1
|
Chakraborty P, Po SS, Yabluchanskiy A, Dasari TW. Protein kinase A: A potential marker of sympathovagal imbalance in heart failure. Life Sci 2023; 331:122069. [PMID: 37666387 DOI: 10.1016/j.lfs.2023.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mitigation of cardiac autonomic dysregulation by neuromodulation technologies is emerging as a new therapeutic modality of heart failure (HF). This recent progress has necessitated the identification of a biomarker for the quantification of sympathovagal balance, the potential target of 'neuromodulation' strategies. The currently available autonomic nervous system assessment parameters do not truly reflect the sympathovagal balance of the ventricle. Protein kinase A (PKA) is an intracellular enzyme that plays a major role in the pathophysiology of functional and structural ventricular remodeling in HF. Interestingly, sympathetic and parasympathetic activations exert reciprocal influence on the activity of PKA. The current review attempts to evaluate the potential concept and feasibility of using in vitro assessment of PKA activity as a marker of sympathovagal balance in HF.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
César H, Nascimento Sertorio M, Santamarina A, Alves de Souza E, Valles Mennitti L, Jamar G, Jucá A, Picin Casagrande B, Estadela D, Pellegrini Pisani L. The influence of parental high-fat high-sugar diet on the gut-brain axis in male offspring. Food Res Int 2022; 160:111706. [DOI: 10.1016/j.foodres.2022.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
3
|
Gibbs T, Tapoulal N, Shanmuganathan M, Burrage MK, Borlotti A, Banning AP, Choudhury RP, Neubauer S, Kharbanda RK, Ferreira VM, Channon KM, Herring N. Neuropeptide-Y Levels in ST-Segment-Elevation Myocardial Infarction: Relationship With Coronary Microvascular Function, Heart Failure, and Mortality. J Am Heart Assoc 2022; 11:e024850. [PMID: 35766271 PMCID: PMC9333365 DOI: 10.1161/jaha.121.024850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The sympathetic cotransmitter, neuropeptide Y (NPY), is released into the coronary sinus during ST‐segment–elevation myocardial infarction and can constrict the coronary microvasculature. We sought to establish whether peripheral venous (PV) NPY levels, which are easy to obtain and measure, are associated with microvascular obstruction, myocardial recovery, and prognosis. Methods and Results NPY levels were measured immediately after primary percutaneous coronary intervention and compared with angiographic and cardiovascular magnetic resonance indexes of microvascular function. Patients were prospectively followed up for 6.4 (interquartile range, 4.1–8.0) years. PV (n=163) and coronary sinus (n=68) NPY levels were significantly correlated (r=0.92; P<0.001) and associated with multiple coronary and imaging parameters of microvascular function and infarct size (such as coronary flow reserve, acute myocardial edema, left ventricular ejection fraction, and late gadolinium enhancement 6 months later). We therefore assessed the prognostic value of PV NPY during follow‐up, where 34 patients (20.7%) developed heart failure or died. Kaplan‐Meier survival analysis demonstrated that high PV NPY levels (>21.4 pg/mL by binary recursive partitioning) were associated with increased incidence of heart failure and mortality (hazard ratio, 3.49 [95% CI, 1.65–7.4]; P<0.001). This relationship was maintained after adjustment for age, cardiovascular risk factors, and previous myocardial infarction. Conclusions Both PV and coronary sinus NPY levels correlate with microvascular function and infarct size after ST‐segment–elevation myocardial infarction. PV NPY levels are associated with the subsequent development of heart failure or mortality and may therefore be a useful prognostic marker. Further research is required to validate these findings.
Collapse
Affiliation(s)
- Thomas Gibbs
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom
| | - Nidi Tapoulal
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom
| | - Mayooran Shanmuganathan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom
| | - Matthew K Burrage
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom
| | - Alessandra Borlotti
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom
| | - Adrian P Banning
- National Institute for Health Research Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Rajesh K Kharbanda
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Vanessa M Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom.,Oxford Acute Vascular Imaging Centre University of Oxford United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre University of Oxford United Kingdom.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence University of Oxford United Kingdom
| | | |
Collapse
|
4
|
Bigalke JA, Carter JR. Sympathetic Neural Control in Humans with Anxiety-Related Disorders. Compr Physiol 2021; 12:3085-3117. [PMID: 34964121 DOI: 10.1002/cphy.c210027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Psychology, Montana State University, Bozeman, Montana, USA
| | - Jason R Carter
- Department of Psychology, Montana State University, Bozeman, Montana, USA.,Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
Esler M. Pivotal role of the sympathetic nerves of the human heart in mental stress responses and triggered cardiovascular catastrophes. Auton Neurosci 2021; 237:102925. [PMID: 34896690 DOI: 10.1016/j.autneu.2021.102925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Mental stress can trigger cardiac catastrophes, explicitly evident during national disasters such as earthquakes. Activation of the cardiac sympathetic outflow and inhibition of the cardiac vagus are important mediating mechanisms. This manuscript describes efforts by the Human Neurotransmitters Research Laboratory of the Baker Institute in Melbourne to develop investigative methods to study the sympathetic nerves of the human heart, and to apply these in mental stress research. With laboratory mental stress, activation of the adrenal medulla was found to occur, accompanied by a regionalized sympathetic nervous response directed to the heart, but sparing the sympathetic outflow to the skeletal muscle vasculature. Patients with panic disorder are at increased cardiovascular risk. They exhibit high-level sympathetic activation during a panic attack, sometimes accompanied by coronary artery spasm. Patients with sudden ventricular arrhythmias causing collapse in the community were found to have as the predisposing substrate high baseline cardiac sympathetic activity, from previously unrecognized mild heart failure; it was surprising at the time that we did not find critical coronary artery stenosis as the substrate. In some the arrhythmia event had a behavioural trigger. In Takotsubo cardiomyopathy ("Broken Heart Syndrome") the myocardial stunning appears to represent a catecholamine cardiomyopathy, from astronomically high plasma adrenaline concentrations, rather than be caused by activation of the cardiac sympathetic nerves. Some diseases (essential hypertension, heart failure, panic disorder) have forms of sympathetic neural enhancement which contribute to cardiovascular risk: reuptake of noradrenaline by sympathetic nerves after release is faulty and single sympathetic fibres fire in multiple salvos within a single cardiac cycle. Paradoxically, obesity-hypertension does not share in this sympathetic neural augmentation, which is present only in normal-weight hypertensive patients, providing the possible basis for an observed "Obesity Paradox" (longer survival in obesity-hypertension than in normal weight hypertension). Community-wide specific prevention of cardiovascular triggering is not currently possible, due to there being no available simple screening tests which could be applied to the community at-large for the commonest substrates, silent coronary artery disease and mild heart failure. Standard medical preventive measures for coronary atherosclerosis will of course be helpful. Targeted prevention of triggering can be done in those with a detected predisposing substrate, such as genetic Long QT Syndrome, and in survivors of a serious triggered event, who need detailed, appropriate testing.
Collapse
Affiliation(s)
- Murray Esler
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.
| |
Collapse
|
6
|
Zoccali C, Ortiz A, Blumbyte IA, Rudolf S, Beck-Sickinger AG, Malyszko J, Spasovski G, Carriazo S, Viggiano D, Kurganaite J, Sarkeviciene V, Rastenyte D, Figurek A, Rroji M, Mayer C, Arici M, Martino G, Tedeschi G, Bruchfeld A, Spoto B, Rychlik I, Wiecek A, Okusa M, Remuzzi G, Mallamaci F. Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in CKD: translational opportunities and challenges. Nephrol Dial Transplant 2021; 37:ii14-ii23. [PMID: 34724060 PMCID: PMC8713155 DOI: 10.1093/ndt/gfab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut–brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York,USA and Associazione Ipertensione Nefrologia Trapianto Renale (IPNET) Reggio Cal., Italy c/o CNR-IFC, Ospedali Riuniti, Reggio Calabria, Italy
| | - Alberto Ortiz
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Inga Arune Blumbyte
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Sarina Rudolf
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | | | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Goce Spasovski
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Sol Carriazo
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. and Biogem Scarl, Ariano Irpino, Italy
| | - Justina Kurganaite
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Vaiva Sarkeviciene
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Daiva Rastenyte
- Lithuanian University of Health Sciences, Neurology Department, Kaunas, Lithuania
| | - Andreja Figurek
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Merita Rroji
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Christopher Mayer
- Health and Bioresources, Biomedical Systems, Austrian Institute of Technology, Vienna, Austria
| | - Mustapha Arici
- Department of Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gianvito Martino
- Neurology Department, San Raffaele Scientific Institute and Vita-Salute University San Raffaele, Milan, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, and 3T-MRI Research Center, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden and Department of Renal Medicine, CLINTEC Karolinska Institutet, Stockholm, Sweden
| | | | - Ivan Rychlik
- Department of Medicine, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady,Prague, Czech Republic
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Mark Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano and CNR-IFC, Reggio Cal, Italy
| | | |
Collapse
|
7
|
Huang Y, Lin X, Lin S. Neuropeptide Y and Metabolism Syndrome: An Update on Perspectives of Clinical Therapeutic Intervention Strategies. Front Cell Dev Biol 2021; 9:695623. [PMID: 34307371 PMCID: PMC8299562 DOI: 10.3389/fcell.2021.695623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Through the past decade of research, the pathogenic mechanisms underlying metabolic syndrome have been suggested to involve not only the peripheral tissues, but also central metabolic regulation imbalances. The hypothalamus, and the arcuate nucleus in particular, is the control center for metabolic homeostasis and energy balance. Neuropeptide Y neurons are particularly abundantly expressed in the arcuate of the hypothalamus, where the blood-brain barrier is weak, such as to critically integrate peripheral metabolic signals with the brain center. Herein, focusing on metabolic syndrome, this manuscript aims to provide an overview of the regulatory effects of Neuropeptide Y on metabolic syndrome and discuss clinical intervention strategy perspectives for neurometabolic disease.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiahong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
8
|
Grassi G, Mancia G, Esler M. CENTRAL AND PERIPHERAL SYMPATHETIC ACTIVATION IN HEART FAILURE. Cardiovasc Res 2021; 118:1857-1871. [PMID: 34240147 DOI: 10.1093/cvr/cvab222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Abstract
The sympathetic nervous system overdrive occurring in heart failure has been reported since more than half a century. Refinements in the methodological approaches to assess human sympathetic neural function have allowed during recent years to better define various aspects related to the neuroadrenergic alteration. These include 1) the different participation of the individual regional sympathetic cardiovascular districts at the process, 2) the role of the central nervous system in determining the neuroadrenergic overdrive, 3) the involvement of baroreflex, cardiopulmonary reflex and chemoreflex mechanisms in the phoenomenon, which is also closely linked to inflammation and the immune reaction, 4) the relationships with the severity of the disease, its ischaemic or idiopathic nature and the preserved or reduced left ventricular ejection fraction and 5) the adverse functional and structural impact of the sympathetic activation on cardiovascular organs, such as the brain, the heart and the kidneys. Information have been also gained on the active role exerted by the sympathetic activation on the disease outcome and its potential relevance as target of the therapeutic interventions based on non-pharmacological, pharmacological and invasive approaches, including the renal denervation, the splanchnic sympathetic nerve ablation and the carotid baroreflex stimulation. The still undefined aspects of the neurogenic alterations and the unmet goals of the therapeutic approach having the sympathetic activation as a target of the intervention will be finally mentioned.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca
| | - Giuseppe Mancia
- Policlinico di Monza and University Milano-Bicocca, Milan, Italy
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
9
|
Paterek A, Sochanowicz B, Oknińska M, Śmigielski W, Kruszewski M, Mackiewicz U, Mączewski M, Leszek P. Ivabradine prevents deleterious effects of dopamine therapy in heart failure: No role for HCN4 overexpression. Biomed Pharmacother 2021; 136:111250. [PMID: 33450487 DOI: 10.1016/j.biopha.2021.111250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Exacerbations of chronic heart failure (CHF) are often treated with catecholamines to provide short term inotropic support, but this strategy is associated with long-term detrimental hemodynamic effects and increased ventricular arrhythmias (VA), possibly related to increased heart rate (HR). We hypothesized that ivabradine may prevent adverse effects of short-term dopamine treatment in CHF. METHODS Rats with post-myocardial infarction CHF received 2-week infusion of saline, dopamine(D), ivabradine(I) or D&I; cardiac function was assessed using echocardiography and pressure-volume loops while VA were assessed using telemetric ECG recording. Expression of HCN4, a potentially proarrhythmic channel blocked by ivabradine, was assessed in left ventricular (LV) myocardium. HCN4 expression was also assessed in human explanted normal and failing hearts and correlated with VA. FINDINGS Dopamine infusion had detrimental effects on hemodynamic parameters and LV remodeling and induced VA in CHF rats, while ivabradine completely prevented these effects. CHF rats demonstrated HCN4 overexpression in LV myocardium, and ivabradine and, unexpectedly, dopamine prevented this. Failing human hearts also exhibited HCN4 overexpression in LV myocardium that was unrelated to patient's sex, CHF etiology, VA severity or plasma NT-proBNP. INTERPRETATION HR reduction offered by ivabradine may be a feasible strategy to extract benefits of inotropic support in CHF exacerbations, avoiding detrimental effects on CHF biology or VA. Ivabradine may offer additional beneficial effects in this setting, going beyond pure HR reduction, however prevention of ventricular HCN4 overexpression is unlikely to play a major role.
Collapse
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Barbara Sochanowicz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Witold Śmigielski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszyński National Institute of Cardiology, Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland; Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Rzeszów, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Przemysław Leszek
- Department of Heart Failure and Transplantology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
10
|
Why Do We Not Assess Sympathetic Nervous System Activity in Heart Failure Management: Might GRK2 Serve as a New Biomarker? Cells 2021; 10:cells10020457. [PMID: 33669936 PMCID: PMC7924864 DOI: 10.3390/cells10020457] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) represents the end-stage condition of several structural and functional cardiovascular diseases, characterized by reduced myocardial pump function and increased pressure load. The dysregulation of neurohormonal systems, especially the hyperactivity of the cardiac adrenergic nervous system (ANS), constitutes a hallmark of HF and exerts a pivotal role in its progression. Indeed, it negatively affects patients’ prognosis, being associated with high morbidity and mortality rates, with a tremendous burden on global healthcare systems. To date, all the techniques proposed to assess the cardiac sympathetic nervous system are burdened by intrinsic limits that hinder their implementation in clinical practice. Several biomarkers related to ANS activity, which may potentially support the clinical management of such a complex syndrome, are slow to be implemented in the routine practice for several limitations due to their assessment and clinical impact. Lymphocyte G-protein-coupled Receptor Kinase 2 (GRK2) levels reflect myocardial β-adrenergic receptor function in HF and have been shown to add independent prognostic information related to ANS overdrive. In the present manuscript, we provide an overview of the techniques currently available to evaluate cardiac ANS in HF and future perspectives in this field of relevant scientific and clinical interest.
Collapse
|
11
|
Ajijola OA, Chatterjee NA, Gonzales MJ, Gornbein J, Liu K, Li D, Paterson DJ, Shivkumar K, Singh JP, Herring N. Coronary Sinus Neuropeptide Y Levels and Adverse Outcomes in Patients With Stable Chronic Heart Failure. JAMA Cardiol 2021; 5:318-325. [PMID: 31876927 PMCID: PMC6990798 DOI: 10.1001/jamacardio.2019.4717] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Question Is the adrenergic cotransmitter neuropeptide Y (NPY) associated with outcomes in patients with stable heart failure (HF)? Findings In a cohort of patients with stable HF undergoing cardiac resynchronization therapy device implantation, coronary sinus blood was sampled for NPY levels. A threshold level of NPY was identified, which was associated with death, heart transplant, and ventricular assist device placement; molecular studies on human sympathetic neurons indicated increased release of NPY in HF patients. Meaning Using NPY, hyperadrenergic activation associated with adverse outcomes may be identifiable in patients with stable HF. Importance Chronic heart failure (CHF) is associated with increased sympathetic drive and may increase expression of the cotransmitter neuropeptide Y (NPY) within sympathetic neurons. Objective To determine whether myocardial NPY levels are associated with outcomes in patients with stable CHF. Design, Setting, and Participants Prospective observational cohort study conducted at a single-center, tertiary care hospital. Stable patients with heart failure undergoing elective cardiac resynchronization therapy device implantation between 2013 and 2015. Main Outcomes and Measures Chronic heart failure hospitalization, death, orthotopic heart transplantation, and ventricular assist device placement. Results Coronary sinus (CS) blood samples were obtained during cardiac resynchronization therapy (CRT) device implantation in 105 patients (mean [SD] age 68 [12] years; 82 men [78%]; mean [SD] left ventricular ejection fraction [LVEF] 26% [7%]). Clinical, laboratory, and outcome data were collected prospectively. Stellate ganglia (SG) were collected from patients with CHF and control organ donors for molecular analysis. Mean (SD) CS NPY levels were 85.1 (31) pg/mL. On bivariate analyses, CS NPY levels were associated with estimated glomerular filtration rate (eGFR; rs = −0.36, P < .001); N-terminal–pro hormone brain natriuretic peptide (rs = 0.33; P = .004), and LV diastolic dimension (rs = −0.35; P < .001), but not age, LVEF, functional status, or CRT response. Adjusting for GFR, age, and LVEF, the hazard ratio for event-free (death, cardiac transplant, or left ventricular assist device) survival for CS NPY ≥ 130 pg/mL was 9.5 (95% CI, 2.92-30.5; P < .001). Immunohistochemistry demonstrated significantly reduced NPY protein (mean [SD], 13.7 [7.6] in the cardiomyopathy group vs 31.4 [3.7] in the control group; P < .001) in SG neurons from patients with CHF while quantitative polymerase chain reaction demonstrated similar mRNA levels compared with control individuals, suggesting increased release from SG neurons in patients with CHF. Conclusions and Relevance The CS levels of NPY may be associated with outcomes in patients with stable CHF undergoing CRT irrespective of CRT response. Increased neuronal traffic and release may be the mechanism for elevated CS NPY levels in patients with CHF. Further studies are warranted to confirm these findings. Trial Registration ClinicalTrials.gov identifier: NCT01949246
Collapse
Affiliation(s)
- Olujimi A Ajijola
- Neurocardiology Research Center of Excellence, Cardiac Arrhythmia Center, University of California, Los Angeles
| | | | - Matthew J Gonzales
- Neurocardiology Research Center of Excellence, Cardiac Arrhythmia Center, University of California, Los Angeles
| | - Jeffrey Gornbein
- Department of Biomathematics, University of California, Los Angeles
| | - Kun Liu
- British Heart Foundation Centre of Research Excellence, Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Centre, University of Oxford, Oxford, England
| | - Dan Li
- British Heart Foundation Centre of Research Excellence, Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Centre, University of Oxford, Oxford, England
| | - David J Paterson
- British Heart Foundation Centre of Research Excellence, Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Centre, University of Oxford, Oxford, England
| | - Kalyanam Shivkumar
- Neurocardiology Research Center of Excellence, Cardiac Arrhythmia Center, University of California, Los Angeles
| | | | - Neil Herring
- British Heart Foundation Centre of Research Excellence, Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Centre, University of Oxford, Oxford, England
| |
Collapse
|
12
|
Metwally YG, Sedrak HK, Shaltout IF. Effect of carvedilol versus nebivolol on insulin resistance among non-diabetic, non-ischemic cardiomyopathy with heart failure. Egypt Heart J 2020; 72:63. [PMID: 32990863 PMCID: PMC7524985 DOI: 10.1186/s43044-020-00099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Although B-blockers provide unequivocal benefits in heart failure (HF) management, some B-blockers worsen insulin resistance. It will be a promising strategy to recruit such a B blocker that did not worsen or can even improve insulin resistance (IR). So, this study aimed to assess the effect of two of the third-generation B-blockers (carvedilol versus nebivolol) on insulin sensitivity state in non-diabetic patients with non-ischemic cardiomyopathy with heart failure. Results Out of 43 patients enrolled, 58.1% represented the carvedilol group while 41.9% represented the nebivolol group. Nebivolol improves insulin resistance-related variables (fasting glucose, fasting insulin, and HOMA-IR; P < 0.001, 0.01, and 0.01 respectively). The percentage of change at homeostasis model of assessment (HOMA-IR), indicative of insulin sensitivity status, between baseline versus at 3-months follow-up level of intra-group comparison was increased by 4.58% in the carvedilol arm whereas it was decreased by 11.67% in the nebivolol arm, and the difference on the intragroup level of comparison was significant (P < 0.001 and 0.01 respectively). Conclusion Nebivolol improves insulin resistance-related variables .Nebivolol may be recommended as the B blocker of the first choice for those with non-ischemic cardiomyopathy heart failure with evident insulin resistance; however, larger scaled prospective multicenter randomized trials are needed for confirming our favorable results.
Collapse
|
13
|
Herring N, Tapoulal N, Kalla M, Ye X, Borysova L, Lee R, Dall'Armellina E, Stanley C, Ascione R, Lu CJ, Banning AP, Choudhury RP, Neubauer S, Dora K, Kharbanda RK, Channon KM. Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur Heart J 2020; 40:1920-1929. [PMID: 30859228 PMCID: PMC6588241 DOI: 10.1093/eurheartj/ehz115] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/23/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aims The co-transmitter neuropeptide-Y (NPY) is released during high sympathetic drive, including ST-elevation myocardial infarction (STEMI), and can be a potent vasoconstrictor. We hypothesized that myocardial NPY levels correlate with reperfusion and subsequent recovery following primary percutaneous coronary intervention (PPCI), and sought to determine if and how NPY constricts the coronary microvasculature. Methods and results Peripheral venous NPY levels were significantly higher in patients with STEMI (n = 45) compared to acute coronary syndromes/stable angina ( n = 48) or with normal coronary arteries (NC, n = 16). Overall coronary sinus (CS) and peripheral venous NPY levels were significantly positively correlated (r = 0.79). STEMI patients with the highest CS NPY levels had significantly lower coronary flow reserve, and higher index of microvascular resistance measured with a coronary flow wire. After 2 days they also had significantly higher levels of myocardial oedema and microvascular obstruction on cardiac magnetic resonance imaging, and significantly lower ejection fractions and ventricular dilatation 6 months later. NPY (100–250 nM) caused significant vasoconstriction of rat microvascular coronary arteries via increasing vascular smooth muscle calcium waves, and also significantly increased coronary vascular resistance and infarct size in Langendorff hearts. These effects were blocked by the Y1 receptor antagonist BIBO3304 (1 μM). Immunohistochemistry of the human coronary microvasculature demonstrated the presence of vascular smooth muscle Y1 receptors. Conclusion High CS NPY levels immediately after reperfusion correlate with microvascular dysfunction, greater myocardial injury, and reduced ejection fraction 6 months after STEMI. NPY constricts the coronary microcirculation via the Y1 receptor, and antagonists may be a useful PPCI adjunct therapy. ![]()
Collapse
Affiliation(s)
- Neil Herring
- Department of Physiology, Anatomy and Genetics, Burdon Sandersn Cardiac Science Centre, University of Oxford, Parks Road, Oxford OX13PT, UK.,Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
| | - Nidi Tapoulal
- Department of Physiology, Anatomy and Genetics, Burdon Sandersn Cardiac Science Centre, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Manish Kalla
- Department of Physiology, Anatomy and Genetics, Burdon Sandersn Cardiac Science Centre, University of Oxford, Parks Road, Oxford OX13PT, UK.,Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford UK
| | - Lyudmyla Borysova
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford UK
| | - Regent Lee
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
| | - Erica Dall'Armellina
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.,Oxford Acute Vascular Imaging Centre, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford UK
| | | | - Raimondo Ascione
- Bristol Heart Institute, Bristol Royal Infirmary, and Faculty of Health Sciences, University of Bristol, Horfield Road, Bristol UK
| | - Chieh-Ju Lu
- Department of Physiology, Anatomy and Genetics, Burdon Sandersn Cardiac Science Centre, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Adrian P Banning
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way Oxford, UK
| | - Robin P Choudhury
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.,Oxford Acute Vascular Imaging Centre, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford UK
| | - Stefan Neubauer
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way Oxford, UK
| | - Kim Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford UK
| | - Rajesh K Kharbanda
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way Oxford, UK
| | - Keith M Channon
- Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way Oxford, UK
| | | |
Collapse
|
14
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
15
|
Higher Serum Neuropeptide Y Levels Are Associated with Metabolically Unhealthy Obesity in Obese Chinese Adults: A Cross-Sectional Study. Mediators Inflamm 2020; 2020:7903140. [PMID: 32831640 PMCID: PMC7424399 DOI: 10.1155/2020/7903140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Neuropeptide Y (NPY), an orexigenic peptide known to cause hyperphagia, has been involved in the occurrence and development of obesity. However, differences in the distribution of serum NPY levels in obese phenotypes (including metabolically unhealthy obesity (MUO) phenotype and metabolically healthy obesity (MHO) phenotype) and the association of NPY with MUO phenotype have not been unequivocally established. We therefore determined associations of serum NPY levels with MUO phenotype in obese Chinese adults. Methods A cross-sectional study was conducted from 400 obese adults in Hunan province, who underwent a health examination in the Second Xiangya Hospital, and 164 participants were finally enrolled in the study and divided into MHO and MUO groups. Serum NPY levels were examined; univariate and multivariate analyses as well as smooth curve fitting analyses were conducted to measure the association of NPY serum levels with the MUO phenotype. Results Serum NPY levels were significantly elevated in the MUO group compared with the MHO group ((667.69 ± 292.90) pg/mL vs. (478.89 ± 145.53) pg/mL, p < 0.001). A threshold and nonlinear association between serum NPY levels and MUO was found (p = 0.001). When serum NPY levels exceeded the turning point (471.5 pg/mL), each 10 pg/mL increment in the NPY serum level was significantly associated with an 18% increased odds ratio of MUO phenotype (OR: 1.18, 95% CI: 1.07–1.29, p = 0.0007) after adjusted for confounders. Conclusions Higher NPY serum levels were positively correlated with MUO phenotype in obese Chinese adults.
Collapse
|
16
|
Neuropeptide Y predicts cardiovascular events in chronic kidney disease patients: a cohort study. J Hypertens 2020; 37:1359-1365. [PMID: 30633126 DOI: 10.1097/hjh.0000000000002030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a multifaceted sympathetic neurotransmitter regulating reflex cardiovascular control, myocardial cell growth, inflammation and innate immunity. Circulating NPY levels predict cardiovascular mortality in patients with end stage kidney disease on dialysis but this relationship has never been tested in predialysis chronic kidney disease (CKD) patients. METHODS We investigated the relationship between circulating NPY and the risk for cardiovascular events (Fine & Gray competing risks model) in a cohort of 753 stages 2-5 CKD patients over a median follow-up of 36 months. RESULTS Independently of other risk factors, plasma NPY was directly related with the glomerular filtration rate (β = -0.19, P < 0.001) but was independent of systemic inflammation as quantified by serum IL6 and C reactive protein. Over follow-up 112 patients had cardiovascular events and 12 died. In analyses fully adjusted for traditional risk factors and a large series of CKD-specific risk factors and considering death as a competing event (Fine and Gray model) a 0.25 μmol/l increase in NPY robustly predicted the incident risk for cardiovascular events (subdistribution hazard ratio: 1.25; 95% confidence interval: 1.09-1.44; P = 0.002). Furthermore, the fully adjusted NPY - cardiovascular outcomes relationship was modified by age (P = 0.012) being quite strong in young patients but weaker in the old ones. CONCLUSION NPY is an independent, robust predictor of cardiovascular events in predialysis CKD patients and the risk for such events is age-dependent being maximal in young patients. These findings suggest that NPY may play a role in the high risk of cardiovascular disease in this population.
Collapse
|
17
|
Grassi G, Quarti-Trevano F, Esler MD. Sympathetic activation in congestive heart failure: an updated overview. Heart Fail Rev 2019; 26:173-182. [PMID: 31832833 DOI: 10.1007/s10741-019-09901-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conclusive evidence demonstrates that the sympathetic nervous system activation is a hallmark of congestive heart failure. This has been shown via a variety of biochemical, neurophysiological, and neuroimaging approaches for studying human sympathetic neural function. The sympathetic activation appears to be an early phenomenon in the clinical course of the disease, closely related to its severity and potentiated by the concomitant presence of other comorbidities, such as obesity, diabetes mellitus, metabolic syndrome, hypertension, and renal failure. The adrenergic overdrive in heart failure is associated with other sympathetic abnormalities, such as the downregulation of beta-adrenergic adrenoreceptors at cardiac level, and exerts unfavorable consequences on the cardiovascular system. These include the endothelial dysfunction, the development of left ventricular hypertrophy, the atherosclerosis development, as well as the generation of atrial and ventricular arrhythmias, and, at very extreme levels of sympathetic activation, the occurrence of microscopic myocardial necrosis. Given the close direct independent relationships detected in heart failure between sympathetic activation and mortality, the adrenergic overdrive has become a target of neuromodulatory therapeutic interventions, which include non-pharmacological, pharmacological, and device-based interventions. For some of these approaches (specifically bilateral renal nerves ablation and carotid baroreceptor stimulation), additional studies are needed to better define their impact on the clinical course of the disease.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Italy.
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Italy
| | - Murray D Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
18
|
Zavadovsky KV, Mishkina AI, Lebedev DI, Gulya MO, Varlamova YV, Lishmanov YB, Popov SV. [123 I-MIBG scintigraphy in the assessment of heart failure prognosis and effectiveness of cardiac resynchronization therapy]. ACTA ACUST UNITED AC 2019; 60:122-130. [PMID: 32345208 DOI: 10.18087/cardio.2020.2.n324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022]
Abstract
Cardiac resynchronization therapy (CRT) is one of the methods of treating patients with chronic heart failure, which can reduce the mortality rate of this group. Scintigraphic assessment of sympathetic myocardial innervation allows us to evaluate the heart failure prognosis and the effectiveness of interventional treatment. The method is based on use of the radiopharmaceutical 123 I-methiodiobenzylguanidine (123 I-MIBG), which is a structural analogue of norepinephrine and is able to selectively accumulate in the sympathetic nerve endings. This review includes a brief description of norepinephrine metabolism and pharmacokinetics of 123 I-MIBG in the sympathetic nerve ending, a brief description of the study methodology and the clinical significance of this method in patients with heart failure. Particular attention is paid to the possibilities of using this method in patients with severe chronic heart failure before and after CRT.
Collapse
Affiliation(s)
- K V Zavadovsky
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - A I Mishkina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - D I Lebedev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - M O Gulya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - Yu V Varlamova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - Yu B Lishmanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| | - S V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
| |
Collapse
|
19
|
Zoccali C, D'Arrigo G, Leonardis D, Pizzini P, Postorino M, Tripepi G, Mallamaci F, van den Brand J, van Zuilen A, Wetzels J, Bots ML, Blankestijn P. Neuropeptide Y and chronic kidney disease progression: a cohort study. Nephrol Dial Transplant 2019; 33:1805-1812. [PMID: 29370406 DOI: 10.1093/ndt/gfx351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Background Neuropeptide Y (NPY) is a sympathetic neurotransmitter that has been implicated in various disorders including obesity, gastrointestinal and cardiovascular diseases. Methods We investigated the relationship between circulating NPY and the progression of the glomerular filtration rate (GFR) and proteinuria and the risk for a combined renal endpoint (>30% GFR loss, dialysis/transplantation) in two European chronic kidney disease (CKD) cohorts including follow-up of 753 and 576 patients for 36 and 57 months, respectively. Results Average plasma NPY was 104 ± 32 pmol/L in the first CKD cohort and 119 ± 41 pmol/L in the second one. In separate analyses of the two cohorts, NPY associated with the progression of the estimated GFR (eGFR) and proteinuria over time in both unadjusted and adjusted {eGFR: -3.60 mL/min/1.73 m2 [95% confidence interval (CI): -4.46 to - 2.74] P < 0.001 and -0.83 mL/min/1.73 m2 (-1.41 to - 0.25, P = 0.005); proteinuria: 0.18 g/24 h (0.11-0.25) P < 0.001 and 0.07 g/24 h (0.005-0.14) P = 0.033} analyses by the mixed linear model. Accordingly, in a combined analysis of the two cohorts accounting for the competitive risk of death (Fine and Gray model), NPY predicted (P = 0.005) the renal endpoint [sub-distribution hazard ratio (SHR): 1.09; 95% CI: 1.03-1.16; P = 0.005] and the SHR in the first cohort (1.14, 95% CI: 1.04-1.25) did not differ (P = 0.25) from that in the second cohort (1.06, 95% CI: 0.98-1.15). Conclusions NPY associates with proteinuria and faster CKD progression as well as with a higher risk of kidney failure. These findings suggest that the sympathetic system and/or properties intrinsic to the NPY molecule may play a role in CKD progression.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Graziella D'Arrigo
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Daniela Leonardis
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Patrizia Pizzini
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Maurizio Postorino
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Giovanni Tripepi
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Francesca Mallamaci
- CNR-IFC, Center of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Jan van den Brand
- Radboud University Nijmegen Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Arjan van Zuilen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jack Wetzels
- Radboud University Nijmegen Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Blankestijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Pipikos T, Kapelouzou A, Tsilimigras DI, Fostinis Y, Pipikou M, Theodorakos A, Pavlidis AN, Kontogiannis C, Cokkinos DV, Koutelou M. Stronger correlation with myocardial ischemia of high-sensitivity troponin T than other biomarkers. J Nucl Cardiol 2019; 26:1674-1683. [PMID: 29380285 DOI: 10.1007/s12350-018-1199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is considered a major cause of death and disability. Myocardial perfusion scintigraphy (MPS) as a non-invasive diagnostic imaging procedure and certain biomarkers associated with myocardial ischemia (ISCH), such as ischemia-modified albumin (IMA), neuropeptide Y (NPY), N-terminal pro b-type natriuretic peptide (NT-proBNP), and high-sensitivity troponin T (hsTnT) could probably aid in the detection of myocardial infarction. METHODS Between December 2011 and June 2012, we prospectively analyzed patients who underwent a MPS study with the clinical question of myocardial ISCH. An exercise test was performed along with a MPS. Blood was drawn from the patients before exercise and the within 3 minutes from achieving maximum load and was analyzed for the aforementioned biomarkers. RESULTS A total of 71 patients (56 men and 15 women) were enrolled with a mean age of 61 ± 12 years. Twenty-six patients (36.6%) showed reduced uptake on stress MPS images that normalized at rest, a finding consistent with ISCH. Between ISCH and non-ISCH groups, only hsTnT levels showed a significant difference with the highest levels pertaining to the former group both before (0.0075 ng/ml vs 0.0050 ng/ml, P = 0.023) and after stress exercise (0.0085 vs 0.0050, P = 0.015). The most prominent differences were seen in higher stages of the Bruce protocol (stress duration > 9.05 minutes - P < 0.017). None of the IMA, NPY, and NP-pro BNP showed significant differences in time between the two groups. CONCLUSIONS Although IMA, NPY, and NT-pro BNP may not detect minor ischemic myocardial insults, serum hsTnT holds a greater ability of detecting not only myocardial infarction but also less severe ischemia. Further studies with larger cohorts of patients are warranted in order to better define the role of hsTnT as a screening tool for myocardial ischemia.
Collapse
Affiliation(s)
- Theodore Pipikos
- Nuclear Medicine Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 11527, Athens, Greece.
| | | | - Yannis Fostinis
- Nuclear Medicine Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Marina Pipikou
- Nuclear Medicine Department, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Antonis N Pavlidis
- Department of Cardiology, Guy's and St. Thomas', NHS Foundation Trust, London, UK
| | | | - Dennis V Cokkinos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 11527, Athens, Greece
| | - Maria Koutelou
- Nuclear Medicine Department, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
21
|
Kiuchi MG, Nolde JM, Villacorta H, Carnagarin R, Chan JJSY, Lugo-Gavidia LM, Ho JK, Matthews VB, Dwivedi G, Schlaich MP. New Approaches in the Management of Sudden Cardiac Death in Patients with Heart Failure-Targeting the Sympathetic Nervous System. Int J Mol Sci 2019; 20:E2430. [PMID: 31100908 PMCID: PMC6567277 DOI: 10.3390/ijms20102430] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been considered the most predominant cause of death and one of the most critical public health issues worldwide. In the past two decades, cardiovascular (CV) mortality has declined in high-income countries owing to preventive measures that resulted in the reduced burden of coronary artery disease (CAD) and heart failure (HF). In spite of these promising results, CVDs are responsible for ~17 million deaths per year globally with ~25% of these attributable to sudden cardiac death (SCD). Pre-clinical data demonstrated that renal denervation (RDN) decreases sympathetic activation as evaluated by decreased renal catecholamine concentrations. RDN is successful in reducing ventricular arrhythmias (VAs) triggering and its outcome was not found inferior to metoprolol in rat myocardial infarction model. Registry clinical data also suggest an advantageous effect of RDN to prevent VAs in HF patients and electrical storm. An in-depth investigation of how RDN, a minimally invasive and safe method, reduces the burden of HF is urgently needed. Myocardial systolic dysfunction is correlated to neuro-hormonal overactivity as a compensatory mechanism to keep cardiac output in the face of declining cardiac function. Sympathetic nervous system (SNS) overactivity is supported by a rise in plasma noradrenaline (NA) and adrenaline levels, raised central sympathetic outflow, and increased organ-specific spillover of NA into plasma. Cardiac NA spillover in untreated HF individuals can reach ~50-fold higher levels compared to those of healthy individuals under maximal exercise conditions. Increased sympathetic outflow to the renal vascular bed can contribute to the anomalies of renal function commonly associated with HF and feed into a vicious cycle of elevated BP, the progression of renal disease and worsening HF. Increased sympathetic activity, amongst other factors, contribute to the progress of cardiac arrhythmias, which can lead to SCD due to sustained ventricular tachycardia. Targeted therapies to avoid these detrimental consequences comprise antiarrhythmic drugs, surgical resection, endocardial catheter ablation and use of the implantable electronic cardiac devices. Analogous NA agents have been reported for single photon-emission-computed-tomography (SPECT) scans usage, specially the 123I-metaiodobenzylguanidine (123I-MIBG). Currently, HF prognosis assessment has been improved by this tool. Nevertheless, this radiotracer is costly, which makes the use of this diagnostic method limited. Comparatively, positron-emission-tomography (PET) overshadows SPECT imaging, because of its increased spatial definition and broader reckonable methodologies. Numerous ANS radiotracers have been created for cardiac PET imaging. However, so far, [11C]-meta-hydroxyephedrine (HED) has been the most significant PET radiotracer used in the clinical scenario. Growing data has shown the usefulness of [11C]-HED in important clinical situations, such as predicting lethal arrhythmias, SCD, and all-cause of mortality in reduced ejection fraction HF patients. In this article, we discussed the role and relevance of novel tools targeting the SNS, such as the [11C]-HED PET cardiac imaging and RDN to manage patients under of SCD risk.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Janis Marc Nolde
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Humberto Villacorta
- Cardiology Division, Department of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24033-900, Brazil.
| | - Revathy Carnagarin
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Justine Joy Su-Yin Chan
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Jan K Ho
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Vance B Matthews
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research and Fiona Stanley Hospital, The University of Western Australia, Perth 6150, Australia.
| | - Markus P Schlaich
- Dobney Hypertension Cenre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia Level 3, MRF Building, Rear 50 Murray St, Perth 6000, MDBP: M570, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth 6000, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia.
| |
Collapse
|
22
|
Tan CMJ, Green P, Tapoulal N, Lewandowski AJ, Leeson P, Herring N. The Role of Neuropeptide Y in Cardiovascular Health and Disease. Front Physiol 2018; 9:1281. [PMID: 30283345 PMCID: PMC6157311 DOI: 10.3389/fphys.2018.01281] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide Y (NPY) is an abundant sympathetic co-transmitter, widely found in the central and peripheral nervous systems and with diverse roles in multiple physiological processes. In the cardiovascular system it is found in neurons supplying the vasculature, cardiomyocytes and endocardium, and is involved in physiological processes including vasoconstriction, cardiac remodeling, and angiogenesis. It is increasingly also implicated in cardiovascular disease pathogenesis, including hypertension, atherosclerosis, ischemia/infarction, arrhythmia, and heart failure. This review will focus on the physiological and pathogenic role of NPY in the cardiovascular system. After summarizing the NPY receptors which predominantly mediate cardiovascular actions, along with their signaling pathways, individual disease processes will be considered. A thorough understanding of these roles may allow therapeutic targeting of NPY and its receptors.
Collapse
Affiliation(s)
- Cheryl M J Tan
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peregrine Green
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom
| | - Nidi Tapoulal
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Mental stress and human cardiovascular disease. Neurosci Biobehav Rev 2016; 74:269-276. [PMID: 27751732 DOI: 10.1016/j.neubiorev.2016.10.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/23/2022]
Abstract
The London physician and neuroanatomist Thomas Willis in the 17th century correctly attributed the source of emotions to the brain, not the heart as believed in antiquity. Contemporary research documents the phenomenon of "triggered" heart disease, when the autonomic nervous system control of the heart by the brain goes awry, producing heart disease of sudden onset, precipitated by acute emotional upheaval. This can take the form of, variously, cardiac arrhythmias, myocardial infarction, Takotsubo cardiomyopathy and sudden death. Chronic psychological distress also can have adverse cardiovascular consequences, in the causal linkage of depressive illness to heart disease, and in the probable causation of atherosclerosis and hypertension by chronic mental stress. In patients with essential hypertension, stress biomarkers are present. The sympathetic nervous system is the usual mediator between these acute and chronic psychological substrates and cardiovascular disease.
Collapse
|
24
|
Bairey Merz CN, Elboudwarej O, Mehta P. The autonomic nervous system and cardiovascular health and disease: a complex balancing act. JACC-HEART FAILURE 2016; 3:383-385. [PMID: 25951758 DOI: 10.1016/j.jchf.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 02/01/2023]
Affiliation(s)
- C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Omeed Elboudwarej
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Puja Mehta
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
25
|
Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1). PLoS One 2015; 10:e0130587. [PMID: 26110874 PMCID: PMC4481410 DOI: 10.1371/journal.pone.0130587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH), which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR), semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1) and liver X receptor (LXR)-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO) staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL) and with or without CRH (10 nM) in the presence of apolipoprotein A1 (apoA1) revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY)-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473) induced by interaction between CRH and CRH receptor 1(CRHR1). We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis.
Collapse
|
26
|
Neuropeptide Y as an indicator of successful alterations in sympathetic nervous activity after renal sympathetic denervation. Clin Res Cardiol 2015; 104:1064-71. [PMID: 26008896 DOI: 10.1007/s00392-015-0874-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Renal sympathetic denervation (RSD) represents a safe and effective treatment option for certain patients with resistant hypertension and has been shown to decrease sympathetic activity. Neuropeptide Y (NPY) is a neurotransmitter that is co-released with norepinephrine and is up-regulated during increased sympathetic activity. The aim of the present study was to examine the effect of RSD on NPY and to analyze the association between changes in NPY levels and blood pressure reduction after RSD. METHODS A total of 150 consecutive patients (age 64.9 ± 10.2 years) from three clinical centers undergoing RSD were included in this study. Response to RSD was defined as an office systolic blood pressure (SBP) reduction of >10 mmHg 6 months after RSD. Venous blood samples for measurement of NPY were collected prior to and 6 months after RSD. RESULTS BP and NPY levels were significantly reduced by 23/9 mmHg (p = 0.001/0.001) and 0.24 mg/dL (p < 0.01) 6 months after RSD. There was a significant correlation between baseline SBP- and RSD-related systolic BP reduction (r = -0.43; p < 0.001) and between serum NPY baseline values and NPY level changes (r = -0.52; p < 0.001) at the 6-month follow-up. The BP response to RSD (>10 mmHg) was associated with a significantly greater reduction in NPY level when compared with BP non-responders (p = 0.001). CONCLUSION This study demonstrates an effect of RSD on serum NPY levels, a specific marker for sympathetic activity. The association between RSD-related changes in SBP and NPY levels provides further evidence of the effect of RSD on the sympathetic nervous system.
Collapse
|
27
|
Parizadeh SA, Jamialahmadi K, Rooki H, Mirhafez SR, Moohebati M, Hosseini N, Zaim-Kohan H, Mohiti-Ardakani J, Masoudi A, Ferns GA, Ghayour-Mobarhan M. Lack of an association between a functional polymorphism in the neuropeptide Y gene promoter and the presence of coronary artery disease in an Iranian population. ANNALS OF NUTRITION AND METABOLISM 2014; 65:333-40. [PMID: 25427865 DOI: 10.1159/000367854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Several genetic factors have been identified that may contribute to the risk of coronary artery disease (CAD). Variants of the neuropeptide Y (NPY) gene, whose products play an important role in regulating several physiological functions, have been associated with the risk of CAD in some populations. The purpose of this study was to investigate the relationship between the NPY gene rs16147 polymorphism and the presence of CAD in an Iranian population. METHODS DNA samples of 922 subjects, including 433 with angiographically defined CAD (CAD+), 196 without angiographically defined significant CAD (CAD-) and 293 controls, were genotyped using polymerase chain reaction based on the amplification-refractory mutation system. Logistic regression analyses were performed to assess the association of rs16147 genotypes with the presence of significant CAD. RESULTS Although logistic regression analysis indicated that the NPY polymorphism rs16147 was nominally associated with an increased risk of CAD (p < 0.05), after adjustment for confounding factors, there was no evidence for any significantly increased or decreased risk of CAD with this polymorphism. However, in stratified analyses, the C allele was significantly associated with a reduced risk of CAD in males and subjects who were <50 years of age. CONCLUSIONS This study suggests that the rs16147 polymorphism in the NPY gene may not be a potential contributor to the risk of CAD in an Iranian population.
Collapse
Affiliation(s)
- Seyed Alireza Parizadeh
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baker AJ. Adrenergic signaling in heart failure: a balance of toxic and protective effects. Pflugers Arch 2014; 466:1139-50. [PMID: 24623099 DOI: 10.1007/s00424-014-1491-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Heart failure with reduced ejection fraction involves activation of the sympathetic nervous system and chronic hyperactivation of the sympatho-adrenergic receptors (ARs) β-ARs and α1-ARs, which are thought to be cardiotoxic and worsen pathological remodeling and function. Concurrently, the failing heart manifests significant decreases in sympathetic nerve terminal density, decreased cardiac norepinephrine levels, and marked downregulation of β-AR abundance and signaling. Thus, a state of both feast and famine coexist with respect to the adrenergic state in heart failure. For the failing heart, the hyperadrenergic state is toxic. However, the role of hypoadrenergic mechanisms in the pathophysiology of heart failure is less clear. Cardiotoxic effects are known to arise from the β1-AR subtype, and use of β-AR blockers is a cornerstone of current heart failure therapy. However, cardioprotective effects arise from the β2-AR subtype that counteract hyperactive β1-AR signaling, but unfortunately, β2-AR cardioprotective signaling in heart failure is inhibited by β-AR blocker therapy. In contrast to current dogma, recent research shows β1-AR signaling can also be cardioprotective. Moreover, for some forms of heart failure, β2-AR signaling is cardiotoxic. Thus for both β-AR subtypes, there is a balance between cardiotoxic versus cardioprotective effects. In heart failure, stimulation of α1-ARs is widely thought to be cardiotoxic. However, also contrary to current dogma, recent research shows that α1-AR signaling is cardioprotective. Taken together, recent research identifies cardioprotective signaling arising from β1-AR, β2-AR, and α1-ARs. A goal for future therapies will to harness the protective effects of AR signaling while minimizing cardiotoxic effects. The trajectory of heart failure therapy changed radically from the previous and intuitive use of sympathetic agonists, which unfortunately resulted in greater mortality, to the current use of β-AR blockers, which initially seemed counterintuitive. As a cautionary note, if the slow adoption of beta-blocker therapy in heart failure is any guide, then new treatment strategies, especially counterintuitive therapies involving stimulating β-AR and α1-AR signaling, may take considerable time to develop and gain acceptance.
Collapse
Affiliation(s)
- Anthony J Baker
- Veterans Affairs Medical Center, San Francisco and Department of Medicine, University of California, Cardiology Division (111C), 4150 Clement St, San Francisco, CA, 94121, USA,
| |
Collapse
|
29
|
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA.
| | | | | |
Collapse
|
30
|
Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol 2013; 4:240. [PMID: 24027534 PMCID: PMC3761154 DOI: 10.3389/fphys.2013.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy Fort Lauderdale, FL, USA
| |
Collapse
|
31
|
Zhang K, Rao F, Miramontes-Gonzalez JP, Hightower CM, Vaught B, Chen Y, Greenwood TA, Schork AJ, Wang L, Mahata M, Stridsberg M, Khandrika S, Biswas N, Fung MM, Waalen J, Middelberg RP, Heath AC, Montgomery GW, Martin NG, Whitfield JB, Baker DG, Schork NJ, Nievergelt CM, O'Connor DT. Neuropeptide Y (NPY): genetic variation in the human promoter alters glucocorticoid signaling, yielding increased NPY secretion and stress responses. J Am Coll Cardiol 2012; 60:1678-89. [PMID: 23021333 DOI: 10.1016/j.jacc.2012.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. BACKGROUND The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. METHODS Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. RESULTS Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇-880Δ (2-bp TG/-, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h(2)) stress traits: higher NPY secretion (h(2) = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇-880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele -880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter -880Δ interrupts a novel glucocorticoid response element motif, an effect confirmed in chromaffin cells by site-directed mutagenesis on the transfected promoter, with differential glucocorticoid stimulation of the motif as well as alterations in electrophoretic mobility shifts. The same -880Δ allele also conferred risk for hypertension and accounted for approximately 4.5/approximately 2.1 mm Hg systolic BP/diastolic BP in a population sample from BP extremes. CONCLUSIONS We conclude that common genetic variation at the NPY locus, especially in proximal promoter ∇-880Δ, disrupts glucocorticoid signaling to influence NPY transcription and secretion, raising systemic vascular resistance and early heritable responses to environmental stress, eventuating in elevated resting BP in the population. The results point to new molecular strategies for probing autonomic control of the human circulation and ultimately susceptibility to and pathogenesis of cardiovascular and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine and Institute for Genomic Medicine, University of California at San Diego, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gullestad L, Pernow J, Bjurö T, Aaberge L, Skårdal R, Kjekshus E, Høglund L, Mellgård AJ, Wahlquist I, Ablad B. Differential effects of metoprolol and atenolol to neuropeptide Y blockade in coronary artery disease. SCAND CARDIOVASC J 2011; 46:23-31. [PMID: 22017530 DOI: 10.3109/14017431.2011.624195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To explore possible differential effects between metoprolol and atenolol in patients with coronary artery disease. DESIGN The study was randomized, double blind, two-way crossover with the Y1 antagonist AR-H040922 given as IV infusion for 2 h or placebo. Most patients were treated with metoprolol or atenolol. In a post hoc analysis we compared the hemodynamic response to exercise of the Y1 antagonist in patients on metoprolol (n = 16) and atenolol (n = 5), and assessed respiratory sinus arrhythmia (RSA), an indirect measurement of cardiac vagal activation, in the placebo phase in patients on metoprolol (n = 26) and on atenolol (n = 24). RESULTS 1) The Y1 antagonist reduced the systolic blood pressure rise during and after exercise during atenolol, but not during metoprolol, while heart rate and maximal load were similar with the two beta-blockers and not affected by the Y1 antagonist. 2) At equal heart- and respiration-rate 7-8 min after exercise the RSA was significantly lower in atenolol than in metoprolol patients, while no difference was seen at rest before exercise. CONCLUSION These findings from this hypothesis generating study indicate that peripheral effects of NPY contribute less to cardiovascular stress reactions in patients on metoprolol than in those on atenolol.
Collapse
Affiliation(s)
- Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Nydalen, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stress and Its Role in Sympathetic Nervous System Activation in Hypertension and the Metabolic Syndrome. Curr Hypertens Rep 2011; 13:244-8. [DOI: 10.1007/s11906-011-0186-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1333-50. [PMID: 21256164 DOI: 10.1016/j.bbamcr.2011.01.015] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Mazankowski Alberta Heart Institute, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol (1985) 2010; 108:227-37. [DOI: 10.1152/japplphysiol.00832.2009] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sympathetic nervous system responses typically are regionally differentiated, with activation in one outflow sometimes accompanying no change or sympathetic inhibition in another. Regional sympathetic activity is best studied in humans by recording from postganglionic sympathetic efferents (multiunit or single fiber recording) and by isotope dilution-derived measurement of organ-specific norepinephrine release to plasma (regional “norepinephrine spillover”). Evidence assembled in this review indicates that sympathetic nervous system abnormalities are crucial in the development of cardiovascular disorders, notably heart failure, essential hypertension, disorders of postural circulatory control causing syncope, and “psychogenic heart disease,” heart disease attributable to mental stress and psychiatric illness. These abnormalities involve persistent, adverse activation of sympathetic outflows to the heart and kidneys in heart failure and hypertension, episodic or ongoing cardiac sympathetic activation in psychogenic heart disease, and defective sympathetic circulatory reflexes in disorders of postural circulatory control. An important goal for clinical scientists is translation of knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this “mechanisms-to-management” transition is at differing stages of development with the different conditions. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to introduction of β-adrenergic blockers, an effective therapy. With essential hypertension, perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on demonstration of activation of the renal sympathetic outflow. With psychogenic heart disease and postural syncope syndromes, knowledge of the neural pathophysiology is emerging, but clinical translation remains for the future.
Collapse
Affiliation(s)
- Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
37
|
Yu JT, Yu NN, Gao SS, Song JH, Ma T, Wang ND, Tang YC, Zhang N, Tan L. Neuropeptide Y polymorphisms and ischemic stroke in Chinese population. Clin Chim Acta 2010; 411:242-5. [DOI: 10.1016/j.cca.2009.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
|
38
|
Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 2009; 54:1747-62. [PMID: 19874988 DOI: 10.1016/j.jacc.2009.05.015] [Citation(s) in RCA: 654] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/11/2009] [Accepted: 05/14/2009] [Indexed: 01/12/2023]
Abstract
Heart failure is a syndrome characterized initially by left ventricular dysfunction that triggers countermeasures aimed to restore cardiac output. These responses are compensatory at first but eventually become part of the disease process itself leading to further worsening cardiac function. Among these responses is the activation of the sympathetic nervous system (SNS) that provides inotropic support to the failing heart increasing stroke volume, and peripheral vasoconstriction to maintain mean arterial perfusion pressure, but eventually accelerates disease progression affecting survival. Activation of SNS has been attributed to withdrawal of normal restraining influences and enhancement of excitatory inputs including changes in: 1) peripheral baroreceptor and chemoreceptor reflexes; 2) chemical mediators that control sympathetic outflow; and 3) central integratory sites. The interface between the sympathetic fibers and the cardiovascular system is formed by the adrenergic receptors (ARs). Dysregulation of cardiac beta(1)-AR signaling and transduction are key features of heart failure progression. In contrast, cardiac beta(2)-ARs and alpha(1)-ARs may function in a compensatory fashion to maintain cardiac inotropy. Adrenergic receptor polymorphisms may have an impact on the adaptive mechanisms, susceptibilities, and pharmacological responses of SNS. The beta-AR blockers and the inhibitors of the renin-angiotensin-aldosterone axis form the mainstay of current medical management of chronic heart failure. Conversely, central sympatholytics have proved harmful, whereas sympathomimetic inotropes are still used in selected patients with hemodynamic instability. This review summarizes the changes in SNS in heart failure and examines how modulation of SNS activity may affect morbidity and mortality from this syndrome.
Collapse
|
39
|
Lewandowski J, Abramczyk P, Dobosiewicz A, Bidiuk J, Sinski M, Gaciong Z. The Effect of Enalapril and Telmisartan on Clinical and Biochemical Indices of Sympathetic Activity in Hypertensive Patients. Clin Exp Hypertens 2009; 30:423-32. [DOI: 10.1080/10641960802279132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Fischer V, Gabauer I, Tillinger A, Novakova M, Pechan I, Krizanova O, Kvetnanský R, Myslivecek J. Heart adrenoceptor gene expression and binding sites in the human failing heart. Ann N Y Acad Sci 2009; 1148:400-8. [PMID: 19120134 DOI: 10.1196/annals.1410.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adrenergic regulation of the heart function is well documented by many studies. Catecholamines act through alpha(1)-, beta(1)-, beta(2)-, and beta(3)-adrenoceptors (ARs) in the heart. There are many findings about the changes of beta(1)- and beta(2)-AR in heart failure (HF). On the other hand, the role of other AR subtypes is not clear yet. We focused on determining how HF could affect gene expression and specific ligand binding to alpha(1A)-, alpha(1B)-, alpha(1D)-, beta(1)-, beta(2)-, and beta(3)-AR. Hearts from 11 patients with HF subjected to transplantation were investigated. As a control, corresponding parts from hearts not suitable for transplantation were used. We have found significantly higher mRNA levels of alpha(1A)-, alpha(1B)-,beta(1)-, and beta(2)-AR in the left ventricle of failing hearts compared to the levels in controls. beta(3)-AR mRNA levels in the left ventricle of failing hearts were not changed. No changes in mRNA levels of all receptors studied in other cardiac areas were found. On the other hand, binding studies showed a substantial decrease in left ventricles of failing hearts in all alpha(1)-AR subtypes and in beta(1)- and beta(2)-AR. However, the binding to beta(3)-AR was not changed. Our results suggest that alpha(1)-AR changes might be part of a compensatory mechanism, by which the heart suffering from the HF tries to secure its function, and it could be hypothesized that ineffective beta(3)-AR regulation might be involved in development of HF. According to our knowledge, this is the first report about the beta(3)-AR binding in HF.
Collapse
Affiliation(s)
- Viliam Fischer
- The National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis. PLoS Genet 2009; 5:e1000318. [PMID: 19119412 PMCID: PMC2602734 DOI: 10.1371/journal.pgen.1000318] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 11/25/2008] [Indexed: 01/08/2023] Open
Abstract
Neuropeptide Y (NPY) is a strong candidate gene for coronary artery disease (CAD). We have previously identified genetic linkage to familial CAD in the genomic region of NPY. We performed follow-up genetic, biostatistical, and functional analysis of NPY in early-onset CAD. In familial CAD (GENECARD, N = 420 families), we found increased microsatellite linkage to chromosome 7p14 (OSA LOD = 4.2, p = 0.004) in 97 earliest age-of-onset families. Tagged NPY SNPs demonstrated linkage to CAD of a 6-SNP block (LOD = 1.58-2.72), family-based association of this block with CAD (p = 0.02), and stronger linkage to CAD in the earliest age-of-onset families. Association of this 6-SNP block with CAD was validated in: (a) 556 non-familial early-onset CAD cases and 256 controls (OR 1.46-1.65, p = 0.01-0.05), showing stronger association in youngest cases (OR 1.84-2.20, p = 0.0004-0.09); and (b) GENECARD probands versus non-familial controls (OR 1.79-2.06, p = 0.003-0.02). A promoter SNP (rs16147) within this 6-SNP block was associated with higher plasma NPY levels (p = 0.04). To assess a causal role of NPY in atherosclerosis, we applied the NPY1-receptor-antagonist BIBP-3226 adventitially to endothelium-denuded carotid arteries of apolipoprotein E-deficient mice; treatment reduced atherosclerotic neointimal area by 50% (p = 0.03). Thus, NPY variants associate with atherosclerosis in two independent datasets (with strong age-of-onset effects) and show allele-specific expression with NPY levels, while NPY receptor antagonism reduces atherosclerosis in mice. We conclude that NPY contributes to atherosclerosis pathogenesis.
Collapse
|
42
|
Gartner W, Zierhut B, Mineva I, Sodeck G, Leutmezer F, Domanovits H, Prayer D, Wolf F, Base W, Weissel M, Wagner L. Brain natriuretic peptide correlates with the extent of atrial fibrillation-associated silent brain lesions. Clin Biochem 2008; 41:1434-9. [PMID: 18823968 DOI: 10.1016/j.clinbiochem.2008.09.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/13/2008] [Accepted: 09/03/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Identification of plasma markers indicative for atrial fibrillation-associated silent brain lesions. DESIGN AND METHODS 1. Comparative determination of the plasma concentrations of secretagogin, S100B, neuropeptide Y, brain fatty acid binding protein, matrix metalloprotease 9, brain natriuretic peptide, and of D-Dimer in 222 patients with atrial fibrillation and 28 controls by immunoassays. 2. Correlation of the biochemical marker plasma concentration with the extent of silent white matter brain lesions, as determined by the Fazekas score and N-acetylaspartate-spectroscopy. RESULTS 1. Plasma concentrations of brain natriuretic peptide, of neuropeptide Y, and of matrix metalloprotease 9 were significantly higher (all with a p<0.05) in patients suffering from atrial fibrillation than in control subjects. 2. Brain natriuretic peptide correlated significantly with the Fazekas score (R=0.41; p<0.005). 3. Brain natriuretic peptide plasma concentrations were significantly higher in patients with a pathological N-acetylaspartate magnetic resonance-spectrometry (p<0.05). CONCLUSION Brain natriuretic peptide plasma concentrations correlate with the extent of atrial fibrillation-associated silent brain lesions.
Collapse
|
43
|
DelTondo J, Por I, Hu W, Merchenthaler I, Semeniken K, Jojart J, Dudas B. Associations between the human growth hormone-releasing hormone- and neuropeptide-Y-immunoreactive systems in the human diencephalon: A possible morphological substrate of the impact of stress on growth. Neuroscience 2008; 153:1146-52. [DOI: 10.1016/j.neuroscience.2008.02.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/18/2008] [Accepted: 02/28/2008] [Indexed: 11/25/2022]
|
44
|
Nishizawa M, Shiota M, Moore MC, Gustavson SM, Neal DW, Cherrington AD. Intraportal administration of neuropeptide Y and hepatic glucose metabolism. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1197-204. [PMID: 18234742 DOI: 10.1152/ajpregu.00903.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal. Following P1, in the NPY group (n = 7), NPY was infused intraportally at 0.2 and 5.1 pmol.kg(-1).min(-1) during P2 and P3, respectively. The control group (n = 7) received intraportal saline infusion without NPY. There were no significant changes in hepatic blood flow in NPY vs. control. The lower infusion rate of NPY (P2) did not enhance net hepatic glucose uptake. During P3, the increment in net hepatic glucose uptake (compared with P1) was 4 +/- 1 and 10 +/- 2 micromol.kg(-1).min(-1) in control and NPY, respectively (P < 0.05). The increment in net hepatic fractional glucose extraction during P3 was 0.015 +/- 0.005 and 0.039 +/- 0.008 in control and NPY, respectively (P < 0.05). Net hepatic carbon retention was enhanced in NPY vs. control (22 +/- 2 vs. 14 +/- 2 micromol.kg(-1).min(-1), P < 0.05). There were no significant differences between groups in the total glucose infusion rate. Thus, intraportal NPY stimulates net hepatic glucose uptake without significantly altering whole body glucose disposal in dogs.
Collapse
Affiliation(s)
- Makoto Nishizawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chen H, Hansen MJ, Jones JE, Vlahos R, Anderson GP, Morris MJ. Detrimental metabolic effects of combining long-term cigarette smoke exposure and high-fat diet in mice. Am J Physiol Endocrinol Metab 2007; 293:E1564-71. [PMID: 17940214 DOI: 10.1152/ajpendo.00442.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity and cigarette smoking are both important risk factors for insulin resistance, cardiovascular disease, and cancer. Smoking reduces appetite, which makes many people reluctant to quit. Few studies have documented the metabolic impact of combined smoke exposure (se) and high-fat-diet (HFD). Neuropeptide Y (NPY) is a powerful hypothalamic feeding stimulator that promotes obesity. We investigated how chronic se affects caloric intake, adiposity, plasma hormones, inflammatory mediators, and hypothalamic NPY peptide in animals fed a palatable HFD. Balb/c mice (5 wk old, male) were exposed to smoke (2 cigarettes, twice/day, 6 days/wk, for 7 wk) with or without HFD. Sham-exposed mice were handled similarly without se. Plasma leptin, hypothalamic NPY, and adipose triglyceride lipase (ATGL) mRNA were measured. HFD induced a 2.3-fold increase in caloric intake, increased adiposity, and glucose in both sham and se cohorts. Smoke exposure decreased caloric intake by 23%, with reduced body weight in both dietary groups. Fat mass and glucose were reduced only by se in the chow-fed animals. ATGL mRNA was reduced by HFD in se animals. Total hypothalamic NPY was reduced by HFD, but only in sham-exposed animals; se increased arcuate NPY. We conclude that although se ameliorated hyperphagia and reversed the weight gain associated with HFD, it failed to reverse fat accumulation and hyperglycemia. The reduced ATGL mRNA expression induced by combined HFD and se may contribute to fat retention. Our data support a powerful health message that smoking in the presence of an unhealthy Western diet increases metabolic disorders and fat accumulation.
Collapse
Affiliation(s)
- Hui Chen
- Dept. of Pharmacology, Univ. of New South Wales, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Morris MJ, Chen H, Watts R, Shulkes A, Cameron-Smith D. Brain neuropeptide Y and CCK and peripheral adipokine receptors: temporal response in obesity induced by palatable diet. Int J Obes (Lond) 2007; 32:249-58. [PMID: 17768423 DOI: 10.1038/sj.ijo.0803716] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Palatable food disrupts normal appetite regulation, which may contribute to the etiology of obesity. Neuropeptide Y (NPY) and cholecystokinin play critical roles in the regulation of food intake and energy homeostasis, while adiponectin and carnitine palmitoyltransferase (CPT) are important for insulin sensitivity and fatty acid oxidation. This study examined the impact of short- and long-term consumption of palatable high-fat diet (HFD) on these critical metabolic regulators. METHODS Male C57BL/6 mice were exposed to laboratory chow (12% fat), or cafeteria-style palatable HFD (32% fat) for 2 or 10 weeks. Body weight and food intake were monitored throughout. Plasma leptin, hypothalamic NPY and cholecystokinin, and mRNA expression of leptin, adiponectin, their receptors and CPT-1, in fat and muscles were measured. RESULTS Caloric intake of the palatable HFD group was 2-3 times greater than control, resulting in a 37% higher body weight. Fat mass was already increased at 2 weeks; plasma leptin concentrations were 2.4 and 9 times higher than control at 2 and 10 weeks, respectively. Plasma adiponectin was increased at 10 weeks. Muscle adiponectin receptor 1 was increased at 2 weeks, while CPT-1 mRNA was markedly upregulated by HFD at both time points. Hypothalamic NPY and cholecystokinin content were significantly decreased at 10 weeks. CONCLUSION Palatable HFD induced hyperphagia, fat accumulation, increased adiponectin, leptin and muscle fatty acid oxidation, and reduced hypothalamic NPY and cholecystokinin. Our data suggest that the adaptive changes in hypothalamic NPY and muscle fatty acid oxidation are insufficient to reverse the progress of obesity and metabolic consequences induced by a palatable HFD.
Collapse
Affiliation(s)
- M J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
47
|
Yasuda H, Kamide K, Takiuchi S, Matayoshi T, Hanada H, Kada A, Yang J, Miwa Y, Yoshii M, Horio T, Yoshihara F, Nakamura S, Nakahama H, Tei C, Miyata T, Kawano Y. Association of single nucleotide polymorphisms in endothelin family genes with the progression of atherosclerosis in patients with essential hypertension. J Hum Hypertens 2007; 21:883-92. [PMID: 17525706 DOI: 10.1038/sj.jhh.1002234] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide and its activity is mediated by the receptors ET type A (EDNRA) and ET type B (EDNRB). Although ET-1 is thought to play an important role in the development of atherosclerosis, it remains unclear whether polymorphisms of ET-1 family genes, including the ET-1 gene (EDN1), EDNRA, EDNRB and the genes for endothelin converting enzymes 1 and 2 (ECE1 and ECE2), are associated with the progression of atherosclerosis. We investigated the relationship between 11 single nucleotide polymorphisms (SNPs) of ET-1 family genes (including three in EDN1, one in EDNRA, two in EDNRB, four in ECE1 and one in ECE2) and atherosclerotic changes assessed using pulse wave velocity (PWV) and carotid ultrasonography in 630 patients with essential hypertension (EHT). In male subjects, we found significant differences in brachial-ankle PWV (baPWV) in additive and recessive models in EDNRB-rs5351 after Bonferroni correction. Also in male subjects, there were significant differences in mean intima-media thickness (IMT) in additive and recessive models in EDNRA-rs5333 after Bonferroni correction. We found no significant correlation between any SNPs in the ET family genes and baPWV, IMT and Plaque score (PS) in female subjects. Furthermore, after multiple logistic regression analysis, only EDNRB-rs5351 indicated as an independent risk of atherosclerosis in male hypertensive subjects. Of the endothelin-related genes, EDNRB-rs5351 was the most susceptible SNP associated with atherosclerosis in male hypertensives, and the genetic background may be involved in the progression of atherosclerosis in EHT patients.
Collapse
Affiliation(s)
- H Yasuda
- Division of Hypertension and Nephrology, National Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hedenberg-Magnusson B, Brodda Jansen G, Ernberg M, Kopp S. Effects of isometric contraction on intramuscular level of neuropeptide Y and local pain perception. Acta Odontol Scand 2006; 64:360-7. [PMID: 17123913 DOI: 10.1080/00016350600856034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The release of neuropeptide Y (NPY) is reported to increase in ischemic conditions and may thus be involved in chronic myalgia. The purpose of this study was to investigate the effect of isometric contraction on intramuscular levels of NPY in relation to local pain development. MATERIAL AND METHODS Intramuscular microdialysis was performed in the masseter and trapezius muscles to determine NPY levels before, during, and after isometric contraction in 16 healthy females. Pain intensity was assessed simultaneously with VAS. Repeated measures ANOVA, t-test, and Pearson correlation analysis were used for statistical analyses. RESULTS The level of NPY in the trapezius muscle was increased during and after contraction, while there was no change in the masseter muscle. The level of NPY before contraction was higher in the masseter muscle than in the trapezius muscle, and the levels in the two muscles were correlated before and during contraction. Low-level pain in both muscles after probe insertion increased significantly during contraction, but the pain was not correlated to the NPY level. CONCLUSIONS Pain is developed in the trapezius and masseter muscles during repeated isometric contraction. The NPY level is increased in the trapezius muscle but is not associated with the pain development.
Collapse
|
49
|
Sucajtys-Szulc E, Karbowska J, Kochan Z, Wolyniec W, Chmielewski M, Rutkowski B, Swierczynski J. Up-regulation of NPY gene expression in hypothalamus of rats with experimental chronic renal failure. Biochim Biophys Acta Mol Basis Dis 2006; 1772:26-31. [PMID: 17011171 DOI: 10.1016/j.bbadis.2006.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/22/2006] [Accepted: 08/22/2006] [Indexed: 11/18/2022]
Abstract
Anorexia is possibly one of the most important causes of malnutrition in uremic patients. The cause of this abnormality is still unknown. Considering that: (a) NPY is one of the most important stimulants of food intake; (b) eating is a central nervous system regulated process and (c) NPY is expressed in hypothalamus, we hypothesized that the decrease of NPY gene expression in the hypothalamus could be an important factor contributing to anorexia associated with uremic state. In contrast to the prediction, the results presented in this paper indicate that the NPY gene expression in the hypothalamus of chronic renal failure (CRF) rats was significantly higher than in the hypothalamus of control (pair-fed) rats. Moreover, we found that serum NPY concentration in CRF rats was higher than in control (pair-fed) animals. The increase of plasma NPY concentration in CRF rats may be due to the greater synthesis of the neuropeptide in liver, since higher level of NPY mRNA was found in liver of CRF rats. The results obtained revealed that experimental chronic renal failure is associated with the increase of NPY gene expression in hypothalamus and liver of rats.
Collapse
Affiliation(s)
- Elzbieta Sucajtys-Szulc
- Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | | | | | | | | | | |
Collapse
|
50
|
Esler M, Kaye D. Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics. Heart Fail Rev 2005; 5:17-25. [PMID: 16228913 DOI: 10.1023/a:1009889922985] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent demonstration that the level of sympathetic nervous drive to the failing heart in patients with severe heart failure is a major determinant of prognosis, and that mortality in heart failure is reduced by beta-adrenergic blockade, indicate the clinical relevance of heart failure neuroscience research. The cardiac sympathetic nerves are preferentially stimulated in severe heart failure, with the application of isotope dilution methods for measuring cardiac norepinephrine release to plasma indicating that in untreated patients cardiac norepinephrine spillover is increased as much as 50-fold, similar to levels of release seen in the healthy heart during near maximal exercise. This preferential activation of the cardiac sympathetic outflow contributes to arrhythmia development and to progressive deterioration of the myocardium, and has been linked to mortality in both mild and severe cardiac failure. Although the central nervous system mechanisms involved in the sympathetic nervous activation at present remain uncertain, increased intracardiac diastolic pressure seems to be one peripheral reflex stimulus, and increased forebrain norepinephrine turnover an important central mechanism.Additional neurophysiological abnormalities present in the failing human heart include release of the sympathetic cotransmitters, epinephrine and neuropeptide Y, at high levels more typical of their release during exercise in healthy subjects, and the possible presynaptic augmentation of norepinephrine release from the cardiac sympathetic nerves by the regionally released epinephrine. Following on the demonstrable benefit of beta-adrenergic blockade in heart failure, additional antiadrenergic measures (central suppression of sympathetic outflow with imidazoline binding agents such as clonidine, blocking of norepinephrine synthesis by dopamine-beta-hydroxylase inhibition, antagonism of neuropeptide Y) are now under active investigation.
Collapse
Affiliation(s)
- M Esler
- Baker Medical Research Institute, Alfred Lane, Prahran, 3181, Melbourne, Australia.
| | | |
Collapse
|