypo-osmolality) is a disorder of water homeostasis due to abnormal renal diluting capacity. The body limits the degree to which serum sodium concentration falls through a mechanism called "vasopressin escape". Vasopressin escape is a process that prevents the continuous decrease in serum sodium concentration even under conditions of sustained high plasma vasopressin levels. Previous reports suggest that aldosterone may be involved in the vasopressin escape mechanism. The abilities of aldosterone synthase (Cyp11b2) knockout and wild-type mice to escape from vasopressin were compared. Wild-type mice escaped while the aldosterone synthase knockout mice did not. Both the water channel aquaporin 2 (AQP2) and the urea transporter UT-A1 protein abundances were higher in aldosterone synthase knockout than in wild-type mice at the end of the escape period. Vasopressin escape was also blunted in rats given spironolactone, a mineralocorticoid receptor blocker. Next, the role of the phosphatase, calcineurin (protein phosphatase 2B, PP2B), in vasopressin escape was studied since aldosterone activates calcineurin in rat cortical collecting ducts. Tacrolimus, a calcineurin inhibitor, blunted vasopressin escape in rats compared with the control rats, increased UT-A1, AQP2, and pS256-AQP2, and decreased pS261-AQP2 protein abundances. Our results indicate that aldosterone regulates vasopressin escape through calcineurin-mediated protein changes in UT-A1 and AQP2.
Collapse
Affiliation(s)
- Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lauren M LaRocque
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joseph A Ruiz
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eva L Rodriguez
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Wang Y, Klein JD, Sands JM. Phosphatases Decrease Water and Urea Permeability in Rat Inner Medullary Collecting Ducts. Int J Mol Sci 2023; 24:ijms24076537. [PMID: 37047509 PMCID: PMC10095045 DOI: 10.3390/ijms24076537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
We previously showed that the phosphatases PP1/PP2A and PP2B dephosphorylate the water channel, AQP2, suggesting their role in water reabsorption. In this study, we investigated whether protein phosphatase 2A (PP2A) and protein phosphatase 2B (PP2B or calcineurin), which are present in the inner medullary collecting duct (IMCD), are regulators of urea and water permeability. Inhibition of calcineurin by tacrolimus increased both basal and vasopressin-stimulated osmotic water permeability in perfused rat IMCDs. However, tacrolimus did not affect osmotic water permeability in the presence of aldosterone. Inhibition of PP2A by calyculin increased both basal and vasopressin-stimulated osmotic water permeability, and aldosterone reversed the increase by calyculin. Previous studies showed that adrenomedullin (ADM) activates PP2A and decreases osmotic water permeability. Inhibition of PP2A by calyculin prevented the ADM-induced decrease in water reabsorption. ADM reduced the phosphorylation of AQP2 at serine 269 (pSer269 AQP2). Urea is linked to water reabsorption by building up hyperosmolality in the inner medullary interstitium. Calyculin increased urea permeability and phosphorylated UT-A1. Our results indicate that phosphatases regulate water reabsorption. Aldosterone and adrenomedullin decrease urea or osmotic water permeability by acting through calcineurin and PP2A, respectively. PP2A may regulate water reabsorption by dephosphorylating pSer269, AQP2, and UT-A1.
Collapse
|
9
|
Awosika A, Khan A, Adabanya U, Omole AE, Millis RM. Aldosterone Synthase Inhibitors and Dietary Interventions: A Combined Novel Approach for Prevention and Treatment of Cardiovascular Disease. Cureus 2023; 15:e36184. [PMID: 36937127 PMCID: PMC10016316 DOI: 10.7759/cureus.36184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Systemic hypertension (HTN) is the hallmark of cardiovascular disease and the forerunner of heart failure. These associations have been established over decades of research on essential HTN. Advancements in the treatment of patients diagnosed with HTN, consisting of alpha- or beta-adrenergic receptor blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, thiazide, or aldosterone receptor blockers known as anti-mineralocorticoids, in the presence or absence of low sodium salt diets, often fail to control blood pressure adequately to prevent morbidity and mortality. Low sodium diets have had limited success in controlling HTN because low sodium intake is associated with renin-angiotensin-aldosterone system upregulation. Therefore, upregulating aldosterone secretion, sodium, and water retention which, in turn, moves the blood pressure back toward the range of HTN dictated by the baroreceptor reset value, as a compensatory mechanism, especially in resistant HTN. These impediments to blood pressure control in HTN may have been effectively circumvented by the advent of a new class of drugs known as aldosterone synthase inhibitors, represented by baxdrostat. The mechanism of action of baxdrostat as an aldosterone synthase inhibitor demonstrates the inextricable linkage between sodium and blood pressure regulation. Theoretically, combining a low sodium diet with the activity of this aldosterone synthesis inhibitor should alleviate the adverse effect of renin-angiotensin-aldosterone system upregulation. Aldosterone synthesis inhibition should also decrease the oxidative stress and endothelial dysfunction associated with HTN, causing more endothelial nitric oxide synthesis, release, and vasorelaxation. To the best of our knowledge, this is the first systematic review to summarize evidence-based articles relevant to the use of a novel drug (aldosterone synthase inhibitor) in the treatment of HTN and cardiovascular disease. Making the current database of relevant information on baxdrostat and other aldosterone synthase inhibitors readily available will, no doubt, aid physicians and other medical practitioners in their decision-making about employing aldosterone synthase inhibitors in the treatment of patients.
Collapse
Affiliation(s)
- Ayoola Awosika
- College of Medicine, University of Illinois Chicago, Chicago, USA
| | - Anosh Khan
- Internal Medicine, Spartan Health Sciences University School of Medicine, Vieux Fort, LCA
| | | | - Adekunle E Omole
- Anatomical Sciences, American University of Antigua College of Medicine, Coolidge, ATG
| | - Richard M Millis
- Pathophysiology, American University of Antigua College of Medicine, Coolidge, ATG
| |
Collapse
|
10
|
Kawanami D, Takashi Y, Muta Y, Oda N, Nagata D, Takahashi H, Tanabe M. Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease. Front Pharmacol 2021; 12:754239. [PMID: 34790127 PMCID: PMC8591525 DOI: 10.3389/fphar.2021.754239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide. Mineralocorticoid receptor (MR) plays an important role in the development of DKD. A series of preclinical studies revealed that MR is overactivated under diabetic conditions, resulting in promoting inflammatory and fibrotic process in the kidney. Clinical studies demonstrated the usefulness of MR antagonists (MRAs), such as spironolactone and eplerenone, on DKD. However, concerns regarding their selectivity for MR and hyperkalemia have remained for these steroidal MRAs. Recently, nonsteroidal MRAs, including finerenone, have been developed. These agents are highly selective and have potent anti-inflammatory and anti-fibrotic properties with a low risk of hyperkalemia. We herein review the current knowledge and future perspectives of MRAs in DKD treatment.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshimi Muta
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoki Oda
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Dai Nagata
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroyuki Takahashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
11
|
Wang Y, Ma F, Rodriguez EL, Klein JD, Sands JM. Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts. Cells 2020; 9:cells9040967. [PMID: 32295252 PMCID: PMC7226978 DOI: 10.3390/cells9040967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/27/2022] Open
Abstract
Aldosterone indirectly regulates water reabsorption in the distal tubule by regulating sodium reabsorption. However, the direct effect of aldosterone on vasopressin-regulated water and urea permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether aldosterone regulates osmotic water permeability in isolated perfused rat IMCDs. Adding aldosterone (500 nM) to the bath significantly decreased osmotic water permeability in the presence of vasopressin (50 pM) in both male and female rat IMCDs. Aldosterone significantly decreased aquaporin-2 (AQP2) phosphorylation at S256 but did not change it at S261. Previous studies show that aldosterone can act both genomically and non-genomically. We tested the mechanism by which aldosterone attenuates osmotic water permeability. Blockade of gene transcription with actinomycin D did not reverse aldosterone-attenuated osmotic water permeability. In addition to AQP2, the urea transporter UT-A1 contributes to vasopressin-regulated urine concentrating ability. We tested aldosterone-regulated urea permeability in vasopressin-treated IMCDs. Blockade of gene transcription did not reverse aldosterone-attenuated urea permeability. In conclusion, aldosterone directly regulates water reabsorption through a non-genomic mechanism. Aldosterone-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. There may be a sex difference apparent in the inhibitory effect of aldosterone on water reabsorption in the inner medullary collecting duct. This study is the first to show a direct effect of aldosterone to inhibit vasopressin-stimulated osmotic water permeability and urea permeability in perfused rat IMCDs.
Collapse
Affiliation(s)
| | | | | | | | - Jeff M. Sands
- Correspondence: ; Tel.: +1-404-7272-525; Fax: +1-404-7273-425
| |
Collapse
|
12
|
The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens 2019; 33:508-523. [DOI: 10.1038/s41371-019-0170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
13
|
Abstract
The mineralocorticoid aldosterone is an important regulator of blood pressure and electrolyte balance. However, excess aldosterone can be deleterious as a driver of inflammation, vascular remodeling and tissue fibrosis associated with cardiometabolic diseases. Mineralocorticoid receptor antagonists (MRA) and renin-angiotensin-aldosterone system (RAAS) antagonists are current clinical therapies used to antagonize deleterious effects of aldosterone in patients. MRAs compete with aldosterone for binding at its cognate receptor thereby limiting its effect while RAS antagonists reduce aldosterone levels indirectly by blocking the stimulatory effect of angiotensin. Both MRAs and RAS antagonists can result in incomplete inhibition of the harmful effects of excess aldosterone. Aldosterone synthase (AS) inhibitors (ASI) attenuate the production of aldosterone directly and have been proposed as an alternative to MRAs and RAS blockers. Cortisol synthase (CS) is an enzyme closely related to AS and responsible for generating the important glucocorticoid cortisol, required for maintaining critical metabolic and immune responses. The importance of selectivity against CS is shown by early examples of ASIs that were only modestly selective and as such, attenuated cortisol responses when evaluated in patients. Recently, next-generation, highly selective ASIs have been described and are presently being evaluated in the clinic as an alternative to angiotensin and MR antagonists for cardiometabolic disease. Herein we provide a brief review of the challenges associated with discovery of selective ASIs and the transition from the early compounds that paved the way toward the next-generation of highly selective ASIs currently under development.
Collapse
Affiliation(s)
- Steven M Weldon
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States.
| | - Nicholas F Brown
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
14
|
Sinphitukkul K, Manotham K, Eiam-Ong S, Eiam-Ong S. Nongenomic action of aldosterone on colocalization of angiotensin II type 1 and type 2 receptors in rat kidney. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1438756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Somchai Eiam-Ong
- Faculty of Medicine, Department of Medicine (Division of Nephrology), Chulalongkorn University, Bangkok, Thailand
| | - Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Hermidorff MM, de Assis LVM, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2018; 22:65-89. [PMID: 27942913 DOI: 10.1007/s10741-016-9591-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.
Collapse
Affiliation(s)
- Milla Marques Hermidorff
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
16
|
Poulsen SB, Christensen BM. Long-term aldosterone administration increases renal Na+-Cl− cotransporter abundance in late distal convoluted tubule. Am J Physiol Renal Physiol 2017; 313:F756-F766. [DOI: 10.1152/ajprenal.00352.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
Renal Na+-Cl− cotransporter (NCC) is expressed in early distal convoluted tubule (DCT) 1 and late DCT (DCT2). NCC activity can be stimulated by aldosterone administration, and the mechanism is assumed to depend on the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates glucocorticoids that would otherwise occupy aldosterone receptors. Because 11β-HSD2 in rat may only be abundantly expressed in DCT2 cells and not in DCT1 cells, it has been speculated that aldosterone specifically stimulates NCC activity in DCT2 cells. In mice, however, it is debated if 11β-HSD2 is expressed in DCT2 cells. The present study examined whether aldosterone administration in mice stimulates NCC abundance and phosphorylation in DCT2 cells but not in DCT1 cells. B6/C57 male mice were administered 100 µg aldosterone·kg body weight−1·24 h−1 for 6 days and euthanized during isoflurane inhalation. Western blotting of whole kidney homogenate showed that aldosterone administration stimulated NCC and pT58-NCC abundances ( P < 0.001). In DCT1 cells, confocal microscopy detected no effect of the aldosterone administration on NCC and pT58-NCC abundances. By contrast, NCC and pT58-NCC abundances were stimulated by aldosterone administration in the middle of DCT2 ( P < 0.001 and <0.01, respectively) and at the junction between DCT2 and CNT ( P < 0.001 and <0.05, respectively). In contrast to rat, immunohistochemistry in mouse showed no/very weak 11β-HSD2 expression in DCT2 cells. Collectively, long-term aldosterone administration stimulates mouse NCC and pT58-NCC abundances in DCT2 cells and presumably not in DCT1 cells.
Collapse
|
17
|
Salt-dependent Blood Pressure in Human Aldosterone Synthase-Transgenic Mice. Sci Rep 2017; 7:492. [PMID: 28352088 PMCID: PMC5412599 DOI: 10.1038/s41598-017-00461-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/28/2017] [Indexed: 01/19/2023] Open
Abstract
Hypertension is one of the most important, preventable causes of premature morbidity and mortality in the developed world. Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of blood pressure and is implicated in the pathogenesis of hypertension and heart failure. Aldosterone synthase (AS, cytochrome P450 11B2, cyp11B2) is the sole enzyme responsible for the production of aldosterone in humans. To determine the effects of increased expression of human aldosterone synthase (hAS) on blood pressure (BP), we established transgenic mice carrying the hAS gene (cyp11B2). We showed that hAS overexpression increased levels of aldosterone in hAS+/- mice. On high salt diet (HS), BPs of hAS+/- mice were significantly increased compared with WT mice. Fadrozole (an inhibitor of aldosterone synthase) treatment significantly reduced BPs of hAS+/- mice on HS. This is the first time overexpression of AS in a transgenic mouse line has shown an ability to induce HP. Specifically inhibiting AS activity in these mice is a promising therapy for reducing hypertension. This hAS transgenic mouse model is therefore an ideal animal model for hypertension therapy studies.
Collapse
|
18
|
Rojas-Vega L, Gamba G. Mini-review: regulation of the renal NaCl cotransporter by hormones. Am J Physiol Renal Physiol 2016; 310:F10-4. [DOI: 10.1152/ajprenal.00354.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone.
Collapse
Affiliation(s)
- Lorena Rojas-Vega
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
19
|
De Giusti VC, Orlowski A, Ciancio MC, Espejo MS, Gonano LA, Caldiz CI, Vila Petroff MG, Villa-Abrille MC, Aiello EA. Aldosterone stimulates the cardiac sodium/bicarbonate cotransporter via activation of the g protein-coupled receptor gpr30. J Mol Cell Cardiol 2015; 89:260-7. [PMID: 26497404 DOI: 10.1016/j.yjmcc.2015.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Ciancio
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María S Espejo
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Luis A Gonano
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martín G Vila Petroff
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - María C Villa-Abrille
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
20
|
Könemann S, Wenzel K, Ameling S, Grube K, Hammer E, Könemann R, Samal R, Völker U, Felix SB. The Other Side of the RAAS: Aldosterone Improves Migration of Cardiac Progenitor Cells. J Cell Physiol 2015; 230:2829-36. [DOI: 10.1002/jcp.25013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Könemann
- Department of Internal Medicine B; University Medicine Greifswald; Greifswald Germany
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
| | - Kristin Wenzel
- Department of Internal Medicine B; University Medicine Greifswald; Greifswald Germany
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
| | - Sabine Ameling
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
- Interfaculty Institute for Genetic and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Karina Grube
- Department of Internal Medicine B; University Medicine Greifswald; Greifswald Germany
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
| | - Elke Hammer
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
- Interfaculty Institute for Genetic and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Raik Könemann
- Department of Internal Medicine B; University Medicine Greifswald; Greifswald Germany
| | - Rasmita Samal
- Interfaculty Institute for Genetic and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
- Interfaculty Institute for Genetic and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Stephan B. Felix
- Department of Internal Medicine B; University Medicine Greifswald; Greifswald Germany
- DZHK (German Center for Cardiovascular Research); partner site Greifswald
| |
Collapse
|
21
|
Tapia-Castillo A, Carvajal CA, Campino C, Hill C, Allende F, Vecchiola A, Carrasco C, Bancalari R, Valdivia C, Lagos C, Martinez-Aguayo A, Garcia H, Aglony M, Baudrand RF, Kalergis AM, Michea LF, Riedel CA, Fardella CE. The Expression of RAC1 and Mineralocorticoid Pathway-Dependent Genes are Associated With Different Responses to Salt Intake. Am J Hypertens 2015; 28:722-8. [PMID: 25430696 DOI: 10.1093/ajh/hpu224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Rac1 upregulation has been implicated in salt-sensitive hypertension as a modulator of mineralocorticoid receptor (MR) activity. Rac1 could affect the expression of oxidative stress markers, such as hemoxigenase-1 (HO-1) or nuclear factor-B (NF-κB), and the expression of neutrophil gelatinase-associated lipocalin (NGAL), a cytokine upregulated upon MR activation. AIM We evaluated RAC1 expression in relation of high salt intake and association with MR, NGAL, HO-1, and NF-κB expression, mineralo- and glucocorticoids levels, and inflammatory parameters. SUBJECTS AND METHODS We studied 147 adult subjects. A food survey identified the dietary sodium (Na) intake. RAC1 expression was considered high or low according to the value found in normotensive subjects with low salt intake. We determined the gene expression of RAC1, MR, NGAL, HO-1, NF-κB, and 18S, isolated from peripheral leukocytes. We measured aldosterone, cortisol, sodium, potassium excretion, metalloproteinase (MMP9 y MMP2), and C-reactive protein. RESULTS We identified 126 subjects with high Na-intake, 18 subjects had high, and 108 low-RAC1 expression. The subjects with high-RAC1 expression showed a significant increase in MR (P = 0.0002), NGAL (P < 0.0001) HO-1 (P = 0.0004), and NF-κB (P < 0.0001) gene expression. We demonstrated an association between RAC1 expression and MR (R sp 0.64; P < 0.0001), NGAL (R sp 0.48; P < 0.0001), HO-1 (R sp 0.53; P < 0.0001), and NF-κB (R sp0.52; P < 0.0001). We did not identify any association between RAC1 and clinical or biochemical variables. CONCLUSIONS RAC1 expression was associated with an increase in MR, NGAL, NF-κB, and HO-1 expression, suggesting that RAC1 could be a mediator of cardiovascular damage induced by sodium, and may also useful to identify subjects with different responses to salt intake.
Collapse
Affiliation(s)
| | - Cristian A Carvajal
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millenium Institute in Immunology and Immunotherapy, Santiago, Chile
| | - Carmen Campino
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millenium Institute in Immunology and Immunotherapy, Santiago, Chile
| | - Caroline Hill
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Fidel Allende
- Servicios de Laboratorios Clinicos, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millenium Institute in Immunology and Immunotherapy, Santiago, Chile
| | - Carmen Carrasco
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rodrigo Bancalari
- Pediatrics, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carolina Valdivia
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos Lagos
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Hernan Garcia
- Pediatrics, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Marlene Aglony
- Pediatrics, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rene F Baudrand
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millenium Institute in Immunology and Immunotherapy, Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F Michea
- Millenium Institute in Immunology and Immunotherapy, Santiago, Chile; Laboratory of Integrative Physiology, ICBM, Universidad de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millenium Institute in Immunology and Immunotherapy, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad Ciencias Biológicas y Facultad de Medicina Universidad Andrés Bello, Santiago, Chile
| | - Carlos E Fardella
- Endocrinology, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile; Millenium Institute in Immunology and Immunotherapy, Santiago, Chile;
| |
Collapse
|
22
|
Garza AE, Rariy CM, Sun B, Williams J, Lasky-Su J, Baudrand R, Yao T, Moize B, Hafiz WM, Romero JR, Adler GK, Ferri C, Hopkins PN, Pojoga LH, Williams GH. Variants in striatin gene are associated with salt-sensitive blood pressure in mice and humans. Hypertension 2014; 65:211-217. [PMID: 25368024 DOI: 10.1161/hypertensionaha.114.04233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Striatin is a novel protein that interacts with steroid receptors and modifies rapid, nongenomic activity in vitro. We tested the hypothesis that striatin would in turn affect mineralocorticoid receptor function and consequently sodium, water, and blood pressure homeostasis in an animal model. We evaluated salt sensitivity of blood pressure in novel striatin heterozygote knockout mice. Compared with wild type, striatin heterozygote exhibited a significant increase in blood pressure when sodium intake was increased from restricted (0.03%) to liberal (1.6%) sodium. Furthermore, renal expression of mineralocorticoid receptor and its genomic downstream targets serum/glucocorticoid-regulated kinase 1, and epithelial sodium channel was increased in striatin heterozygote versus wild-type mice on liberal sodium intake while the pAkt/Akt ratio, readout of mineralocorticoid receptor's rapid, nongenomic pathway, was reduced. To determine the potential clinical relevance of these findings, we tested the association between single nucleotide polymorphic variants of striatin gene and salt sensitivity of blood pressure in 366 white hypertensive subjects. HapMap-derived tagging single nucleotide polymorphisms identified an association of rs2540923 with salt sensitivity of blood pressure (odds ratio, 6.25; 95% confidence interval, 1.7-20; P=0.01). These data provide the first in vivo evidence in humans and rodents that associates striatin with markers of mineralocorticoid receptor activity. The data also support the hypothesis that the rapid, nongenomic mineralocorticoid receptor pathway (mediated via striatin) has a role in modulating the interaction between salt intake and blood pressure.
Collapse
Affiliation(s)
- Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Chevon M Rariy
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Bei Sun
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Jonathan Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Jessica Lasky-Su
- Channing Department of Network Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Rene Baudrand
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA.,Department of Endocrinology, School Of Medicine, Pontificia Universidad Catolica De Chile, Santiago 8330074, Chile
| | - Tham Yao
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Burhanuddin Moize
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Wan M Hafiz
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Claudio Ferri
- Division of Internal Medicine & Nephrology and School of Internal Medicine, University of L'Aquila - San Salvatore Hospital, V.le San Salvatore - Delta 6 Building, Coppito 67100 AQ, Italy
| | - Paul N Hopkins
- Division of Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, UT 84108
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School. Boston, MA 02115, USA
| |
Collapse
|
23
|
Ren Y, D'Ambrosio MA, Garvin JL, Leung P, Kutskill K, Wang H, Peterson EL, Carretero OA. Aldosterone sensitizes connecting tubule glomerular feedback via the aldosterone receptor GPR30. Am J Physiol Renal Physiol 2014; 307:F427-34. [PMID: 24966088 DOI: 10.1152/ajprenal.00072.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) dilates the afferent arteriole (Af-Art), a process we call connecting tubule glomerular feedback (CTGF). We hypothesize that aldosterone sensitizes CTGF via a nongenomic mechanism that stimulates CNT ENaC via the aldosterone receptor GPR30. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused. Two consecutive CTGF curves were elicited by increasing luminal NaCl in the CNT. During the control period, the concentration of NaCl that elicited a half-maximal response (EC50) was 37.0 ± 2.0 mmol/l; addition of aldosterone 10(-8) mol/l to the CNT lumen caused a left-shift (decrease) in EC50 to 19.3 ± 1.3 mmol/l (P = 0.001 vs. control; n = 6). Neither the transcription inhibitor actinomycin D nor the translation inhibitor cycloheximide prevented the effect of aldosterone (control EC50 = 34.7 ± 1.9 mmol/l; aldosterone+actinomycin D EC50 = 22.6 ± 1.6 mmol/l; P < 0.001 and control EC50 = 32.4 ± 4.3 mmol/l; aldosterone+cycloheximide EC50 = 17.4 ± 3.3 mmol/l; P < 0.001). The aldosterone antagonist eplerenone prevented the sensitization of CTGF by aldosterone (control EC50 = 33.2 ± 1.7 mmol/l; aldosterone+eplerenone EC50 = 33.5 ± 1.3 mmol/l; n = 7). The GPR30 receptor blocker G-36 blocked the sensitization of CTGF by aldosterone (aldosterone EC50 = 16.5 ± 1.9 mmol/l; aldosterone+G-36 EC50 = 29.0 ± 2.1 mmol/l; n = 7; P < 0.001). Finally, we found that the sensitization of CTGF by aldosterone was mediated, at least in part, by the sodium/hydrogen exchanger (NHE). We conclude that aldosterone in the CNT lumen sensitizes CTGF via a nongenomic effect involving GPR30 receptors and NHE. Sensitized CTGF induced by aldosterone may contribute to renal damage by increasing Af-Art dilation and glomerular capillary pressure (glomerular barotrauma).
Collapse
Affiliation(s)
- YiLin Ren
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Martin A D'Ambrosio
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| | - Pablo Leung
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Kristopher Kutskill
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Hong Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
24
|
Hao J, Ren L, Zhang L, Kong D, Hao L. Aldosterone-induced inflammatory response of mesangial cells via angiotension II receptors. J Renin Angiotensin Aldosterone Syst 2014; 16:739-48. [PMID: 24464860 DOI: 10.1177/1470320313519486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jianbing Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liansheng Ren
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Deyang Kong
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Rapid nongenomic action of aldosterone on protein expressions of Hsp90( α and β ) and pc-Src in rat kidney. BIOMED RESEARCH INTERNATIONAL 2013; 2013:346480. [PMID: 23484111 PMCID: PMC3581097 DOI: 10.1155/2013/346480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/25/2012] [Accepted: 12/25/2012] [Indexed: 01/28/2023]
Abstract
Previous in vitro studies indicated that aldosterone nongenomically phosphorylates epidermal growth factor receptor (EGFR) through activation of upstream signals, heat shock protein 90 β (Hsp90 β ), and cytosolic (c)-Src kinase. We demonstrated that aldosterone rapidly elevates EGFR phosphorylation in rat kidney. There are no in vivo data regarding renal Hsp90( α and β ) and phosphorylated (p)c-Src protein expressions. The present study further investigates the expressions of these proteins. Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (Aldo: 150 μ g/kg BW). After 30 minutes, abundances and localizations of these proteins were determined. Aldosterone enhanced renal Hsp90 β protein abundance (P < 0.001), but Hsp90 α and pc-Src protein levels remained unaltered. Expression of Hsp90( α and β ) was induced prominently in the proximal convoluted tubules (PCTs). Activation of Hsp90 α was observed in vascular and outer medulla regions, whereas Hsp90 β was induced in the cortex. Immunoreactivity of pc-Src was elevated in PCT with obvious staining at the luminal membrane. This in vivo study is the first to demonstrate that aldosterone nongenomically elevates Hsp90( α and β ) protein expressions in rat kidney. Aldosterone had no effect on pc-Src protein levels but modulated localization. These results indicate that aldosterone regulates upstream mediators of EGFR transactivation in vivo.
Collapse
|
26
|
Zhang Q, Lin L, Lu Y, Liu H, Duan Y, Zhu X, Zou C, Manning RD, Liu R. Interaction between nitric oxide and superoxide in the macula densa in aldosterone-induced alterations of tubuloglomerular feedback. Am J Physiol Renal Physiol 2012; 304:F326-32. [PMID: 23220724 DOI: 10.1152/ajprenal.00501.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tubuloglomerular feedback (TGF)-mediated constriction of the afferent arteriole is modulated by a balance between release of superoxide (O(2)(-)) and nitric oxide (NO) in macula densa (MD) cells. Aldosterone activates mineralocorticoid receptors that are expressed in the MD and induces both NO and O(2)(-) generation. We hypothesize that aldosterone enhances O(2)(-) production in the MD mediated by protein kinase C (PKC), which buffers the effect of NO in control of TGF response. Studies were performed in microdissected and perfused MD and in a MD cell line, MMDD1 cells. Aldosterone significantly enhanced O(2)(-) generation both in perfused MD and in MMDD1 cells. When aldosterone (10(-7) mol/l) was added in the tubular perfusate, TGF response was reduced from 2.4 ± 0.3 μm to 1.4 ± 0.2 μm in isolated perfused MD. In the presence of tempol, a O(2)(-) scavenger, TGF response was 1.5 ± 0.2 μm. In the presence of both tempol and aldosterone in the tubular perfusate, TGF response was further reduced to 0.4 ± 0.2 μm. To determine if PKC is involved in aldosterone-induced O(2)(-) production, we exposed the O(2)(-) cells to a nonselective PKC inhibitor chelerythrine chloride, a specific PKCα inhibitor Go6976, or a PKCα siRNA, and the aldosterone-induced increase in O(2)(-) production was blocked. These data indicate that aldosterone-stimulated O(2)(-) production in the MD buffers the effect of NO in control of TGF response, an effect that was mediated by PKCα.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wagman G, Fudim M, Kosmas CE, Panni RE, Vittorio TJ. The neurohormonal network in the RAAS can bend before breaking. Curr Heart Fail Rep 2012; 9:81-91. [PMID: 22528688 DOI: 10.1007/s11897-012-0091-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) has evolved in humans as one of the main physiological networks by which blood pressure and blood flow to vital organs is maintained. The RAAS has evolved to circumvent life-threatening events such as hemorrhage and starvation. Although short-term activation of this system had been well suited to counteract such catastrophes of early man, excessive chronic activation of the RAAS plays a fundamental role in the development and progression of cardiovascular disease in modern man. The RAAS is an intricate network comprising a number of major organ systems (heart, kidney, and vasculature) and signaling pathways. The main protagonists are renin, angiotensinogen (Ang), angiotensin I (Ang I), angiotensin II (Ang II), and aldosterone (Aldo). The study and delineation of each of these substances has allowed modern medicine to create targets by which cardiovascular disease can be treated. The main modulators that have been synthesized in this respect are angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), mineralocorticoid receptor blockers (MRBs), and direct renin inhibitors (DRIs). Over the past few decades, each of these substances has proven efficacious to varying degrees amongst a number of clinical settings. Additionally, there exists data for and against the use of these agents in combination. The use of these agents in combination poses a larger question conceptually: can excessive pharmacological inhibition of the RAAS lead to patient harm? This perspective will examine the concept of a neurohormonal inhibition ceiling in pertinent experimental and clinical trials.
Collapse
Affiliation(s)
- Gabriel Wagman
- St. Francis Hospital-The Heart Center, Division of Cardiology, Center for Advanced Cardiac Therapeutics, 100 Port Washington Boulevard, Roslyn, NY, 11576-1348, USA
| | | | | | | | | |
Collapse
|
28
|
Berend K, van Hulsteijn LH, Gans ROB. Chloride: the queen of electrolytes? Eur J Intern Med 2012; 23:203-11. [PMID: 22385875 DOI: 10.1016/j.ejim.2011.11.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/20/2011] [Accepted: 11/22/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. STUDY DESIGN To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. CONCLUSION Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders.
Collapse
Affiliation(s)
- Kenrick Berend
- Nephrology department, St. Elisabeth Hospital, Willemstad, Curaçao, The Netherlands.
| | | | | |
Collapse
|
29
|
Braga-Sobrinho C, Leite-Dellova DCA, Mello-Aires M. Action of ANP on the nongenomic dose-dependent biphasic effect of aldosterone on NHE1 in proximal S3 segment. J Steroid Biochem Mol Biol 2012; 128:89-97. [PMID: 22154810 DOI: 10.1016/j.jsbmb.2011.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 10/15/2022]
Abstract
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na⁺/H⁺ exchanger isoform), after the acid load induced by NH₄Cl, and on the cytosolic free calcium concentration ([Ca²⁺](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15±0.008 and the basal pHirr was 0.195±0.012 pH units/min (number of tubules/number of tubular areas=16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10⁻¹² M) increases the pHirr to approximately 59% of control value, and ALDO (10⁻⁶ M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10⁻⁶ M) or BAPTA (5×10⁻⁵ M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca²⁺](i) was 104±3 nM (15), and ALDO (10⁻¹² or 10⁻⁶ M) increased the basal [Ca²⁺](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca²⁺](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca²⁺](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations.
Collapse
Affiliation(s)
- C Braga-Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, 05508-900 SP, Brazil
| | | | | |
Collapse
|
30
|
Queisser N, Schupp N, Stopper H, Schinzel R, Oteiza PI. Aldosterone increases kidney tubule cell oxidants through calcium-mediated activation of NADPH oxidase and nitric oxide synthase. Free Radic Biol Med 2011; 51:1996-2006. [PMID: 21946068 DOI: 10.1016/j.freeradbiomed.2011.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 12/29/2022]
Abstract
Chronic hyperaldosteronism has been associated with an increased cancer risk. We recently showed that aldosterone causes an increase in cell oxidants, DNA damage, and NF-κB activation. This study investigated the mechanisms underlying aldosterone-induced increase in cell oxidants in kidney tubule cells. Aldosterone caused an increase in both reactive oxygen and reactive nitrogen (RNS) species. The involvement of the activation of NADPH oxidase in the increase in cellular oxidants was demonstrated by the inhibitory action of the NADPH oxidase inhibitors DPI, apocynin, and VAS2870 and by the migration of the p47 subunit to the membrane. NADPH oxidase activation occurred as a consequence of an increase in cellular calcium levels and was mediated by protein kinase C. The prevention of RNS increase by BAPTA-AM, W-7, and L-NAME indicates a calcium-calmodulin activation of NOS. A similar pattern of effects of the NADPH oxidase and NOS inhibitors was observed for aldosterone-induced DNA damage and NF-κB activation, both central to the pathogenesis of chronic aldosteronism. In summary, this paper demonstrates that aldosterone, via the mineralocorticoid receptor, causes an increase in kidney cell oxidants, DNA damage, and NF-κB activation through a calcium-mediated activation of NADPH oxidase and NOS. Therapies targeting calcium, NOS, and NADPH oxidase could prevent the adverse effects of hyperaldosteronism on kidney function as well as its potential oncogenic action.
Collapse
Affiliation(s)
- Nina Queisser
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Calhoun DA, White WB, Krum H, Guo W, Bermann G, Trapani A, Lefkowitz MP, Ménard J. Effects of a Novel Aldosterone Synthase Inhibitor for Treatment of Primary Hypertension. Circulation 2011; 124:1945-55. [DOI: 10.1161/circulationaha.111.029892] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background—
LCI699, a novel inhibitor of aldosterone synthase, reduces serum aldosterone, and may have benefit in the treatment of hypertension.
Methods and Results—
We performed the first double-blind, randomized trial with LCI699 in patients with primary hypertension. We randomized 524 patients to LCI699 0.25 mg once daily (n=92), 0.5 mg once daily (n=88), 1.0 mg once daily (n=86), and 0.5 mg twice daily (n=97); eplerenone 50 mg twice daily (n=84); or placebo (n=77) for 8 weeks. Adrenocorticotropic hormone (250 μg IV) stimulation testing was performed in a subset of patients to quantify the selectivity of LCI699 for aldosterone synthase compared with 11-β-hydroxylase. Reductions in clinic diastolic blood pressure were significant for LCI699 1.0 mg (−7.1 mm Hg;
P
=0.0012) and eplerenone 50 mg twice daily (−7.9 mm Hg;
P
<0.0001) compared with placebo (−2.6 mm Hg) but not other doses of LCI699. Significant reductions in clinic systolic blood pressure were observed with all doses of LCI699 (
P
<0.005 or better) and eplerenone (
P
<0.0001). All doses of LCI699 significantly reduced 24-hour ambulatory blood pressure compared with placebo (
P
<0.01). Adrenocorticotropic hormone stimulation of cortisol was suppressed in ≈20% of subjects receiving LCI699 at a total daily dose of 1.0 mg. Safety and tolerability were similar among LCI699, placebo, and eplerenone.
Conclusions—
Aldosterone synthase inhibition with LCI699 significantly lowered clinic and ambulatory blood pressure. A minority of subjects developed blunted adrenocorticotropic hormone–stimulated release of cortisol. These results support additional research to evaluate use of aldosterone synthase inhibition in primary hypertension and/or patients characterized by aldosterone excess.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT00758524.
Collapse
Affiliation(s)
- David A. Calhoun
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - William B. White
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - Henry Krum
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - Weinong Guo
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - Georgina Bermann
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - Angelo Trapani
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - Martin P. Lefkowitz
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| | - Joël Ménard
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham (D.A.C.); Division of Hypertension and Clinical Pharmacology, Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia (H.K.); Novartis Pharmaceuticals Corporation, East Hanover, NJ (W.G., A.T., M.P.L.)
| |
Collapse
|
32
|
Queisser N, Oteiza PI, Stopper H, Oli RG, Schupp N. Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells. Mol Carcinog 2010; 50:123-35. [PMID: 21229609 DOI: 10.1002/mc.20710] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 12/12/2022]
Abstract
An increase of the mineralocorticoid aldosterone is induced by a stimulated renin-angiotensin system in a subgroup of hypertensive patients. Epidemiological studies find higher cancer mortality in hypertensive patients and an increased risk to develop kidney cancer. This work investigated the involvement of oxidants in the genotoxicity of aldosterone and on a potential activation of transcription factor nuclear factor-κB (NF-κB) in kidney tubule cells. Aldosterone, at concentrations as low as 1 nM caused a significant increase of DNA damage, as assessed by comet assay and micronucleus frequency test. Aldosterone also led to a dose-dependent activation of NF-κB. Time courses of DNA damage and NF-κB-activation showed that these effects already occurred after 5 and 3 min of aldosterone exposure, respectively, suggesting non-genomic events of the hormone. Antioxidants prevented aldosterone-induced DNA damage and NF-κB-activation, indicating the involvement of oxidants. In fact, aldosterone caused an increase in intracellular oxidant levels, and in particular of superoxide anions. As a consequence, increased levels of the oxidized DNA modification 7,8-dihydro-8-oxo-guanine were observed in aldosterone-treated kidney cells. Aldosterone-induced DNA damage and NF-κB-activation was dependent on the involvement of the mineralocorticoid receptor. The induction of oxidant-mediated genotoxic effects, and of a long-term activation of the potentially oncogenic cell signal NF-κB by aldosterone could contribute to the increased kidney cancer incidence in hypertensive patients.
Collapse
Affiliation(s)
- Nina Queisser
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Leite-Dellova DCA, Malnic G, Mello-Aires M. Genomic and nongenomic stimulatory effect of aldosterone on H+-ATPase in proximal S3 segments. Am J Physiol Renal Physiol 2010; 300:F682-91. [PMID: 21190948 DOI: 10.1152/ajprenal.00172.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genomic and nongenomic effects of aldosterone on the intracellular pH recovery rate (pHirr) via H(+)-ATPase and on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in isolated proximal S3 segments of rats during superfusion with an Na(+)-free solution, by using the fluorescent probes BCECF-AM and FLUO-4-AM, respectively. The pHirr, after cellular acidification with a NH(4)Cl pulse, was 0.064 ± 0.003 pH units/min (n = 17/74) and was abolished with concanamycin. Aldosterone (10(-12), 10(-10), 10(-8), or 10(-6) M with 1-h or 15- or 2-min preincubation) increased the pHirr. The baseline [Ca(2+)](i) was 103 ± 2 nM (n = 58). After 1 min of aldosterone preincubation, there was a transient and dose-dependent increase in [Ca(2+)](i) and after 6-min preincubation there was a new increase in [Ca(2+)](i) that persisted after 1 h. Spironolactone [mineralocorticoid (MR) antagonist], actinomycin D, or cycloheximide did not affect the effects of aldosterone (15- or 2-min preincubation) on pHirr and on [Ca(2+)](i) but inhibited the effects of aldosterone (1-h preincubation) on these parameters. RU 486 [glucocorticoid (GR) antagonist] and dimethyl-BAPTA (Ca(2+) chelator) prevented the effect of aldosterone on both parameters. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on the H(+)-ATPase and on [Ca(2+)](i). The results are compatible with stimulation of the H(+)-ATPase by increases in [Ca(2+)](i) (at 10(-12)-10(-6) M aldosterone) and inhibition of the H(+)-ATPase by decreases in [Ca(2+)](i) (at 10(-12) or 10(-6) M aldosterone plus RU 486).
Collapse
Affiliation(s)
- D C A Leite-Dellova
- Department of Basic Sciences, Faculdade de Zootecnia e Engenharia de Alimentos, Campus of Pirassununga, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
34
|
Lin S, Li D, Jia J, Zheng Z, Jia Z, Shang W. Spironolactone ameliorates podocytic adhesive capacity via restoring integrin alpha 3 expression in streptozotocin-induced diabetic rats. J Renin Angiotensin Aldosterone Syst 2010; 11:149-57. [PMID: 20525748 DOI: 10.1177/1470320310369603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Podocyte responses to various injuries include detachment from the glomerular basement membrane (GBM) with impaired adhesion ability. Growing evidence suggests inappropriately enhanced aldosterone levels in glomeruli may contribute to podocytic injury and subsequently glomerulosclerosis in diabetic nephropathy (DN). In the present study, we aimed to investigate podocytic integrin alpha 3 expression and urinary podocyte excretion in streptozotocin (STZ)-induced diabetic rats, and to evaluate their responses to spironolactone (SPL). STZ-induced male diabetic Wistar rats were treated with vehicle (the STZ group, n=7), or spironolactone (the STZ+SPL group, n=6) for 12 weeks, six additional rats of similar body weight serving as control. Urine specimens were obtained for measurement of urine albumin concentration and urinary podocyte quantitation upon completion of the 12 weeks. Urinary podocyte excretion was quantified by immunofluorescence and expression of integrin alpha 3 was detected by immunohistochemistry and Western blotting. At 12 weeks, rats given STZ alone revealed an increase in blood glucose and were unaffected by spironolactone, whereas the STZ+SPL group showed considerable improvement in urine albumin and podocyte excretion, as well as up-regulation of integrin alpha 3. Our results suggest that spironolactone ameliorates impaired podocytic adhesion capacity and prevents STZ-induced DN progression.
Collapse
Affiliation(s)
- Shan Lin
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin, China.
| | | | | | | | | | | |
Collapse
|
35
|
Pergher PS, Leite-Dellova D, de Mello-Aires M. Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule. Am J Physiol Renal Physiol 2009; 296:F1185-93. [DOI: 10.1152/ajprenal.90217.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The direct action of aldosterone (10−12 M) on net bicarbonate reabsorption ( JHCO3−) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in JHCO3− from a mean control value of 2.84 ± 0.08 [49/19 ( n° of measurements/ n° of tubules)] to 4.20 ± 0.15 nmol·cm−2·s−1 (58/10). Aldosterone perfused into peritubular capillaries also increased JHCO3−, compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca2+]i), monitored fluorometrically. In the presence of ethanol (in similar concentration used to prepare the hormonal solution), spironolactone (10−6 M, a mineralocorticoid receptor antagonist), actinomycin D (10−6 M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the JHCO3− and the [Ca2+]i were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. However, in the presence of RU 486 alone [10−6 M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on JHCO3− and on [Ca2+]i was observed; this antagonist also inhibited the stimulatory effect of aldosterone on JHCO3− and on [Ca2+]i. These studies indicate that luminal or peritubular aldosterone (10−12 M) has a direct nongenomic stimulatory effect on JHCO3− and on [Ca2+]i in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates JHCO3− in middle proximal tubule.
Collapse
|
36
|
Xu G, Liu A, Liu X. Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules. Nephrology (Carlton) 2009; 13:694-701. [PMID: 19154323 DOI: 10.1111/j.1440-1797.2008.00998.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Aldosterone plays a crucial role in renal fibrosis by inducing mesangial cell proliferation and promoting collagen synthesis in renal fibroblasts. However, renal proximal tubule involvement in aldosterone-induced collagen synthesis has not yet been identified. The aim of this study was to examine the potential role of aldosterone in collagen expression and its possible mineralocorticoid receptor (MR)-dependent pathway, mediated by activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured human renal proximal tubular epithelial (HKC) cells. METHODS After HKC cells were stimulated by aldosterone with different concentrations for various time and periods, the gene expression and protein synthesis of collagen I, II, III and IV were measured by real-time polymerase chain reaction and western blot, respectively. ERK1/2 activation, alpha-smooth muscle actin (alpha-SMA), and E-cadherin were also detected by western blot. RESULTS Aldosterone can increase ERK1/2 phosphorylation of human renal proximal tubular epithelial cells in a time- and dose-dependent manner. Although aldosterone had no effect on collagen I and II expression, it increased expression of alpha-SMA and collagen III and IV and decreased that of E-cadherin in HKC cells after 48 h. These effects could be prevented by a ERK pathway inhibitor, U0126, or by a selective MR antagonist, spironolactone. CONCLUSION The results suggest that aldosterone plays a pivotal role in tubulointerstitial fibrosis by promoting tubular epithelial-mesenchymal transition and collagen synthesis in proximal tubular cells. The process is MR-dependent, and mediated by ERK1/2 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Guoshuang Xu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | |
Collapse
|
37
|
Effect of aldosterone on kinetics of intracellular sodium in cortical portion of collecting ducts in rat kidney. Bull Exp Biol Med 2009; 146:192-5. [PMID: 19145315 DOI: 10.1007/s10517-008-0242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We studied the effect of protein kinase C inhibitor RO-31-8220 (10(-7) M) on rapid nongenomic effect of aldosterone in cells of isolated segment of distal region of collecting duct in rat kidney. Experiments with fluorescent dye Na-Green showed that the inhibitor abolished the modulating effect of aldosterone (10 nM) on intracellular sodium concentration at external sodium concentration of 14 mM. Aldosterone decreased by half the initial rate of the changes in internal sodium concentration in both 10-day and mature rats (p<0.05). Similarly to sodium channel blocker amiloride (10(-5) M), RO-31-8220 abolished rapid nongenomic effect of aldosterone on the rate of the changes in internal sodium concentration.
Collapse
|
38
|
Sontia B, Montezano AC, Paravicini T, Tabet F, Touyz RM. Downregulation of Renal TRPM7 and Increased Inflammation and Fibrosis in Aldosterone-Infused Mice. Hypertension 2008; 51:915-21. [DOI: 10.1161/hypertensionaha.107.100339] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bruno Sontia
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Augusto C.I. Montezano
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Tamara Paravicini
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Fatiha Tabet
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M. Touyz
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 2008; 70:165-90. [PMID: 18271749 DOI: 10.1146/annurev.physiol.70.113006.100518] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steroids play an important role in the regulation of normal physiology and the treatment of disease. Steroid receptors have classically been described as ligand-activated transcription factors mediating long-term genomic effects in hormonally regulated tissues. It is now clear that steroids also mediate rapid signaling events traditionally associated with growth factor receptors and G protein-coupled receptors. Although evidence suggests that the classical steroid receptors are capable of mediating many of these events, more recent discoveries reveal the existence of transmembrane receptors capable of responding to steroids with cellular activation. One such receptor, GPR30, is a member of the G protein-coupled receptor superfamily and mediates estrogen-dependent kinase activation as well as transcriptional responses. In this review, we provide an overview of the evidence for the cellular and physiological actions of GPR30 in estrogen-dependent processes and discuss the relationship of GPR30 with classical estrogen receptors.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Oxidative stress and the genomic regulation of aldosterone-stimulated NHE1 activity in SHR renal proximal tubular cells. Mol Cell Biochem 2007; 310:191-201. [PMID: 18095144 DOI: 10.1007/s11010-007-9680-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
This study evaluated the effects of aldosterone upon Na+/H+ exchange (NHE) activity in immortalized proximal tubular epithelial (PTE) cells from the spontaneously hypertensive rat (SHR) and the normotensive controls (Wistar Kyoto rat; WKY). Increases in NHE activity after exposure to aldosterone occurred in time- and concentration-dependent manner in SHR PTE cells, but not in WKY PTE cells. The aldosterone-induced increases in NHE activity were prevented by spironolactone, but not by the glucocorticoid receptor antagonist Ru 38486. The presence of the mineralocorticoid receptor transcript was confirmed by PCR and NHE1, NHE2, and NHE3 proteins were detected by immunoblot analysis. Cariporide and EIPA, but not S3226, inhibited the aldosterone-induced increase in NHE activity, indicating that NHE1 is the most likely involved NHE isoform. Pretreatment of SHR PTE cells with actinomycin D attenuated the aldosterone-induced increases in NHE activity. The SHR PTE cells had an increased rate of H2O2 production when compared with WKY PTE cells. Treatment of cells with apocynin, a NADPH oxidase inhibitor, markedly reduced the rate of H2O2 production. The aldosterone-induced increase in NHE activity SHR PTE cells was completely prevented by apocynin. In conclusion, the aldosterone-induced stimulation of NHE1 activity is a genomic event unique in SHR PTE cells, which involves the activation of the mineralocorticoid receptor, but ultimately requires the availability of H2O2 in excess.
Collapse
|