1
|
Rivera A, Vega C, Ramos-Rivera A, Maldonado ER, Prado GN, Karnes HE, Fesko YA, Snyder LM, Alper SL, Romero JR. Blockade of the mineralocorticoid receptor improves markers of human endothelial cell dysfunction and hematological indices in a mouse model of sickle cell disease. FASEB J 2023; 37:e23092. [PMID: 37482902 PMCID: PMC10372847 DOI: 10.1096/fj.202300671r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Increased endothelin-1 (ET-1) levels in patients with sickle cell disease (SCD) and transgenic mouse models of SCD contribute to disordered hematological, vascular, and inflammatory responses. Mineralocorticoid receptor (MR) activation by aldosterone, a critical component of the Renin-Angiotensin-Aldosterone-System, modulates inflammation and vascular reactivity, partly through increased ET-1 expression. However, the role of MR in SCD remains unclear. We hypothesized that MR blockade in transgenic SCD mice would reduce ET-1 levels, improve hematological parameters, and reduce inflammation. Berkeley SCD (BERK) mice, a model of severe SCD, were randomized to either sickle standard chow or chow containing the MR antagonist (MRA), eplerenone (156 mg/Kg), for 14 days. We found that MRA treatment reduced ET-1 plasma levels (p = .04), improved red cell density gradient profile (D50 ; p < .002), and increased mean corpuscular volume in both erythrocytes (p < .02) and reticulocytes (p < .024). MRA treatment also reduced the activity of the erythroid intermediate-conductance Ca2+ -activated K+ channel - KCa 3.1 (Gardos channel, KCNN4), reduced cardiac levels of mRNAs encoding ET-1, Tumor Necrosis Factor Receptor-1, and protein disulfide isomerase (PDI) (p < .01), and decreased plasma PDI and myeloperoxidase activity. Aldosterone (10-8 M for 24 h in vitro) also increased PDI mRNA levels (p < .01) and activity (p < .003) in EA.hy926 human endothelial cells, in a manner blocked by pre-incubation with the MRA canrenoic acid (1 μM; p < .001). Our results suggest a novel role for MR activation in SCD that may exacerbate SCD pathophysiology and clinical complications.
Collapse
Affiliation(s)
- Alicia Rivera
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Christopher Vega
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Arelys Ramos-Rivera
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Enrique R. Maldonado
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gregory N. Prado
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Seth L. Alper
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Yoshino T, Shimada S, Homma M, Makino T, Mimura M, Watanabe K. Clinical Risk Factors of Licorice-Induced Pseudoaldosteronism Based on Glycyrrhizin-Metabolite Concentrations: A Narrative Review. Front Nutr 2021; 8:719197. [PMID: 34604277 PMCID: PMC8484325 DOI: 10.3389/fnut.2021.719197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Licorice, the dried root or stolon of Glycyrrhiza glabra or G. ularensis, is commonly used worldwide as a food sweetener or crude drug. Its major ingredient is glycyrrhizin. Hypokalemia or pseudoaldosteronism (PsA) is one of the most frequent side effects of licorice intake. Glycyrrhizin metabolites inhibit type 2 11β-hydroxysteroid dehydrogenase (11βHSD2), which decomposes cortisol into inactive cortisone in the distal nephron, thereby inducing mineralocorticoid receptor activity. Among the several reported glycyrrhizin-metabolites, 18β-glycyrrhetyl-3-O-sulfate is the major compound found in humans after licorice consumption, followed by glycyrrhetinic acid. These metabolites are highly bound to albumin in blood circulation and are predominantly excreted into bile via multidrug resistance-associated protein 2 (Mrp2). High dosage and long-term use of licorice are constitutional risk factors for PsA. Orally administered glycyrrhizin is effectively hydrolyzed to glycyrrhetinic acid by the intestinal bacteria in constipated patients, which enhances the bioavailability of glycyrrhizin metabolites. Under hypoalbuminemic conditions, the unbound metabolite fractions can reach 11βHSD2 at the distal nephron. Hyper direct-bilirubin could be a surrogate marker of Mrp2 dysfunction, which results in metabolite accumulation. Older age is associated with reduced 11βHSD2 function, and several concomitant medications, such as diuretics, have been reported to affect the phenotype. This review summarizes several factors related to licorice-induced PsA, including daily dosage, long-term use, constipation, hypoalbuminemia, hyper direct-bilirubin, older age, and concomitant medications.
Collapse
Affiliation(s)
- Tetsuhiro Yoshino
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Saori Shimada
- Department of Pharmaceutical Sciences, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masato Homma
- Department of Pharmaceutical Sciences, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Psychiatry and Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Wang Y, Wang J, Yang R, Wang P, Porche R, Kim S, Lutfy K, Liu L, Friedman TC, Jiang M, Liu Y. Decreased 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in the Kidney May Contribute to Nicotine/Smoking-Induced Blood Pressure Elevation in Mice. Hypertension 2021; 77:1940-1952. [PMID: 33813843 DOI: 10.1161/hypertensionaha.120.16458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.).,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Jian Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,Department of Neonatology, The First Hospital of Jilin University, Changchun, China (J.W.)
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.)
| | - Piwen Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Rene Porche
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Samuel Kim
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.)
| | - Kabirullah Lutfy
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,College of Pharmacy, Western University of Health Sciences, Pomona, CA (K.L.)
| | - Limei Liu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, China (L.L.)
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,David Geffen School of Medicine at University of California, Los Angeles (T.C.F., Y.L.)
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (M.J.)
| | - Yanjun Liu
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (Y.W., R.Y., Y.L.).,Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA (Y.W., J.W., P.W., R.P., S.K., K.L., T.C.F., Y.L.).,David Geffen School of Medicine at University of California, Los Angeles (T.C.F., Y.L.)
| |
Collapse
|
4
|
Chow TYA, Chan CK, Ng SH, Tse ML. Hong Kong Poison Information Centre: Annual report 2018. HONG KONG J EMERG ME 2019. [DOI: 10.1177/1024907919893469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective: The aim of this study was to report and analyse the poisoning data of Hong Kong Poison Information Centre in 2018. Methods: In 2018, all poisoning cases received by Hong Kong Poison Information Centre were retrieved from its database, Poison Information and Clinical Management System, for analysis. Results: A total of 3960 poisoned cases were analysed. There were 1770 male patients (44.7%), 2188 female patients (55.3%) and 2 sex-unspecified patients (<0.1%). The majority of cases (68.3%) were between 20 and 69 years old, and 9.9% involved children of 0–5 years old. The common causes of poisoning were suspected self-harm/suicidal attempt (36.6%), unintentional exposure (18.4%) and abusive substance use (11.1%). Excluding the common co-ingestant ethanol, the five commonest types of poison were benzodiazepines, paracetamol, Chinese herbal medicine, household products and zopiclone. Most patients were managed with supportive measures, while 13.5% and 13.7% of consultation cases were treated by decontamination and antidotes, respectively. The majority of cases had uneventful recovery; 0.8% resulted in death and 4.9% had major outcomes. A total of eight interesting cases were discussed. Conclusion: This 13th annual report provided the updated epidemiological information on poisoning pattern in Hong Kong and highlighted important changes in comparison with our previous reports.
Collapse
Affiliation(s)
- Tin Yat Anthony Chow
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Chi Keung Chan
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Sze Hong Ng
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Man Li Tse
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| |
Collapse
|
5
|
Hautaniemi EJ, Tikkakoski AJ, Eräranta A, Kähönen M, Hämäläinen E, Turpeinen U, Huhtala H, Mustonen J, Pörsti IH. Liquorice ingestion attenuates vasodilatation via exogenous nitric oxide donor but not via β2-adrenoceptor stimulation. PLoS One 2019; 14:e0223654. [PMID: 31626649 PMCID: PMC6799927 DOI: 10.1371/journal.pone.0223654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/22/2019] [Indexed: 11/19/2022] Open
Abstract
We examined the effect of liquorice ingestion on haemodynamic responses to exogenous nitric oxide donor (nitroglycerin) and β2-adrenoceptor agonist (salbutamol), and 11β-hydroxysteroid dehydrogenase activity, in 21 volunteers and 21 reference subjects. Haemodynamic data was captured before and after sublingual nitroglycerin (0.25 mg) and inhaled salbutamol (400 μg) during orthostatic challenge utilising radial pulse wave analysis and whole-body impedance cardiography. The recordings were performed at baseline and following two weeks of liquorice intake (290-370 mg/d glycyrrhizin). Urinary cortisone and cortisol metabolites were examined. Liquorice intake elevated aortic systolic and diastolic blood pressure and systemic vascular resistance when compared with the reference group. Following research drug administration the liquorice-induced increase in systemic vascular resistance was observed in the presence of nitroglycerin (p<0.05) but no longer in the presence of salbutamol. Liquorice ingestion decreased cardiac chronotropic response to upright posture (p = 0.032) in unadjusted analysis, but when adjusted for age and sex the difference in the upright change in heart rate was no longer significant. The urinary cortisone to cortisol metabolite ratio decreased from 0.70 to 0.31 (p<0.001) after liquorice intake indicating significant inhibition of the 11β-hydroxysteroid dehydrogenase type 2. In the reference group the haemodynamic variables remained virtually unchanged. These results suggest that liquorice exposure impaired vasodilatation in vivo that was induced by exogenous nitric oxide donor but not that induced by β2-adrenoceptor stimulation. Trial registration: EU Clinical Trials Register 2006-002065-39 ClinicalTrials.gov NCT01742702.
Collapse
Affiliation(s)
- Elina J. Hautaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti J. Tikkakoski
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Esa Hämäläinen
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Chemistry, Biomedicum, Helsinki University, Helsinki, Finland
| | | | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilkka H. Pörsti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
6
|
Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods 2019; 8:foods8100495. [PMID: 31615045 PMCID: PMC6836258 DOI: 10.3390/foods8100495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Licorice, today chiefly utilized as a flavoring additive in tea, tobacco and candy, is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume, which can cause serious life-threatening complications especially in patients already suffering from cardiovascular diseases. Two recent meta-analyses of 18 and 26 studies investigating the correlation between licorice intake and blood pressure revealed statistically significant increases both in systolic (5.45 mmHg) and in diastolic blood pressure (3.19/1.74 mmHg). This review summarizes and evaluates current literature about the acute and chronic effects of licorice ingestion on the cardiovascular system with special focus on blood pressure. Starting from the molecular actions of licorice (metabolites) inside the cells, it describes how licorice intake is affecting the human body and shows the boundaries between the health benefits of licorice and possible harmful effects.
Collapse
|
7
|
González-Blázquez R, Somoza B, Gil-Ortega M, Martín Ramos M, Ramiro-Cortijo D, Vega-Martín E, Schulz A, Ruilope LM, Kolkhof P, Kreutz R, Fernández-Alfonso MS. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front Pharmacol 2018; 9:1131. [PMID: 30356804 PMCID: PMC6189469 DOI: 10.3389/fphar.2018.01131] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Albuminuria is an early marker of renovascular damage associated to an increase in oxidative stress. The Munich Wistar Frömter (MWF) rat is a model of chronic kidney disease (CKD), which exhibits endothelial dysfunction associated to low nitric oxide availability. We hypothesize that the new highly selective, non-steroidal mineralocorticoid receptor (MR) antagonist, finerenone, reverses both endothelial dysfunction and microalbuminuria. Twelve-week-old MWF (MWF-C; MWF-FIN) and aged-matched normoalbuminuric Wistar (W-C; W-FIN) rats were treated with finerenone (FIN, 10 mg/kg/day p.o.) or vehicle (C) for 4-week. Systolic blood pressure (SBP) and albuminuria were determined the last day of treatment. Finerenone lowered albuminuria by >40% and significantly reduced SBP in MWF. Aortic rings of MWF-C showed higher contractions to either noradrenaline (NA) or angiotensin II (Ang II), and lower relaxation to acetylcholine (Ach) than W-C rings. These alterations were reversed by finerenone to W-C control levels due to an upregulation in phosphorylated Akt and eNOS, and an increase in NO availability. Apocynin and 3-amino-1,2,4-triazole significantly reduced contractions to NA or Ang II in MWF-C, but not in MWF-FIN rings. Accordingly, a significant increase of Mn-superoxide dismutase (SOD) and Cu/Zn-SOD protein levels were observed in rings of MWF-FIN, without differences in p22phox, p47phox or catalase levels. Total SOD activity was increased in kidneys from MWF-FIN rats. In conclusion, finerenone improves endothelial dysfunction through an enhancement in NO bioavailability and a decrease in superoxide anion levels due to an upregulation in SOD activity. This is associated with an increase in renal SOD activity and a reduction of albuminuria.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Miriam Martín Ramos
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Elena Vega-Martín
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis Miguel Ruilope
- Unidad de Hipertensión, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina Preventiva y Salud Pública, Universidad Autónoma de Madrid, Madrid, Spain
| | - Peter Kolkhof
- Drug Discovery, Pharmaceuticals, Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Abstract
OBJECTIVE: To review the pharmacology, pharmacokinetics, clinical efficacy, and safety of eplerenone, a new selective aldosterone blocker. DATA SOURCES: Primary literature and review articles were obtained via MEDLINE search (1966–April 2002). Additional studies and abstracts were identified from the bibliographies of reviewed literature. STUDY SELECTION AND DATA EXTRACTION: Studies and review articles related to eplerenone, aldosterone, aldosterone antagonist, and spironolactone were reviewed. Data pertinent to this article were included. DATA SYNTHESIS: Eplerenone is a selective aldosterone blocker. Recent data have demonstrated the deleterious effects of aldosterone in several chronic disease states including hypertension and heart failure. Animal studies using eplerenone have shown a positive role for aldosterone antagonism in the treatment of hypertension, heart failure, myocardial infarction, renal disease, and atherosclerosis. In humans, eplerenone appears to be effective for the treatment of hypertension. An ongoing study will examine the effect of eplerenone for heart failure. To date, the incidence of adverse effects with eplerenone has been slightly lower than with spironolactone. CONCLUSIONS: Eplerenone appears to be a promising drug in a new class of agents called selective aldosterone blockers. The drug may be approved for treatment of hypertension in 2002. Additional studies are ongoing that may provide information on other clinical uses for this medication.
Collapse
Affiliation(s)
- Alan J Zillich
- Division of Clinical and Administrative Pharmacy and Department of Family Medicine, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
9
|
Minas JN, Thorwald MA, Conte D, Vázquez-Medina JP, Nishiyama A, Ortiz RM. Angiotensin and mineralocorticoid receptor antagonism attenuates cardiac oxidative stress in angiotensin II-infused rats. Clin Exp Pharmacol Physiol 2016; 42:1178-88. [PMID: 26234762 DOI: 10.1111/1440-1681.12473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Angiotensin II (Ang II) and aldosterone contribute to hypertension, oxidative stress and cardiovascular damage, but the contributions of aldosterone during Ang II-dependent hypertension are not well defined because of the difficulty to assess each independently. To test the hypothesis that during Ang II infusion, oxidative and nitrosative damage is mediated through both the mineralocorticoid receptor (MR) and angiotensin type 1 receptor (AT1), five groups of Sprague-Dawley rats were studied: (i) control; (ii) Ang II infused (80 ng/min × 28 days); (iii) Ang II + AT1 receptor blocker (ARB; 10 mg losartan/kg per day × 21 days); (iv) Ang II + mineralocorticoid receptor (MR) antagonist (Epl; 100 mg eplerenone/day × 21 days); and (v) Ang II + ARB + Epl (Combo; × 21 days). Both ARB and combination treatments completely alleviated the Ang II-induced hypertension, whereas eplerenone treatment only prolonged the onset of the hypertension. Eplerenone treatment exacerbated the Ang II-mediated increase in plasma and heart aldosterone 2.3- and 1.8-fold, respectively, while ARB treatment reduced both. Chronic MR blockade was sufficient to ameliorate the AT1-mediated increase in oxidative damage. All treatments normalized protein oxidation (nitrotyrosine) levels; however, only ARB and Combo treatments completely reduced lipid peroxidation (4-hydroxynonenal) to control levels. Collectively, these data suggest that receptor signalling, and not the elevated arterial blood pressure, is the principal culprit in the oxidative stress-associated cardiovascular damage in Ang II-dependent hypertension.
Collapse
Affiliation(s)
- Jacqueline N Minas
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Max A Thorwald
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Debra Conte
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | | | - Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Kagawa, Japan
| | - Rudy M Ortiz
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
10
|
Zhou B, Zhang J, Wu S, Zhuo Q, Gao W, Hao J, Man S. The influence of compatibility of processed radix Aconiti Kusnezoffii on the pharmacokinetic of four components in Glycyrrhiza uralensis Fisch. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:1-7. [PMID: 25889555 DOI: 10.1016/j.jep.2015.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 03/17/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza uralensis Fisch. and processed radix Aconiti kusnezoffii are the main components in many Chinese traditional patent medicines with the ratio of 1:1, which are used for treatment of rheumatoid arthritis, heart failure and so on. Glycyrrhizic acid, glycyrrhetic acid, liquiritigenin and isoliquiritigenin are the essential bioactive triterpenes and flavones in the extract of G. uralensis, which were analysis by a simple but accurate method. MATERIALS AND METHODS In the present study, a specific HPLC method was developed and validated for simultaneous determination of pharmacokinetic parameters of glycyrrhizic acid, glycyrrhetic acid, liquiritigenin and isoliquiritigenin in G. uralensis after oral administration of single herb extract and a combination of two herbs extracts respectively. RESULTS The calibration curves of the four components had good linearity higher than 0.9991 in the measured range. The intra-day and inter-day precisions (RSD) at different levels were both within 9.73%, and the accuracies (RE) were in the range of -7.9-8.0%. Compared with pharmacokinetic parameters of G. uralensis administered orally, values of AUC and Cmax of liquiritigenin and isoliquiritigenin decreased significantly (p<0.05), plasma concentrations of glycyrrhizic acid rose slightly and bimodal phenomenon of concentration-time of isoliquiritigenin and glycyrrhetinic acid disappeared after combined administration. DISCUSSION AND CONCLUSIONS Some components in the extract of processed radix A. kusnezoffii showed different effects on the pharmacokinetics of the four ingredients in G. uralensis.
Collapse
Affiliation(s)
- Bin Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Medical college of Chinese People׳s Armed Police Forces, Tianjin 300162, China
| | - Shanshan Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qu Zhuo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Juan Hao
- School of Chinese Medicine, Tianjin University of TCM, Tianjin 300193, China
| | - Shuli Man
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Lang F, Ritz E, Alesutan I, Voelkl J. Impact of aldosterone on osteoinductive signaling and vascular calcification. Nephron Clin Pract 2014; 128:40-5. [PMID: 25377380 DOI: 10.1159/000368268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vascular calcification is frequently found already in early stages of chronic kidney disease (CKD) patients and is associated with high cardiovascular risk. The process of vascular calcification is not considered a passive phenomenon but involves, at least in part, phenotypical transformation of vascular smooth muscle cells (VSMCs). Following exposure to excessive extracellular phosphate concentrations, VSMCs undergo a reprogramming into osteo-/chondroblast-like cells. Such 'vascular osteoinduction' is characterized by expression of osteogenic transcription factors and triggered by increased phosphate concentrations. A key role in this process is assigned to cellular phosphate transporters, most notably the type III sodium-dependent phosphate transporter Pit1. Pit1 expression is stimulated by mineralocorticoid receptor activation. Therefore, aldosterone participates in the phenotypical transformation of VSMCs. In preclinical models, aldosterone antagonism reduces vascular osteoinduction. Patients with CKD suffer from hyperphosphatemia predisposing to vascular osteogenic transformation, potentially further fostered by concomitant hyperaldosteronism. Clearly, additional research is required to define the role of aldosterone in the regulation of osteogenic signaling and the consecutive vascular calcification in CKD, but more generally also other diseases associated with excessive vascular calcification and even in individuals without overt disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
12
|
McGraw AP, McCurley A, Preston IR, Jaffe IZ. Mineralocorticoid receptors in vascular disease: connecting molecular pathways to clinical implications. Curr Atheroscler Rep 2014; 15:340. [PMID: 23719923 DOI: 10.1007/s11883-013-0340-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mineralocorticoid receptor (MR), a steroid-hormone-activated transcription factor, plays a substantial role in cardiovascular diseases. MR antagonists (MRAs) have long been appreciated as effective treatments for heart failure and hypertension; however, recent research suggests that additional patient populations may also benefit from MRA therapy. Experimental evidence demonstrates that in addition to its classic role in the regulating sodium handling in the kidney, functional MR is expressed in the blood vessels and contributes to hypertension, vascular inflammation and remodeling, and atherogenesis. MR activation drives pathological phenotypes in smooth muscle cells, endothelial cells, and inflammatory cells, whereas MRAs inhibit these effects. Collectively, these studies demonstrate a new role for extrarenal MR in cardiovascular disease. This review summarizes these new lines of evidence and how they contribute to the mechanisms of atherosclerosis, pulmonary and systemic hypertension, and vein graft failure, and describes new patient populations that may benefit from MRA therapy.
Collapse
Affiliation(s)
- Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, USA.
| | | | | | | |
Collapse
|
13
|
Toda N, Nakanishi S, Tanabe S. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications. Br J Pharmacol 2013. [PMID: 23190073 DOI: 10.1111/j.1476-5381.2012.02194.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ET(A) receptor-mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca(2+) flux through T-type Ca(2+) channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ET(A) receptor antagonists and T-type Ca(2) + channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan.
| | | | | |
Collapse
|
14
|
Feng L, Zhu MM, Zhang MH, Wang RS, Tan XB, Song J, Ding SM, Jia XB, Hu SY. Protection of glycyrrhizic acid against AGEs-induced endothelial dysfunction through inhibiting RAGE/NF-κB pathway activation in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:27-36. [PMID: 23528363 DOI: 10.1016/j.jep.2013.03.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhiza uralensis roots) is used as a traditional medicine for the treatment of diabetes mellitus and its vascular complications. Glycyrrhizic acid (GA, also known as Glycyrrhizin), a triterpenoid saponin glycoside, is considered to be a bioactive component in Licorice and is beneficial to diabetic vascular complications. AIM OF STUDY The present study was conducted to evaluate the potential protective activities on AGEs-induced endothelial dysfunction, including anti-apoptosis, antioxidant stress and anti-proinflammatory responses, and explore the underlying mechanism. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were incubated and pre-treated with GA (10(-9)-10(-6)M) or RAGE-Ab (5μg/ml) in the presence or absence of 200μg/ml AGEs. AO/EB fluorescence staining assay was performed to evaluate anti-apoptosis activity. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in cell supernatant were detected by kits while the intracellular reactive oxygen species (ROS) generation was determined by 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) kit. Immunocytochemistry analysis was designed to determine transforming growth factor beta1(TGF-β1) protein expression while immunofluorescence analysis for RAGE and NF-kB. The protein expressions of TGF-β1, RAGE and NF-kB were analyzed by Western blot analysis. RESULTS Pretreatment with GA at a concentration of 10(-8)-10(-6)M significantly reduced the AGEs-induced apoptosis in HUVECs. GA significantly increased antioxidant enzyme SOD activity and decreased peroxide degradation product MDA level in a dose-dependent manner. Furthermore, GA also remarkably inhibited the overgeneration of AGEs-induced ROS. Both immunocytochemistry analysis and western blot analysis showed that GA significantly decreased the protein expression of poinflammatory cytokine TGF-β1 in a similar manner which RAGE-Ab did. Additionally, AGEs-induced RAGE and NF-kB protein expressions were down-regulated significantly by the pretreatment with GA or RAGE-Ab. CONCLUSION These findings provide evidences that GA possesses protective activity on AGEs-induced endothelial dysfunction, including anti-apoptosis, anti-inflammation and antioxidant stress, via inhibiting RAGE/NF-kB pathway. GA might be an alternative for the prevention and treatment of diabetic vascular complications in an appropriate dosage.
Collapse
Affiliation(s)
- Liang Feng
- Key Laboratory of Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lang F, Ritz E, Voelkl J, Alesutan I. Vascular calcification--is aldosterone a culprit? Nephrol Dial Transplant 2013; 28:1080-4. [PMID: 23476041 DOI: 10.1093/ndt/gft041] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In chronic kidney disease (CKD), increased plasma phosphate concentrations cause vascular calcification which substantially contribute to cardiovascular events and increased mortality of CKD patients. Similar to CKD patients, klotho-hypomorphic mice (kl/kl) also suffer from excessive vascular calcification leading to growth deficit, rapid ageing and early death. The hyperphosphataemia of kl/kl mice results from excessive formation of 1,25(OH)2D3 causing excessive intestinal phosphate absorption. Further, kl/kl mice further suffer from hyperaldosteronism and compelling evidence points to an active role of mineralocorticoids in triggering osteoinductive programmes in the vasculature, thus further contributing to the development of vascular calcification. Conversely, in kl/kl mice, the mineralocorticoid receptor antagonist spironolactone decreased the vascular osteoinductive processes and reversed the excessive expression of osteogenic programmes, i.e. type III sodium-dependent phosphate transporter Pit1, tumour necrosis factor α (Tnfα), transcription factors Msx2, Cbfa1/Runx2 and osterix as well as alkaline phosphatase (Alp). In human aortic vascular smooth muscle cells (HAoSMCs), aldosterone alone similarly triggered an 'osteogenic' programme, thus increasing PIT1, TNFα, MSX2, CBFA1/RUNX2 and ALP expression as well as ALP activity and potentiated the effects of phosphate treatment. These effects were again reversed by spironolactone and in addition by PIT1 silencing. The above observations reveal that the severe vascular calcification is not only the result of high plasma phosphate concentrations, but also promoted by aldosterone-driven osteoinductive signalling. Future studies in CKD patients will be required to define the role of aldosterone and the potential impact of its inhibition by spironolactone in the pathophysiology of vascular calcification.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
16
|
Voelkl J, Alesutan I, Leibrock CB, Quintanilla-Martinez L, Kuhn V, Feger M, Mia S, Ahmed MSE, Rosenblatt KP, Kuro-O M, Lang F. Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice. J Clin Invest 2013; 123:812-22. [PMID: 23298834 DOI: 10.1172/jci64093] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022] Open
Abstract
Klotho is a potent regulator of 1,25-hydroxyvitamin D3 [1,25(OH)2D3] formation and calcium-phosphate metabolism. Klotho-hypomorphic mice (kl/kl mice) suffer from severe growth deficits, rapid aging, hyperphosphatemia, hyperaldosteronism, and extensive vascular and soft tissue calcification. Sequelae of klotho deficiency are similar to those of end-stage renal disease. We show here that the mineralocorticoid receptor antagonist spironolactone reduced vascular and soft tissue calcification and increased the life span of kl/kl mice, without significant effects on 1,25(OH)2D3, FGF23, calcium, and phosphate plasma concentrations. Spironolactone also reduced the expression of osteoinductive Pit1 and Tnfa mRNA, osteogenic transcription factors, and alkaline phosphatase (Alpl) in calcified tissues of kl/kl mice. In human aortic smooth muscle cells (HAoSMCs), aldosterone dose-dependently increased PIT1 mRNA expression, an effect paralleled by increased expression of osteogenic transcription factors and enhanced ALP activity. The effects of aldosterone were reversed by both spironolactone treatment and PIT1 silencing and were mitigated by FGF23 cotreatment in HAoSMCs. In conclusion, aldosterone contributes to vascular and soft tissue calcification, an effect due, at least in part, to stimulation of spironolactone-sensitive, PIT1-dependent osteoinductive signaling.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Omar HR, Komarova I, El-Ghonemi M, Fathy A, Rashad R, Abdelmalak HD, Yerramadha MR, Ali Y, Helal E, Camporesi EM. Licorice abuse: time to send a warning message. Ther Adv Endocrinol Metab 2012; 3. [PMID: 23185686 PMCID: PMC3498851 DOI: 10.1177/2042018812454322] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Licorice extract has always been recognized as a sweetener and a thirst quencher. Its nutritive value is overrated by many who consume significant amounts and are prone to complications. Glycyrrhetic acid, the active metabolite in licorice, inhibits the enzyme 11-ß-hydroxysteroid dehydrogenase enzyme type 2 with a resultant cortisol-induced mineralocorticoid effect and the tendency towards the elevation of sodium and reduction of potassium levels. This aldosterone-like action is the fundamental basis for understanding its health benefits and the wide spectrum of adverse effects. Herein, we present a comprehensive review of licorice along with the reported complications related to excess intake. Despite its apparent use in a few clinical scenarios, the daily consumption of licorice is never justified because its benefits are minor compared to the adverse outcomes of chronic consumption. The review highlights the importance of investigating the dietary habits and herbal remedies which are being used worldwide on cultural and habitual bases rather than reliable scientific evidence. Licorice is a US Food and Drug Administration (FDA) approved food supplement used in many products without precise regulations to prevent toxicity. Increased awareness among the public is required through TV commercials, newspapers, internet sites, magazines and product labels regarding the upper limit of ingestion and health hazards associated with excess intake. We hope that this review will serve as a warning message that should be transmitted from physicians to patients to avoid excessive licorice intake as well as a message to the FDA to start regulating the use of this substance.
Collapse
Affiliation(s)
- Hesham R Omar
- Internal Medicine Department, Mercy Hospital and Medical Center, 2525 South Michigan Avenue, Chicago, IL 60616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Luther JM, Luo P, Wang Z, Cohen SE, Kim HS, Fogo AB, Brown NJ. Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int 2012; 82:643-51. [PMID: 22622494 PMCID: PMC3434275 DOI: 10.1038/ki.2012.170] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II causes cardiovascular injury in part by aldosterone-induced mineralocorticoid receptor activation, and it can also activate the mineralocorticoid receptor in the absence of aldosterone in vitro. Here we tested whether endogenous aldosterone contributes to angiotensin II/salt-induced cardiac, vascular, and renal injury by the mineralocorticoid receptor. Aldosterone synthase knockout mice and wild type littermates were treated with angiotensin II or vehicle plus the mineralocorticoid receptor antagonist spironolactone or regular diet while drinking 0.9- saline. Angiotensin II/salt caused hypertension in both the knockout and wild type mice; an effect significantly blunted in the knockout mice. Either genetic aldosterone deficiency or mineralocorticoid receptor antagonism reduced cardiac hypertrophy, aortic remodeling, and albuminuria, as well as cardiac, aortic, and renal plasminogen activator inhibitor-1 mRNA expression during angiotensin II treatment. Mineralocorticoid receptor antagonism reduced angiotensin II/salt-induced glomerular hypertrophy, but aldosterone deficiency did not. Combined mineralocorticoid receptor antagonism and aldosterone deficiency reduced blood urea nitrogen and restored nephrin immunoreactivity. Angiotensin II/salt also promoted glomerular injury through the mineralocorticoid receptor in the absence of aldosterone. Thus, mineralocorticoid antagonism may have protective effects in the kidney beyond aldosterone synthase inhibition.
Collapse
Affiliation(s)
- James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wu SY, Yu YR, Cai Y, Jia LX, Wang X, Xiao CS, Tang CS, Qi YF. Endogenous aldosterone is involved in vascular calcification in rat. Exp Biol Med (Maywood) 2012; 237:31-7. [DOI: 10.1258/ebm.2011.011175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aldosterone (Aldo) is an important active hormone in the renin–angiotensin–aldosterone system and plays a vital role in the development of hypertension, heart failure and other cardiovascular diseases. We aimed to explore the role of endogenous Aldo in aortic calcification in rats. We induced arterial calcification in rats by intramuscular administration of vitamin D3 plus oral nicotine (VDN) and determined calcium content, 45Ca2+ accumulation and activity of alkaline phosphatase (ALP). The mRNA level of osteopontin (OPN) was measured by semi-quantitative reverse transcriptase polymerase chain reaction. Deposition of collagen in the aorta wall was measured by Sirius red staining. The content of angiotensin II (Ang II) and Aldo in plasma and myocardial and vascular tissue was determined by radioimmunoassay. In rats with VDN treatment, von Kossa staining showed calcification in vascular smooth muscle cells and extracellular matrix, and the content of calcium in calcified arteries was 5.8-fold of that in control arteries ( P < 0.01). The accumulation of 45Ca2+ and activity of ALP in calcified aortic tissue was three- and 2.5-fold, respectively, that in control tissue ( P < 0.01). The mRNA expression of OPN was significantly higher, by 58%, in calcified than control tissue ( P < 0.01). Vascular fibrosis was greater in rats with calcified tissue than in control rats. The level of Ang II and Aldo was 58% and 80% higher, respectively, in calcified than control tissue (both P < 0.01). The changes could be significantly improved by treatment with captopril, an angiotensin-converting enzyme inhibitor, and the Aldo receptor antagonist spironolactone. These results suggest that Aldo is an endogenous bioactive factor involved in vascular calcification.
Collapse
Affiliation(s)
- Sheng-Ying Wu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
- Department of Physiology and Pathophysiology
| | - Yan-Rong Yu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
- Department of Medical Parasitology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Yan Cai
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
- Department of Physiology and Pathophysiology
| | - Li-Xin Jia
- Department of Cardiology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiong Wang
- Department of Physiology and Pathophysiology
| | - Chuan-Shi Xiao
- Department of Cardiology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
- Department of Physiology and Pathophysiology
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
| |
Collapse
|
20
|
Sudano I, Ruschitzka F, Noll G, Luscher TF. Endothelial function and the effects of aldosterone blockade. Eur Heart J Suppl 2011. [DOI: 10.1093/eurheartj/sur010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Programmed 11β-hydroxysteroid dehydrogenase type 2 reduction: a possible cause of adult-onset disease? J Hypertens 2010; 29:201-3. [PMID: 21191279 DOI: 10.1097/hjh.0b013e328342d4c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Büssemaker E, Hillebrand U, Hausberg M, Pavenstädt H, Oberleithner H. Pathogenesis of Hypertension: Interactions Among Sodium, Potassium, and Aldosterone. Am J Kidney Dis 2010; 55:1111-20. [DOI: 10.1053/j.ajkd.2009.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/03/2009] [Indexed: 01/11/2023]
|
23
|
Sanz-Rosa D, Cediel E, de las Heras N, Miana M, Oubiña P, Lahera V, Cachofeiro V. Papel de la aldosterona en las alteraciones vasculares funcionales y en el proceso inflamatorio asociados a la hipertensión en ratas. HIPERTENSION Y RIESGO VASCULAR 2009. [DOI: 10.1016/s1889-1837(09)72173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Mediators of mineralocorticoid receptor-induced profibrotic inflammatory responses in the heart. Clin Sci (Lond) 2009; 116:731-9. [DOI: 10.1042/cs20080247] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronary, vascular and perivascular inflammation in rats following MR (mineralocorticoid receptor) activation plus salt are well-characterized precursors for the appearance of cardiac fibrosis. Endogenous corticosterone, in the presence of the 11βHSD2 (11β hydroxysteroid dehydrogenase type 2) inhibitor CBX (carbenoxolone) plus salt, produces similar inflammatory responses and tissue remodelling via activation of MR. MR-mediated oxidative stress has previously been suggested to account for these responses. In the present study we thus postulated that when 11βHSD2 is inhibited, endogenous corticosterone bound to unprotected MR in the vessel wall may similarly increase early biomarkers of oxidative stress. Uninephrectomized rats received either DOC (deoxycorticosterone), CBX or CBX plus the MR antagonist EPL (eplerenone) together with 0.9% saline to drink for 4, 8 or 16 days. Uninephrectomized rats maintained on 0.9% saline for 8 days served as controls. After 4 days, both DOC and CBX increased both macrophage infiltration and mRNA expression of the p22phox subunit of NADPH oxidase, whereas CBX, but not DOC, increased expression of the NOX2 (gp91phox) subunit. eNOS [endothelial NOS (NO synthase)] mRNA expression significantly decreased from 4 days for both treatments, and iNOS (inducible NOS) mRNA levels increased after 16 days of DOC or CBX; co-administration of EPL inhibited all responses to CBX. The responses characterized over this time course occurred before measurable increases in cardiac hypertrophy or fibrosis. The findings of the present study support the hypothesis that endogenous corticosterone in the presence of CBX can activate vascular MR to produce both inflammatory and oxidative tissue responses well before the onset of fibrosis, that the two MR ligands induce differential but overlapping patterns of gene expression, and that elevation of NOX2 subunit levels does not appear necessary for full expression of MR-mediated inflammatory and fibrogenic responses.
Collapse
|
25
|
Lea WB, Kwak ES, Luther JM, Fowler SM, Wang Z, Ma J, Fogo AB, Brown NJ. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int 2009; 75:936-44. [PMID: 19225557 DOI: 10.1038/ki.2009.9] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the setting of high salt intake, aldosterone stimulates fibrosis in the heart, great vessels, and kidney of rats. We used uninephrectomized rats treated with angiotensin II and placed on a high salt diet to exaggerate renal fibrosis. We then tested whether mineralocorticoid receptor blockade by spironolactone or aldosterone synthase inhibition by FAD286 have similar effects on end-organ damage and gene expression. Individually, both drugs prevented the hypertensive response to uninephrectomy and high salt intake but not when angiotensin II was administered. Following 4 weeks of treatment with FAD286, plasma aldosterone was reduced, whereas spironolactone increased aldosterone at 8 weeks of treatment. Angiotensin II and high salt treatment caused albuminuria, azotemia, renovascular hypertrophy, glomerular injury, increased plasminogen activator inhibitor-1 (PAI-1), and osteopontin mRNA expression, as well as tubulointerstitial fibrosis in the kidney. Both drugs prevented these renal effects and attenuated cardiac and aortic medial hypertrophy while reducing osteopontin and transforming growth factor-beta mRNA expression in the aorta. The two drugs also reduced cardiac interstitial fibrosis but had no effect on that of the perivascular region. Although spironolactone enhanced angiotensin II and salt-stimulated PAI-1 mRNA expression in aorta and heart, spironolactone and FAD286 prevented renal PAI-1 mRNA protein expression. Our study shows that mineralocorticoid receptor antagonism and aldosterone synthase inhibition similarly decrease hypertrophy and interstitial fibrosis of the kidney and heart caused by angiotensin II and high salt.
Collapse
Affiliation(s)
- William B Lea
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma SK, Bae EH, Kim IJ, Choi KC, Kim SH, Lee J, Kim SW. Increased renal expression of nitric oxide synthase and atrial natriuretic peptide in rats with glycyrrhizic-acid-induced hypertension. Phytother Res 2009; 23:206-11. [DOI: 10.1002/ptr.2588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
At the bottom of the differential diagnosis list: unusual causes of pediatric hypertension. Pediatr Nephrol 2009; 24:2137-46. [PMID: 18320238 PMCID: PMC2755748 DOI: 10.1007/s00467-008-0744-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 11/09/2007] [Accepted: 12/26/2007] [Indexed: 11/04/2022]
Abstract
Hypertension affects 1-5% of children and adolescents, and the incidence has been increasing in association with obesity. However, secondary causes of hypertension such as renal parenchymal diseases, congenital abnormalities and renovascular disorders still remain the leading cause of pediatric hypertension, particularly in children under 12 years old. Other less common causes of hypertension in children and adolescents, including immobilization, burns, illicit and prescription drugs, dietary supplements, genetic disorders, and tumors will be addressed in this review.
Collapse
|
28
|
Nomura S, Tabira J, Hayashi T, Hamada Y. [Pharmacology profile and clinical findings of Selara Tablets (eplerenone)]. Nihon Yakurigaku Zasshi 2008; 132:227-235. [PMID: 18854625 DOI: 10.1254/fpj.132.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
29
|
Final report on the safety assessment of Glycyrrhetinic Acid, Potassium Glycyrrhetinate, Disodium Succinoyl Glycyrrhetinate, Glyceryl Glycyrrhetinate, Glycyrrhetinyl Stearate, Stearyl Glycyrrhetinate, Glycyrrhizic Acid, Ammonium Glycyrrhizate, Dipotassium Glycyrrhizate, Disodium Glycyrrhizate, Trisodium Glycyrrhizate, Methyl Glycyrrhizate, and Potassium Glycyrrhizinate. Int J Toxicol 2008; 26 Suppl 2:79-112. [PMID: 17613133 DOI: 10.1080/10915810701351228] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycyrrhetinic Acid and its salts and esters and Glycyrrhizic Acid and its salts and esters are cosmetic ingredients that function as flavoring agents or skin-conditioning agents - miscellaneous or both. These chemicals may be isolated from licorice plants. Glycyrrhetinc Acid is described as at least 98% pure, with 0.6% 24-OH-Glycyrrhetinic Acid, not more than 20 mu g/g of heavy metals and not more than 2 mu g/g of arsenic. Ammonium Glycyrrhizate has been found to be at least 98% pure and Dipotassium Glycyrrhizate has been found to be at least 95% pure. Glycyrrhetinic Acid is used in cosmetics at concentrations of up to 2%; Stearyl Glycyrrhetinate, up to 1%; Glycyrrhizic Acid, up to 0.1%; Ammonium Glycyrrhizate, up to 5%; Dipotassium Glycyrrhizate, up to 1%; and Potassium Glycyrretinate, up to 1%. Although Glycyrrhizic Acid is poorly absorbed by the intestinal tract, it may be hydrolyzed to Glycyrrhetinic Acid by a beta -glucuronidase produced by intestinal bacteria. Glycyrrhetinic Acid and Glycyrrhizic Acid bind to rat and human albumin, but do not absorb well into tissues. Glycyrrhetinic Acid and Glycyrrhizic Acid and metabolites are mostly excreted in the bile, with very little excreted in urine. Dipotassium Glycyrrhizate was undetectable in the receptor chamber when tested for transepidermal permeation through pig skin. Glycyrrhizic Acid increased the dermal penetration of diclofenac sodium in rat skin. Dipotassium Glycyrrhizate increased the intestinal absorption of calcitonin in rats. In humans, Glycyrrhetinic Acid potentiated the effects of hydrocortisone in the skin. Moderate chronic or high acute exposure to Glycyrrhizic Acid, Ammonium Glycyrrhizate, and their metabolites have been demonstrated to cause transient systemic alterations, including increased potassium excretion, sodium and water retention, body weight gain, alkalosis, suppression of the renin-angiotensis-aldosterone system, hypertension, and muscular paralysis; possibly through inhibition of 11beta -hydroxysteroid dehydrogenase-2 (11beta -OHSD2) in the kidney. Glycyrrhetinic Acid and its derivatives block gap junction intracellular communication in a dose-dependent manner in animal and human cells, including epithelial cells, fibroblasts, osteoblasts, hepatocytes, and astrocytes; at high concentrations, it is cytotoxic. Glycyrrhetinic Acid and Glycyrrhizic Acid protect liver tissue from carbon tetrachloride. Glycyrrhizic Acid has been used to treat chronic hepatitis, inhibiting the penetration of the hepatitis A virus into hepatocytes. Glycyrrhetinic Acid and Glycyrrhizic Acid have anti-inflammatory effects in rats and mice. The acute intraperitoneal LD(50) for Glycyrrhetinic Acid in mice was 308 mg/kg and the oral LD(50) was > 610 mg/kg. The oral LD(50) in rats was reported to be 610 mg/kg. Higher LD(50) values were generally reported for salts. Little short-term, subchronic, or chronic toxicity was seen in rats given ammonium, dipotassium, or disodium salts of Glycyrrhizic Acid. Glycyrrhetinic Acid was not irritating to shaved rabbit skin, but was considered slightly irritating in an in vitro test. Glycyrrhetinic Acid inhibited the mutagenic activity of benzo[a]pyrene and inhibited tumor initiation and promotion by other agents in mice. Glycyrrhizic Acid inhibited tumor initiation by another agent, but did not prevent tumor promotion in mice. Glycyrrhizic Acid delayed mortality in mice injected with Erlich ascites tumor cells, but did not reduce the mortality rate. Ammonium Glycyrrhizate was not genotoxic in in vivo and in vitro cytogenetics assays, the dominant lethal assay, an Ames assay, and heritable translocation tests, except for possible increase in dominant lethal mutations in rats given 2000 mg/kg day(-1) in their diet. Disodium Glycyrrhizate was not carcinogenic in mice in a drinking water study at exposure levels up to 12.2 mg/kg day(-1) for 96 weeks. Glycyrrhizate salts produced no reproductive or developmental toxicity in rats, mice, golden hamsters, or Dutch-belted rabbits, except for a dose-dependent increase (at 238.8 and 679.9 mg/kg day(-1)) in sternebral variants in a study using rats. Sedation, hypnosis, hypothermia, and respiratory depression were seen in mice given 1250 mg/kg Glycyrrhetinic Acid intraperitoneally. Rats fed a powdered diet containing up to 4% Ammonium Glycyrrhizate had no treatment related effects in motor function tests, but active avoidance was facilitated at 4%, unaffected at 3%, and depressed at 2%. In a study of 39 healthy volunteers, a no effect level of 2 mg/kg/day was determined for Glycyrrhizic Acid given orally for 8 weeks. Clinical tests in seven normal individuals given oral Ammonium Glycyrrhizate at 6 g/day for 3 days revealed reduced renal and thermal sweat excretion of Na+ and K+, but carbohydrate and protein metabolism were not affected. Glycyrrhetinic Acid at concentrations up to 6% was not a skin irritant or a sensitizer in clinical tests. Neither Glycyrrhizic Acid, Ammonium Glycyrrhizate, nor Dipotassium Glycyrrhizate at 5% were phototoxic agents or photosensitizers. Birth weight and maternal blood pressure were unrelated to the level of consumption of Glycyrrhizic Acid in 1049 Finnish women with infants, but babies whose mother consumed > 500 mg/wk were more likely to be born before 38 weeks. The Cosmetic Ingredient Review (CIR) Expert Panel noted that the ingredients in this safety assessment are not plant extracts, powders, or juices, but rather are specific chemical species that may be isolated from the licorice plant. Because these chemicals may be isolated from plant sources, however, steps should be taken to assure that pesticide and toxic metal residues are below acceptable levels. The Panel advised the industry that total polychlorobiphenyl (PCB)/pesticide contamination should be limited to not more than 40 ppm, with not more than 10 ppm for any specific residue, and that toxic metal levels must not contain more than 3 mg/kg of arsenic (as As), not more than 0.002% heavy metals, and not more than 1 mg/kg of lead (as Pb). Although the Panel noted that Glycyrrhizic Acid is cytotoxic at high doses and ingestion can have physiological effects, there is little acute, short-term, subchronic, or chronic toxicity and it is expected that these ingredients would be poorly absorbed through the skin. These ingredients are not considered to be irritants, sensitizers, phototoxic agents, or photosensitizers at the current maximum concentration of use. Accordingly, the CIR Expert Panel concluded that these ingredients are safe in the current practices of use and concentration. The Panel recognizes that certain ingredients in this group are reportedly used in a given product category, but the concentration of use is not available. For other ingredients in this group, information regarding use concentration for specific product categories is provided, but the number of such products is not known. In still other cases, an ingredient is not in current use, but may be used in the future. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicate a pattern of use. Within this overall pattern of use, the Expert Panel considers all ingredients in this group to be safe.
Collapse
|
30
|
Liu Y, Mladinov D, Pietrusz JL, Usa K, Liang M. Glucocorticoid response elements and 11 beta-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression. Cardiovasc Res 2008; 81:140-7. [PMID: 18716005 DOI: 10.1093/cvr/cvn231] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Hypertensive and other effects of excess glucocorticoids might be in part mediated by the suppression of endothelial nitric oxide synthase (eNOS) expression. We studied the transcriptional and biochemical mechanisms that mediate or modulate the suppression of eNOS expression by glucocorticoids. METHODS AND RESULTS We found that a mere three-fold increase in the concentration of the natural glucocorticoid cortisol (from 30 to 100 nmol/L) significantly decreased the expression level of eNOS in human endothelial cells. Deletion analysis of the eNOS promoter indicated that the segment within -119 bp upstream from the transcription start site was significantly involved in the effect of cortisol. Site-directed mutagenesis and chromatin immunoprecipitation analyses demonstrated the presence of a suppressive glucocorticoid response element (GRE) at -111 to -105 bp. 11 beta-hydroxysteroid dehydrogenases (11 beta-HSD) catalyse the interconversion of active and inactive glucocorticoids. The suppression of 11 beta-HSD2 using small interfering RNA markedly exacerbated the inhibition of eNOS by cortisol. The suppression of 11 beta-HSD1 abolished the inhibition of eNOS expression by cortisol. CONCLUSION We identified the first GRE in the eNOS promoter region and demonstrated that endogenous 11 beta-HSD1 and 11 beta-HSD2 play significant and distinct roles in modulating the effect of glucocorticoids on eNOS expression.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
31
|
Oyamada N, Sone M, Miyashita K, Park K, Taura D, Inuzuka M, Sonoyama T, Tsujimoto H, Fukunaga Y, Tamura N, Itoh H, Nakao K. The role of mineralocorticoid receptor expression in brain remodeling after cerebral ischemia. Endocrinology 2008; 149:3764-77. [PMID: 18436714 PMCID: PMC2488212 DOI: 10.1210/en.2007-1770] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/17/2008] [Indexed: 11/19/2022]
Abstract
Mineralocorticoid receptors (MRs) are classically known to be expressed in the distal collecting duct of the kidney. Recently it was reported that MR is identified in the heart and vasculature. Although MR expression is also found in the brain, it is restricted to the hippocampus and cerebral cortex under normal condition, and the role played by MRs in brain remodeling after cerebral ischemia remains unclear. In the present study, we used the mouse 20-min middle cerebral artery occlusion model to examine the time course of MR expression and activity in the ischemic brain. We found that MR-positive cells remarkably increased in the ischemic striatum, in which MR expression is not observed under normal conditions, during the acute and, especially, subacute phases after stroke and that the majority of MR-expressing cells were astrocytes that migrated to the ischemic core. Treatment with the MR antagonist spironolactone markedly suppressed superoxide production within the infarct area during this period. Quantitative real-time RT-PCR revealed that spironolactone stimulated the expression of neuroprotective or angiogenic factors, such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), whereas immunohistochemical analysis showed astrocytes to be cells expressing bFGF and VEGF. Thereby the incidence of apoptosis was reduced. The up-regulated bFGF and VEGF expression also appeared to promote endogenous angiogenesis and blood flow within the infarct area and to increase the number of neuroblasts migrating toward the ischemic striatum. By these beneficial effects, the infarct volume was significantly reduced in spironolactone-treated mice. Spironolactone may thus provide therapeutic neuroprotective effects in the ischemic brain after stroke.
Collapse
Affiliation(s)
- Naofumi Oyamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee J. Nitric oxide in the kidney : its physiological role and pathophysiological implications. Electrolyte Blood Press 2008; 6:27-34. [PMID: 24459519 PMCID: PMC3894485 DOI: 10.5049/ebp.2008.6.1.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide has been implicated in many physiologic processes that influence both acute and long-term control of kidney function. Its net effect in the kidney is to promote natriuresis and diuresis, contributing to adaptation to variations of dietary salt intake and maintenance of normal blood pressure. A pretreatment with nitric oxide donors or L-arginine may prevent the ischemic acute renal injury. In chronic kidney diseases, the systolic blood pressure is correlated with the plasma level of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase. A reduced production and biological action of nitric oxide is associated with an elevation of arterial pressure, and conversely, an exaggerated activity may represent a compensatory mechanism to mitigate the hypertension.
Collapse
Affiliation(s)
- Jongun Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
33
|
Hillebrand U, Hausberg M, Lang D, Stock C, Riethmüller C, Callies C, Büssemaker E. How steroid hormones act on the endothelium—insights by atomic force microscopy. Pflugers Arch 2008; 456:51-60. [DOI: 10.1007/s00424-007-0411-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 11/20/2007] [Indexed: 02/05/2023]
|
34
|
Ortiz RM, Graciano ML, Mullins JJ, Mitchell KD. Aldosterone receptor antagonism alleviates proteinuria, but not malignant hypertension, in Cyp1a1-Ren2 transgenic rats. Am J Physiol Renal Physiol 2007; 293:F1584-91. [PMID: 17715265 DOI: 10.1152/ajprenal.00124.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of elevated aldosterone to the pathogenesis of malignant, ANG II-dependent hypertension remains uncertain. Therefore, we examined whether chronic mineralocorticoid receptor blockade attenuates the development of malignant hypertension in transgenic rats (TGRs) with inducible expression of the Ren2 gene [TGR(Cyp1a1Ren2)]. Systolic blood pressure (SBP) was measured by radiotelemetry in male TGRs in three groups: 1) control (n = 9), 2) hypertensives (HT; n = 8), and 3) hypertensives + spironolactone (11 mg.kg(-1).day(-1) sc; HTS; n = 8). Malignant hypertension was induced with dietary indole-3-carbinol (0.3%) for 10 days. Metabolic measurements were taken at the beginning of the study and at days 2 and 9. HT exhibited elevated SBP (125 +/- 3 vs. 187 +/- 5 mmHg), plasma renin activity (5 +/- 1 vs. 29 +/- 10 ng ANG I.ml(-1).h(-1)), plasma ANG II (175 +/- 39 vs. 611 +/- 74 fmol/ml), and plasma aldosterone (0.31 +/- 0.04 vs. 5.42 +/- 1.02 nmol/l). Urinary aldosterone excretion increased 5.5-fold by day 2 and an additional 90% by day 9. HT was associated with a 1.8-fold increase in proteinuria by day 9 that was alleviated by treatment with spironolactone (25 +/- 5 vs. 13 +/- 3 mg/day), suggesting that aldosterone contributes to the renal damage observed in malignant hypertension. Urinary Na+ excretion was decreased 76% on day 2, despite a sixfold increase in urinary aldosterone excretion. Decrease in urinary Na+ excretion on day 2 in HT suggests that Na+ reabsorption was increased in response to the increase in aldosterone; however, the lack of a change in SBP between HT and HTS suggests that mechanisms independent of aldosterone stimulation make a greater contribution to the maintenance of elevated arterial pressure in malignant hypertension in Cyp1a1-Ren2 transgenic rats.
Collapse
Affiliation(s)
- Rudy M Ortiz
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | |
Collapse
|
35
|
Ortiz RM, Graciano ML, Seth D, Awayda MS, Navar LG. Aldosterone receptor antagonism exacerbates intrarenal angiotensin II augmentation in ANG II-dependent hypertension. Am J Physiol Renal Physiol 2007; 293:F139-47. [PMID: 17376762 DOI: 10.1152/ajprenal.00504.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of aldosterone receptor (AR) blockade with eplerenone (epl) on renal Na(+) excretion, arterial blood pressure, intra-adrenal and renal ANG II, and plasma aldosterone levels during ANG II-dependent hypertension were evaluated. Rats from one cohort (n = 10/group) 1) control, 2) control + epl (25 mg/day), 3) ANG II (60 ng/min), and 4) ANG II + epl were maintained in metabolic cages for 28 days for daily urine collections. Systolic blood pressure (SBP) was measured weekly by tail-cuff. In a second cohort (n = 12/group), daily SBP was measured by telemetry (n = 6 rats/group) 1) control, 2) ANG II, and 3) ANG II + epl. A diet containing epl (0.1%) was provided after 1 wk of ANG II infusion. Direct monitoring of BP by telemetry showed that epl delayed the onset of the increase in SBP by 2 days and slightly reduced SBP (186 +/- 6 vs. 177 +/- 8 mmHg). Epl transiently increased Na(+) excretion within 24 h of treatment in both normo- and hypertensive rats; however, balance was reestablished within 5 days suggesting that alternative mechanisms for conserving Na(+) are activated. Cortical alpha-epithelial Na(+) channel content (alpha-ENaC) was not altered after 21 days of epl treatment. Epl exacerbated the ANG II-mediated increases in intrarenal ANG II (226 +/- 16 vs. 365 +/- 38 fmol/g) and further increased intra-adrenal ANG II (3.9 +/- 0.3 vs. 8.2 +/- 0.9 fmol/mg) and aldosterone (255 +/- 55 vs. 710 +/- 87 pmol/mg) content. Exacerbation of intrarenal ANG II levels likely contributes to the maintenance of alpha-ENaC protein content and thus Na(+) reabsorption, which helps explain the ineffectiveness of AR blockade in reducing SBP in ANG II-infused models of hypertension.
Collapse
Affiliation(s)
- Rudy M Ortiz
- Department of Renal Physiology, Tulane University Health Science Center, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
36
|
de las Heras N, Ruiz-Ortega M, Miana M, Rupérez M, Sanz-Rosa D, Aragoncillo P, Mezzano S, Cachofeiro V, Egido J, Lahera V. Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats. J Hypertens 2007; 25:629-38. [PMID: 17278980 DOI: 10.1097/hjh.0b013e3280112ce5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate possible inter-relationships between connective tissue growth factor (CTGF) and aldosterone in vascular and renal damage associated with hypertension. METHOD Spontaneously hypertensive rats (SHR) were treated with two doses (100 and 30 mg/kg per day) of the mineralocorticoid receptor antagonist eplerenone, or with antihypertensive therapy (HHR) (20 mg/kg per day hydralazine + 7 mg/kg per day hydrochlorothiazide + 0.15 mg/kg per day reserpine). RESULTS CTGF mRNA expression and protein levels in the aorta of SHR were upregulated (P < 0.05) compared with Wistar-Kyoto rats. Both doses of eplerenone similarly and significantly diminished CTGF upregulation, correlated with amelioration of aortic remodelling and endothelium-dependent relaxations. Only high-dose eplerenone and HHR significantly reduced arterial blood pressure. HHR treatment also diminished CTGF overexpression, suggesting a blood-pressure-mediated effect in CTGF regulation. This reduction, however, was lower (P < 0.05) than that produced by eplerenone (100 mg/kg per day). The direct effect of aldosterone on vascular smooth muscle cells was also studied. Incubation of cultured vascular smooth muscle cells with aldosterone increased CTGF production in a dose-related manner, but was reduced (P < 0.05) by the mineralocorticoid receptor antagonist spironolactone. Renal CTGF mRNA and protein levels were higher in SHR than in Wistar-Kyoto rats (P < 0.05), and were similarly diminished by all treatments (P < 0.05). CONCLUSIONS These data show that aldosterone and haemodynamic stress from elevated blood pressure levels regulate vascular and renal CTGF in SHR. The results suggest that aldosterone, through CTGF stimulation, could participate in vascular and renal structural alterations associated with hypertension, describing a novel mechanism of aldosterone in hypertensive target organ damage.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kovalchuk SN, Kozhemyako VB, Atopkina LN, Silchenko AS, Avilov SA, Kalinin VI, Rasskazov VA, Aminin DL. Estrogenic activity of triterpene glycosides in yeast two-hybrid assay. J Steroid Biochem Mol Biol 2006; 101:226-31. [PMID: 16973351 DOI: 10.1016/j.jsbmb.2006.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 06/23/2006] [Indexed: 11/30/2022]
Abstract
Estrogenic potency of six triterpene glycosides, Holothurin A, Holotoxin A1, Frondoside A, Cucumarioside A2-2 and Cauloside C, that are natural products and semi-synthesized Ginsenoside-Rh2, were examined with yeast two-hybrid system, including expressed genes of human estrogen receptor, hERalpha, the co-activator TIF2 and lacZ as a reporter gene. Only Ginsenoside-Rh2 exhibited significant moderate estrogenic activity in the concentration range of 10(-7) to 10(-6)M. Its effect was approximately 30% of the activity of 17beta-estradiol applied at half-effective concentration. This indicates Ginsenosides-Rh2 is a weak phytoestrogen. The sea cucumber triterpene glycosides, Holothurin A, Holotoxin A1, Cucumarioside A2-2 and Frondoside A, and plant glycoside Cauloside C had no appreciable estrogenic activity. Data obtained by yeast two-hybrid assay reflect structure-activity relationship between tested compounds and 17beta-estradiol. Only Ginsenoside-Rh2 has some similarity in chemical structure with 17beta-estradiol that might explain affinity of this glycoside to the hERalpha receptor.
Collapse
Affiliation(s)
- S N Kovalchuk
- Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of RAS, Vladivostok 690022, Russia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Corticosteroids are critically involved in blood pressure regulation. Lack of adrenal steroids in Addison's disease causes life-threatening hypotension, whereas glucocorticoid excess in Cushing's syndrome invariably results in high blood pressure. At a pre-receptor level, glucocorticoid action is modulated by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs). 11Beta-HSD1 activates cortisone to cortisol to facilitate glucocorticoid receptor (GR)-mediated action. By contrast, 11beta-HSD2 plays a pivotal role in aldosterone target tissues where it catalyses the opposite reaction (i.e. inactivation of cortisol to cortisone) to prevent activation of the mineralocorticoid receptor (MR) by cortisol. Mutations in the 11beta-HSD2 gene cause a rare form of inherited hypertension, the syndrome of apparent mineralocorticoid excess (AME), in which cortisol activates the MR resulting in severe hypertension and hypokalemia. Ingestion of competitive inhibitors of 11beta-HSD2 such as liquorice and carbenoxolone result in a similar but milder clinical phenotype. Epidemiological data suggests that polymorphic variability in the HSD11B2 gene determines salt sensitivity in the general population, which is a key predisposing factor to adult onset hypertension in some patients. Extrarenal sites of glucocorticoid action and metabolism that might impact on blood pressure include the vasculature and the central nervous system. Intriguingly, increased exposure to glucocorticoids during fetal life promotes high blood pressure in adulthood suggesting an early programming effect. Thus, metabolism and action in many peripheral tissues might contribute to the pathophysiology of human hypertension.
Collapse
Affiliation(s)
- Fabian Hammer
- Division of Medical Sciences, University of Birmingham, Institute of Biomedical Research, Birmingham B15 2TT, UK
| | | |
Collapse
|
39
|
Rajput C, Arif E, Vibhuti A, Stobdan T, Khan AP, Norboo T, Afrin F, Qadar Pasha MA. Predominance of interaction among wild-type alleles of CYP11B2 in Himalayan natives associates with high-altitude adaptation. Biochem Biophys Res Commun 2006; 348:735-40. [PMID: 16893516 DOI: 10.1016/j.bbrc.2006.07.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Sojourners visiting high-altitude (HA) (>2500 m) are susceptible to HA disorders; on the contrary, HA natives are well adapted to the extreme hypoxic environment. High aldosterone levels are believed to be involved in HA disorders, we, therefore, envisaged role of CYP11B2 gene variants in HA adaptation and therefore investigated the -344T/C, intron-2 conversion (Iw/Ic), K173R, and A5160C polymorphisms. In addition, polymorphisms in AGT, AT1R, ATP1A1, ADRB2, and GSTP1 genes were also investigated. The study comprised of 662 subjects, comprising of 426 Himalayan highlanders (HLs) and 236 lowlanders (LLs). The -344T/C and K173R polymorphisms were found to be in complete linkage disequilibrium. The wild-type allele -344T and combination of wild-type homozygous genotypes between -344T/C, Iw/Ic, and A5160C polymorphisms, containing all the six wild-type alleles were over-represented in the HLs (p < 0.0001, and p = 0.008, respectively). The wild-type haplotypes -344T-Iw, -344T-5160A, and -344T-Iw-5160A also showed over-representation in the HLs (p < 0.0001). Furthermore, greater the number of wild-type alleles, lower was the ARR (p < 0.05). The genotype distribution in remaining genes did not differ. To conclude, the over-representation of wild-type -344T allele, genotype combinations and haplotypes of CYP11B2, and their correlation with lower aldosterone levels associate with HA adaptation in the HLs. Such an allelic presentation in sojourners may help them cope with adverse HA environment.
Collapse
Affiliation(s)
- Charu Rajput
- Institute of Genomics and Integrative Biology, Delhi 110 007, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pechanova O, Matuskova J, Capikova D, Jendekova L, Paulis L, Simko F. Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int 2006; 70:170-6. [PMID: 16710350 DOI: 10.1038/sj.ki.5001513] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although angiotensin-converting enzyme (ACE) inhibitors are well-established drugs in the treatment of hypertension, they are not supposed to be sufficient in the inhibition of aldosterone formation. The present study analyzes the effect of aldosterone receptor antagonist, spironolactone and ACE inhibitor, captopril on nitric oxide (NO) and S-nitrosothiol formation in the kidney of N(G)-nitro-L-arginine methyl ester (L-NAME)-treated rats. Male Wistar rats were divided into six groups: (1) controls, (2) L-NAME (40 mg/kg/day), (3) spironolactone (200 mg/kg/day), (4) captopril (100 mg/kg/day), (5) L-NAME+spironolactone, and (6) L-NAME+captopril. After 4 weeks, NO synthase (NOS) activity, protein expression of endothelial NOS, inducible NOS and concentration of thiol and S-nitrosothiol groups were determined in the kidney. Besides the increase in systolic blood pressure (by 32%) and the decrease in NOS activity (by 37%), L-NAME treatment lowered the concentration of thiols (by 32%) and S-nitrosothiols (by 36%) in the renal tissue. Simultaneous treatment with spironolactone preserved NOS activity and S-nitrosothiols on the control level, whereas captopril did not affect these parameters modified by L-NAME treatment. Moreover, spironolactone increased expression of endothelial NOS protein without affecting inducible NOS protein expression. In conclusion, both captopril and spironolactone prevented L-NAME-induced hypertension and the decline of the antioxidant potential of the kidney tissue. However, only spironolactone improved NOS activity which led to the S-nitrosothiols formation. Both NO itself and S-nitrosothiols may contribute to the preventive effect of spironolactone against development of L-NAME-induced hypertension.
Collapse
Affiliation(s)
- O Pechanova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
41
|
Buss SJ, Backs J, Kreusser MM, Hardt SE, Maser-Gluth C, Katus HA, Haass M. Spironolactone preserves cardiac norepinephrine reuptake in salt-sensitive Dahl rats. Endocrinology 2006; 147:2526-34. [PMID: 16439456 DOI: 10.1210/en.2005-1167] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An impairment of cardiac norepinephrine (NE) reuptake via the neuronal NE transporter (NET) enhances the effects of increased cardiac NE release in heart failure patients. Increasing evidence suggests that aldosterone and endothelins promote sympathetic overstimulation of failing hearts. Salt-sensitive Dahl rats (DS) fed a high-salt diet developed arterial hypertension and diastolic heart failure as well as elevated plasma levels of endothelin-1 and NE. Cardiac NE reuptake and NET-binding sites, as assessed by clearance of bolus-injected [(3)H]NE in isolated perfused rat hearts and [(3)H]mazindol binding, were reduced. Treatment of DS with the mineralocorticoid receptor antagonist spironolactone preserved the plasma levels of endothelin-1 and NE, cardiac NE reuptake, and myocardial NET density. Moreover, the ventricular function and survival of spironolactone-treated DS were significantly improved compared with untreated DS. The alpha(1)-inhibitor prazosin decreased blood pressure in DS similar to spironolactone treatment, but did not normalize the plasma levels of endothelin-1 and NE, NE reuptake, or ventricular function. In a heart failure-independent model, Wistar rats that were infused with aldosterone and fed a high-salt diet developed impaired cardiac NE reuptake. Treatment of these rats with the endothelin A receptor antagonist darusentan attenuated the impairment of NE reuptake. In conclusion, spironolactone preserves NET-dependent cardiac NE reuptake in salt-dependent heart failure. Evidence is provided that aldosterone inhibits NET function through an interaction with the endothelin system. Selective antagonism of the mineralocorticoid and/or the endothelin A receptor might represent therapeutic principles to prevent cardiac sympathetic overactivity in salt-dependent heart failure.
Collapse
Affiliation(s)
- Sebastian J Buss
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, 75390-9148, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Thai HM, Do BQ, Tran TD, Gaballa MA, Goldman S. Aldosterone Antagonism Improves Endothelial-Dependent Vasorelaxation in Heart Failure via Upregulation of Endothelial Nitric Oxide Synthase Production. J Card Fail 2006; 12:240-5. [PMID: 16624690 DOI: 10.1016/j.cardfail.2006.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 12/29/2005] [Accepted: 01/04/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Altering the renin-angiotensin aldosterone system improve mortality in heart failure (HF) in part through an improvement in nitric oxide (NO)-mediated endothelial function. This study examined if spironolactone affects endothelial nitric oxide synthase (eNOS) and NO-mediated vasorelaxation in HF. METHODS AND RESULTS Rats with HF after coronary artery ligation were treated with spironolactone for 4 weeks. Rats with HF had a decrease (P < .05) in left ventricular (LV) systolic pressure (130 +/- 7 versus 118 +/- 6 mm Hg) and LV pressure with respect to time (9,122 +/- 876 versus 4,500 +/- 1971 mm Hg/second) with an increase in LV end-diastolic pressure (4 +/- 2 versus 23 +/- 8 mm Hg). Spironolactone did not affect hemodynamics but it improved (P < .05) endothelial-dependent vasorelaxation at more than 10(-8) M acetylcholine that was abolished with N(G)-monomethyl-L-arginine. The eNOS levels were decreased (P < .05) in the LV and the aorta; spironolactone restored LV and aortic eNOs levels to normal. CONCLUSION Spironolactone prevents the decrease in eNOS in the LV and aorta and improves NO-dependent vasorelaxation, suggesting that one potential mechanism of spironolactone is an improvement in vasoreactivity mediated though an increase in NO.
Collapse
Affiliation(s)
- Hoang M Thai
- Section of Cardiology, Department of Medicine, Southern Arizona VA Health Care System, Sarver Heart Center, University of Arizona, Tucson, 85723, USA
| | | | | | | | | |
Collapse
|
43
|
Cohuet G, Struijker-Boudier H. Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther 2005; 111:81-98. [PMID: 16288809 DOI: 10.1016/j.pharmthera.2005.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 12/24/2022]
Abstract
Hypertension is a major risk factor for cardiovascular mortality and morbidity through its effects on target organs like the brain, heart, and kidney. Structural alterations in the microcirculation form a major link between hypertension and target organ damage. In this review, we describe damages related to hypertension in these target organs and the mechanisms involved in the pathogenesis of hypertension-induced cardiovascular diseases such as dementia, cardiac ischemia and remodeling, or nephropathy. We also focus on the therapeutical potential on the basis of such mechanisms. Several antihypertensive agents like diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin II (Ang II) receptor antagonists, beta-blockers, or calcium channel blockers (CCBs) have been shown to reduce effectively hypertension associated cardiovascular events and to improve end organ damage. More recently, aldosterone antagonism has also shown beneficial effects. Part of the favorable effects of these agents is due to blood pressure lowering as such. Other mechanisms such as oxidative stress, inflammation, or endothelial dysfunction have appeared to play a key role in the pathogenesis of target organ damage and therefore represent another important pathway for therapy. In this review, we discuss the different therapeutic approaches aiming at reducing cardiovascular events and damages induced by hypertension.
Collapse
Affiliation(s)
- G Cohuet
- Cardiovascular Research Institute of Maastricht, Pharmacology and Toxicology, Universiteitssingel 50, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
44
|
Sanz-Rosa D, Cediel E, de las Heras N, Miana M, Balfagón G, Lahera V, Cachofeiro V. Participation of aldosterone in the vascular inflammatory response of spontaneously hypertensive rats: role of the NFκB/IκB system. J Hypertens 2005; 23:1167-72. [PMID: 15894892 DOI: 10.1097/01.hjh.0000170379.08214.5a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the participation of aldosterone in the vascular inflammatory process associated with hypertension, as well as the possible involvement of the NFkappaB/IkappaB system. METHODS Male spontaneously hypertensive rats (SHR; 20-22 weeks old) untreated or treated with either the aldosterone receptor antagonist, eplerenone (100 mg/kg per day) or triple antihypertensive therapy (HHR: hydralazine + hydrochlorothiazide + reserpine; 20 + 7 + 0.15 mg/kg per day) were used in the study. Wistar-Kyoto rats (WKY) were used as a normotensive reference group. Aortic mRNA expression and plasma levels of interleukin (IL)-1beta, IL-6 and tumour necrosis factor alpha (TNFalpha) were measured. Likewise, the aortic expression of the nuclear factor kappaB (NFkappaB) p50 subunit precursor, p105, and its inhibitor (IkappaB) were measured. RESULTS SHR showed higher aortic expression of IL-1beta, IL-6 and TNFalpha than WKY (P < 0.05) and higher plasma levels of IL-1beta and IL-6 than WKY (P < 0.05). Moreover, SHR also presented increased aortic expression of nuclear transcription factor NFkappaB p50 subunit precursor (p105), and a reduction of its inhibitor IkappaB. Both eplerenone and HHR decreased blood pressure to a comparable extent (P < 0.05). This effect was accompanied by a reduction in plasma levels of IL-1beta and IL-6 and aortic mRNA expression of IL-1beta, IL-6 and TNFalpha. However, the effect of eplerenone was more marked, since eplerenone-treated rats showed significantly lower inflammatory parameters than SHR receiving HHR. In addition, both antihypertensive treatments increased IkappaB mRNA expression in a similar manner, but only eplerenone reduced NFkappaB mRNA expression. CONCLUSIONS Aldosterone, as well as an increase in haemodynamic forces produced by hypertension, participate in the vascular inflammatory process associated with hypertension in SHR. This effect seems to be mediated by enhanced vascular expression of cytokines through a modification of the NFkappaB/IkappaB system.
Collapse
Affiliation(s)
- David Sanz-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
High salt intake contributes to the risk of hypertension, and this effect is in part mediated by the physiologic action of aldosterone on renal mineralocorticoid receptors. However, the actions of aldosterone are not restricted to the kidneys, because aldosterone can bind to mineralocorticoid receptors in the heart, vasculature, and brain to produce structural and functional changes that lead to target organ damage. Experimental and clinical studies show that, in the setting of high salt intake, blocking aldosterone at the mineralocorticoid receptor reduces progression to target organ damage and preserves vascular function. In many cases, these benefits are independent of changes in blood pressure. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers have short-term effects on reducing aldosterone levels, but frequently aldosterone levels return to pretreatment levels during long-term therapy. Aldosterone blockade may be more completely achieved with mineralocorticoid receptor antagonists. Spironolactone has been shown to have substantial and significant benefits in experimental and clinical studies of cardiac dysfunction. Eplerenone is a selective aldosterone blocker with a greater binding affinity for mineralocorticoid receptors than for androgen and progesterone receptors. Eplerenone has similarly demonstrated significant benefits in experimental animals and in patients with left ventricular dysfunction after myocardial infarction. Thus, aldosterone blockade with mineralocorticoid receptor antagonists offers target organ protection and may blunt some of the adverse effects of chronic high salt intake.
Collapse
Affiliation(s)
- Paul R Conlin
- Division of Endocrinology, Diabetes and Hypertension Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
46
|
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) contributes to hypertension and nephropathy. Until recently, aldosterone either has not been considered or has been considered a relatively minor component of the process-a contribution that could be negated with angiotensin-converting enzyme (ACE) inhibition or angiotensin receptor blockade. METHODS A Medline search was performed to identify relevant literature describing the role of aldosterone in the pathogenesis of renal dysfunction. RESULTS Growing evidence from experimental and clinical studies indicates that increased aldosterone is an independent contributor to small- and medium-sized arterial injury and nephropathy. Excess mineralocorticoid receptor stimulation of local and systemic origin promotes target organ dysfunction, vascular injury, and fibrosis, independent of the effects of other elements of the RAAS. Blockade of the RAAS with ACE inhibition or angiotensin receptor blockade often does not confer optimal protection from the effects of mineralocorticoids on small- and medium-sized blood vessels. Recent preliminary data from clinical studies indicate that aldosterone blockade protects the kidneys, sharply decreases proteinuria, beyond the activities of ACE inhibition or angiotensin receptor blockade and independent of beneficial blood pressure effects, and can protect patients from vascular injury associated with diabetes mellitus and hypertension. CONCLUSION Aldosterone blockade with the selective aldosterone blocker eplerenone, in combination with other RAAS inhibitors, is probably renoprotective and should be considered as a component of the treatment regimens of diabetic and hypertensive patients at risk for renal or cardiovascular disease expression. A high priority should be placed on developing the randomized, controlled trials required to establish that role.
Collapse
Affiliation(s)
- Norman K Hollenberg
- Department of Medicine and Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
McMahon EG. Mineralocorticoid Receptor Antagonists. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens 2004; 13:451-8. [PMID: 15199296 DOI: 10.1097/01.mnh.0000133976.32559.b0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Traditionally, the mineralocorticoid receptor was thought to be activated by the mineralocorticoid hormone aldosterone, and to exhibit its main action on epithelia by promoting renal sodium retention, potassium excretion and inducing hypertension upon excessive activation. Recently, evidence appeared that mineralocorticoid receptors are expressed in nonepithelial cells and activated by endogenous glucocorticoids including cortisol. Therefore, the prereceptor regulation of cortisol access to the mineralocorticoid receptors by 11beta-hydroxysteroid dehydrogenase enzymes (11beta-HSDs), a mechanism absent in most nonepithelial cells, appears to be relevant for disease states with cortisol-induced mineralocorticoid action. The present review focuses on direct and indirect effects attributable to mineralocorticoid receptor activation by glucocorticoids. RECENT FINDINGS The determination of the intracellular topology of 11beta-HSD1, facing the endoplasmic reticulum lumen, and 11beta-HSD2, facing the cytoplasm, suggests that 11beta-HSD1 acts as a prereceptor mechanism in the local activation of glucocorticoid receptors, whereas 11beta-HSD2 controls mineralocorticoid receptors by interacting with the receptor in the absence of aldosterone. Downregulation of 11beta-HSD2 was observed with various stimuli including hypoxia, shear stress, angiotensin II and tumor necrosis factor alpha. The corresponding signal transcription pathways and some relevant transcription factors have been identified. Renal sodium retention in liver cirrhosis, nephrotic syndrome and hypoxia have been linked to 11beta-HSD2 reduced activity. Overexpression of 11beta-HSD1 specifically in adipose tissue in mice caused central obesity, a metabolic syndrome and hypertension due to increased intracellular cortisol concentrations. Peroxisome proliferator-activated receptor gamma agonists reduce 11beta-HSD1 activity and diminish the intracellular availability of cortisol, an effect accompanied by a decline in blood pressure. Three individuals with loss-of-function mutations of peroxisome proliferator-activated receptor gamma developed early hypertension. A potential mechanism might be glucocorticoid dependent mineralocorticoid receptor-mediated downregulation of endothelial nitric oxide synthase. SUMMARY Recently, mineralocorticoid receptor antagonists have been used in the randomized aldactone evaluation study (RALES) with spironolactone, the eplerenone post-AMI heart failure efficacy and survival study (EPHESUS), and in severe and postmyocardial infarct heart failure, respectively. These investigations cannot be understood on the basis of the present physiological knowledge and underscore the relevance of focusing on mineralocorticoid receptor activation by ligands other than aldosterone.
Collapse
Affiliation(s)
- Felix J Frey
- Department of Nephrology and Hypertension, Inselspital, University of Berne, Switzerland.
| | | | | |
Collapse
|
49
|
Meier DJ, Pitt B, Rajagopalan S. Eplerenone: Will it have a role in the treatment of acute coronary syndromes? Curr Cardiol Rep 2004; 6:259-63. [PMID: 15182600 DOI: 10.1007/s11886-004-0073-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aldosterone is known to have multiple adverse cardiovascular effects that are reminiscent of but independent from angiotensin II. These effects include endothelial dysfunction, heightened thrombogenicity, inflammation, and reparative fibrosis, and have been described in experimental and human models of aldosterone excess. Recently a number of clinical investigations have demonstrated that mineralocorticoid receptor (MR) antagonism, even in conditions not traditionally associated with systemic activation of the renin-angiotensin II-aldosterone pathway, may provide additional benefits above and beyond angiotensin-converting enzyme (ACE) inhibition and angiotensin receptor blockade. The Eplerenone Neurohormonal Efficacy and Survival Study (EPHESUS) with eplerenone in patients who were post-myocardial infarction underscores the additive benefit of such a strategy in post-infarction patients that typify an at-risk population for recurrent cardiovascular events. The mechanisms operative in acute coronary syndromes (ACS), including inflammation, altered hemostasis, and endothelial dysfunction, overlap significantly with those seen in the EPHESUS patient population. One may therefore hypothesize that MR antagonism with eplerenone may be beneficial in patients with ACS. Another advantage of using eplerenone is that it offers the advantages of MR antagonism without the side effects due to blockade of other nuclear receptors such as the androgen and progesterone receptors. If MR blockade is found to be beneficial in patients with ACS, the potential reduction in morbidity, mortality, and health care costs are profound.
Collapse
Affiliation(s)
- David J Meier
- The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
50
|
Abstract
Recent studies suggest that aldosterone may play a larger role than once appreciated in normal physiologic function and cardiovascular disease. Some of the adverse cardiovascular effects that have been described include cardiac and vascular fibrosis, vascular necrosis and inflammation, impaired endothelial function, reduced fibrinolysis, hypertension, left ventricular hypertrophy (LVH), congestive heart failure, and cardiac arrhythmias. In light of these findings, the ability to block the actions of aldosterone has gained increased therapeutic importance. Eplerenone is a selective aldosterone receptor blocker that displays little interaction with androgen and progesterone receptors. Eplerenone has already been approved for the treatment of systemic hypertension and has been evaluated in numerous hypertension subgroups, including patients with low plasma renin activity; diabetes; LVH; uncontrolled blood pressure while receiving monotherapy with angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, calcium channel blockers, or beta-blockers; and in black patients. Results of these trials indicate that eplerenone lowers blood pressure and reduces end-organ damage. Further proof of the therapeutic importance of mineralocorticoid receptor blockade comes from the eplerenone post acute myocardial infarction survival and efficacy study (EPHESUS). In this large-scale clinical outcome trial, eplerenone was shown to reduce total mortality by 15% as well as the combined endpoint of cardiovascular mortality/cardiovascular hospitalization by 13% when administered at a mean of 7.3 days post myocardial infarction to patients with evidence of systolic left ventricular dysfunction and symptoms of heart failure. Eplerenone is well tolerated, with an adverse effect profile comparable to placebo. The advent of selective aldosterone blockers, such as eplerenone, should prove to be of great therapeutic value in hypertension control and prevention of cardiovascular disease and associated end-organ damage.
Collapse
Affiliation(s)
- Charles T Stier
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|