1
|
Sedmera D. HLHS: Power of the Chick Model. J Cardiovasc Dev Dis 2022; 9:jcdd9040113. [PMID: 35448089 PMCID: PMC9031965 DOI: 10.3390/jcdd9040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Hypoplastic left heart syndrome (HLHS) is a rare but deadly form of human congenital heart disease, most likely of diverse etiologies. Hemodynamic alterations such as those resulting from premature foramen ovale closure or aortic stenosis are among the possible pathways. Methods: The information gained from studies performed in the chick model of HLHS is reviewed. Altered hemodynamics leads to a decrease in myocyte proliferation causing hypoplasia of the left heart structures and their functional changes. Conclusions: Although the chick phenocopy of HLHS caused by left atrial ligation is certainly not representative of all the possible etiologies, it provides many useful hints regarding the plasticity of the genetically normal developing myocardium under altered hemodynamic loading leading to the HLHS phenotype, and even suggestions on some potential strategies for prenatal repair.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
2
|
Gendernalik A, Zebhi B, Ahuja N, Garrity D, Bark D. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development. Ann Biomed Eng 2020; 49:834-845. [PMID: 32959136 DOI: 10.1007/s10439-020-02619-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Cardiac morphogenesis requires an intricate orchestration of mechanical stress to sculpt the heart as it transitions from a straight tube to a multichambered adult heart. Mechanical properties are fundamental to this process, involved in a complex interplay with function, morphology, and mechanotransduction. In the current work, we propose a pressurization technique applied to the zebrafish atrium to quantify mechanical properties of the myocardium under passive tension. By further measuring deformation, we obtain a pressure-stretch relationship that is used to identify constitutive models of the zebrafish embryonic cardiac tissue. Two-dimensional results are compared with a three-dimensional finite element analysis based on reconstructed embryonic heart geometry. Through these steps, we found that the myocardium of zebrafish results in a stiffness on the order of 10 kPa immediately after the looping stage of development. This work enables the ability to determine how these properties change under normal and pathological heart development.
Collapse
Affiliation(s)
- Alex Gendernalik
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Banafsheh Zebhi
- Department of Mechanical Engineering, Colorado State University, Room 304 Scott Building, 1374 Campus Delivery, Fort Collins, CO, 80523-1374, USA
| | - Neha Ahuja
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Deborah Garrity
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - David Bark
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA. .,Department of Mechanical Engineering, Colorado State University, Room 304 Scott Building, 1374 Campus Delivery, Fort Collins, CO, 80523-1374, USA. .,Department of Pediatrics, University of Colorado, Aurora, CO, USA. .,Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
4
|
Buffinton CM, Benjamin AK, Firment AN, Moon AM. Myocardial wall stiffening in a mouse model of persistent truncus arteriosus. PLoS One 2017; 12:e0184678. [PMID: 28961240 PMCID: PMC5621674 DOI: 10.1371/journal.pone.0184678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Background Genetic and epigenetic programs regulate dramatic structural changes during cardiac morphogenesis. Concurrent biomechanical forces within the heart created by blood flow and pressure in turn drive downstream cellular, molecular and genetic responses. Thus, a genetic-morphogenetic-biomechanical feedback loop is continually operating to regulate heart development. During the evolution of a congenital heart defect, concomitant abnormalities in blood flow, hemodynamics, and patterns of mechanical loading would be predicted to change the output of this feedback loop, impacting not only the ultimate morphology of the defect, but potentially altering tissue-level biomechanical properties of structures that appear structurally normal. Aim The goal of this study was to determine if abnormal hemodynamics present during outflow tract formation and remodeling in a genetically engineered mouse model of persistent truncus arteriosus (PTA) causes tissue-level biomechanical abnormalities. Methods The passive stiffness of surface locations on the left ventricle (LV), right ventricle (RV), and outflow tract (OFT) was measured with a pipette aspiration technique in Fgf8;Isl1Cre conditional mutant embryonic mouse hearts and controls. Control and mutant experimental results were compared by a strain energy metric based on the measured relationship between pressure and aspirated height, and also used as target behavior for finite element models of the ventricles. Model geometry was determined from 3D reconstructions of whole-mount, confocal-imaged hearts. The stress-strain relationship of the model was adjusted to achieve an optimal match between model and experimental behavior. Results and conclusion Although the OFT is the most severely affected structure in Fgf8;Isl1Cre hearts, its passive stiffness was the same as in control hearts. In contrast, both the LV and RV showed markedly increased passive stiffness, doubling in LVs and quadrupling in RVs of mutant hearts. These differences are not attributable to differences in ventricular volume, wall thickness, or trabecular density. Excellent agreement was obtained between the model and experimental results. Overall our findings show that hearts developing PTA have early changes in ventricular tissue biomechanics relevant to cardiac function and ongoing development.
Collapse
Affiliation(s)
- Christine Miller Buffinton
- Department of Mechanical Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| | - Alyssa K. Benjamin
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Ashley N. Firment
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania, United States of America
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania, United States of America
| |
Collapse
|
5
|
Kowalski WJ, Teslovich NC, Menon PG, Tinney JP, Keller BB, Pekkan K. Left atrial ligation alters intracardiac flow patterns and the biomechanical landscape in the chick embryo. Dev Dyn 2014; 243:652-62. [PMID: 24868595 DOI: 10.1002/dvdy.24107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) is a major human congenital heart defect that results in single ventricle physiology and high mortality. Clinical data indicate that intracardiac blood flow patterns during cardiac morphogenesis are a significant etiology. We used the left atrial ligation (LAL) model in the chick embryo to test the hypothesis that LAL immediately alters intracardiac flow streams and the biomechanical environment, preceding morphologic and structural defects observed in HLHS. RESULTS Using fluorescent dye injections, we found that intracardiac flow patterns from the right common cardinal vein, right vitelline vein, and left vitelline vein were altered immediately following LAL. Furthermore, we quantified a significant ventral shift of the right common cardinal and right vitelline vein flow streams. We developed an in silico model of LAL, which revealed that wall shear stress was reduced at the left atrioventricular canal and left side of the common ventricle. CONCLUSIONS Our results demonstrate that intracardiac flow patterns change immediately following LAL, supporting the role of hemodynamics in the progression of HLHS. Sites of reduced WSS revealed by computational modeling are commonly affected in HLHS, suggesting that changes in the biomechanical environment may lead to abnormal growth and remodeling of left heart structures.
Collapse
|
6
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
7
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 PMCID: PMC4117980 DOI: 10.3389/fphys.2014.00287] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
8
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 DOI: 10.3389/fphys.2014.00287/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
9
|
Vostarek F, Sankova B, Sedmera D. Studying dynamic events in the developing myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:261-9. [PMID: 24954141 DOI: 10.1016/j.pbiomolbio.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/25/2023]
Abstract
Differentiation and conduction properties of the cardiomyocytes are critically dependent on physical conditioning both in vitro and in vivo. Historically, various techniques were introduced to study dynamic events such as electrical currents and changes in ionic concentrations in live cells, multicellular preparations, or entire hearts. Here we review this technological progress demonstrating how each improvement in spatial or temporal resolution provided answers to old and provoked new questions. We further demonstrate how high-speed optical mapping of voltage and calcium can uncover pacemaking potential within the outflow tract myocardium, providing a developmental explanation of ectopic beats originating from this region in the clinical settings.
Collapse
Affiliation(s)
- Frantisek Vostarek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic
| | - David Sedmera
- Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic; Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic.
| |
Collapse
|
10
|
Jafri MS. Mechanisms of Myofascial Pain. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:523924. [PMID: 25574501 PMCID: PMC4285362 DOI: 10.1155/2014/523924] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023]
Abstract
Myofascial pain syndrome is an important health problem. It affects a majority of the general population, impairs mobility, causes pain, and reduces the overall sense of well-being. Underlying this syndrome is the existence of painful taut bands of muscle that contain discrete, hypersensitive foci called myofascial trigger points. In spite of the significant impact on public health, a clear mechanistic understanding of the disorder does not exist. This is likely due to the complex nature of the disorder which involves the integration of cellular signaling, excitation-contraction coupling, neuromuscular inputs, local circulation, and energy metabolism. The difficulties are further exacerbated by the lack of an animal model for myofascial pain to test mechanistic hypothesis. In this review, current theories for myofascial pain are presented and their relative strengths and weaknesses are discussed. Based on new findings linking mechanoactivation of reactive oxygen species signaling to destabilized calcium signaling, we put forth a novel mechanistic hypothesis for the initiation and maintenance of myofascial trigger points. It is hoped that this lays a new foundation for understanding myofascial pain syndrome and how current therapies work, and gives key insights that will lead to the improvement of therapies for its treatment.
Collapse
Affiliation(s)
- M. Saleet Jafri
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MNS 2A1, Fairfax, VA 22030, USA
| |
Collapse
|
11
|
White E. Mechanical modulation of cardiac microtubules. Pflugers Arch 2011; 462:177-84. [DOI: 10.1007/s00424-011-0963-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|
12
|
Garita B, Jenkins MW, Han M, Zhou C, Vanauker M, Rollins AM, Watanabe M, Fujimoto JG, Linask KK. Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart Circ Physiol 2011; 300:H879-91. [PMID: 21239637 PMCID: PMC3064308 DOI: 10.1152/ajpheart.00433.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022]
Abstract
Analyses of form-function relationships during heart looping are directly related to technological advances. Recent advances in four-dimensional optical coherence tomography (OCT) permit observations of cardiac dynamics at high-speed acquisition rates and high resolution. Real-time observation of the avian stage 13 looping heart reveals that interactions between the endocardial and myocardial compartments are more complex than previously depicted. Here we applied four-dimensional OCT to elucidate the relationships of the endocardium, myocardium, and cardiac jelly compartments in a single cardiac cycle during looping. Six cardiac levels along the longitudinal heart tube were each analyzed at 15 time points from diastole to systole. Using image analyses, the organization of mechanotransducing molecules, fibronectin, tenascin C, α-tubulin, and nonmuscle myosin II was correlated with specific cardiac regions defined by OCT data. Optical coherence microscopy helped to visualize details of cardiac architectural development in the embryonic mouse heart. Throughout the cardiac cycle, the endocardium was consistently oriented between the midline of the ventral floor of the foregut and the outer curvature of the myocardial wall, with multiple endocardial folds allowing high-volume capacities during filling. The cardiac area fractional shortening is much higher than previously published. The in vivo profile captured by OCT revealed an interaction of the looping heart with the extra-embryonic splanchnopleural membrane providing outside-in information. In summary, the combined dynamic and imaging data show the developing structural capacity to accommodate increasing flow and the mechanotransducing networks that organize to effectively facilitate formation of the trabeculated four-chambered heart.
Collapse
Affiliation(s)
- Barbara Garita
- Department of Pediatrics, The Children’s Research Institute, University of South Florida and All Children’s Hospital, St. Petersburg, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang YH, Yan ZQ, Qi YX, Cheng BB, Wang XD, Zhao D, Shen BR, Jiang ZL. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng 2010; 38:729-37. [PMID: 20069369 DOI: 10.1007/s10439-009-9896-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 12/29/2009] [Indexed: 12/27/2022]
Abstract
Endothelial cells (ECs) line the innermost of the blood vessel wall and are constantly subjected to shear stress imposed by blood flow. ECs were also influenced by the neighboring vascular smooth muscle cells (VSMCs). The bidirectional communication between ECs and VSMCs modulates vascular homeostasis. In this study, the involvement of histone deacetylase 6 (HDAC6) in modulating migration of ECs co-cultured with VSMCs by the normal level of laminar shear stress (NSS) was investigated. ECs was either cultured alone or co-cultured with VSMCs under static conditions or subjected to NSS of 15 dyne/cm2 by using a parallel-plate co-culture flow chamber system. It was demonstrated that both NSS and VSMCs could increase EC migration. The migration level of ECs co-cultured with VSMCs under NSS was not higher than that under the static condition. The process of EC migration regulated by VSMCs and NSS was associated with the increased expression of HDAC6 and low level of acetylated tubulin. The increase in HDAC6 expression was accompanied by a time-dependent decrease in the acetylation of tubulin in ECs co-cultured with VSMCs. Inhibition of the HDAC6 by siRNA or tributyrin, an inhibitor of HDACs, induced a parallel alteration in the migration and the acetylated tubulin of ECs co-cultured with VSMCs. It was observed by immunofluorescence staining that the acetylated tubulin was distributed mostly around the cell nucleus in ECs co-cultured with VSMCs. The results suggest that the NSS may display a protective function on the vascular homeostasis by modulating EC migration to a normal level in a VSMC-dependent manner. This modulation process involves the down-regulation of acetylated tubulin which results from increased HDAC6 activity in ECs.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Culver JC, Dickinson ME. The effects of hemodynamic force on embryonic development. Microcirculation 2010; 17:164-78. [PMID: 20374481 DOI: 10.1111/j.1549-8719.2010.00025.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Blood vessels have long been known to respond to hemodynamic force, and several mechanotransduction pathways have been identified. However, only recently have we begun to understand the effects of hemodynamic force on embryonic development. In this review, we will discuss specific examples illustrating the role of hemodynamic force during the development of the embryo, with particular focus on the development of the vascular system and the morphogenesis of the heart. We will also discuss the important functions served by mechanotransduction and hemodynamic force during placentation, as well as in regulating the maintenance and division of embryonic, hematopoietic, neural, and mesenchymal stem cells. Pathological misregulation of mechanosensitive pathways during pregnancy and embryonic development may contribute to the occurrence of cardiovascular birth defects, as well as to a variety of other diseases, including preeclampsia. Thus, there is a need for future studies focusing on better understanding the physiological effects of hemodynamic force during embryonic development and their role in the pathogenesis of disease.
Collapse
Affiliation(s)
- James C Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Damon BJ, Rémond MC, Bigelow MR, Trusk TC, Xie W, Perucchio R, Sedmera D, Denslow S, Thompson RP. Patterns of muscular strain in the embryonic heart wall. Dev Dyn 2009; 238:1535-46. [PMID: 19418446 DOI: 10.1002/dvdy.21958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Brooke J Damon
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Groenendijk BCW, Van der Heiden K, Hierck BP, Poelmann RE. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology (Bethesda) 2008; 22:380-9. [PMID: 18073411 DOI: 10.1152/physiol.00023.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, the role of wall shear stress in the chicken embryonic heart is analyzed to determine its effect on cardiac development through regulating gene expression. Therefore, background information is provided for fluid dynamics, normal chicken and human heart development, cardiac malformations, cardiac and vitelline blood flow, and a chicken model to induce cardiovascular anomalies. A set of endothelial shear stress-responsive genes coding for endothelin-1 (ET-1), lung Krüppel-like factor (LKLF/KLF2), and endothelial nitric oxide synthase (eNOS/NOS-3) are active in development and are specifically addressed.
Collapse
|
17
|
Stekelenburg-de Vos S, Steendijk P, Ursem NTC, Wladimiroff JW, Poelmann RE. Systolic and diastolic ventricular function in the normal and extra-embryonic venous clipped chicken embryo of stage 24: a pressure-volume loop assessment. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2007; 30:325-31. [PMID: 17721868 DOI: 10.1002/uog.5137] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
OBJECTIVES Fluid mechanical forces affect cardiac development. In the chicken embryo, permanent obstruction of the right lateral vitelline vein by clipping reduces the mechanical load on the embryonic myocardium, which has been shown to induce a spectrum of outflow tract anomalies. Insight into the effects of this intervention on the mechanical function of the developing myocardium could contribute to a better understanding of the relationship between hemodynamics and cardiac morphogenesis. We aimed to explore the effects of clipping on intrinsic systolic and diastolic ventricular function at stage 24 in the chicken embryo METHODS Cardiac pressure-volume relationships enable load-independent quantification of intrinsic ventricular systolic and diastolic properties. We determined ventricular function by pressure-volume loop analysis of in-ovo stage-24 chicken embryos (n = 15) 2 days after venous obstruction at 2.5 days of incubation (stage 17, venous clipped embryos). Control embryos (n = 15) were used for comparison. RESULTS End-systolic volume was significantly higher in clipped embryos (0.36 +/- 0.02 microL vs. 0.29 +/- 0.02 microL, P = 0.002). End-systolic and end-diastolic pressure were also increased compared with control animals (2.93 +/- 0.07 mmHg vs. 2.70 +/- 0.08 mmHg, P = 0.036 and 1.15 +/- 0.06 mmHg vs. 0.82 +/- 0.05 mmHg, P < 0.001, respectively). No significant differences were demonstrated for other baseline hemodynamic parameters. Analysis of pressure-volume relationships showed a significantly lower end-systolic elastance in the clipped embryos (slope of end-systolic pressure-volume relationship: 2.91 +/- 0.24 mmHg/microL vs. 7.53 +/- 0.66 mmHg/microL, P < 0.005) indicating reduced contractility. Diastolic stiffness was significantly increased in the clipped embryos (slope of end-diastolic pressure-volume relationship: 1.54 +/- 0.21 vs. 0.60 +/- 0.08, P < 0.005), indicating reduced compliance. CONCLUSION Venous obstruction apparently interferes with normal myocardial development, resulting in impaired intrinsic systolic and diastolic ventricular function. These changes in ventricular function may precede morphological derangements observed in later developmental stages.
Collapse
Affiliation(s)
- S Stekelenburg-de Vos
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Abstract
We investigate cardiovascular (CV) developmental physiology and biomechanics in order to understand the dramatic acquisition of form and function during normal development and to identify the adaptive mechanisms that allow embryos to survive adverse genetic and epigenetic events. Cardiovascular patterning, morphogenesis, and growth occur via highly conserved genetic mechanisms. Structural and functional maturation of the embryonic heart is also conserved across a broad range of species with evidence for load dependence from onset of the heartbeat. The embryonic heart dynamically adapts to changes in biomechanical loading conditions and for reasons not yet clear, adapts better to increased than to decreased mechanical load. In mammals, maternal cardiovascular function dynamically impacts embryonic/fetal growth and hemodynamics and these interactions can now be studied longitudinally using high-resolution noninvasive techniques. Maternal exposure to hypoxia and to bioactive chemicals, such as caffeine, can rapidly impact embryonic/fetal cardiovascular function, growth, and outcome. Finally, tissue engineering approaches can be applied to investigate basic developmental aspects of the embryonic myocardium. We use isolated embryonic and fetal chick, mouse, or rat cardiac cells to generate 3D engineered early embryonic cardiac tissues (EEECT). EEECT retains the morphologic and proliferative features of embryonic myocardium, responds to increased mechanical load with myocyte hyperplasia, and may be an excellent future material for use in cardiac repair and regeneration. These insights into cardiovascular embryogenesis are relevant to identifying mechanisms for congenital cardiovascular malformations and for developing cell- and tissue-based strategies for myocardial repair.
Collapse
Affiliation(s)
- Bradley B Keller
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh Heart Center, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
19
|
Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 2006; 291:H1829-37. [PMID: 16617136 DOI: 10.1152/ajpheart.00205.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic myocardium has a high rate of cell proliferation and regulates cellular proliferation, contractile function, and myocardial architecture in response to changes in external mechanical loads. However, the small and complex three-dimensional (3D) structure of the embryonic myocardium limits our ability to directly investigate detailed relationships between mechanical load, contractile function, and cardiomyocyte proliferation. We developed a novel 3D engineered early embryonic cardiac tissue (EEECT) from early embryonic ventricular cells to test the hypothesis that EEECT retains the proliferative and contractile properties of embryonic myocardium. We combined freshly isolated White Leghorn chicken embryonic ventricular cells at Hamburger-Hamilton (HH) stage 31 (day 7 of a 46-stage, 21-day incubation period), collagen type I, and matrix factors to construct cylindrical-shaped EEECTs. We studied tissue architecture, cell proliferation patterns, and contractile function. We then generated engineered fetal cardiac tissue (EFCT) from HH stage 40 (day 14) fetal ventricular cells for direct comparison with EEECT. Tissue architecture was similar in EEECT and EFCT. EEECT maintained high cell proliferation patterns by culture day 12, whereas EFCT decreased cell proliferation rate by culture day 9 (P < 0.05). EEECT increased active contractile force from culture day 7 to day 12. The culture day 12 EEECT contractile response to the beta-adrenergic stimulation was less than culture day 9 EFCT (P < 0.05). Cyclic mechanical stretch stimulation induced myocardial hyperplasia in EEECT. Results indicate that EEECT retains the proliferative and contractile properties of developing embryonic myocardium and shows potential as a robust in vitro model of developing embryonic myocardium.
Collapse
Affiliation(s)
- Kimimasa Tobita
- Rangos Research Center, Rm. 3320E, 3460 Fifth Ave., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sharma SK, Lucitti JL, Nordman C, Tinney JP, Tobita K, Keller BB. Impact of hypoxia on early chick embryo growth and cardiovascular function. Pediatr Res 2006; 59:116-20. [PMID: 16327005 DOI: 10.1203/01.pdr.0000191579.63339.90] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen tension is a critical factor for appropriate embryonic and fetal development. Chronic hypoxia exposure alters cardiovascular (CV) function and structure in the late fetus and newborn, yet the immature myocardium is considered to be less sensitive to hypoxia than the mature heart. We tested the hypothesis that hypoxia during the period of primary CV morphogenesis impairs immature embryonic CV function and embryo growth. We incubated fertile white Leghorn chick embryos in 15% oxygen (hypoxia) or 21% oxygen (control) until Hamburger-Hamilton stage 21 (3.5 d). We assessed in ovo viability and dysmorphic features and then measured ventricular pressure and dimensions and dorsal aortic arterial impedance at stage 21. Chronic hypoxia decreased viability and embryonic wet weight. Chronic hypoxia did not alter heart rate or the ventricular diastolic indices of end-diastolic pressure, maximum ventricular -dP/dt, or tau. Chronic hypoxia decreased maximum ventricular +dP/dt and peak pressure, increased ventricular end-systolic volume, and decreased ventricular ejection fraction, consistent with depressed systolic function. Arterial afterload (peripheral resistance) increased and both dorsal aortic SV and steady-state hydraulic power decreased in response to hypoxia. Thus, reduced oxygen tension during early cardiac development depresses ventricular function, increases ventricular impedance (afterload), delays growth, and decreases embryo survival, suggesting that a critical threshold of oxygen tension is required to support morphogenesis and cardiovascular function in the early embryo.
Collapse
Affiliation(s)
- Sumeet K Sharma
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
21
|
Yutao X, Geru W, Xiaojun B, Tao G, Aiqun M. Mechanical stretch-induced hypertrophy of neonatal rat ventricular myocytes is mediated by beta(1)-integrin-microtubule signaling pathways. Eur J Heart Fail 2005; 8:16-22. [PMID: 16198630 DOI: 10.1016/j.ejheart.2005.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 05/25/2005] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Mechanical stress plays a crucial role in tissue morphogenesis and remodeling. These processes depend in part on force transmission mediated through integrins and the cytoskeleton. METHODS Ventricular myocytes isolated from neonatal Sprague-Dawley rats (NRVMs) were exposed to persistent centrifugal force stretch for 12 or 24 h. The NRVMs were exposed to colchicine (4 micromol/ml) and anti-integrin beta1 specific antibody (10 microg/ml). Cell viability was assessed by MTT assay and lactate dehydrogenase (LDH) activity. Incorporation of 3H-leucine, and atrial natriuretic peptide (ANP) and angiotensin II (Ang II) levels were assessed. Pixel intensity and distribution of the microtubule were estimated from laser scanning confocal images. RESULTS Changes in LDH release and the MTT assay showed that 180 rpm. centrifugal force had minimal effect on the viability and number of NRVMs. Mechanical stretch significantly increased 3H-leucine incorporation into cardiomyocytes. Anti-integrin beta1 blocking antibody effectively inhibited the increase in 3H-leucine incorporation and release of ANP (p < 0.05). Following anti-integrin-beta1-blocking antibody, the pixel intensity of the microtubule image was decreased after both12 and 24 h stretch, this was similar to the effect of colchicine. Both treatments also inhibited the secretion of Ang II induced by stretch (p < 0.05). CONCLUSIONS Anti-integrin-beta1-blocking antibody and colchicine had similar effects, partly inhibiting the stretch-induced increase in microtubule polymerization and the secretion of Ang II in hypertrophic cardiac myocytes.
Collapse
Affiliation(s)
- Xi Yutao
- Cardiology Department of No.1 Hospital of Xi'an Jiaotong University, 1 Jiankang Road, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
22
|
Tobita K, Garrison JB, Liu LJ, Tinney JP, Keller BB. Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. ACTA ACUST UNITED AC 2005; 283:193-201. [PMID: 15678488 DOI: 10.1002/ar.a.20133] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. To date, little is known regarding how the embryonic left ventricular (LV) myocardium acquires a three-dimensional (3D) fiber architecture distribution or how altered mechanical load influences local myofiber architecture. We tested the hypothesis that altered mechanical load changes the maturation process of local 3D fiber architecture of the developing embryonic LV compact myocardium. We measured transmural myofiber angle distribution in the LV compact myocardium in Hamburger-Hamilton stages 21, 27, 31, and 36 chick embryos during normal development or following either left atrial ligation (LAL; LV hypoplasia model) or conotruncal banding (CTB; LV hyperplasia model). The embryonic LV was stained with f-actin and then z-serial optical sectioning was performed using a laser confocal scanning microscope. We reconstructed local 3D myofiber images and computed local transmural myofiber angle distribution. Transmural myofiber angles in compact myocardium (in LV sagittal sections) were oriented in a circumferential direction until stage 27 (-10 to 10 degrees). Myofibers in the outer side of compact myocardium shifted to a more longitudinal direction by stage 36 (10 to 40 degrees), producing a transmural gradient in myofiber orientation. Developmental changes in transmural myofiber angle distribution were significantly delayed following LAL, while the changes in angle distribution were accelerated following CTB. Results suggest that mechanical load modulates the maturation process of myofiber architecture distribution in the developing LV compact myocardium.
Collapse
Affiliation(s)
- Kimimasa Tobita
- Division of Pediatric Cardiology, Cardiovascular Development Research Program, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
23
|
Stekelenburg-de Vos S, Steendijk P, Ursem NTC, Wladimiroff JW, Delfos R, Poelmann RE. Systolic and diastolic ventricular function assessed by pressure-volume loops in the stage 21 venous clipped chick embryo. Pediatr Res 2005; 57:16-21. [PMID: 15531737 DOI: 10.1203/01.pdr.0000147734.53277.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiac pressure-volume relations enable quantification of intrinsic ventricular diastolic and systolic properties independent of loading conditions. The use of pressure-volume loop analysis in early stages of development could contribute to a better understanding of the relationship between hemodynamics and cardiac morphogenesis. The venous clip model is an intervention model for the chick embryo in which permanent obstruction of the right lateral vitelline vein temporarily reduces the mechanical load on the embryonic myocardium and induces a spectrum of outflow tract anomalies. We used pressure-volume loop analysis of the embryonic chick heart at stage 21 (3.5 d of incubation) to investigate whether the development of ventricular function is affected by venous clipping at stage 17, compared with normal control embryos. Steady state hemodynamic parameters demonstrated no significant differences between the venous clipped and control embryos. However, analysis of pressure-volume relations showed a significantly lower end-systolic elastance in the clipped embryos (slope of the end-systolic pressure-volume relation: 5.68 +/- 0.85 versus 11.76 +/- 2.70 mm Hg/microL, p < 0.05), indicating reduced contractility. Diastolic stiffness tended to be increased in the clipped embryos (slope of end-diastolic pressure-volume relation: 2.74 +/- 0.56 versus 1.67 +/- 0.21, p = 0.103), but the difference did not reach statistical significance. The results of the pressure-volume loop analysis show that 1 d after venous obstruction, development of ventricular function is affected, with reduced contractility. Pressure-volume analysis may be applied in the chick embryo and is a sensitive technique to detect subtle alterations in ventricular function.
Collapse
|
24
|
Aquila LA, McCarthy PM, Smedira NG, Young JB, Moravec CS. Cytoskeletal structure and recovery in single human cardiac myocytes. J Heart Lung Transplant 2004; 23:954-63. [PMID: 15312825 DOI: 10.1016/j.healun.2004.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/13/2004] [Accepted: 05/17/2004] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Mechanical support of the failing human heart with a left ventricular assist device (LVAD) normalizes many components of myocyte structure and function. We hypothesized that recovery of the cytoskeleton, a major site of mechanotransduction in cardiac myocytes, is crucial for sustained improvement of myocardial function. We therefore measured the effects of LVAD support on 4 cytoskeletal proteins in single human heart cells. METHODS Myocytes were isolated from non-failing (NF), hypertrophied (H), failing (F) and LVAD-supported failing (L) human hearts. Protein quantitation was performed using Western blot analysis and cellular distribution was determined by immunolabeling and confocal microscopy. RESULTS alpha-actinin did not differ in cells from H or F as compared with NF, and L had no effect. Vinculin was not quantitatively different in H or F vs NF, but localization at the intercalated disks was significantly decreased in H and absent in F, and this pattern was consistently reversed in L. Desmin protein was significantly increased in F vs NF, both in quantity and distribution, and these increases were reversed in L. beta-tubulin was increasingly polymerized in H and F, and the hyperpolymerization was reversed in L. CONCLUSIONS On the level of the single cardiomyocyte, major proteins of the cytoskeleton are significantly altered in hypertrophied and failing human hearts. These alterations are reversed by mechanical unloading with an LVAD, suggesting that the cytoskeleton is not the limiting factor in determining full cardiac recovery.
Collapse
Affiliation(s)
- Louise A Aquila
- Kaufman Center for Heart Failure, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Cardiac myocytes react to diverse mechanical demands with a multitude of transient and long-term responses to normalize the cellular mechanical environment. Several stretch-activated signaling pathways have been identified, most prominently guanine nucleotide binding proteins (G-proteins), mitogen-activated protein kinases (MAPK), Janus-associated kinase/signal transducers and activators of transcription (JAK/STAT), protein kinase C (PKC), calcineurin, intracellular calcium regulation, and several autocrine and paracrine factors. Multiple levels of crosstalk exist between pathways. The cellular response to changes in the mechanical environment can lead to cardiac myocyte hypertrophy, cellular growth that can be accompanied by pathological myocyte dysfunction, and tissue fibrosis. Several candidates for the primary mechanosensor in cardiac myocytes have been identified, ranging from stretch-activated ion channels in the membrane to yet-unknown mechanosensitive mechanisms in the nucleus. New and refined experimental techniques will exploit advances in molecular biology and biological imaging to study mechanotransduction in isolated cells and genetically engineered mice to explore the function of individual proteins.
Collapse
Affiliation(s)
- Jan Lammerding
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
26
|
Ursem NTC, Stekelenburg-de Vos S, Wladimiroff JW, Poelmann RE, Gittenberger-de Groot AC, Hu N, Clark EB. Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction. ACTA ACUST UNITED AC 2004; 207:1487-90. [PMID: 15037643 DOI: 10.1242/jeb.00902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alteration of extra-embryonic venous blood flow in stage-17 chick embryos results in well-defined cardiovascular malformations. We hypothesize that the decreased dorsal aortic blood volume flow observed after venous obstruction results in altered ventricular diastolic function in stage-24 chick embryos. A microclip was placed at the right lateral vitelline vein in a stage-17 (52-64 h of incubation) chick embryo. At stage 24 (4.5 days of incubation), we measured simultaneously dorsal aortic and atrioventricular blood flow velocities with a 20-MHz pulsed-Doppler velocity meter. The fraction of passive and active filling was integrated and multiplied by dorsal aortic blood flow to obtain the relative passive and active ventricular filling volumes. Data were summarized as means +/- S.E.M. and analyzed by t-test. At similar cycle lengths ranging from 557 ms to 635 ms (P>0.60), dorsal aortic blood flow and stroke volume measured in the dorsal aorta were similar in stage-24 clipped and normal embryos. Passive filling volume (0.07+/-0.01 mm(3)) was decreased, and active filling volume (0.40+/-0.02 mm(3)) was increased in the clipped embryo when compared with the normal embryo (0.15+/-0.01 mm(3), 0.30+/-0.01 mm(3), respectively) (P<0.003). In the clipped embryos, the passive/active ratio was decreased compared with that in normal embryos (P<0.001). Ventricular filling components changed after partially obstructing the extra-embryonic venous circulation. These results suggest that material properties of the embryonic ventricle are modified after temporarily reduced hemodynamic load.
Collapse
Affiliation(s)
- Nicolette T C Ursem
- Department of Obstetrics & Gynecology, Erasmus MC, Rotterdam, 3000 DR, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|