1
|
Moronge D, Ayulo V, Elgazzaz M, Mellott E, Ogbi S, Faulkner JL. Both endothelial mineralocorticoid receptor expression and hyperleptinemia are required for clinical characteristics of placental ischemia in mice. Am J Physiol Heart Circ Physiol 2024; 327:H118-H130. [PMID: 38758130 PMCID: PMC11380964 DOI: 10.1152/ajpheart.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
One of the initiating events in preeclampsia (PE) is placental ischemia. Rodent models of placental ischemia do not present with vascular endothelial dysfunction, a hallmark of PE. We previously demonstrated a role for leptin in endothelial dysfunction in pregnancy in the absence of placental ischemia. We hypothesized that placental ischemia requires hyperleptinemia and endothelial mineralocorticoid receptor (ECMR) expression to induce PE-associated endothelial dysfunction in pregnant mice. We induced placental ischemia via the reduced uterine perfusion pressure (RUPP) procedure in pregnant ECMR-intact (ECMR+/+) and ECMR deletion (ECMR-/-) mice at gestational day (GD) 13. ECMR+/+ RUPP pregnant mice also received concurrent leptin infusion via miniosmotic pump (0.9 mg/kg/day). RUPP increased blood pressure via radiotelemetry and decreased fetal growth in ECMR+/+ pregnant mice. Both increases in blood pressure and reduced fetal growth were abolished in RUPP ECMR-/- mice. Placental ischemia did not decrease endothelial-dependent relaxation to acetylcholine (ACh) but increased phenylephrine (Phe) contraction in mesenteric arteries of pregnant mice, which was ablated by ECMR deletion. Addition of leptin to RUPP mice significantly reduced ACh relaxation in ECMR+/+ pregnant mice, accompanied by an increase in soluble FMS-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PLGF) ratio. In conclusion, our data indicate that high leptin levels drive endothelial dysfunction in PE and that ECMR is required for clinical characteristics of hypertension and fetal growth restriction in placental ischemia PE. Collectively, we show that both ECMR and leptin play a role to mediate PE.NEW & NOTEWORTHY Leptin is a key feature of preeclampsia that initiates vascular endothelial dysfunction in preeclampsia characterized by placental ischemia. Endothelial mineralocorticoid receptor (ECMR) deletion in placental ischemia protects pregnant mice from elevations in blood pressure and fetal growth restriction in pregnancy. Increases in leptin production mediate the key pathological feature of endothelial dysfunction in preeclampsia in rodents. ECMR activation contributes to the increase in blood pressure and fetal growth restriction in preeclampsia.
Collapse
Affiliation(s)
- Desmond Moronge
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Victor Ayulo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mona Elgazzaz
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Safia Ogbi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Obstetrics and Gynecology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
van Kammen CM, Taal SEL, Wever KE, Granger JP, Lely AT, Terstappen F. Reduced uterine perfusion pressure as a model for preeclampsia and fetal growth restriction in murine: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 327:H89-H107. [PMID: 38758122 PMCID: PMC11380978 DOI: 10.1152/ajpheart.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The reduced uterine perfusion pressure (RUPP) model is frequently used to study preeclampsia and fetal growth restriction. An improved understanding of influential factors might improve reproducibility and reduce animal use considering the variability in RUPP phenotype. We performed a systematic review and meta-analysis by searching Medline and Embase (until 28 March, 2023) for RUPP studies in murine. Primary outcomes included maternal blood pressure (BP) or proteinuria, fetal weight or crown-rump length, fetal reabsorptions, or antiangiogenic factors. We aimed to identify influential factors by meta-regression analysis. We included 155 studies. Our meta-analysis showed that the RUPP procedure results in significantly higher BP (MD = 24.1 mmHg; [22.6; 25.7]; n = 148), proteinuria (SMD = 2.3; [0.9; 3.8]; n = 28), fetal reabsorptions (MD = 50.4%; [45.5; 55.2]; n = 42), circulating soluble FMS-like tyrosine kinase-1 (sFlt-1) (SMD = 2.6; [1.7; 3.4]; n = 34), and lower fetal weight (MD = -0.4 g; [-0.47; -0.34]; n = 113. The heterogeneity (variability between studies) in primary outcomes appeared ≥90%. Our meta-regression identified influential factors in the method and time point of BP measurement, randomization in fetal weight, and type of control group in sFlt-1. The RUPP is a robust model considering the evident differences in maternal and fetal outcomes. The high heterogeneity reflects the observed variability in phenotype. Because of underreporting, we observed reporting bias and a high risk of bias. We recommend standardizing study design by optimal time point and method chosen for readout measures to limit the variability. This contributes to improved reproducibility and thereby eventually improves the translational value of the RUPP model.
Collapse
Affiliation(s)
- Caren M van Kammen
- Division of Nanomedicine, Department CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Seija E L Taal
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - A Titia Lely
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Fieke Terstappen
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
3
|
Travis OK, Tardo GA, Giachelli C, Siddiq S, Nguyen HT, Crosby MT, Johnson TD, Brown AK, Booz GW, Smith AN, Williams JM, Cornelius DC. Interferon γ neutralization reduces blood pressure, uterine artery resistance index, and placental oxidative stress in placental ischemic rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R112-R124. [PMID: 34075808 PMCID: PMC8409917 DOI: 10.1152/ajpregu.00349.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, intrauterine growth restriction, and increased cytolytic natural killer cells (cNKs), which secrete interferon γ (IFNγ). However, the precise role of IFNγ in contributing to PE pathophysiology remains unclear. Using the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia, we tested the hypothesis that neutralization of IFNγ in RUPPs will decrease placental reactive oxygen species (ROS) and improve vascular function resulting in decreased MAP and improved fetal growth. On gestation day (GD) 14, the RUPP procedure was performed and on GDs 15 and 18, a subset of normal pregnant rats (NP) and RUPP rats were injected with 10 μg/kg of an anti-rat IFNγ monoclonal antibody. On GD 18, uterine artery resistance index (UARI) was measured via Doppler ultrasound and on GD 19, mean arterial pressure (MAP) was measured, animals were euthanized, and blood and tissues were collected for analysis. Increased MAP was observed in RUPP rats compared with NP and was reduced in RUPP + anti-IFNγ. Placental ROS was also increased in RUPP rats compared with NP rats and was normalized in RUPP + anti-IFNγ. Fetal and placental weights were reduced in RUPP rats, but were not improved following anti-IFNγ treatment. However, UARI was elevated in RUPP compared with NP rats and was reduced in RUPP + anti-IFNγ. In conclusion, we observed that IFNγ neutralization reduced MAP, UARI, and placental ROS in RUPP recipients. These data suggest that IFNγ is a potential mechanism by which cNKs contribute to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes in PE.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Geilda A Tardo
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Chelsea Giachelli
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shani Siddiq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Henry T Nguyen
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Madison T Crosby
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tyler D Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea K Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alex N Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan Michael Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Kumagai A, Takeda S, Sohara E, Uchida S, Iijima H, Itakura A, Koya D, Kanasaki K. Dietary Magnesium Insufficiency Induces Salt-Sensitive Hypertension in Mice Associated With Reduced Kidney Catechol-O-Methyl Transferase Activity. Hypertension 2021; 78:138-150. [PMID: 33840199 DOI: 10.1161/hypertensionaha.120.16377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Asako Kumagai
- Faculty of Medicine, Internal Medicine I, Shimane University, Izumo, Japan (A.K., K.K.)
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
- Department of Diabetology and Endocrinology (A.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan (E.S., S.U.)
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan (E.S., S.U.)
| | - Hiroshi Iijima
- School of Pharmacy, Nihon University, Chiba, Japan (H.I.)
| | - Astuo Itakura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan (A.K., S.T., A.I.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology (A.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (D.K., K.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Faculty of Medicine, Internal Medicine I, Shimane University, Izumo, Japan (A.K., K.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (D.K., K.K.), Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
5
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Liu Y, Yang C, Feng X, Qi L, Guo J, Zhu D, Thai PN, Zhang Y, Zhang P, Sun M, Lv J, Zhang L, Xu Z, Lu X. Prenatal High-Salt Diet-Induced Metabolic Disorders via Decreasing Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α in Adult Male Rat Offspring. Mol Nutr Food Res 2020; 64:e2000196. [PMID: 32506826 DOI: 10.1002/mnfr.202000196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Although prenatal high-salt (HS) intake leads to physiological complications in the offspring, little is known regarding its effects on the offspring's glucose metabolism. Therefore, the objectives of this study are to determine the consequences of prenatal HS diet on the offspring's metabolism and to test a potential therapy. METHODS AND RESULTS Pregnant rats are fed either a normal-salt (1% NaCl) or high-salt (8% NaCl) diet during the whole pregnancy. Experiments are conducted in five-month-old male offspring. It is found that the prenatal HS diet reduced the glucose tolerance and insulin sensitivity of the offspring. Additionally, there is down-regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a/PPARGC1A) at the transcript and protein level, which leads to decreased mitochondrial biogenesis and oxidative respiration in skeletal muscle. Moreover, the down-regulation of Ppargc1a is accompanied by decreases in the expression of glucose transporter type 4 (Glut4). With endurance exercise training, these changes are mitigated, which ultimately resulted in improved insulin resistance. CONCLUSION These findings suggest that prenatal HS intake induces metabolic disorders via the decreased expression of Ppargc1a in the skeletal muscle of adult offspring, providing novel information concerning the mechanisms and early prevention of metabolic diseases of fetal origins.
Collapse
Affiliation(s)
- Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Linglu Qi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Jun Guo
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Dan Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Phung N Thai
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xiyuan Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
7
|
Prenatal high-salt diet impaired vasodilatation with reprogrammed renin-angiotensin system in offspring rats. J Hypertens 2019; 36:2369-2379. [PMID: 30382958 DOI: 10.1097/hjh.0000000000001865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS High-salt diet is linked to hypertension, and prenatal high-salt diet increases the risk of cardiovascular diseases in the offspring. The present study investigated whether and how prenatal high-salt diet influenced nitric oxide-mediated vasodilatation in the offspring. METHODS AND RESULTS Pregnant rats were fed either normal-salt (1% sodium chloride) or high-salt (8% sodium chloride) diet during gestation. Experiments were conducted in 5-month-old male offspring. Sodium nitroprusside (SNP, nitric oxide donor)-induced hypotensive responses (in vivo) and vascular dilatation (in vitro) was significantly attenuated (Emax: 84 ± 2 vs. 51 ± 2, high-salt vs. control, P < 0.001) in the high-salt offspring, indicating reduced vascular relaxations. Pretreatment with Tempol (reactive oxygen species scavenger) alleviated this attenuation. The high-salt offspring showed an increased level of oxidative stress markers in both mesenteric arteries and plasma samples. The antioxidant activity, serum superoxide dismutase and catalase were significantly reduced, whereas malondialdehyde was increased in the high-salt offspring. O2 production, and protein expression of Nox2 and Nox4 in mesenteric arteries was significantly increased in the high-salt offspring whereas Nox1 showed no changes. The local renin-angiotensin system in mesenteric arteries was activated, associated with an increased NADPH oxidase. DNA methylation at the proximal promoter of angiotensin-converting enzyme gene in the lung was significantly increased in the high-salt offspring (P = 0.004). CONCLUSION The results suggest that prenatal high-salt diet impairs nitric oxide-mediated vasodilatation because of the increased oxidative stress-affected renin-angiotensin system in the high-salt offspring, providing new information for understanding, and early prevention of cardiovascular diseases in fetal origins.
Collapse
|
8
|
He D, Pan Q, Chen Z, Sun C, Zhang P, Mao A, Zhu Y, Li H, Lu C, Xie M, Zhou Y, Shen D, Tang C, Yang Z, Jin J, Yao X, Nilius B, Ma X. Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Mol Med 2018; 9:1491-1503. [PMID: 28899928 PMCID: PMC5666316 DOI: 10.15252/emmm.201707725] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The currently available antihypertensive agents have undesirable adverse effects due to systemically altering target activity including receptors, channels, and enzymes. These effects, such as loss of potassium ions induced by diuretics, bronchospasm by beta‐blockers, constipation by Ca2+ channel blockers, and dry cough by ACEI, lead to non‐compliance with therapies (Moser, 1990). Here, based on new hypertension mechanisms, we explored a new antihypertensive approach. We report that transient receptor potential vanilloid 4 (TRPV4) interacts with Ca2+‐activated potassium channel 3 (KCa2.3) in endothelial cells (ECs) from small resistance arteries of normotensive humans, while ECs from hypertensive patients show a reduced interaction between TRPV4 and KCa2.3. Murine hypertension models, induced by high‐salt diet, N(G)‐nitro‐l‐arginine intake, or angiotensin II delivery, showed decreased TRPV4‐KCa2.3 interaction in ECs. Perturbation of the TRPV4‐KCa2.3 interaction in mouse ECs by overexpressing full‐length KCa2.3 or defective KCa2.3 had hypotensive or hypertensive effects, respectively. Next, we developed a small‐molecule drug, JNc‐440, which showed affinity for both TRPV4 and KCa2.3. JNc‐440 significantly strengthened the TRPV4‐KCa2.3 interaction in ECs, enhanced vasodilation, and exerted antihypertensive effects in mice. Importantly, JNc‐440 specifically targeted the impaired TRPV4‐KCa2.3 interaction in ECs but did not systemically activate TRPV4 and KCa2.3. Together, our data highlight the importance of impaired endothelial TRPV4‐KCa2.3 coupling in the progression of hypertension and suggest a novel approach for antihypertensive drug development.
Collapse
Affiliation(s)
- Dongxu He
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Qiongxi Pan
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhen Chen
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunyuan Sun
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Peng Zhang
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Aiqin Mao
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Yaodan Zhu
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Hongjuan Li
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunxiao Lu
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Mingxu Xie
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Yin Zhou
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Daoming Shen
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhenyu Yang
- Heart Centre, Wuxi People's Hospital, Wuxi, China
| | - Jian Jin
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bernd Nilius
- Department Cell Mol Medicine Laboratory Ion Channel Research Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, China .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Biochemical and Biological Attributes of Matrix Metalloproteinases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:1-73. [PMID: 28413025 DOI: 10.1016/bs.pmbts.2017.02.005] [Citation(s) in RCA: 778] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are involved in the degradation of various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation of their latent zymogen form. MMPs are often secreted as inactive pro-MMP form which is cleaved to the active form by various proteinases including other MMPs. MMPs cause degradation of ECM proteins such as collagen and elastin, but could influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in tissue remodeling during various physiological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair, as well as in pathological conditions such as myocardial infarction, fibrotic disorders, osteoarthritis, and cancer. Increases in specific MMPs could play a role in arterial remodeling, aneurysm formation, venous dilation, and lower extremity venous disorders. MMPs also play a major role in leukocyte infiltration and tissue inflammation. MMPs have been detected in cancer, and elevated MMP levels have been associated with tumor progression and invasiveness. MMPs can be regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs have been proposed as biomarkers for numerous pathological conditions and are being examined as potential therapeutic targets in various cardiovascular and musculoskeletal disorders as well as cancer.
Collapse
|
10
|
Wu J, Li N, Liu Y, Li W, He A, Zhu D, Feng X, Liu B, Shi R, Zhang Y, Lv J, Xu Z. Maternal high salt diet altered Adenosine-mediated vasodilatation via PKA/BK channel pathway in offspring rats. Mol Nutr Food Res 2017; 61. [PMID: 28133948 DOI: 10.1002/mnfr.201600963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/07/2022]
Abstract
SCOPE High salt (HS) diets are related to cardiovascular diseases, and prenatal HS was suggested to increase risks of coronary artery diseases in the offspring. This study tested the hypothesis that prenatal HS may influence Adenosine-induced vasodilatation via protein kinase A (PKA) pathway in coronary arteries. METHODS AND RESULTS Sprague-Dawley rats were fed with 8% salt diet for gestation, the control was fed with 0.3% salt diet. Coronary arteries from male adult offspring were tested for K+ channels and Adenosine signal pathways. Adenosine-mediated vasodilatation was reduced in coronary arteries in HS. There was no difference in gene expression of A2A receptors between the two groups. After pretreatment with PKA inhibitor, vasodilatation to Adenosine was decreased to a smaller extent in HS than that in control. Forskolin (activator of adenylate cyclase)-mediated vasodilatation was decreased in HS. Iberiotoxin (large-conductance Ca2+ -activated K+ channel [BK channel] inhibitor) attenuated Forskolin-induced vasodilatation in control, not in HS group. Currents of BK channels decreased in coronary artery smooth muscle cells, and PKA-modulated BK channel functions were declined. Protein levels of BK β1 and PKA C-subunits in coronary arteries of HS offspring were reduced. CONCLUSIONS Prenatal HS diets altered Adenosine-mediated coronary artery vasodilatation in the offspring, which was linked to downregulation of cAMP/PKA/BK channel pathway.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine/pharmacology
- Animals
- Animals, Newborn
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Female
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Maternal Nutritional Physiological Phenomena
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A/metabolism
- Signal Transduction
- Sodium Chloride, Dietary/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Jue Wu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Di Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ruixiu Shi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yujuan Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
- Center for Prenatal Biology, Loma Linda University, CA 92350, USA
| |
Collapse
|
11
|
Li W, Lv J, Wu J, Zhou X, Jiang L, Zhu X, Tu Q, Tang J, Liu Y, He A, Zhong Y, Xu Z. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring. Mol Nutr Food Res 2016; 60:1684-94. [PMID: 26991838 DOI: 10.1002/mnfr.201500998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jue Wu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lin Jiang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaolin Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qing Tu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
- Center for Prenatal Biology, Loma Linda University, CA, USA
| |
Collapse
|
12
|
Baldo MP, Rodrigues SL, Mill JG. High salt intake as a multifaceted cardiovascular disease: new support from cellular and molecular evidence. Heart Fail Rev 2016; 20:461-74. [PMID: 25725616 DOI: 10.1007/s10741-015-9478-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Scientists worldwide have disseminated the idea that increased dietary salt increases blood pressure. Currently, salt intake in the general population is ten times higher than that consumed in the past and at least two times higher than the current recommendation. Indeed, a salt-rich diet increases cardiovascular morbidity and mortality. For a long time, however, the deleterious effects associated with high salt consumption were only related to the effect of salt on blood pressure. Currently, several other effects have been reported. In some cases, the deleterious effects of high salt consumption are independently associated with other common risk factors. In this article, we gather data on the effects of increased salt intake on the cardiovascular system, from infancy to adulthood, to describe the route by which increased salt intake leads to cardiovascular diseases. We have reviewed the cellular and molecular mechanisms through which a high intake of salt acts on the cardiovascular system to lead to the progressive failure of a healthy heart.
Collapse
Affiliation(s)
- Marcelo Perim Baldo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, Vitória, ES, 29042-755, Brazil,
| | | | | |
Collapse
|
13
|
Liu L, Kashyap S, Murphy B, Hutson DD, Budish RA, Trimmer EH, Zimmerman MA, Trask AJ, Miller KS, Chappell MC, Lindsey SH. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2016; 310:H953-61. [PMID: 26873963 DOI: 10.1152/ajpheart.00631.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022]
Abstract
The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;P< 0.001). Treatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage.
Collapse
Affiliation(s)
- Liu Liu
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Shreya Kashyap
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Brennah Murphy
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Dillion D Hutson
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Rebecca A Budish
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Emma H Trimmer
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | | | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, New Orleans, Louisiana;
| |
Collapse
|
14
|
Mata KM, Li W, Reslan OM, Siddiqui WT, Opsasnick LA, Khalil RA. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy. Am J Physiol Heart Circ Physiol 2015; 309:H1679-96. [PMID: 26408543 DOI: 10.1152/ajpheart.00532.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with adaptive hemodynamic, hormonal, and vascular changes, and estrogen (E2) may promote vasodilation during pregnancy; however, the specific E2 receptor (ER) subtype, post-ER signaling mechanism, and vascular bed involved are unclear. We tested whether pregnancy-associated vascular adaptations involve changes in the expression/distribution/activity of distinct ER subtypes in a blood vessel-specific manner. Blood pressure (BP) and plasma E2 were measured in virgin and pregnant (day 19) rats, and the thoracic aorta, carotid artery, mesenteric artery, and renal artery were isolated for measurements of ERα, ERβ, and G protein-coupled receptor 30 [G protein-coupled ER (GPER)] expression and tissue distribution in parallel with relaxation responses to E2 (all ERs) and the specific ER agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)-tris-phenol (PPT; ERα), diarylpropionitrile (DPN; ERβ), and G1 (GPER). BP was slightly lower and plasma E2 was higher in pregnant versus virgin rats. Western blots revealed increased ERα and ERβ in the aorta and mesenteric artery and GPER in the aorta of pregnant versus virgin rats. Immunohistochemistry revealed that the increases in ERs were mainly in the intima and media. In phenylephrine-precontracted vessels, E2 and PPT caused relaxation that was greater in the aorta and mesenteric artery but similar in the carotid and renal artery of pregnant versus virgin rats. DPN- and G1-induced relaxation was greater in the mesenteric and renal artery than in the aorta and carotid artery, and aortic relaxation to G1 was greater in pregnant versus virgin rats. The nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester with or without the cyclooxygenase inhibitor indomethacin with or without the EDHF blocker tetraethylammonium or endothelium removal reduced E2, PPT, and G1-induced relaxation in the aorta of pregnant rats, suggesting an endothelium-dependent mechanism, but did not affect E2-, PPT-, DPN-, or G1-induced relaxation in other vessels, suggesting endothelium-independent mechanisms. E2, PPT, DPN, and G1 caused relaxation of Ca(2+) entry-dependent KCl contraction, and the effect of PPT was greater in the mesenteric artery of pregnant versus virgin rats. Thus, during pregnancy, an increase in ERα expression in endothelial and vascular smooth muscle layers of the aorta and mesenteric artery is associated with increased ERα-mediated relaxation via endothelium-derived vasodilators and inhibition of Ca(2+) entry into vascular smooth muscle, supporting a role of aortic and mesenteric arterial ERα in pregnancy-associated vasodilation. GPER may contribute to aortic relaxation while enhanced ERβ expression could mediate other genomic vascular effects during pregnancy.
Collapse
Affiliation(s)
- Karina M Mata
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ossama M Reslan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Waleed T Siddiqui
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren A Opsasnick
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Bo L, Jiang L, Zhou A, Wu C, Li J, Gao Q, Zhang P, Lv J, Li N, Gu X, Zhu Z, Mao C, Xu Z. Maternal high-salt diets affected pressor responses and microvasoconstriction via PKC/BK channel signaling pathways in rat offspring. Mol Nutr Food Res 2015; 59:1190-9. [PMID: 25737272 DOI: 10.1002/mnfr.201400841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/20/2015] [Accepted: 02/17/2015] [Indexed: 02/03/2023]
Abstract
SCOPE High-salt (HS) intake is linked to hypertension, and prenatal exposure to maternal HS diets may have long-term impact on cardiovascular systems. The relationship between HS diets and cardiovascular disease has received extensive attention. This study determined pressor responses and microvessel functions in the adult offspring rats exposed to prenatal HS. METHODS AND RESULTS The offspring of 5-month old as young adults in rats were used. Blood pressure, vascular tone, intracellular Ca(2+), and BK channels in mesenteric arteries were measured in the offspring. Phenylephrine (Phe)-induced pressor responses were significantly higher in the prenatal HS offspring. Vessel tension and intracellular Ca(2+) concentrations associated with Phe-induced pressor responses were increased in the mesenteric arteries of the HS offspring. PKC α- and δ-isoforms were upregulated in mesenteric arteries of the HS offspring. The enhanced Phe-mediated vascular activity was linked to the altered PKC-modulated BK channel functions. CONCLUSION The results suggested that prenatal exposure to HS altered microvascular activity probably via changes in PKC/BK signaling pathways, which may lead to increased risks of hypertension in the offspring.
Collapse
Affiliation(s)
- Le Bo
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Lin Jiang
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Anwen Zhou
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Chonglong Wu
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Jiayue Li
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Qinqin Gao
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Pengjie Zhang
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Juanxiu Lv
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Na Li
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Xiuxia Gu
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Zhoufeng Zhu
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Caiping Mao
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China
| | - Zhice Xu
- Institute for Fetology & Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, P. R. China.,Center for Prenatal Biology, Loma Linda University, CA, USA
| |
Collapse
|
16
|
Vascular Response to Graded Angiotensin II Infusion in Offspring Subjected to High-Salt Drinking Water during Pregnancy: The Effect of Blood Pressure, Heart Rate, Urine Output, Endothelial Permeability, and Gender. Int J Vasc Med 2014; 2014:876527. [PMID: 24860669 PMCID: PMC4016930 DOI: 10.1155/2014/876527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction. Rennin-angiotensin system and salt diet play important roles in blood pressure control. We hypothesized that the high-salt intake during pregnancy influences the degree of angiotensin-dependent control of the blood pressure in adult offspring. Methods. Female Wistar rats in two groups (A and B) were subjected to drink tap and salt water, respectively, during pregnancy. The offspring were divided into four groups as male and female offspring from group A (groups 1 and 2) and from group B (groups 3 and 4). In anesthetized matured offspring mean arterial pressure (MAP), heart rate and urine output were measured in response to angiotensin II (AngII) (0-1000 ng/kg/min, iv) infusion. Results. An increase in MAP was detected in mothers with salt drinking water (P < 0.05). The body weight increased and kidney weight decreased significantly in male offspring from group 3 in comparison to group 1 (P < 0.05). MAP and urine volume in response to AngII infusion increased in group 3 (P < 0.05). These findings were not observed in female rats. Conclusion. Salt overloading during pregnancy had long-term effects on kidney weight and increased sex-dependent response to AngII infusion in offspring (adult) that may reveal the important role of diet during pregnancy in AngII receptors.
Collapse
|
17
|
Mao C, Liu R, Bo L, Chen N, Li S, Xia S, Chen J, Li D, Zhang L, Xu Z. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system. J Endocrinol 2013; 218:61-73. [PMID: 23620529 PMCID: PMC4406098 DOI: 10.1530/joe-13-0139] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.
Collapse
Affiliation(s)
- Caiping Mao
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou 215006, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Walsh SK, English FA, Crocker IP, Johns EJ, Kenny LC. Contribution of PARP to endothelial dysfunction and hypertension in a rat model of pre-eclampsia. Br J Pharmacol 2012; 166:2109-16. [PMID: 22339234 DOI: 10.1111/j.1476-5381.2012.01906.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Under conditions of increased oxidative stress, such as pre-eclampsia and diabetes, overstimulation of PARP leads to endothelial dysfunction. Inhibition of PARP has been demonstrated to reverse the vascular dysfunction associated with diabetes in vivo. The present study was carried out to investigate the role of PARP in mediating the endothelial dysfunction associated with pre-eclampsia. EXPERIMENTAL APPROACH Uteroplacental perfusion was surgically reduced in pregnant rats to produce the reduced uterine perfusion pressure (RUPP) rat model of pre-eclampsia and the PARP inhibitor, PJ34, was administered either before or after surgery. Mean arterial BP and vascular function were measured in normal pregnant (NP) and both control and PJ34-treated RUPP rats. Mesenteric vessels from NP rats were incubated with either 3% RUPP or NP plasma alone or in combination with PJ34. Finally, immunohistochemical staining was carried out to measure nitrotyrosine (byproduct of peroxynitrite) immunoreactivity. KEY RESULTS RUPP rats were characterized by hypertension, fetal growth restriction and endothelial dysfunction when compared with NP rats. PJ34 administered in vivo before, but not after, surgery prevented the development of both endothelial dysfunction and hypertension. RUPP plasma-induced impaired vasorelaxation was prevented following co-incubation with PJ34 in vitro. Furthermore, the protective effect of PARP inhibition in vivo was accompanied by a reduction in nitrotyrosine immunoreactivity. CONCLUSIONS AND IMPLICATIONS PJ34 prevented the development of both endothelial dysfunction and hypertension and reduced vascular nitrotyrosine immunoreactivity, thus suggesting a role for oxidative-nitrosative stress/PARP activation in the aberration in both vascular and haemodynamic function in this rat model of pre-eclampsia.
Collapse
Affiliation(s)
- S K Walsh
- Anu Research Centre, Department of Obstetrics & Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland.
| | | | | | | | | |
Collapse
|
19
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
20
|
Falcao S, Solomon C, Monat C, Bérubé J, Gutkowska J, Lavoie JL. Impact of diet and stress on the development of preeclampsia-like symptoms in p57kip2 mice. Am J Physiol Heart Circ Physiol 2009; 296:H119-26. [DOI: 10.1152/ajpheart.01011.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclin-dependent kinase inhibitor p57kip2 regulates the cell cycle of trophoblastic cells. It has been established by a Japanese group that the heterozygous p57kip2 knockout (p57−/+) mice are a good model of preeclampsia as they develop hypertension, proteinuria, and placental pathology. However, apart from the placental pathology, we could not observe these symptoms in our laboratory. Hence, we investigated the impact of diet and stress on this model. To do so, we compared the effects of the Japanese diet to that of the North American diet used by our animal facility. Furthermore, the impact of stress was determined by placing the mice in a restraining device before and at the end of gestation. Although the Japanese diet did not have any impact on blood pressure or proteinuria, the mice did develop endothelial dysfunction, left ventricular hypertrophy, as well as increased placental pathology. Also, all mice had smaller litters when fed the Japanese diet. However, stress response of these mice was not increased during gestation; in fact, a decrease was observed in the p57−/+ mice, suggesting that this was probably not a player in the development of the pathology. Taken together, these results suggest that other environmental factors may have been implicated in the development of preeclampsia-like symptoms in this animal model. Moreover, we demonstrated that placental pathology and genetic factors are not sufficient to trigger preeclampsia-like symptoms in this model and that the diet might play an important part in the development of this multifactorial disease.
Collapse
|
21
|
Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, Hicks MJ, Ramin SM, Kellems RE, Xia Y. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 2008; 14:855-62. [PMID: 18660815 DOI: 10.1038/nm.1856] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/07/2008] [Indexed: 12/15/2022]
Abstract
Pre-eclampsia affects approximately 5% of pregnancies and remains a leading cause of maternal and neonatal mortality and morbidity in the United States and the world. The clinical hallmarks of this maternal disorder include hypertension, proteinuria, endothelial dysfunction and placental defects. Advanced-stage clinical symptoms include cerebral hemorrhage, renal failure and the HELLP (hemolysis, elevated liver enzymes and low platelets) syndrome. An effective treatment of pre-eclampsia is unavailable owing to the poor understanding of the pathogenesis of the disease. Numerous recent studies have shown that women with pre-eclampsia possess autoantibodies, termed AT(1)-AAs, that bind and activate the angiotensin II receptor type 1a (AT(1) receptor). We show here that key features of pre-eclampsia, including hypertension, proteinuria, glomerular endotheliosis (a classical renal lesion of pre-eclampsia), placental abnormalities and small fetus size appeared in pregnant mice after injection with either total IgG or affinity-purified AT(1)-AAs from women with pre-eclampsia. These features were prevented by co-injection with losartan, an AT(1) receptor antagonist, or by an antibody neutralizing seven-amino-acid epitope peptide. Thus, our studies indicate that pre-eclampsia may be a pregnancy-induced autoimmune disease in which key features of the disease result from autoantibody-induced angiotensin receptor activation. This hypothesis has obvious implications regarding pre-eclampsia screening, diagnosis and therapy.
Collapse
Affiliation(s)
- Cissy C Zhou
- Department of Biochemistry, University of Texas-Houston Medical School, 6431 Fannin, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol 2007; 294:H541-50. [PMID: 18055511 DOI: 10.1152/ajpheart.01113.2007] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies over the last decade have provided exciting new insights into potential mechanisms underlying the pathogenesis of preeclampsia. The initiating event in preeclampsia is generally regarded to be placental ischemia/hypoxia, which in turn results in the elaboration of a variety of factors from the placenta that generates profound effects on the cardiovascular system. This host of molecules includes factors such as soluble fms-like tyrosine kinase-1, the angiotensin II type 1 receptor autoantibody, and cytokines such as tumor necrosis factor-alpha, which generate widespread dysfunction of the maternal vascular endothelium. This dysfunction manifests as enhanced formation of factors such as endothelin, reactive oxygen species, and augmented vascular sensitivity to angiotensin II. Alternatively, the preeclampsia syndrome may also be evidenced as decreased formation of vasodilators such as nitric oxide and prostacyclin. Taken together, these alterations cause hypertension by impairing renal pressure natriuresis and increasing total peripheral resistance. Moreover, the quantitative importance of the various endothelial and humoral factors that mediate vasoconstriction and elevation of arterial pressure during preeclampsia remains to be elucidated. Thus identifying the connection between placental ischemia/hypoxia and maternal cardiovascular abnormalities in hopes of revealing potential therapeutic regimens remains an important area of investigation and will be the focus of this review.
Collapse
Affiliation(s)
- Jeffrey S Gilbert
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cordaillat M, Fort A, Virsolvy A, Elghozi JL, Richard S, Jover B. Nitric oxide pathway counteracts enhanced contraction to membrane depolarization in aortic rings of rats on high-sodium diet. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1557-62. [PMID: 17185406 DOI: 10.1152/ajpregu.00624.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cell contraction and endothelium-dependent relaxation was evaluated in aortic rings isolated from weaned, 5-mo-old Sprague-Dawley rats fed a normal (NS; 0.8% NaCl) or high (HS; 8% NaCl) sodium diet. Arterial pressure was 140 +/- 6 (NS) and 145 +/- 6 mmHg (HS). In endothelium-denuded rings, the response to phenylephrine (PE) was not modified by the sodium diet, while that of depolarizing agent KCl and intracellular calcium releasing agent caffeine increased in the HS group. When endothelium was preserved, PE-evoked contraction was reduced in both NS and HS groups, the contraction being yet lower in the HS group. This effect was partially obliterated by addition of N(G)-nitro-L-arginine methyl ester (L-NAME), independently of the sodium diet. Relaxation to ACh in intact rings and to sodium nitroprusside (SNP) and 8-bromoadenosine 3'5' cyclic guanosine monophosphate (8-BrcGMP) in the absence of endothelium was enhanced in rings isolated from HS rats. In addition, the dose-response curve to 8-BrcGMP was shifted to the right in the presence of iberiotoxin, an inhibitor of large conductance, voltage-dependent, and calcium-sensitive potassium channel (BK(Ca)). However, shift was more marked in rings from HS rats. Present results provide evidence that response of vascular smooth muscle cell to nitric oxide/cGMP-related compounds is increased in HS rings and is associated with a greater activation of the repolarizing BK(Ca) channels. Such changes might counterbalance enhanced contractile response to membrane depolarization and thus participate in maintenance of arterial pressure in the present model of early and long-term HS feeding in rats.
Collapse
Affiliation(s)
- Magali Cordaillat
- Groupe Rein et Hypertension, Université Montpellier I, Montpellier, France
| | | | | | | | | | | |
Collapse
|
24
|
St-Louis J, Sicotte B, Beauséjour A, Brochu M. Remodeling and angiotensin II responses of the uterine arcuate arteries of pregnant rats are altered by low- and high-sodium intake. Reproduction 2006; 131:331-9. [PMID: 16452726 DOI: 10.1530/rep.1.00565] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lowering and increasing sodium intake in pregnant rats evoke opposite changes in renin–angiotensin–aldosterone system (RAAS) activity and are associated with alterations of blood volume expansion. As augmented uterine blood flow during gestation is linked to increased circulatory volume, we wanted to determine if low- and high-sodium intakes affect the mechanical properties and angiotensin II (AngII) responses of the uterine vasculature. Non-pregnant and pregnant rats received a normal sodium (0.22% Na+) diet. On the 15th day of gestation some animals were moved to a low-sodium (0.03%) diet, whereas others were given NaCl supplementation as beverage (saline, 0.9% or 1.8%) for 7 days. All rats were killed after 7 days of treatment (eve of parturition). Uterine arcuate arteries (>100 μm) were set up in wire myographs under a tension equivalent to 50 mmHg transmural pressure. The pregnancy-associated increase in diameter of the uterine arteries was significantly attenuated on the low-sodium diet and 1.8% NaCl supplementation. The arcuate arteries of non-pregnant rats on the low-sodium diet showed markedly increased responses to AngII and phenylephrine (Phe). Pregnancy also resulted in heightened responses to AngII and Phe that were significantly reduced for the former agent in rats on the low-sodium diet. Sodium supplementation of non-pregnant rats did not affect the reactivity of the uterine arteries to AngII, but significantly reduced the effect of Phe (1 μmol/l). High salt also significantly diminished the elevated responses to AngII in the arteries of pregnant animals. It was observed that altered sodium intake affects the mechanical and reactive properties of the uterine arcuate arteries more importantly in pregnant than in non-pregnant rats. Low-salt intake similarly affected the reactivity of the uterine arcuate arteries to AngII and Phe, whereas high-salt intake more specifically affected AngII responses. These results showed that perturbations of sodium intake have major impacts on the structure and functions of the uterine arterial circulation, indicating RAAS involvement in uterine vascular remodeling and function during gestation.
Collapse
Affiliation(s)
- Jean St-Louis
- Laboratoire de Recherche Fondamentale en Obstétrique, Centre de Recherche, Département d'Obstétrique et Gynécologie, Hôpital Sainte-Justine, Université de Montréal, 175 Ch. Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| | | | | | | |
Collapse
|
25
|
Fedorova OV, Kolodkin NI, Agalakova NI, Namikas AR, Bzhelyansky A, St-Louis J, Lakatta EG, Bagrov AY. Antibody to marinobufagenin lowers blood pressure in pregnant rats on a high NaCl intake. J Hypertens 2005; 23:835-42. [PMID: 15775789 DOI: 10.1097/01.hjh.0000163153.27954.33] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The pathogenesis of pre-eclampsia (PE), a major cause of maternal and fetal mortality, is not fully understood. Digitalis-like sodium pump ligands (SPLs) are believed to be implicated in PE, as illustrated by clinical observations that DIGIBIND, a digoxin antibody that binds SPLs, lowers blood pressure (BP) in PE. We recently reported that plasma levels of marinobufagenin (MBG), a vasoconstrictor SPL, are increased four-fold in patients with PE. In the present study, we tested whether a polyclonal antibody to MBG can lower BP in rats with pregnancy-associated hypertension. METHODS Systolic BP (SBP), 24-h renal excretion of MBG and endogenous ouabain (EO), and sodium pump activity in the thoracic aortae were measured in virgin and pregnant Sprague-Dawley rats without and with NaCl supplementation (drinking 1.8% NaCl solution). RESULTS NaCl supplementation of virgin rats stimulated renal excretion of MBG by 60%, but not that of EO, and did not change the BP. Compared with virgin rats, the last week of pregnancy in non-NaCl-loaded rats was associated with a decrease in SBP (106 +/- 2 versus 117 +/- 2 mmHg); a moderate increase in renal excretion of MBG (97.6 +/- 4.9 versus 57.4 +/- 7.0 pmoles/24 h) and EO (36.2 +/- 4.3 versus 24.1 +/- 3.2 pmoles/24 h). NaCl-loaded pregnant rats exhibited elevation in SBP (139 +/- 3 mmHg; P < 0.01 versus non-NaCl-loaded pregnant rats), in renal excretion of MBG (160.0 +/- 17.5 pmoles/24 h; P < 0.01 versus non-NaCl-loaded pregnant rats), but not in EO, and showed fetal growth retardation. Administration of the anti-MBG antibody to NaCl-loaded pregnant rats lowered SBP (111 +/- 2 mmHg; P < 0.01) and increased aortic sodium pump activity (144 +/- 3 versus 113 +/- 5 nmol Rb/g per min; P < 0.01 versus non-NaCl-loaded pregnant rats). CONCLUSIONS These observations provide evidence that MBG contributes to BP elevation in pregnant rats rendered hypertensive by NaCl supplementation.
Collapse
Affiliation(s)
- Olga V Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Auger K, Beauséjour A, Brochu M, St-Louis J. Increased Na+ intake during gestation in rats is associated with enhanced vascular reactivity and alterations of K+ and Ca2+ function. Am J Physiol Heart Circ Physiol 2004; 287:H1848-56. [PMID: 15205166 DOI: 10.1152/ajpheart.00055.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gestation is associated with decreased blood pressure and resistance to the effects of vasoconstrictor agents. A recent study showed that pregnant rats, on increased sodium intake, present physiological changes that resemble those observed in preeclampsia. We investigated the effects of sodium supplementation on reactivity and on potassium and Ca2+ channel activity in blood vessels during gestation. Sodium supplements, 0.9% or 1.8% NaCl as drinking water, were given to nonpregnant and pregnant rats for 7 days (last week of gestation). Reactivity to phenylephrine (PE), KCl, arginine vasopressin (AVP), and tetraethylammonium (TEA) was measured in aortic rings under modulation of potassium and calcium channels. TEA, a nonselective K+ channel inhibitor, induced concentration-dependent responses in aortic rings from nonpregnant but not in those from pregnant rats. The response to TEA was restored in rings from pregnant rats after preincubation with 10 mmol/l KCl. Sodium supplementation did not affect the response to TEA in the aortas of pregnant animals. After sodium supplementation, maximum responses to PE and AVP were decreased and increased in aortic rings from nonpregnant and pregnant rats, respectively. Cromakalim (an ATP-sensitive K+ channel activator)-induced inhibition of the responses to the three vasoconstrictors was more striking in aorta from nonpregnant than pregnant rats on regular diet, whereas it produced similar inhibition in tissues from both groups of animals on 0.9% and 1.8% NaCl. NS-1619 (a Ca2+-sensitive K+ activator) elicited heightened effects in the aortas of pregnant animals receiving 0.9% NaCl supplementation. Nifedipine (a Ca2+ channel blocker) caused greater inhibition of the contractile responses in tissues from nonpregnant rats on regular diet, and its action was increased in pregnant rats on sodium-supplemented diets. These data demonstrate that augmented sodium intake during gestation in the rat is linked with the reversal of gestational-associated resistance to vasopressors and indicate that this is an experimental model showing some features of gestational hypertension.
Collapse
Affiliation(s)
- Karine Auger
- Centre de Recherche, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | |
Collapse
|
27
|
Beauséjour A, Auger K, St-Louis J, Brochu M. High-sodium intake prevents pregnancy-induced decrease of blood pressure in the rat. Am J Physiol Heart Circ Physiol 2003; 285:H375-83. [PMID: 12793982 DOI: 10.1152/ajpheart.01132.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite an increase of circulatory volume and of renin-angiotensin-aldosterone system (RAAS) activity, pregnancy is paradoxically accompanied by a decrease in blood pressure. We have reported that the decrease in blood pressure was maintained in pregnant rats despite overactivation of RAAS following reduction in sodium intake. The purpose of this study was to evaluate the impact of the opposite condition, e.g., decreased activation of RAAS during pregnancy in the rat. To do so, 0.9% or 1.8% NaCl in drinking water was given to nonpregnant and pregnant Sprague-Dawley rats for 7 days (last week of gestation). Increased sodium intakes (between 10- and 20-fold) produced reduction of plasma renin activity and aldosterone in both nonpregnant and pregnant rats. Systolic blood pressure was not affected in nonpregnant rats. However, in pregnant rats, 0.9% sodium supplement prevented the decreased blood pressure. Moreover, an increase of systolic blood pressure was obtained in pregnant rats receiving 1.8% NaCl. The 0.9% sodium supplement did not affect plasma and fetal parameters. However, 1.8% NaCl supplement has larger effects during gestation as shown by increased plasma sodium concentration, hematocrit level, negative water balance, proteinuria, and intrauterine growth restriction. With both sodium supplements, decreased AT1 mRNA levels in the kidney and in the placenta were observed. Our results showed that a high-sodium intake prevents the pregnancy-induced decrease of blood pressure in rats. Nonpregnant rats were able to maintain homeostasis but not the pregnant ones in response to sodium load. Furthermore, pregnant rats on a high-sodium intake (1.8% NaCl) showed some physiological responses that resemble manifestations observed in preeclampsia.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Creatinine/blood
- Eating/physiology
- Electrolytes/blood
- Female
- Fetal Weight/drug effects
- Fetal Weight/physiology
- Hematocrit
- Homeostasis/physiology
- Hormones/blood
- Kidney/drug effects
- Kidney/metabolism
- Nuclease Protection Assays
- Organ Size/drug effects
- Organ Size/physiology
- Placenta/drug effects
- Placenta/physiology
- Pregnancy
- Pregnancy, Animal/physiology
- RNA Probes
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/biosynthesis
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
- Sodium/blood
- Sodium, Dietary/pharmacology
- Urodynamics/drug effects
Collapse
Affiliation(s)
- Annie Beauséjour
- Hôpital Sainte-Justine, Department of Obstetrics and Gynecology, Université de Montreal, Montreal, Quebec, Canada H3T 1C5
| | | | | | | |
Collapse
|
28
|
An SS, Laudadio RE, Lai J, Rogers RA, Fredberg JJ. Stiffness changes in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 2002; 283:C792-801. [PMID: 12176736 DOI: 10.1152/ajpcell.00425.2001] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway smooth muscle (ASM) cells in culture stiffen when exposed to contractile agonists. Such cell stiffening may reflect activation of the contractile apparatus as well as polymerization of cytoskeletal biopolymers. Here we have assessed the relative contribution of these mechanisms in cultured ASM cells stimulated with serotonin (5-hydroxytryptamine; 5-HT) in the presence or absence of drugs that inhibit either myosin-based contraction or polymerization of filamentous (F) actin. Magnetic twisting cytometry was used to measure cell stiffness, and associated changes in structural organization of actin cytoskeleton were evaluated by confocal microscopy. We found that 5-HT increased cell stiffness in a dose-dependent fashion and also elicited rapid formation of F-actin as marked by increased intensity of FITC-phalloidin staining in these cells. A calmodulin antagonist (W-7), a myosin light chain kinase inhibitor (ML-7) and a myosin ATPase inhibitor (BDM) each ablated the stiffening response but not the F-actin polymerization induced by 5-HT. Agents that inhibited the formation of F-actin (cytochalasin D, latrunculin A, C3 exoenzyme, and Y-27632) attenuated both baseline stiffness and the extent of cell stiffening in response to 5-HT. Together, these data suggest that agonist-evoked stiffening of cultured ASM cells requires actin polymerization as well as myosin activation and that neither actin polymerization nor myosin activation by itself is sufficient to account for the cell stiffening response.
Collapse
Affiliation(s)
- Steven S An
- Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
29
|
Khalil RA, Granger JP. Vascular mechanisms of increased arterial pressure in preeclampsia: lessons from animal models. Am J Physiol Regul Integr Comp Physiol 2002; 283:R29-45. [PMID: 12069928 DOI: 10.1152/ajpregu.00762.2001] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reductions in total vascular resistance and arterial pressure possibly due to enhanced endothelium-dependent vascular relaxation and decreased vascular reactivity to vasoconstrictor agonists. These beneficial hemodynamic and vascular changes do not occur in women who develop preeclampsia; instead, severe increases in vascular resistance and arterial pressure are observed. Although preeclampsia represents a major cause of maternal and fetal morbidity and mortality, the vascular and cellular mechanisms underlying this disorder have not been clearly identified. Studies in hypertensive pregnant women and experimental animal models suggested that reduction in uteroplacental perfusion pressure and the ensuing placental ischemia/hypoxia during late pregnancy may trigger the release of placental factors that initiate a cascade of cellular and molecular events leading to endothelial and vascular smooth muscle cell dysfunction and thereby increased vascular resistance and arterial pressure. The reduction in uterine perfusion pressure and the ensuing placental ischemia are possibly caused by inadequate cytotrophoblast invasion of the uterine spiral arteries. Placental ischemia may promote the release of a variety of biologically active factors, including cytokines such as tumor necrosis factor-alpha and reactive oxygen species. Threshold increases in the plasma levels of placental factors may lead to endothelial cell dysfunction, alterations in the release of vasodilator substances such as nitric oxide (NO), prostacyclin (PGI(2)), and endothelium-derived hyperpolarizing factor, and thereby reductions of the NO-cGMP, PGI(2)-cAMP, and hyperpolarizing factor vascular relaxation pathways. The placental factors may also increase the release of or the vascular reactivity to endothelium-derived contracting factors such as endothelin, thromboxane, and ANG II. These contracting factors could increase intracellular Ca(2+) concentrations ([Ca(2+)](i)) and stimulate Ca(2+)-dependent contraction pathways in vascular smooth muscle. The contracting factors could also increase the activity of vascular protein kinases such as protein kinase C, leading to increased myofilament force sensitivity to [Ca(2+)](i) and enhancement of smooth muscle contraction. The decreased endothelium-dependent mechanisms of vascular relaxation and the enhanced mechanisms of vascular smooth muscle contraction represent plausible causes of the increased vascular resistance and arterial pressure associated with preeclampsia.
Collapse
Affiliation(s)
- Raouf A Khalil
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|