1
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Finiuk N, Holota S, Lesyk R, Bielawska A, Vassetzky Y, Bielawski K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023; 12:2312. [PMID: 37759535 PMCID: PMC10527932 DOI: 10.3390/cells12182312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Anna Shmakova
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine;
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Yegor Vassetzky
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| |
Collapse
|
2
|
Rajlic S, Treede H, Münzel T, Daiber A, Duerr GD. Early Detection Is the Best Prevention-Characterization of Oxidative Stress in Diabetes Mellitus and Its Consequences on the Cardiovascular System. Cells 2023; 12:583. [PMID: 36831253 PMCID: PMC9954643 DOI: 10.3390/cells12040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Previous studies demonstrated an important role of oxidative stress in the pathogenesis of cardiovascular disease (CVD) in diabetic patients due to hyperglycemia. CVD remains the leading cause of premature death in the western world. Therefore, diabetes mellitus-associated oxidative stress and subsequent inflammation should be recognized at the earliest possible stage to start with the appropriate treatment before the onset of the cardiovascular sequelae such as arterial hypertension or coronary artery disease (CAD). The pathophysiology comprises increased reactive oxygen and nitrogen species (RONS) production by enzymatic and non-enzymatic sources, e.g., mitochondria, an uncoupled nitric oxide synthase, xanthine oxidase, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Considering that RONS originate from different cellular mechanisms in separate cellular compartments, adequate, sensitive, and compartment-specific methods for their quantification are crucial for early detection. In this review, we provide an overview of these methods with important information for early, appropriate, and effective treatment of these patients and their cardiovascular sequelae.
Collapse
Affiliation(s)
- Sanela Rajlic
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Hendrik Treede
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Evans LE, Taylor JL, Smith CJ, Pritchard HAT, Greenstein AS, Allan SM. Cardiovascular co-morbidities, inflammation and cerebral small vessel disease. Cardiovasc Res 2021; 117:2575-2588. [PMID: 34499123 DOI: 10.1093/cvr/cvab284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral small vessel disease (cSVD) is the most common cause of vascular cognitive impairment and affects all levels of the brain's vasculature. Features include diverse structural and functional changes affecting small arteries and capillaries that lead to a decline in cerebral perfusion. Due to an aging population, incidence of cerebral small vessel disease (cSVD) is continually rising. Despite its prevalence and its ability to cause multiple debilitating illnesses, such as stroke and dementia, there are currently no therapeutic strategies for the treatment of cSVD. In the healthy brain, interactions between neuronal, vascular and inflammatory cells are required for normal functioning. When these interactions are disturbed, chronic pathological inflammation can ensue. The interplay between cSVD and inflammation has attracted much recent interest and this review discusses chronic cardiovascular diseases, particularly hypertension, and explores how the associated inflammation may impact on the structure and function of the small arteries of the brain in cSVD. Molecular approaches in animal studies are linked to clinical outcomes in patients and novel hypotheses regarding inflammation and cSVD are proposed that will hopefully stimulate further discussion and study in this important area.
Collapse
Affiliation(s)
- Lowri E Evans
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Jade L Taylor
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Craig J Smith
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.,Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal Hospital, Manchester Academic Health Sciences Centre (MAHSC)
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Adam S Greenstein
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Józefczuk E, Nosalski R, Saju B, Crespo E, Szczepaniak P, Guzik TJ, Siedlinski M. Cardiovascular Effects of Pharmacological Targeting of Sphingosine Kinase 1. Hypertension 2020; 75:383-392. [PMID: 31838904 PMCID: PMC7055939 DOI: 10.1161/hypertensionaha.119.13450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
High blood pressure is a risk factor for cardiovascular diseases. Ang II (angiotensin II), a key pro-hypertensive hormone, mediates target organ consequences such as endothelial dysfunction and cardiac hypertrophy. S1P (sphingosine-1-phosphate), produced by Sphk1 (sphingosine kinase 1), plays a pivotal role in the pathogenesis of hypertension and downstream organ damage, as it controls vascular tone and regulates cardiac remodeling. Accordingly, we aimed to examine if pharmacological inhibition of Sphk1 using selective inhibitor PF543 can represent a useful vasoprotective and cardioprotective anti-hypertensive strategy in vivo. PF543 was administered intraperitoneally throughout a 14-day Ang II-infusion in C57BL6/J male mice. Pharmacological inhibition of Sphk1 improved endothelial function of arteries of hypertensive mice that could be mediated via decrease in eNOS (endothelial nitric oxide synthase) phosphorylation at T495. This effect was independent of blood pressure. Importantly, PF543 also reduced cardiac hypertrophy (heart to body weight ratio, 5.6±0.2 versus 6.4±0.1 versus 5.9±0.2 mg/g; P<0.05 for Sham, Ang II+placebo, and Ang II+PF543-treated mice, respectively). Mass spectrometry revealed that PF543 elevated cardiac sphingosine, that is, Sphk1 substrate, content in vivo. Mechanistically, RNA-Seq indicated a decreased expression of cardiac genes involved in actin/integrin organization, S1pr1 signaling, and tissue remodeling. Indeed, downregulation of Rock1 (Rho-associated coiled-coil containing protein kinase 1), Stat3 (signal transducer and activator of transcription 3), PKC (protein kinase C), and ERK1/2 (extracellular signal-regulated kinases 1/2) level/phosphorylation by PF543 was observed. In summary, pharmacological inhibition of Sphk1 partially protects against Ang II-induced cardiac hypertrophy and endothelial dysfunction. Therefore, it may represent a promising target for harnessing residual cardiovascular risk in hypertension.
Collapse
Affiliation(s)
- Ewelina Józefczuk
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| | - Ryszard Nosalski
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Eva Crespo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Piotr Szczepaniak
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| | - Tomasz Jan Guzik
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Mateusz Siedlinski
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| |
Collapse
|
5
|
Li J, Liu G, Ihsan A, Yi X, Wang DG, Cheng H, Muhammad A, Huang XJ. Effects of Veratrilla baillonii Extract on Hepatic Gene Expression Profiles in Response to Aconitum brachypodum-Induced Liver Toxicity in Mice. Front Pharmacol 2019; 10:568. [PMID: 31214025 PMCID: PMC6555156 DOI: 10.3389/fphar.2019.00568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
This manuscript was aimed to explore the hepato-protective effect of water extract of Veratrilla baillonii Franch. (Gentianaceae) (WVBF) on serious hepatic toxicity induced in mice treated with Aconitum brachypodum Diels (Ranunculaceae) at transcriptome level. The physiological and pathological symptoms were evaluated as the markers for hepato toxicity induced by A. brachypodum Diels (CFA) extracted compounds. Moreover, gene chip method was used to compare and investigate the gene expression level of WVBF on CFA induced-liver toxicity to identify the potential target of WVBF and CFA on liver. The results showed that WVBF had a significant detoxification effect on CFA-induced acute hepatic toxicity. There were 130 genes with lower expression and 124 genes expressed at higher rate in CFA treated group as compared with normal control group, while there are 67 genes down-regulated and 74 genes up-regulated in WVBF treated group in comparison with CFA treated group. WVBF could attenuate CFA-induced liver damage in mice through regulating oxidative stress, inflammatory injury and cell apoptosis/necrosis pathways. On the other hand, WVBF and CFA may have potential synergetic effects on the target genes of certain diseases such as inflammation, cancer and diabetes.
Collapse
Affiliation(s)
- Jun Li
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Xuejia Yi
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Da-Gui Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Han Cheng
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Azhar Muhammad
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
6
|
Ambasta RK, Kohli H, Kumar P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J Transl Med 2017; 15:185. [PMID: 28859673 PMCID: PMC5580204 DOI: 10.1186/s12967-017-1280-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduced levels of endothelial progenitor cells (EPCs) counts have been reported in diabetic mellitus (DM) patients and other diabetes-related disorder. EPCs are a circulating, bone marrow-derived cell population that appears to participate in vasculogenesis, angiogenesis and damage repair. These EPC may revert the damage caused in diabetic condition. We aim to identify several existing drugs and signaling molecule, which could alleviate or improve the diabetes condition via mobilizing and increasing EPC number as well as function. MAIN BODY Accumulated evidence suggests that dysregulation of EPC phenotype and function may be attributed to several signaling molecules and cytokines in DM patients. Hyperglycemia alone, through the overproduction of reactive oxygen species (ROS) via eNOS and NOX, can induce changes in gene expression and cellular behavior in diabetes. Furthermore, reports suggest that EPC telomere shortening via increased oxidative DNA damage may play an important role in the pathogenesis of coronary artery disease in diabetic patients. In this review, different type of EPC derived from different sources has been discussed along with cell-surface marker. The reduced number and immobilized EPC in diabetic condition have been mobilized for the therapeutic purpose via use of existing, and novel drugs have been discussed. Hence, evidence list of all types of drugs that have been reported to target the same pathway which affect EPC number and function in diabetes has been reviewed. Additionally, we highlight that proteins are critical in diabetes via polymorphism and inhibitor studies. Ultimately, a lucid pictorial explanation of diabetic and normal patient signaling pathways of the collected data have been presented in order to understand the complex signaling mystery underlying in the diseased and normal condition. CONCLUSION Finally, we conclude on eNOS-metformin-HSp90 signaling and its remedial effect for controlling the EPC to improve the diabetic condition for delaying diabetes-related complication. Altogether, the review gives a holistic overview about the elaborate therapeutic effect of EPC regulated by novel and existing drugs in diabetes and diabetes-related disorder.
Collapse
Affiliation(s)
- Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| |
Collapse
|
7
|
Shear-Induced Nitric Oxide Production by Endothelial Cells. Biophys J 2017; 111:208-21. [PMID: 27410748 DOI: 10.1016/j.bpj.2016.05.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/30/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
We present a biochemical model of the wall shear stress-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell. The model includes three key mechanotransducers: mechanosensing ion channels, integrins, and G protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphorylation of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an endothelial cell subjected to a step increase of wall shear stress from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1-5 min) is followed by a sustained period of activation due to protein kinases.
Collapse
|
8
|
Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SAA, Haque MM, Stuehr DJ, Yu J, Polgar P, Naga Prasad SV, Erzurum SC. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1199-205. [PMID: 27130529 DOI: 10.1152/ajplung.00092.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/25/2016] [Indexed: 02/02/2023] Open
Abstract
The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) α and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by β-blocker also restored NO formation by PAH cells, identifying one mechanism by which β-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.
Collapse
Affiliation(s)
- Sudakshina Ghosh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Manveen Gupta
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deloris A Mavrakis
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allison J Janocha
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suzy A A Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jun Yu
- Boston University School of Medicine, Boston, Massachusetts
| | - Peter Polgar
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts; and
| | | | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
9
|
Wachowicz B. Blood Platelet as a Peripheral Cell in Oxidative Stress in Psychiatric Disorders. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-0440-2_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Ramseyer VD, Gonzalez-Vicente A, Carretero OA, Garvin JL. Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation. Am J Physiol Renal Physiol 2014; 308:F149-56. [PMID: 25377910 DOI: 10.1152/ajprenal.00279.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P < 0.007; n = 6) and increased T495 phosphorylation by 147 ± 26% (P < 0.008; n = 6). One-day ANG II infusion had no significant effect. NO production in response to endothelin-1 was blunted in thick ascending limbs from ANG II-infused animals [ANG II -0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P < 0.01]. This was not due to reduced endothelin-1 receptor expression. Phosphatidylinositol 3,4,5-triphosphate (PIP3)-induced NO production was also reduced in ANG II-infused rats (ANG II -0.07 ± 0.06 vs. 0.13 ± 0.04 AFU/min in controls; P < 0.03), and this correlated with an impaired ability of PIP3 to increase S1177 phosphorylation. We conclude that in ANG II-induced hypertension NO production by thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar A Carretero
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L Garvin
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
11
|
Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol 2014; 174:230-42. [DOI: 10.1016/j.ijcard.2014.04.117] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 12/24/2022]
|
12
|
Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014; 2014:674987. [PMID: 24883061 PMCID: PMC4021687 DOI: 10.1155/2014/674987] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
In Diabetes, the chronic hyperglycemia and associated complications affecting peripheral nerves are one of the most commonly occurring microvascular complications with an overall prevalence of 50-60%. Among the vascular complications of diabetes, diabetic neuropathy is the most painful and disabling, fatal complication affecting the quality of life in patients. Several theories of etiologies surfaced down the lane, amongst which the oxidative stress mediated damage in neurons and surrounding glial cell has gained attention as one of the vital mechanisms in the pathogenesis of neuropathy. Mitochondria induced ROS and other oxidants are responsible for altering the balance between oxidants and innate antioxidant defence of the body. Oxidative-nitrosative stress not only activates the major pathways namely, polyol pathway flux, advanced glycation end products formation, activation of protein kinase C, and overactivity of the hexosamine pathway, but also initiates and amplifies neuroinflammation. The cross talk between oxidative stress and inflammation is due to the activation of NF- κ B and AP-1 and inhibition of Nrf2, peroxynitrite mediate endothelial dysfunction, altered NO levels, and macrophage migration. These all culminate in the production of proinflammatory cytokines which are responsible for nerve tissue damage and debilitating neuropathies. This review focuses on the relationship between oxidative stress and neuroinflammation in the development and progression of diabetic neuropathy.
Collapse
Affiliation(s)
- Reddemma Sandireddy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Bala Nagar, Hyderabad 500037, India
- *Ashutosh Kumar:
| |
Collapse
|
13
|
Joshi M, Kotha SR, Malireddy S, Selvaraju V, Satoskar AR, Palesty A, McFadden DW, Parinandi NL, Maulik N. Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol Cell Biochem 2013; 386:233-49. [PMID: 24307101 DOI: 10.1007/s11010-013-1861-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.
Collapse
Affiliation(s)
- Mandip Joshi
- Department of Surgery, University of Connecticut Health Center, Farmington Avenue, Farmington, CT, 06032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu Q, Wang HY, Li J, Zhou P, Wang QL, Zhao L, Fan R, Wang YM, Xu XZ, Yi DH, Yu SQ, Pei JM. Κ-opioid receptor stimulation improves endothelial function in hypoxic pulmonary hypertension. PLoS One 2013; 8:e60850. [PMID: 23667430 PMCID: PMC3646880 DOI: 10.1371/journal.pone.0060850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/03/2013] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to investigate the effect of κ-opioid receptor stimulation with U50,488H on endothelial function and underlying mechanism in rats with hypoxic pulmonary hypertension (HPH). Chronic hypoxia-induced HPH was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, mean pulmonary arterial pressure (mPAP), right ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI) were measured. Relaxation of pulmonary artery in response to acetylcholine (ACh) was determined. Expression and activity of endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) with NO production, total antioxidant capacity (T-AOC), gp91(phox) expression and nitrotyrosine content were measured. The effect of U50,488H administration during chronic hypoxia was investigated. Administration of U50,488H significantly decreased mPAP and right ventricular hypertrophy as evidenced by reduction in RVP and RVHI. These effects were mediated by κ-opioid receptor. In the meantime, treatment with U50,488H significantly improved endothelial function as evidenced by enhanced relaxation in response to ACh. Moreover, U50,488H resulted in a significant increase in eNOS phosphorylation, NO content in serum, and T-AOC in pulmonary artery of HPH rats. In addition, the activity of eNOS was enhanced, but the activity of iNOS was attenuated in the pulmonary artery of chronic hypoxic rats treated with U50,488H. On the other hand, U50,488H markedly blunted HPH-induced elevation of gp91(phox) expression and nitrotyrosine content in pulmonary artery, and these effects were blocked by nor-BNI, a selective κ-opioid receptor antagonist. These data suggest that κ-opioid receptor stimulation with U50,488H improves endothelial function in rats with HPH. The mechanism of action might be attributed to the preservation of eNOS activity, enhancement of eNOS phosphorylation, downregulation of iNOS activity and its antioxidative/nitrative effect.
Collapse
Affiliation(s)
- Qi Wu
- Department of Cardiology, Chengdu Medical College, Chengdu, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sellers SL, Trane AE, Bernatchez PN. Caveolin as a potential drug target for cardiovascular protection. Front Physiol 2012; 3:280. [PMID: 22934034 PMCID: PMC3429054 DOI: 10.3389/fphys.2012.00280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/28/2012] [Indexed: 01/12/2023] Open
Abstract
Caveolae and caveolin are key players in a number of disease processes. Current research indicates that caveolins play a significant role in cardiovascular disease and dysfunction. The far-reaching roles of caveolins in disease and dysfunction make them particularly notable therapeutic targets. In particular, caveolin-1 (Cav-1) and caveolin-3 (Cav-3) have been identified as potential regulators of vascular dysfunction and heart disease and might even confer cardiac protection in certain settings. Such a central role in vascular health therefore makes manipulation of Cav-1/3 function or expression levels clear therapeutic targets in a variety of cardiovascular related disease states. Here, we highlight the role of Cav-1 and Cav-3 in cardiovascular health and explore the potential of Cav-1 and Cav-3 derived experimental therapeutics.
Collapse
Affiliation(s)
- Stephanie L Sellers
- Department of Anesthesiology, Pharmacology and Therapeutics and The James Hogg Research Centre, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
16
|
Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3. PLoS One 2012; 7:e39398. [PMID: 22792172 PMCID: PMC3391198 DOI: 10.1371/journal.pone.0039398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that insulin growth factor (IGF)-1 binding protein-3 (IGFBP-3), independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR). The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB) integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1) and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP). IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO) release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab). Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB) stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs). NO release was neither associated with an increase in intracellular calcium nor decreased by Ca2+/calmodulin-dependent protein kinase II (CamKII) blockade; however, dephosphorylation of eNOS-Thr495 was observed. Phosphatidylinositol 3-kinase (PI3K) activity and Akt-Ser473 phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate vasorelaxation via activation of SRB1. This response is IGF-1- and calcium-independent, but requires PI3K/Akt activation, suggesting that IGFBP-3 has novel protective effects on retinal and systemic vasculature and may be a therapeutic candidate for ocular complications such as diabetic retinopathy.
Collapse
|
17
|
Kietadisorn R, Juni RP, Moens AL. Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 2012; 302:E481-95. [PMID: 22167522 DOI: 10.1152/ajpendo.00540.2011] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury. Therefore, modulating eNOS uncoupling by stabilizing eNOS activity, enhancing its substrate, cofactors, and transcription, and reversing uncoupled eNOS are attractive therapeutic approaches to improve endothelial function. This review provides an extensive overview of the important role of eNOS uncoupling in the pathogenesis of endothelial dysfunction and the potential therapeutic interventions to modulate eNOS for tackling endothelial dysfunction.
Collapse
Affiliation(s)
- Rinrada Kietadisorn
- Maastricht Univ. Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | |
Collapse
|
18
|
Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012; 2012:569654. [PMID: 22489274 PMCID: PMC3303762 DOI: 10.1155/2012/569654] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022] Open
Abstract
A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
Collapse
|
19
|
Cabou C, Vachoux C, Campistron G, Drucker DJ, Burcelin R. Brain GLP-1 signaling regulates femoral artery blood flow and insulin sensitivity through hypothalamic PKC-δ. Diabetes 2011; 60:2245-56. [PMID: 21810595 PMCID: PMC3161335 DOI: 10.2337/db11-0464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Glucagon-like peptide 1 (GLP-1) is a gut-brain hormone that regulates food intake, energy metabolism, and cardiovascular functions. In the brain, through a currently unknown molecular mechanism, it simultaneously reduces femoral artery blood flow and muscle glucose uptake. By analogy to pancreatic β-cells where GLP-1 activates protein kinase C (PKC) to stimulate insulin secretion, we postulated that PKC enzymes would be molecular targets of brain GLP-1 signaling that regulate metabolic and vascular function. RESEARCH DESIGN AND METHODS We used both genetic and pharmacological approaches to investigate the role of PKC isoforms in brain GLP-1 signaling in the conscious, free-moving mouse simultaneous with metabolic and vascular measurements. RESULTS In normal wild-type (WT) mouse brain, the GLP-1 receptor (GLP-1R) agonist exendin-4 selectively promotes translocation of PKC-δ (but not -βII, -α, or -ε) to the plasma membrane. This translocation is blocked in Glp1r(-/-) mice and in WT mice infused in the brain with exendin-9, an antagonist of the GLP-1R. This mechanism coordinates both blood flow in the femoral artery and whole-body insulin sensitivity. Consequently, in hyperglycemic, high-fat diet-fed diabetic mice, hypothalamic PKC-δ activity was increased and its pharmacological inhibition improved both insulin-sensitive metabolic and vascular phenotypes. CONCLUSIONS Our studies show that brain GLP-1 signaling activates hypothalamic glucose-dependent PKC-δ to regulate femoral artery blood flow and insulin sensitivity. This mechanism is attenuated during the development of experimental hyperglycemia and may contribute to the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Christelle Vachoux
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Gérard Campistron
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Daniel J. Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rémy Burcelin
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Corresponding author: Rémy Burcelin,
| |
Collapse
|
20
|
|
21
|
Wang J, Angulo JA. Synergism between methamphetamine and the neuropeptide substance P on the production of nitric oxide in the striatum of mice. Brain Res 2010; 1369:131-9. [PMID: 21075091 DOI: 10.1016/j.brainres.2010.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/27/2022]
Abstract
Our laboratory has been investigating the participation of striatal neurokinin-1 receptors in the methamphetamine (METH)-induced loss of striatal neurons. Signaling through these receptors exacerbates the METH-induced striatal apoptosis. METH induces the synthesis of nitric oxide (NO) and the latter has been linked to the activation of neurodegenerative cascades. In the present study, we assessed the role of the neurokinin-1 receptor in the production of striatal 3-nitrotyrosine (3-NT) and l-citrulline (indirect indices of NO production). To that end, we injected male mice with a bolus of METH (30 mg/kg, ip) and visualized striatal neuronal nitric oxide synthase (NOS)-positive cells by immunohistochemistry and protein levels by Western blot. The expression of neuronal NOS or protein levels at 2, 4 and 8 hours post-METH was unchanged. Next, we assessed 3-NT and l-citrulline by immunohistochemistry. At 4 hours post-METH, striatal 3-NT and l-citrulline levels were increased 30- and 5-fold, respectively, relative to controls and the selective neurokinin-1 receptor antagonist WIN-51,708 attenuated these increases. Intrastriatal infusion of the neurokinin-1 receptor agonist GR-73632 induced striatal 3-NT production that was attenuated with systemic injection of WIN-51,708 or 7-nitroindazole (7-NI, an inhibitor of neuronal NOS). Moreover, infusion of calmidazolium (calmodulin inhibitor) with GR-73632 prevented the production of 3-NT. These data are consistent with the hypothesis that METH-induced production of NO is modulated by the striatal neurokinin-1 receptors and that this receptor may participate in the biochemical activation of neuronal NOS.
Collapse
Affiliation(s)
- Jing Wang
- Hunter College of the City University of New York, Department of Biological Sciences, 695 Park Avenue, New York, NY 10021, USA
| | | |
Collapse
|
22
|
Rószer T, Kiss-Tóth E, Rózsa D, Józsa T, Szentmiklósi AJ, Bánfalvi G. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 2010; 342:191-203. [PMID: 20953631 DOI: 10.1007/s00441-010-1063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/15/2010] [Indexed: 01/28/2023]
Abstract
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.
Collapse
Affiliation(s)
- Tamás Rószer
- Department of Microbial Biotechnology and Cell Biology (formerly Animal Anatomy and Physiology), Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
23
|
Signorello MG, Segantin A, Leoncini G. The arachidonic acid effect on platelet nitric oxide level. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1084-92. [PMID: 19615463 DOI: 10.1016/j.bbalip.2009.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
Arachidonic acid can act as a second messenger regulating many cellular processes among which is nitric oxide (NO) formation. The aim of the present study was to investigate the molecular mechanisms involved in the arachidonic acid effect on platelet NO level. Thus NO, cGMP and superoxide anion level, the phosphorylation status of nitric oxide synthase, the protein kinase C (PKC), and NADPH oxidase activation were measured. Arachidonic acid dose-dependently reduced NO and cGMP level. The thromboxane A(2) mimetic U46619 behaved in a similar way. The arachidonic acid or U46619 effect on NO concentration was abolished by the inhibitor of the thromboxane A(2) receptor SQ29548 and partially reversed by the PKC inhibitor GF109203X or by the phospholipase C pathway inhibitor U73122. Moreover, it was shown that arachidonic acid activated PKC and decreased nitric oxide synthase (eNOS) activities. The phosphorylation of the inhibiting eNOSthr495 residue mediated by PKC was increased by arachidonic acid, while no changes at the activating ser1177 residue were shown. Finally, arachidonic acid induced NADPH oxidase activation and superoxide anion formation. These effects were greatly reduced by GF109203X, U73122, and apocynin. Likely arachidonic acid reducing NO bioavailability through all these mechanisms could potentiate its platelet aggregating power.
Collapse
Affiliation(s)
- Maria Grazia Signorello
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | | | | |
Collapse
|
24
|
Abstract
Blood platelets, in analogy to other circulating blood cells, can generate reactive oxygen/nitrogen species (ROS/RNS) that may behave as second messengers and may regulate platelet functions. Accumulating evidence suggest a role of ROS/RNS in platelet activation. On the other hand, an increased production of ROS/RNS causes oxidative stress, and thus, may contribute to the development of different diseases, including vascular complications, inflammatory and psychiatric illnesses. Oxidative stress in platelets leads to chemical changes in a wide range of their components, and platelet proteins may be initial targets of ROS/RNS action. It has been demonstrated that reaction of proteins with ROS/RNS results in the oxidation and nitration of some amino acid residues, formation of aggregates or fragmentation of proteins. In oxidized proteins new carbonyl groups and protein hydroperoxides are also formed. In platelets, low molecular weight thiols such as glutathione (GSH), cysteine and cysteinylglycine and protein thiols may be also target for ROS/RNS action. This review describes the chemical structure and biological activities of reactive nitrogen species, mainly nitric oxide ((*)NO) and peroxynitrite (ONOO(-)) and their effects on blood platelet functions, and the mechanisms involved in their action on platelets.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | |
Collapse
|
25
|
Lagranha CJ, Fiorino P, Casarini DE, Schaan BD, Irigoyen MC. [Molecular bases of diabetic nephropathy]. ACTA ACUST UNITED AC 2009; 51:901-12. [PMID: 17934656 DOI: 10.1590/s0004-27302007000600003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 05/14/2007] [Indexed: 11/22/2022]
Abstract
The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.
Collapse
Affiliation(s)
- Claudia J Lagranha
- Laboratório de Hipertensão Experimental, Unidade de Hipertensão, Instituto do Coração, HC-FMUSP, São Paulo
| | | | | | | | | |
Collapse
|
26
|
Signorello MG, Segantin A, Passalacqua M, Leoncini G. Homocysteine decreases platelet NO level via protein kinase C activation. Nitric Oxide 2008; 20:104-13. [PMID: 19100855 DOI: 10.1016/j.niox.2008.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/20/2008] [Accepted: 11/23/2008] [Indexed: 01/05/2023]
Abstract
Hyperhomocysteinaemia has been associated with increased risk of thrombosis and atherosclerosis. Homocysteine produces endothelial injury and stimulates platelet aggregation. Several molecular mechanisms related to these effects have been elucidated. The study aimed to deeply investigate the homocysteine effect on nitric oxide formation in human platelets. The homocysteine-induced changes on nitric oxide, cGMP, superoxide anion levels and nitrotyrosine formation were evaluated. The enzymatic activity and the phosphorylation status of endothelial nitric oxide synthase (eNOS) at thr495 and ser1177 residues were measured. The protein kinase C (PKC), assayed by immunofluorescence confocal microscopy technique and by phosphorylation of p47pleckstrin, and NADPH oxidase activation, tested by the translocation to membrane of the two cytosolic subunits p47(phox) and p67(phox), were assayed. Results show that homocysteine reduces platelet nitric oxide and cGMP levels. The inhibition of eNOS activity and the stimulation of NADPH oxidase primed by PKC appear to be involved. PKC stimulates the eNOS phosphorylation of the negative regulatory residue thr495 and the dephosphorylation of the positive regulatory site ser1177. GF109203X and U73122, PKC and phospholipase Cgamma2 pathway inhibitors, respectively, reverse this effect. Moreover, homocysteine stimulates superoxide anion elevation and NADPH oxidase activation. These effects are significantly decreased by GF109203X and U73122, suggesting the involvement of PKC in NADPH oxidase activation. Homocysteine induces formation of the peroxynitrite biomarker nitrotyrosine. Taken together these results suggest that the homocysteine-mediated responses leading to nitric oxide impairment are mainly coupled to PKC activation. Thus homocysteine stimulates platelet aggregation and decreases nitric oxide bioavailability.
Collapse
|
27
|
Venardos K, Enriquez C, Marshall T, Chin-Dusting JPF, Ahlers B, Kaye DM. Protein kinase C mediated inhibition of endothelial L-arginine transport is mediated by MARCKS protein. J Mol Cell Cardiol 2008; 46:86-92. [PMID: 18977358 DOI: 10.1016/j.yjmcc.2008.09.712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/04/2008] [Accepted: 09/19/2008] [Indexed: 11/19/2022]
Abstract
The endothelium plays a vital role in the maintenance of vascular tone and structural vascular integrity, principally mediated via the actions of nitric oxide (NO). L-arginine is the immediate substrate for NO synthesis, and the availability of extracellular L-arginine is critical for the production of NO. Activation of protein kinase C (PKC) dependent signalling pathways are a feature of a number of cardiovascular disease states, and in this study we aimed to systematically evaluate the mechanism by which PKC regulates L-arginine transport in endothelial cells. In response to PKC activation (PMA 100 nM, 30 min), [(3)H]L-arginine uptake by bovine aortic endothelial cells (BAEC) was reduced to 45+4% of control (p<0.05). This resulted from a 53% reduction in the Vmax (p<0.05), with no change in the K(m) for L-arginine. Western blot analysis and confocal microscopy revealed no change in the expression or membrane distribution of CAT-1, the principal BAEC L-arginine transporter. Moreover in (32)P-labeling studies, PMA exposure did not result in CAT-1 phosphorylation. We therefore explored the possibility that PKC altered and interaction with MARCKS protein, a candidate membrane associated protein. By co-immunoprecipitation we show that CAT-1 interacts with, a membrane associated protein, that was significantly inhibited by PKC activation (p<0.05). Moreover antisense inhibition of MARCKS abolished the PMA effect on L-arginine transport. PKC dependent mechanisms regulate the transport of L-arginine, mediated via process involving MARCKS.
Collapse
Affiliation(s)
- Kylie Venardos
- Heart Failure Research Group, Baker Heart Research Institute, Melbourne VIC, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Mechanisms related to the cardioprotective effects of protein kinase C epsilon (PKC ɛ) peptide activator or inhibitor in rat ischemia/reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:1-15. [DOI: 10.1007/s00210-008-0288-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/22/2008] [Indexed: 12/16/2022]
|
29
|
Wagner L, Laczy B, Tamaskó M, Mazák I, Markó L, Molnár GA, Wagner Z, Mohás M, Cseh J, Fekete A, Wittmann I. Cigarette smoke-induced alterations in endothelial nitric oxide synthase phosphorylation: role of protein kinase C. ACTA ACUST UNITED AC 2008; 14:245-55. [PMID: 17922342 DOI: 10.1080/10623320701606707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is regulated by phosphorylation of Ser(1177) and Thr(495), which affects NO bioavailability. Cigarette smoke disturbs the eNOS-cGMP-NO pathway and causes decreased NO production. Here the authors investigated the acute effects of cigarette smoke on eNOS phosphorylation, focusing on protein kinases (PKs). Endothelial cell culture was concentration- and time-dependently treated first with cigarette smoke buffer (CSB), then with reduced glutathione (GSH) or various PK inhibitors (H-89, LY-294002, Ro-318425, and ruboxistaurin). eNOS, phospho-Ser(1177)-eNOS, phospho-Thr(495)-eNOS, Akt(PKB), and phospho-Akt protein levels were determined by Western blot. CSB increased the phosphorylation of eNOS at Ser(1177) and more at Thr(495) in a concentration- and time-dependent manner (p < .01, p < .05 versus control, respectively) and resulted in the dissociation of the active dimeric form of eNOS (p < .05). GSH decreased the phosphorylation of eNOS at both sites (p < .05 versus CSB without GSH) and prevented the decrease of dimer eNOS level. CSB treatment also decreased the level of phospho-Ser(473)-Akt (p < .05 versus control). Inhibition of PKA by H-89 did not affect CSB-induced phosphorylation, whereas the PKB inhibitor LY-294002 enhanced it at Ser(1117). The PKC blockers Ro-318425 and ruboxistaurin augmented the CSB-induced phosphorylation at Ser(1177) but decreased phosphorylation at Thr(495) (p < .05 versus CSB). Cigarette smoke causes a disruption of the enzymatically active eNOS dimers and shifts the eNOS phosphorylation to an inhibitory state. Both effects might lead to reduced NO bioavailability. The shift of the eNOS phosphorylation pattern to an inhibitory state seems to be independent of the PKA and phosphoinositol 3-kinase (PI3-K)/Akt pathways, whereas PKC appears to play a key role.
Collapse
Affiliation(s)
- L Wagner
- 2nd Department of Medicine and Nephrological Center, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fleming I. Biology of Nitric Oxide Synthases. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
John TA, Ibe BO, Usha Raj J. Oxygen alters caveolin-1 and nitric oxide synthase-3 functions in ovine fetal and neonatal lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1079-93. [PMID: 16997880 DOI: 10.1152/ajplung.00526.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the effect of oxygen [∼100 Torr (normoxia) and ∼30–40 Torr (hypoxia)] on functions of endothelial nitric oxide (NO) synthase (NOS-3) and its negative regulator caveolin-1 in ovine fetal and neonatal lung microvascular endothelial cells (MVECs). Fetal NOS-3 activity, measured as NO production with 0.5–0.9 μM 4-amino-5-methylamino-2,7-difluorofluorescein, was decreased in hypoxia by 14.4% ( P < 0.01), inhibitable by the NOS inhibitor N-nitro-l-arginine, and dependent on extracellular arginine. Caveolar function, assessed as FITC-BSA (160 μg/ml) endocytosis, was decreased in hypoxia by 13.5% in fetal and 22.8% in neonatal MVECs ( P < 0.01). NOS-3 and caveolin-1 were physically associated, as demonstrated by coimmunoprecipitation and colocalization, and functionally associated, as shown by cross-activation of endocytosis, by their specific antibodies and activation of NOS by albumin. Caveolin peptide, containing the sequence for the PKC phosphorylation site of caveolin, and caveolin antiserum against the site increased NO production and endocytosis by 12.3% ( P < 0.05) and 16% ( P < 0.05), respectively, in normoxia and increased endocytosis by 25% ( P < 0.001) in hypoxia. PMA decreased NO production in normoxia and hypoxia by 19.32% ( P < 0.001) and 11.8% ( P < 0.001) and decreased endocytosis in normoxia by 20.35% ( P < 0.001). PKC kinase activity was oxygen sensitive, and threonine phosphorylation was enhanced in hypoxia. Pertussis toxin increased caveolar and NOS functions. These data support our hypothesis that increased Po2at birth promotes dissociation of caveolin-1 and NOS-3, with an increase in their activities, and that PKC and an oxygen-sensitive cell surface G protein-coupled receptor regulate caveolin-1 and NOS-3 interactions in fetal and neonatal lung MVECs.
Collapse
Affiliation(s)
- Theresa A John
- Division of Neonatology, Rm. 207, RB-1, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, 1124 West Carson St., Torrance, CA 90502, USA.
| | | | | |
Collapse
|
32
|
Young LH, Balin BJ, Weis MT. Gö 6983: A Fast Acting Protein Kinase C Inhibitor that Attenuates Myocardial Ischemia/Reperfusion Injury. ACTA ACUST UNITED AC 2006; 23:255-72. [PMID: 16252018 DOI: 10.1111/j.1527-3466.2005.tb00170.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reperfusion injury is characterized by a decrease in endothelial release of nitric oxide within 5 min after reperfusion, increased leukocyte-endothelium interaction, and transmigration of leukocytes into the myocardium, producing cardiac contractile dysfunction. Gö 6983 is a fast acting, lipid soluble, broad spectrum protein kinase C inhibitor. When administered at the beginning of reperfusion, it can restore cardiac function within 5 min and attenuate the deleterious effects associated with acute ischemia/reperfusion. Gö 6983 may offer greater cardioprotection than other broad-spectrum PKC inhibitors in postischemic reperfusion injury because it inhibits PKC(zeta) as well as four other isoforms. The cardioprotection is associated with decreased leukocyte superoxide release and increased endothelial derived nitric oxide from vascular tissue. In vitro studies of human tissue showed that Gö 6983 significantly inhibited antigen-induced superoxide release from leukocytes of patients previously sensitized to tree pollen. In human vascular tissue, Gö 6983 inhibited intracellular Ca(2+) accumulation, suggesting a mechanism for its vasodilator properties. These studies suggest that Gö 6983 would be an effective compound to use in a clinical ischemia/reperfusion setting of organ transplantation and/or cerebral ischemia where inhibiting superoxide release and vasoconstriction in postischemic tissues would allow for better restoration of organ function during reperfusion. However, given the broad-spectrum action of Gö 6983, careful titration of the dose regimen would be recommended to ensure a successful outcome in the setting of organ transplantation and/or cerebral ischemia.
Collapse
Affiliation(s)
- Lindon H Young
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131-1694, USA.
| | | | | |
Collapse
|
33
|
Dang L, Seale JP, Qu X. HIGH GLUCOSE-INDUCED HUMAN UMBILICAL VEIN ENDOTHELIAL CELL HYPERPERMEABILITY IS DEPENDENT ON PROTEIN KINASE C ACTIVATION AND INDEPENDENT OF THE Ca2+-NITRIC OXIDE SIGNALLING PATHWAY. Clin Exp Pharmacol Physiol 2005; 32:771-6. [PMID: 16173935 DOI: 10.1111/j.1440-1681.2005.04266.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Endothelial barrier dysfunction plays a pivotal role in the pathogenesis of diabetic vascular complications. The precise molecular mechanisms by which hyperglycaemia causes the increased permeability in endothelial cells are not yet well understood. In the present study, we investigated whether high concentrations of glucose induce endothelial permeability through the activation of protein kinase C (PKC) and/or the calcium-nitric oxide (NO) signalling pathway in human umbilical vein endothelial cells (HUVEC). 2. Endothelial permeability was measured by albumin diffusion across endothelial monolayers under the stimuli of high glucose (HG; 20 mmol/L), 100 nmol/L phorbol-myristate-acetate (PMA) or 100 nmol/L histamine. The intracellular calcium concentration ([Ca2+]i) was detected in HUVEC using the fluorescent probe fura-2 AM. The effects of PKC inhibitors (LY379196 and hypocrellin A) and the NO synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA) on endothelial permeability and [Ca2+]i were determined. 3. High glucose and PMA increased endothelial permeability associated with decreased [Ca2+]i, whereas histamine triggered significant increases in endothelial permeability, accompanied by increases in [Ca2+]i in HUVEC. Hypocrellin A (HA) and LY379196 reversed both HG- and histamine-induced endothelial permeability. The NOS inhibitor L-NMMA only abolished histamine- and not HG-induced endothelial permeability. Neither LY379196, HA nor L-NMMA had any significant effects on alterations in [Ca2+]i caused by HG and histamine. 4. These results indicate that increased endothelial permeability in HUVEC induced by HG is dependent on PKC activity and is independent of the [Ca2+]i-NO pathway. Increased endothelial permeability due to other inflammatory factors, such as histamine, may also be mediated by the PKC pathway. Thus, PKC inhibitors would be a potential therapeutic approach to endothelial dysfunction induced by hyperglycaemia, as well as other inflammatory factors, in diabetes.
Collapse
Affiliation(s)
- Lei Dang
- Department of Health Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
34
|
Phillipson A, Peterman EE, Taormina P, Harvey M, Brue RJ, Atkinson N, Omiyi D, Chukwu U, Young LH. Protein kinase C-ζ inhibition exerts cardioprotective effects in ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2005; 289:H898-907. [PMID: 15792991 DOI: 10.1152/ajpheart.00883.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in marked cardiac contractile dysfunction. A cell-permeable PKC-ζ peptide inhibitor was used to test the hypothesis that PKC-ζ inhibition could attenuate PMN-induced cardiac contractile dysfunction by suppression of superoxide production from PMNs and increase nitric oxide (NO) release from vascular endothelium. The effects of the PKC-ζ peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts reperfused with PMNs. The PKC-ζ inhibitor (2.5 or 5 μM, n = 6) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts ( n = 6) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/d tmax) cardiac function indexes ( P < 0.01), and these cardioprotective effects were blocked by the NO synthase inhibitor, NG-nitro-l-arginine methyl ester (50 μM). Furthermore, the PKC-ζ inhibitor significantly increased endothelial NO release 47 ± 2% (2.5 μM, P < 0.05) and 54 ± 5% (5 μM, P < 0.01) over basal values from the rat aorta and significantly inhibited superoxide release from phorbol-12-myristate-13-acetate-stimulated rat PMNs by 33 ± 12% (2.5 μM) and 40 ± 8% (5 μM) ( P < 0.01). The PKC-ζ inhibitor significantly attenuated PMN infiltration into the myocardium by 46–48 ± 4% ( P < 0.01) at 2.5 and 5 μM, respectively. In conclusion, these results suggest that the PKC-ζ peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs thereby attenuating PMN infiltration into I/R myocardium.
Collapse
Affiliation(s)
- Aisha Phillipson
- Department of Pathology, Microbiology, and Immunology, Philadelphia College of Osteopathic Medicine, 4170 City Ave., Philadelphia, PA 19131-1694, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hink U, Tsilimingas N, Wendt M, Münzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus: therapeutic implications. ACTA ACUST UNITED AC 2005; 2:293-304. [PMID: 15981946 DOI: 10.2165/00024677-200302050-00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperglycemia is the major causal factor in the development of endothelial dysfunction in patients with diabetes mellitus. Although the mechanisms underlying this phenomenon are likely to be multifactorial, recent in vivo and in vitro studies have indicated a crucial role of the diacylglycerol (DAG)-protein kinase C (PKC) pathway in mediating this phenomenon. PKC may have multiple adverse effects on vascular function, including the activation of superoxide-producing enzymes such as the nicotinamide adenine dinicleotide phosphate (NADPH) oxidase as well as increased expression of a dysfunctional, superoxide-producing, uncoupled endothelial nitric oxide synthase (NOS III). PKC-mediated superoxide production may inactivate nitric oxide (NO) derived from endothelial NOS III, but also may inhibit the activity and/or expression of the NO downstream target, the soluble guanylyl cyclase. Among the different isoforms of PKC, mainly the beta-isoforms have been shown to be activated. Recent studies with selective (isoform-specific) and non-selective PKC inhibitors show that they are able to beneficially influence glucose-induced endothelial dysfunction in experimental animal models as well as in patients, pointing to the therapeutic potential of these compounds in the prevention and treatment of vascular complications of diabetes.
Collapse
Affiliation(s)
- Ulrich Hink
- Division of Cardiology, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
36
|
Omiyi D, Brue RJ, Taormina P, Harvey M, Atkinson N, Young LH. Protein kinase C betaII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury. J Pharmacol Exp Ther 2005; 314:542-51. [PMID: 15878997 DOI: 10.1124/jpet.104.082131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. A cell-permeable protein kinase C (PKC) betaII peptide inhibitor was used to test the hypothesis that PKC betaII inhibition could attenuate PMN-induced cardiac dysfunction by suppression of superoxide production from PMNs and increase NO release from vascular endothelium. The effects of the PKC betaII peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts with PMNs. The PKC betaII inhibitor (10 microM; n = 7) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 9) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indices (p < 0.01). The PKC betaII inhibitor at 10 microM significantly increased endothelial NO release from a basal value of 1.85 +/- 0.18 pmol NO/mg tissue to 3.49 +/- 0.62 pmol NO/mg tissue from rat aorta. It also significantly inhibited superoxide release (i.e., absorbance) from N-formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated rat PMNs from 0.13 +/- 0.01 to 0.02 +/- 0.004 (p < 0.01) at 10 microM. Histological analysis of the left ventricle of representative rat hearts from each group showed that the PKC betaII peptide inhibitor-treated hearts experienced a marked reduction in PMN vascular adherence and infiltration into the postreperfused cardiac tissue compared with I/R + PMN hearts (p < 0.01). These results suggest that the PKC betaII peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs.
Collapse
Affiliation(s)
- Didi Omiyi
- Department of Pathology, Microbiology, and Immunology, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | | | | | | | | | | |
Collapse
|
37
|
Leoncini G, Bruzzese D, Signorello MG. The L-arginine/NO pathway in the early phases of platelet stimulation by collagen. Biochem Pharmacol 2004; 69:289-96. [PMID: 15627481 DOI: 10.1016/j.bcp.2004.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/28/2004] [Indexed: 11/16/2022]
Abstract
Nitric oxide production, L-arginine transport and intracellular [Ca2+] changes in human platelets stimulated without stirring by low doses of collagen have been evaluated. Collagen decreased in a dose-dependent manner the nitric oxide formation. A reduction of about 30% of the basal level was produced by 5 microg/mL. Aspirin did not change the collagen effect. The inhibition was reversed by EGTA. Moreover collagen reduced L-arginine uptake. The exposure of platelets to 5 microg/mL collagen diminished of about 30% L-arginine transport. The specific involvement of the system y+ is suggested. In addition in FURA 2-loaded platelets collagen induced a dose-dependent slow sustained [Ca2+] rise that was almost completely cancelled by EGTA. Finally the treatment of whole platelets with collagen affected in a dose-dependent manner the maximal nitric oxide formation, suggesting a direct effect at the level of nitric oxide synthase enzyme. The phosphorylation of specific serine/threonine residues regulated by protein kinase C could be involved. In conclusion during the early phases of platelet stimulation with collagen nitric oxide formation is diminished. This reduction can be due to a lower availability of L-arginine for cytosolic nitric oxide synthase and/or to a decreased activity related to modifications of the enzyme.
Collapse
Affiliation(s)
- Giuliana Leoncini
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy.
| | | | | |
Collapse
|
38
|
Lungu AO, Jin ZG, Yamawaki H, Tanimoto T, Wong C, Berk BC. Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae. J Biol Chem 2004; 279:48794-800. [PMID: 15383526 DOI: 10.1074/jbc.m313897200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fluid shear stress generated by blood flowing over the endothelium is a major determinant of arterial tone, vascular remodeling, and atherogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an essential role in regulation of vascular function and structure by blood flow. Although cyclosporin A (CsA), an inhibitory ligand of cyclophilin A, is a widely used immunosuppressive drug, it causes arterial hypertension in part by impairing eNOS-dependent vasodilation. Here we show that CsA inhibits fluid shear stress-mediated eNOS activation in endothelial cells via decreasing cholesterol content in caveolae. Exposure of cultured bovine aortic endothelial cells to 1 mum CsA for 1 h significantly inhibited NO production and eNOS phosphorylation at Ser-1179 induced by flow (shear stress=dynes/cm2). The effect of CsA was not related to inhibition of two known eNOS kinases, protein kinase B (Akt) and protein kinase A, because CsA did not affect Akt or protein kinase A activation. In rabbit aorta perfused ex vivo, CsA also significantly inhibited flow-induced eNOS phosphorylation at Ser-1179 but had no effect on Akt measured by phosphorylation at Ser-473. However, CsA treatment decreased cholesterol content in caveolae and displaced eNOS from caveolae, which may be caused by CsA disrupting the association of caveolin-1 and cyclophilin A. The magnitude of the cholesterol depleting effect was similar to that of beta-cyclodextrin, a cholesterol-binding molecule, and beta-cyclodextrin had a similar inhibitory effect on flow-mediated eNOS activation. Treating bovine aortic endothelial cells for 24 h with 30 mug/ml cholesterol blocked the CsA effect and restored eNOS phosphorylation in response to flow. These data suggest that decreasing cholesterol content in caveolae by CsA is a potentially important pathogenic mechanism for CsA-induced endothelial dysfunction and hypertension.
Collapse
Affiliation(s)
- Andreea O Lungu
- Department of Medicine and Center for Cardiovascular Research, University of Rochester School of Medicine and Dentistry, Aab Institute of Biomedical Sciences, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gentile MT, Vecchione C, Maffei A, Aretini A, Marino G, Poulet R, Capobianco L, Selvetella G, Lembo G. Mechanisms of soluble beta-amyloid impairment of endothelial function. J Biol Chem 2004; 279:48135-42. [PMID: 15319431 DOI: 10.1074/jbc.m407358200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) has been recently associated with vascular risk factors. beta-amyloid peptides (AbetaP), the main component of senile plaques typical of AD, circulate in soluble globular form in bloodstream. Interestingly, AbetaP is able to induce endothelial dysfunction, and this effect may represent the link between vascular and neuronal pathophysiological factors involved in AD. We aimed to clarify the molecular mechanisms underlying globular AbetaP-induced vascular toxicity. Using several methodological approaches, we have observed that in vascular tissues globular AbetaP is unable to induce oxidative stress, one of the mechanisms hypothesized involved in beta-amyloid toxicity. More important, we have demonstrated that globular AbetaP is able to localize on vascular endothelium, where it inhibits eNOS enzymatic activity. In particular, AbetaP enhances eNOS phosphorylation on threonine 495 and serine 116 and reduces acetylcholine-induced phosphorylation on serine 1177. Such an effect depends on a PKC signaling pathway, as suggested by its phosphorylation on serine 660. In fact, selective inhibition of the calcium-dependent group of PKC is able to rescue beta-amyloid-induced alteration of eNOS phosphorylation, NO production, and endothelial vasorelaxation. The activation of these Ca(2+)-dependent pathways is probably due to the ability of AbetaP to evoke Ca(2+) leakage from inositol 1,4,5-triphosphate receptors on endoplasmic reticulum. Our data demonstrate that globular AbetaP-induced endothelial NO dysfunction can be attributed to an alteration of intracellular Ca(2+) homeostasis, which could lead to the activation of calcium-dependent group of PKC with a consequent change of the eNOS phosphorylation pattern. These mechanisms could contribute to shed further light on the toxic effect of beta-amyloid in vascular tissues.
Collapse
|
40
|
Fayers KE, Cummings MH, Shaw KM, Laight DW. Nitrate tolerance and the links with endothelial dysfunction and oxidative stress. Br J Clin Pharmacol 2004; 56:620-8. [PMID: 14616421 PMCID: PMC1884304 DOI: 10.1046/j.1365-2125.2003.01946.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Identification of nitric oxide as the molecule responsible for endothelial dependant vasodilatation has led to an explosion of interest in endothelial function. Oxidative stress has been identified as an important factor in the development of tolerance to organic nitrates. This review examines the evidence supporting this recently developed theory and how mechanisms of nitrate tolerance may link with the wider picture of primary nitric oxide resistance.
Collapse
Affiliation(s)
- Katherine E Fayers
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Southwick Road, Cosham, Portsmouth, Hants, PO6 3LY, UK.
| | | | | | | |
Collapse
|
41
|
Kline LW, Ji J, Wang GJ, Sutherland SK, Pang PKT, Benishin CG. Protein Kinase C Masks Nitric Oxide Synthase Activity in Vascular Smooth Muscle under Basal Conditions. J Cardiovasc Pharmacol 2004; 43:281-7. [PMID: 14716218 DOI: 10.1097/00005344-200402000-00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Under basal conditions there is no observable nitric oxide synthase (NOS) activity in vascular smooth muscle (VSM). Pretreatment of endothelium-denuded aortic rings from Sprague-Dawley rats with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), (0.1 micromol/L) significantly attenuated phenylephrine (PE)-induced contractile responses in a dose-dependent manner. In the presence of 10 micromol/L Nomega-nitro-L-arginine (L-NNA) or 0.1 mmol/L aminoguanidine (AG), the inhibition of contractions at 10 nmol/L PE by H-7 was blocked by 88% or 52%, respectively. The blockade by antagonists was completely reversed by l-arginine but not by d-arginine, and alone they did not significantly alter PE-induced contraction of endothelium-denuded aorta. Methylene blue (MB, 50 micromol/L) also inhibited the action of H-7. The inhibitory effect of H-7 occurred after 5 minutes and was reversible. PE-induced contraction was also inhibited by the selective protein kinase C inhibitors calphostin C (10 micromol/L), and bisindolylmaleimide IV (Bis-IV, 10 micromol/L), but not by the selective protein kinase A inhibitor H-89 (0.1 micromol/L). These results indicate protein kinase C inhibits NOS activity in VSM under basal conditions. Incubation of tissues with either H-7 or calphostin C stimulates NO production, and immunocytochemical studies reveal the presence of NOS in VSM under basal conditions.
Collapse
Affiliation(s)
- Loren W Kline
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Shafiei M, Nobakht M, Fattahi M, Kohneh-Shahri L, Mahmoudian M. Histochemical assessment of nitric oxide synthase activity in aortic endothelial cells of streptozotocin-induced diabetic rats. PATHOPHYSIOLOGY 2003; 10:63-67. [PMID: 14643905 DOI: 10.1016/j.pathophys.2003.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Impaired endothelium-dependent relaxation of blood vessels is a common feature in diabetes, but the exact underlying mechanisms have not yet been clarified. In present study, endothelium-dependent vasorelaxation of aortic rings were evaluated in vitro in streptozotocin (STZ)-induced diabetic and age-matched control rats. Moreover, nitric oxide synthase (NOS) activity of aortic endothelial cells was assessed in both diabetic and healthy rats using histochemical staining for nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The results showed a significant decrease of endothelium-dependent relaxation in response to acetylcholine (ACh) in diabetic rings, compared with controls, that was accompanied by a remarkable attenuation of NOS activity in diabetic sections of rat aorta stained for NADPH-diaphorase. Furthermore, a membrane disruption of some endothelial cells was also observed in all diabetic sections. It can be concluded that a decrease in NOS activity together with a disruption of endothelial cell membrane play a major role in endothelial dysfunction observed in diabetes.
Collapse
Affiliation(s)
- M Shafiei
- Razi Institute for Drug Research, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran
| | | | | | | | | |
Collapse
|
43
|
Pricci F, Leto G, Amadio L, Iacobini C, Cordone S, Catalano S, Zicari A, Sorcini M, Di Mario U, Pugliese G. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med 2003; 35:683-94. [PMID: 12957660 DOI: 10.1016/s0891-5849(03)00401-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) formation plays a major role in diabetes-induced endothelial dysfunction, though the molecular mechanism(s) involved and the contribution of nitric oxide (NO) are still unclear. This study using bovine retinal endothelial cells was aimed at assessing (i) the role of oxygen-dependent vs. NO-dependent oxidative stress in the endothelial cell permeability alterations induced by the diabetic milieu and (ii) whether protein kinase C (PKC) activation ultimately mediates these changes. Superoxide, lipid peroxide, and PKC activity were higher under high glucose (HG) vs. normal glucose throughout the 30 d period. Nitrite/nitrate and endothelial NO synthase levels increased at 1 d and decreased thereafter. Changes in monolayer permeability to 125I-BSA induced by 1 or 30 d incubation in HG or exposure to advanced glycosylation endproduct were reduced by treatment with antioxidants or PKC inhibitors, whereas NO blockade prevented only the effect of 1 d HG. HG-induced changes were mimicked by a PKC activator, a superoxide generating system, an NO and superoxide donor, or peroxynitrite (attenuated by PKC inhibition), but not a NO donor. The short-term effect of HG depends on a combined oxidative and nitrosative stress with peroxynitrite formation, whereas the long-term effect is related to ROS generation; in both cases, PKC ultimately mediates permeability changes.
Collapse
Affiliation(s)
- Flavia Pricci
- Laboratory of Metabolism and Pathological Biochemistry, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol 2003; 285:C499-508. [PMID: 12900384 DOI: 10.1152/ajpcell.00122.2003] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.
Collapse
Affiliation(s)
- Yong Chool Boo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
45
|
Nangle MR, Cotter MA, Cameron NE. Protein kinase C beta inhibition and aorta and corpus cavernosum function in streptozotocin-diabetic mice. Eur J Pharmacol 2003; 475:99-106. [PMID: 12954365 DOI: 10.1016/s0014-2999(03)02113-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increased activity of the beta-isoform of protein kinase C (PKC) has been linked to the vascular and neural complications of diabetes mellitus. Treatment with the PKCbeta inhibitor, (s)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-dione, (LY333531), improves somatic nerve function and blood flow in diabetic rats. The aim was to assess whether LY333531 treatment could prevent nitric oxide-dependent autonomic nerve and vascular dysfunction in a diabetic mouse model. Diabetes was induced by streptozotocin; duration was 4 weeks. Aorta and corpus cavernosum were isolated and mounted in organ baths and agonist or electrical stimulation-evoked nerve-mediated tension responses were examined. Maximum nitric oxide-mediated endothelium-dependent relaxation of phenylephrine-precontracted aorta and cavernosum to acetylcholine were more than 30% reduced by diabetes. LY333531 treatment (10 mg kg(-1) day(-1)) completely prevented the diabetic deficit in cavernosum, and 75% prevented the deficit in aorta. Maximum nitric oxide-dependent non-adrenergic, non-cholinergic (NANC) nerve-mediated relaxation of phenylephrine-precontracted cavernosum was approximately 43% reduced by diabetes; LY333531 attenuated the deficit by 44%. For diabetic aorta, but not cavernosum, sensitivity (EC50) to phenylephrine-mediated contraction was increased by approximately 0.85 log10 M units; LY333531 treatment completely prevented this effect. Thus, PKCbeta activation contributes to nitric oxide-dependent vascular and autonomic nerve dysfunction in diabetic mice and could prove suitable for further study in clinical trials of diabetic autonomic neuropathy and vasculopathy.
Collapse
Affiliation(s)
- Matthew R Nangle
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
46
|
|
47
|
Abstract
As an important modulator of renal function and morphology, the nitric oxide (NO) system has been extensively studied in the diabetic kidney. However, a number of studies in different experimental and clinical settings have produced often confusing data and contradictory findings. We have reviewed a wide spectrum of findings and issues that have amassed concerning the pathophysiology of the renal NO system in diabetes, pointed out the controversies, and attempted to find some explanation for these discrepancies. Severe diabetes with profound insulinopenia can be viewed as a state of generalized NO deficiency, including in the kidney. However, we have focused our hypotheses and conclusions on the events occurring during moderate glycemic control with some degree of treatment with exogenous insulin, representing more the clinically applicable state of diabetic nephropathy. Available evidence suggests that diabetes triggers mechanisms that in parallel enhance and suppress NO bioavailability in the kidney. We hypothesize that during the early phases of nephropathy, the balance between these two opposing forces is shifted toward NO. This plays a role in the development of characteristic hemodynamic changes and may contribute to consequent structural alterations in glomeruli. Both endothelial (eNOS) and neuronal NO synthase can contribute to altered NO production. These enzymes, particularly eNOS, can be activated by Ca(2+)-independent and alternative routes of activation that may be elusive in traditional methods of investigation. As the duration of exposure to the diabetic milieu increases, factors that suppress NO bioavailability gradually prevail. Increasing accumulations of advanced glycation end products may be one of the culprits in this process. In addition, this balance is continuously modified by actual metabolic control and the degree of insulinopenia.
Collapse
Affiliation(s)
- Radko Komers
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97201-2940, USA
| | | |
Collapse
|
48
|
Javeshghani D, Javesghani D, Hussain SNA, Scheidel J, Quinn MT, Magder SA. Superoxide production in the vasculature of lipopolysaccharide-treated rats and pigs. Shock 2003; 19:486-93. [PMID: 12744495 DOI: 10.1097/01.shk.0000054374.88889.37] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is associated with increased production of reactive oxygen species (ROS); however, the metabolic sources of increased ROS are not well understood. We hypothesized that the recently described nonphagocytic NAD(P)H oxidase system could be an important source of the ROS superoxide anion (O2-) during sepsis, and the interaction of O2- with nitric oxide (NO) may contribute to sepsis-induced vascular Injury. To evaluate this issue, we measured O2- production before and after treatment with lipopolysaccharide (LPS) in rats, who are Inducible NO synthase producers (NOSII) and in pigs, who do not produce NOSII. LPS increased O2- production in aorta from rats from 0.38 +/- 0.07 nmol/mg/10 min to 1.18 +/- 0.23 nmol/mg/10 min, (P = 0.001) in rats, and 0.63 +/- 0.05 nmol/mg/10 min to 1.5 +/- 1.6 nmol/mg/10 min (P = 0.001) in carotid arteries from pigs. Components of NAD(P)H oxidase, including p22(phox), gp91(phox), p47(phox), p67(phox), mRNA and p22(phox), and gp91(phox) proteins were present in rat aorta and aorta and carotid arteries from pigs. Expression mildly increased in rats, but not in pigs. In rats, NADH and NADPH greatly increased O2- production with no difference in untreated versus LPS-treated rats. The addition of L-NAME increased NADH-dependant O2- production from 75 +/- 3 nmol/O2-/mg/10 min to 113 +/- 7 nmoVO2-/mg/10 min in LPS-treated rats, but had no effect in untreated rats. In pigs, the NADH-stimulated O2- production was 43 +/- 8 nmol/mg/10 min before and 63 +/- 4.3 nmol/mg/10 min after LPS even without L-NAME (P < 0.05). In contrast to LPS-treated rats, L-NAME markedly decreased NADH-stimulated O2- production (63 +/- 4 nmol/mg/10 min to 33 +/- 5.6 nmol/mg/10 min, P < 0.01). Luminol-enhanced chemiluminescence was also Increased in porcine carotid arteries after LPS treatment, which is consistent with peroxynitrite formation. Our results indicate that components of NAD(P)H oxidase are present in vessels of pigs and rats and there is substantial NADH-dependent O2- production that is increased after LPS. However, the behavior of NAD(P)H oxidase in NOSII-producing and nonproducing species differs with a reduction of O2- by NO in rats and NO-dependent production in pigs.
Collapse
Affiliation(s)
- Danesh Javeshghani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital and Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Danesh Javesghani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital and Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
49
|
Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1-12. [PMID: 12482742 DOI: 10.1152/ajpregu.00323.2002] [Citation(s) in RCA: 606] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endothelial nitric oxide synthase (eNOS), the expression of which is regulated by a range of transcriptional and posttranscriptional mechanisms, generates nitric oxide (NO) in response to a number of stimuli. The physiologically most important determinants for the continuous generation of NO and thus the regulation of local blood flow are fluid shear stress and pulsatile stretch. Although eNOS activity is coupled to changes in endothelial cell Ca(2+) levels, an increase in Ca(2+) alone is not sufficient to affect enzyme activity because the binding of calmodulin (CaM) and the flow of electrons from the reductase to the oxygenase domain of the enzyme is dependent on protein phosphorylation and dephosphorylation. Two amino acids seem to be particularly important in regulating eNOS activity and these are a serine residue in the reductase domain (Ser(1177)) and a threonine residue (Thr(495)) located within the CaM-binding domain. Simultaneous alterations in the phosphorylation of Ser(1177) and Thr(495) in response to a variety of stimuli are regulated by a number of kinases and phosphatases that continuously associate with and dissociate from the eNOS signaling complex. eNOS associated proteins, such as caveolin, heat shock protein 90, eNOS interacting protein, and possibly also motor proteins provide the scaffold for the formation of the protein complex as well as its intracellular localization.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institut für Kardiovaskuläre Physiologie, J. W. Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
50
|
Liu M, Wallin R, Saldeen T. Effect of mixed tocopherols on ecNOS, SOD and PKC in leukocytes in human subjects. Nutr Res 2002. [DOI: 10.1016/s0271-5317(02)00456-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|