1
|
Hilgers RHP, Das KC. Redox Regulation of K + Channel: Role of Thioredoxin. Antioxid Redox Signal 2024. [PMID: 39099341 DOI: 10.1089/ars.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Significance: Potassium channels regulate the influx and efflux of K+ ions in various cell types that generate and propagate action potential associated with excitation, contraction, and relaxation of various cell types. Although redox active cysteines are critically important for channel activity, the redox regulation of K+ channels by thioredoxin (Trx) has not been systematically reviewed. Recent Advances: Redox regulation of K+ channel is now increasingly recognized as drug targets in the pathological condition of several cardiovascular disease processes. The role of Trx in regulation of these channels and its implication in pathological conditions have not been adequately reviewed. This review specifically focuses on the redox-regulatory role of Trx on K+ channel structure and function in physiological and pathophysiological conditions. Critical Issues: Ion channels, including K+ channel, have been implicated in the functioning of cardiomyocyte excitation-contraction coupling, vascular hyperpolarization, cellular proliferation, and neuronal stimulation in physiological and pathophysiological conditions. Although oxidation-reduction of ion channels is critically important in their function, the role of Trx, redox regulatory protein in regulation of these channels, and its implication in pathological conditions need to be studied to gain further insight into channel function. Future Directions: Future studies need to map all redox regulatory pathways in channel structure and function using novel mouse models and redox proteomic and signal transduction studies, which modulate various currents and altered excitability of relevant cells implicated in a pathological condition. We are yet at infancy of studies related to redox control of various K+ channels and structured and focused studies with novel animal models. Antioxid. Redox Signal. 00, 00-00.
Collapse
Affiliation(s)
- Rob H P Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kumuda C Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
2
|
Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol 2023; 14:1206527. [PMID: 37719456 PMCID: PMC10500196 DOI: 10.3389/fphys.2023.1206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Redox imbalance plays essential role in the pathogenesis of cardiovascular diseases. Chronic heart failure (CHF) and hypertension are associated with central oxidative stress, which is partly mediated by the downregulation of antioxidant enzymes in the central autonomic neurons that regulate sympathetic outflow, resulting in sympathoexcitation. Antioxidant proteins are partially regulated by the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2). Downregulation of Nrf2 is key to disrupting central redox homeostasis and mediating sympathetic nerve activity in the setting of Chronic heart failure and hypertension. Nrf2, in turn, is regulated by various mechanisms, such as extracellular vesicle-enriched microRNAs derived from several cell types, including heart and skeletal muscle. In this review, we discuss the role of Nrf2 in regulating oxidative stress in the brain and its impact on sympathoexcitation in Chronic heart failure and hypertension. Importantly, we also discuss interorgan communication via extracellular vesicle pathways that mediate central redox imbalance through Nrf2 signaling.
Collapse
Affiliation(s)
- Ahmed M. Wafi
- Physiology Department, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Rapidly emerging evidence implicates an important role of gut-brain-bone marrow (BM) axis involving gut microbiota (GM), gut epithelial wall permeability, increased production of pro-inflammatory BM cells and neuroinflammation in hypertension (HTN). However, the precise sequence of events involving these organs remains to be established. Furthermore, whether an impaired gut-brain-BM axis is a cause or consequence of HTN is actively under investigation. This will be extremely important for translation of this fundamental knowledge to novel, innovative approaches for the control and management of HTN. Therefore, our objectives are to summarize the latest hypothesis, provide evidence for and against the impaired gut, BM and brain interactions in HTN and discuss perspectives and future directions. RECENT FINDINGS Hypertensive stimuli activate autonomic neural pathways resulting in increased sympathetic and decreased parasympathetic cardiovascular modulation. This directly affects the functions of cardiovascular-relevant organs to increase blood pressure. Increases in sympathetic drive to the gut and BM also trigger sequences of signaling events that ultimately contribute to altered GM, increased gut permeability, enhanced gut- and brain-targeted pro-inflammatory cells from the BM in perpetuation and establishment of HTN. SUMMARY In this review, we present the mechanisms involving the brain, gut, and BM, whose dysfunctional interactions may be critical in persistent neuroinflammation and key in the development and establishment of HTN.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
4
|
Collazo BJ, Morales-Vázquez D, Álvarez-Del Valle J, Sierra-Pagan JE, Medina JC, Méndez-Álvarez J, Gerena Y. Angiotensin II Induces Differentiation of Human Neuroblastoma Cells by Increasing MAP2 and ROS Levels. J Renin Angiotensin Aldosterone Syst 2021; 2021:6191417. [PMID: 34285710 PMCID: PMC8265025 DOI: 10.1155/2021/6191417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The roles of angiotensin II (Ang II) in the brain are still under investigation. In this study, we investigated if Ang II influences differentiation of human neuroblastoma cells with simultaneous activation of NADPH oxidase and reactive oxygen species (ROS). Moreover, we investigated the Ang II receptor type involved during differentiation. METHODS Human neuroblastoma cells (SH-SY5Y; 5 × 105 cells) were exposed to Ang II (600 nM) for 24 h. Differentiation was monitored by measuring MAP2 and NF-H levels. Cell size and ROS were analyzed by flow cytometry, and NADPH oxidase activation was assayed using apocynin (500 μM). Ang II receptors (ATR) activation was assayed using ATR blockers or Ang II metabolism inhibitors (10-7 M). RESULTS (1) Cell size decreased significantly in Ang II-treated cells; (2) MAP2 and ROS increased significantly in Ang II-treated cells with no changes in viability; (3) MAP2 and ROS decreased significantly in cells incubated with Ang II plus apocynin. (4) A significant decrease in MAP2 was observed in cells exposed to Ang II plus PD123.319 (AT2R blocker). CONCLUSION Our findings suggest that Ang II influences differentiation of SH-SY5Y by increasing MAP2 through the AT2R. The increase in MAP2 and ROS were also mediated through NADPH oxidase with no cell death.
Collapse
Affiliation(s)
- Bryan Jael Collazo
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Dariana Morales-Vázquez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Jaylene Álvarez-Del Valle
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Javier E. Sierra-Pagan
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Juan Carlos Medina
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Jarold Méndez-Álvarez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| |
Collapse
|
5
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
6
|
Lin YT, Wu YC, Sun GC, Ho CY, Wong TY, Lin CH, Chen HH, Yeh TC, Li CJ, Tseng CJ, Cheng PW. Effect of Resveratrol on Reactive Oxygen Species-Induced Cognitive Impairment in Rats with Angiotensin II-Induced Early Alzheimer's Disease †. J Clin Med 2018; 7:jcm7100329. [PMID: 30301188 PMCID: PMC6210584 DOI: 10.3390/jcm7100329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have indicated that several anti-hypertensive drugs may delay the development and progression of Alzheimer’s disease (AD). However, the relationships among AD, hypertension, and oxidative stress remain to be elucidated. Here, we aimed to determine whether reactive oxygen species (ROS) reduction by resveratrol in the brain leads to cognitive impairment reduction in rats with angiotensin II (Ang-II)-induced early AD. Male Wistar Kyoto (WKY) rats with Ang-II-induced AD were treated with losartan or resveratrol for two weeks. Our results show decreased blood pressure, increased hippocampal brain-derived neurotrophic factor (BDNF) level, and decreased nucleus tractus solitarius (NTS) ROS production in the Ang-II groups with losartan (10 mg/kg), or resveratrol (10 mg/kg/day) treatment. Furthermore, losartan inhibition of hippocampal TauT231 phosphorylation activated AktS473 phosphorylation, and significantly abolished Ang-II-induced Aβ precursors, active caspase 3, and glycogen synthase kinase 3β (GSK-3β)Y216 expressions. Consistently, resveratrol showed similar effects compared to losartan. Both losartan and resveratrol restored hippocampal-dependent contextual memory by NADPH oxidase 2 (NOX2) deletion and superoxide dismutase 2 (SOD2) elevation. Our results suggest that both losartan and resveratrol exert neuroprotective effects against memory impairment and hippocampal damage by oxidative stress reduction in early stage AD rat model. These novel findings indicate that resveratrol may represent a pharmacological option similar to losartan for patients with hypertension at risk of AD during old age.
Collapse
Affiliation(s)
- Yu-Te Lin
- Section of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
- Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
| | - Yi-Chung Wu
- Section of Neurology, Zouying Branch of Kaohsiung Armed Forces General Hospital Kaohsiung, Kaohsiung 81300, Taiwan.
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 81700, Taiwan.
| | - Chiu-Yi Ho
- Department of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80400, Taiwan.
| | - Tzyy-Yue Wong
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 50000, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
| | - Ching-Huang Lin
- Section of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
| | - Tung-Chen Yeh
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 50000, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80400, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
- Department of Pharmacology, Medical Research, China Medical University Hospital, China Medical University, Taichung 40400, Taiwan.
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81300, Taiwan.
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 82100, Taiwan.
- Shu-Zen Junior College of Medicine and Management, Kaohsiung 80700, Taiwan.
| |
Collapse
|
7
|
Pitra S, Stern JE. A-type K + channels contribute to the prorenin increase of firing activity in hypothalamic vasopressin neurosecretory neurons. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626074 DOI: 10.1152/ajpheart.00216.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have supported an important contribution of prorenin (PR) and its receptor (PRR) to the regulation of hypothalamic, sympathetic, and neurosecretory outflows to the cardiovascular system, including systemic release of vasopressin (VP), both under physiological and cardiovascular disease conditions. Still, the identification of precise cellular mechanisms and neuronal/molecular targets remain unknown. We have recently shown that PRR is expressed in VP neurons and that their activation increases neuronal activity. However, the underlying ionic channel mechanisms are undefined. Here, we performed patch-clamp electrophysiology from identified VP neurons in acute hypothalamic slices obtained from enhanced green fluorescent protein-VP transgenic rats. Voltage-clamp recordings showed that PR inhibited the magnitude of A-type K+ current (IA; ~50% at -25 mV), a subthreshold voltage-dependent current that restrains VP firing activity. PR also increased the inactivation rate of IA and shifted the steady-state voltage-dependent inactivation function toward more hyperpolarized membrane potential (~7 mV shift), thus resulting in less channel availability to be activated at any given membrane potential. PR also inhibited a sustained component of IA ("window" current). PR-mediated changes in action potential waveform and increased firing activity were occluded when IA was blocked by 4-aminopyridine. Finally, PR failed to increase superoxide production within the supraoptic nucleus/paraventricular nucleus, and PR excitatory effects persisted in slices treated with the SOD mimetic tempol. Taken together, these experiments indicated that PR excitatory effects on vasopressin neurons involve inhibition of IA, due, in part, to increases in its voltage-dependent inactivation properties. Moreover, our results indicate that PR effects did not involve an increase in oxidative stress.NEW & NOTEWORTHY Here, we demonstrate that prorenin/the prorenin receptor is an important signaling unit for the regulation of vasopressin firing activity and, thus, systemic hormonal release. We identified A-type K+ channels as key molecular targets mediating prorenin stimulation of vasopressin neuronal activity, thus standing as a potential therapeutic target for neurohumoral activation in cardiovascular disease.
Collapse
Affiliation(s)
- Soledad Pitra
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
8
|
Gao L, Zimmerman MC, Biswal S, Zucker IH. Selective Nrf2 Gene Deletion in the Rostral Ventrolateral Medulla Evokes Hypertension and Sympathoexcitation in Mice. Hypertension 2017; 69:1198-1206. [PMID: 28461605 DOI: 10.1161/hypertensionaha.117.09123] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/05/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcriptional regulator of redox homeostasis that impacts antioxidant gene expression. Central oxidative stress and reduced antioxidant enzyme expression in the rostral ventrolateral medulla (RVLM) contributed to sympathoexcitation in chronic heart failure. In the current study, we hypothesized that deletion of Nrf2 in the RVLM would increase sympathetic drive and blood pressure. Experiments were performed in Nrf2-floxed mice treated with microinjection of lentiviral-Cre-GFP or lentiviral-GFP into the RVLM. Two weeks after viral administration, Nrf2 message, protein, oxidative stress, cardiovascular function, and sympathetic outflow were evaluated. We found that (1) Nrf2 mRNA and protein in the RVLM were significantly lower in Cre mice compared with control GFP mice. Nrf2-targeted antioxidant enzymes were downregulated, whereas reactive oxygen species were elevated. (2) Blood pressure measurements indicated that Cre mice displayed a significant increase in blood pressure (mean arterial pressure, 123.7±3.8 versus 100.2±2.2 mm Hg; P<0.05, n=6), elevated urinary norepinephrine (NE) concentration (456.4±16.9 versus 356.5±19.9 ng/mL; P<0.05, n=6), and decreased spontaneous baroreflex gain (up sequences, 1.66±0.17 versus 3.61±0.22 ms/mm Hg; P<0.05, n=6; down sequences, 1.89±0.12 versus 2.98±0.19 ms/mm Hg; P<0.05, n=6). (3) Cre mice displayed elevated baseline renal sympathetic nerve activity and impaired inducible baroreflex function. These data suggest that Nrf2 gene deletion in the RVLM elevates blood pressure, increases sympathetic outflow, and impairs baroreflex function potentially by impaired antioxidant enzyme expression.
Collapse
Affiliation(s)
- Lie Gao
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Matthew C Zimmerman
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Shyam Biswal
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.).
| |
Collapse
|
9
|
Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res 2017; 120:88-96. [PMID: 28330785 DOI: 10.1016/j.phrs.2017.03.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/13/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
Abstract
Hypertension is a multifactorial disease. Although a number of different underlying mechanisms have been learned from the various experimental models of the disease, hypertension still poses challenges for treatment. Angiotensin II plays an unquestionable role in blood pressure regulation acting through central and peripheral mechanisms. During hypertension, dysregulation of the Renin-Angiotensin System is associated with increased expression of pro-inflammatory cytokines and reactive oxygen species causing kidney damage, endothelial dysfunction, and increase in sympathetic activity, among other damages, eventually leading to decline in organ function. Recent studies have shown that these effects involve both the innate and the adaptive immune response. The contribution of adaptive immune responses involving different lymphocyte populations in various models of hypertension has been extensively studied. However, the involvement of the innate immunity mediating inflammation in hypertension is still not well understood. The innate and adaptive immune systems intimately interact with one another and are essential to an effectively functioning of the immune response; hence, the importance of a better understanding of the underlying mechanisms mediating innate immune system during hypertension. In this review, we aim to discuss mechanisms linking Angiotensin II and the innate immune system, in the pathogenesis of hypertension. The newest research investigating Angiotensin II triggering toll like receptor 4 activation in the kidney, vasculature and central nervous system contributing to hypertension will be discussed. Understanding the role of the innate immune system in the development of hypertension may bring to light new insights necessary to improve hypertension management.
Collapse
Affiliation(s)
- Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | | | - Wagner Luis Reis
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil
| | - Sarah Al-Gassimi
- Department of Biological Sciences, Florida Institute of Technology, FL, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, Florida Institute of Technology, FL, United States.
| |
Collapse
|
10
|
Hammer A, Stegbauer J, Linker RA. Macrophages in neuroinflammation: role of the renin-angiotensin-system. Pflugers Arch 2017; 469:431-444. [PMID: 28190090 DOI: 10.1007/s00424-017-1942-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Macrophages are essential players of the innate immune system which are involved in the initiation and progression of various inflammatory and autoimmune diseases including neuroinflammation. In the past few years, it has become increasingly clear that the regulation of macrophage responses by the local tissue milieu is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, the renin-angiotensin system (RAS) is a major focus of current research. Besides its classical role in blood pressure control, body fluid, and electrolyte homeostasis, the RAS may influence (auto)immune responses, modulate T cells, and particularly act on macrophages via different signaling pathways. Activation of classical RAS pathways including angiotensin (Ang) II and AngII type 1 (AT1R) receptors may drive pro-inflammatory macrophage responses in neuroinflammation via regulation of chemokines. More recently, alternative RAS pathways were described, such as binding of Ang-(1-7) to its receptor Mas. Signaling via Mas pathways may counteract some of the AngII/AT1R-mediated effects. In macrophages, the Ang-(1-7)/Mas exerts beneficial effects on neuroinflammation via modulating macrophage polarization, migration, and T cell activation in vitro and in vivo. These data delineate a pivotal role of the RAS in inflammation of the nervous system and identify RAS modulation as a potential new target for immunotherapy with a special focus on macrophages.
Collapse
Affiliation(s)
- Anna Hammer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Stegbauer
- Department of Nephrology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
11
|
Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling. Sci Rep 2016; 6:23416. [PMID: 27079272 PMCID: PMC4832198 DOI: 10.1038/srep23416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) oxidation controls excitability and viability. While hydrogen peroxide (H2O2) affects Ca2+-activated CaMKII in vitro, Angiotensin II (Ang II)-induced CaMKIIδ signaling in cardiomyocytes is Ca2+ independent and requires NADPH oxidase-derived superoxide, but not its dismutation product H2O2. To better define the biological regulation of CaMKII activation and signaling by Ang II, we evaluated the potential for peroxynitrite (ONOO−) to mediate CaMKII activation and downstream Kv4.3 channel mRNA destabilization by Ang II. In vitro experiments show that ONOO− oxidizes and modestly activates pure CaMKII in the absence of Ca2+/CaM. Remarkably, this apokinase stimulation persists after mutating known oxidation targets (M281, M282, C290), suggesting a novel mechanism for increasing baseline Ca2+-independent CaMKII activity. The role of ONOO− in cardiac and neuronal responses to Ang II was then tested by scavenging ONOO− and preventing its formation by inhibiting nitric oxide synthase. Both treatments blocked Ang II effects on Kv4.3, tyrosine nitration and CaMKIIδ oxidation and activation. Together, these data show that ONOO− participates in Ang II-CaMKII signaling. The requirement for ONOO− in transducing Ang II signaling identifies ONOO−, which has been viewed as a reactive damaging byproduct of superoxide and nitric oxide, as a mediator of GPCR-CaMKII signaling.
Collapse
|
12
|
NADPH Oxidase: A Potential Target for Treatment of Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5026984. [PMID: 26941888 PMCID: PMC4752995 DOI: 10.1155/2016/5026984] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke. However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well. In this review, we provide a comprehensive summary of our current understanding about expression and physiological function of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage.
Collapse
|
13
|
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2015; 310:H404-15. [PMID: 26637556 DOI: 10.1152/ajpheart.00247.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.
Collapse
Affiliation(s)
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Annette D de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
14
|
Zhang D, Muelleman RL, Li YL. Angiotensin II-superoxide-NFκB signaling and aortic baroreceptor dysfunction in chronic heart failure. Front Neurosci 2015; 9:382. [PMID: 26528122 PMCID: PMC4607814 DOI: 10.3389/fnins.2015.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/02/2015] [Indexed: 11/13/2022] Open
Abstract
Chronic heart failure (CHF) affects approximately 5.7 million people in the United States. Increasing evidence from both clinical and experimental studies indicates that the sensitivity of arterial baroreflex is blunted in the CHF state, which is a predictive risk factor for sudden cardiac death. Normally, the arterial baroreflex regulates blood pressure and heart rate through sensing mechanical alteration of arterial vascular walls by baroreceptor terminals in the aortic arch and carotid sinus. There are aortic baroreceptor neurons in the nodose ganglion (NG), which serve as the main afferent component of the arterial baroreflex. Functional changes of baroreceptor neurons are involved in the arterial baroreflex dysfunction in CHF. In the CHF state, circulating angiotensin II (Ang II) and local Ang II concentration in the NG are elevated, and AT1R mRNA and protein are overexpressed in the NG. Additionally, Ang II-superoxide-NFκB signaling pathway regulates the neuronal excitability of aortic baroreceptors through influencing the expression and activation of Nav channels in aortic baroreceptors, and subsequently causes the impairment of the arterial baroreflex in CHF. These new findings provide a basis for potential pharmacological interventions for the improvement of the arterial baroreflex sensitivity in the CHF state. This review summarizes the mechanisms responsible for the arterial baroreflex dysfunction in CHF.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Robert L Muelleman
- Department of Emergency Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
15
|
Shinohara K, Kishi T, Hirooka Y, Sunagawa K. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep 2015; 3:3/8/e12514. [PMID: 26290529 PMCID: PMC4562594 DOI: 10.14814/phy2.12514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
16
|
Erdos B, Clifton RR, Liu M, Li H, McCowan ML, Sumners C, Scheuer DA. Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. Am J Physiol Heart Circ Physiol 2015; 309:H634-45. [PMID: 26071542 DOI: 10.1152/ajpheart.00207.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) counteracts pressor effects of angiotensin II (ANG II) in the paraventricular nucleus of the hypothalamus (PVN) in normotensive rats, but this mechanism is absent in spontaneously hypertensive rats (SHRs) due to a lack of MIF in PVN neurons. Since endogenous ANG II in the PVN modulates stress reactivity, we tested the hypothesis that replacement of MIF in PVN neurons would reduce baseline blood pressure and inhibit stress-induced increases in blood pressure and plasma corticosterone in adult male SHRs. Radiotelemetry transmitters were implanted to measure blood pressure, and then an adeno-associated viral vector expressing either enhanced green fluorescent protein (GFP) or MIF was injected bilaterally into the PVN. Cardiovascular responses to a 15-min water stress (1-cm deep, 25°C) and a 60-min restraint stress were evaluated 3-4 wk later. MIF treatment in the PVN attenuated average restraint-induced increases in blood pressure (37.4 ± 2.0 and 27.6 ± 3.5 mmHg in GFP and MIF groups, respectively, P < 0.05) and corticosterone (42 ± 2 and 36 ± 3 μg/dl in GFP and MIF groups, respectively, P < 0.05). MIF treatment in the PVN also reduced stress-induced elevations in the number of c-Fos-positive cells in the rostral ventrolateral medulla (71 ± 5 in GFP and 47 ± 5 in MIF SHRs, P < 0.01) and corticotropin-releasing factor mRNA expression in the PVN. However, MIF had no significant effects on the cardiovascular responses to water stress in SHRs or to either stress in Sprague-Dawley rats. Therefore, viral vector-mediated restoration of MIF in PVN neurons of SHRs attenuates blood pressure and hypothalamic pituitary adrenal axis responses to stress.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Rebekah R Clifton
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Meng Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Michael L McCowan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
17
|
Savalia K, Manickam DS, Rosenbaugh EG, Tian J, Ahmad IM, Kabanov AV, Zimmerman MC. Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. Free Radic Biol Med 2014; 73:299-307. [PMID: 24924945 PMCID: PMC4116739 DOI: 10.1016/j.freeradbiomed.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
Excessive production of superoxide (O2(-)) in the central nervous system has been widely implicated in the pathogenesis of cardiovascular diseases, including chronic heart failure and hypertension. In an attempt to overcome the failed therapeutic impact of currently available antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for the O2(-)-scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD protein is electrostatically bound to a poly-l-lysine (PLL50)-polyethylene glycol (PEG) block copolymer to form a CuZnSOD nanozyme. Various formulations of CuZnSOD nanozyme are covalently stabilized by either reducible or nonreducible crosslinked bonds between the PLL50-PEG polymers. Herein, we tested the hypothesis that PLL50-PEG CuZnSOD nanozyme delivers active CuZnSOD protein to neurons and decreases blood pressure in a mouse model of angiotensin II (AngII)-dependent hypertension. As determined by electron paramagnetic resonance spectroscopy, nanozymes retain full SOD enzymatic activity compared to native CuZnSOD protein. Nonreducible CuZnSOD nanozyme delivers active CuZnSOD protein to central neurons in culture (CATH.a neurons) without inducing significant neuronal toxicity. Furthermore, in vivo studies conducted in adult male C57BL/6 mice demonstrate that hypertension established by chronic subcutaneous infusion of AngII is significantly attenuated for up to 7 days after a single intracerebroventricular injection of nonreducible nanozyme. These data indicate the efficacy of nonreducible PLL50-PEG CuZnSOD nanozyme in counteracting excessive O2(-) and decreasing blood pressure in AngII-dependent hypertensive mice after central administration. Additionally, this study supports the further development of PLL50-PEG CuZnSOD nanozyme as an antioxidant-based therapeutic option for hypertension.
Collapse
Affiliation(s)
- Krupa Savalia
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Devika S Manickam
- Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Iman M Ahmad
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; School of Allied Health Professionals, and University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
18
|
Koba S, Hisatome I, Watanabe T. Central command dysfunction in rats with heart failure is mediated by brain oxidative stress and normalized by exercise training. J Physiol 2014; 592:3917-31. [PMID: 24973409 DOI: 10.1113/jphysiol.2014.272377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sympathoexcitation elicited by central command, a parallel activation of the motor and autonomic neural circuits in the brain, has been shown to become exaggerated in chronic heart failure (CHF). The present study tested the hypotheses that oxidative stress in the medulla in CHF plays a role in exaggerating central command-elicited sympathoexcitation, and that exercise training in CHF suppresses central command-elicited sympathoexcitation through its antioxidant effects in the medulla. In decerebrate rats, central command was activated by electrically stimulating the mesencephalic locomotor region (MLR) after neuromuscular blockade. The MLR stimulation at a current intensity greater than locomotion threshold in rats with CHF after myocardial infarction (MI) evoked larger (P < 0.05) increases in renal sympathetic nerve activity and arterial pressure than in sham-operated healthy rats (Sham) and rats with CHF that had completed longterm (8–12 weeks) exercise training (MI + TR). In the Sham and MI + TR rats, bilateral microinjection of a superoxide dismutase (SOD) mimetic Tempol into the rostral ventrolateral medulla (RVLM) had no effects on MLR stimulation-elicited responses. By contrast, in MI rats, Tempol treatment significantly reduced MLR stimulation-elicited responses. In a subset of MI rats, treatment with Tiron, another SOD mimetic, within the RVLM also reduced responses. Superoxide generation in the RVLM, as evaluated by dihydroethidium staining, was enhanced in MI rats compared with that in Sham and MI + TR rats. Collectively, these results support the study hypotheses. We suggest that oxidative stress in the medulla in CHF mediates central command dysfunction, and that exercise training in CHF is capable of normalizing central command dysfunction through its antioxidant effects in the medulla.
Collapse
Affiliation(s)
- Satoshi Koba
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Tatsuo Watanabe
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
20
|
Li S, Case AJ, Yang RF, Schultz HD, Zimmerman MC. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide. Redox Biol 2013; 2:8-14. [PMID: 24363997 PMCID: PMC3863132 DOI: 10.1016/j.redox.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (AngII) is the main effector peptide of the renin–angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2•−). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2•−. We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2•− scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2•−. Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2•− levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2•−, and inhibits AngII intra-neuronal signaling. Endogenous CuZnSOD is localized to mitochondria of AngII-sensitive neurons. Adenovirus-mediated over-expressed CuZnSOD is localized to neuron mitochondria. AngII-induced mitochondrial O2•− flux is attenuated by CuZnSOD over-expression. Over-expressed CuZnSOD reduces AngII-mediated inhibition of neuronal K+ current.
Collapse
Affiliation(s)
- Shumin Li
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adam J Case
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rui-Fang Yang
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harold D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA ; Redox Biology Center, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Matthew C Zimmerman
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA ; Redox Biology Center, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
21
|
Domijan AM, Kovac S, Abramov AY. Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca²⁺ signal. J Cell Sci 2013; 127:21-6. [PMID: 24198393 DOI: 10.1242/jcs.138370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in enzymatic and non-enzymatic reactions and have important roles in cell signalling but also detrimental effects. ROS-induced damage has been implicated in a number of neurological diseases; however, antioxidant therapies targeting brain diseases have been unsuccessful. Such failure might be related to inhibition of ROS-induced signalling in the brain. Using direct kinetic measures of lipid peroxidation in astrocytes and measurements of lipid peroxidation products in brain tissue, we here show that phospholipase C (PLC) preferentially cleaves oxidised lipids. Because of this, an increase in the rate of lipid peroxidation leads to increased Ca(2+) release from endoplasmic reticulum (ER) stores in response to physiological activation of purinoreceptors with ATP. Both vitamin E and its water-soluble analogue Trolox, potent ROS scavengers, were able to suppress PLC activity, therefore dampening intracellular Ca(2+) signalling. This implies that antioxidants can compromise intracellular Ca(2+) signalling through inhibition of PLC, and that PLC plays a dual role - signalling and antioxidant defence.
Collapse
|
22
|
Chan SHH, Chan JYH. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal 2013; 19:1074-84. [PMID: 22429119 DOI: 10.1089/ars.2012.4585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Overproduction of angiotensin II (Ang II) in brain contributes to the pathogenesis of cardiovascular diseases. One of the most promising theses that emerged during the last decade is that production of reactive oxygen species (ROS) and activation of redox-dependent signaling cascades underlie those Ang II actions. This review summarizes our status of understanding on the roles of ROS and redox-sensitive signaling in brain Ang II-dependent cardiovascular diseases, using hypertension and heart failure as illustrative examples. RECENT ADVANCES ROS generated by NADPH oxidase, mitochondrial electron transport chain, and proinflammatory cytokines activates mitogen-activated protein kinases and transcription factors, which in turn modulate ion channel functions and ultimately increase neuronal activity and sympathetic outflow in brain Ang II-dependent cardiovascular diseases. Antioxidants targeting ROS have been demonstrated to be beneficial to Ang II-induced hypertension and heart failure via protection from oxidative stress in brain regions that subserve cardiovascular regulation. CRITICAL ISSUES Intra-neuronal signaling and the downstream redox-sensitive proteins involved in controlling the neuronal discharge rate, the sympathetic outflow, and the pathogenesis of cardiovascular diseases need to be identified. The cross talk between Ang II-induced oxidative stress and neuroinflammation in neural mechanisms of cardiovascular diseases also warrants further elucidation. FUTURE DIRECTIONS Future studies are needed to identify new redox-based therapeutics that work not only in animal models, but also in patients suffering from the prevalent diseases. Upregulation of endogenous antioxidants in the regulation of ROS homeostasis is a potential therapeutic target, as are small molecule- or nanoformulated conjugate-based antioxidant therapy.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
23
|
Case AJ, Li S, Basu U, Tian J, Zimmerman MC. Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am J Physiol Heart Circ Physiol 2013; 305:H19-28. [PMID: 23624625 DOI: 10.1152/ajpheart.00974.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiotensin II (ANG II) plays an important role in the central regulation of systemic cardiovascular function. ANG II-mediated intraneuronal signaling has been shown to be predicated by an increase in mitochondrial superoxide (O₂∙-), yet the source of this reactive oxygen species (ROS) production remains unclear. NADPH oxidase 4 (Nox4), a member of the NADPH oxidase family, has been reported to be localized in mitochondria of various cell types and has been implicated in brain angiotensinergic signaling. However, the subcellular localization and function of Nox4 in neurons has not been fully elucidated. In this study, we hypothesized that Nox4 is expressed in neuron mitochondria and is involved in ANG II-dependent O₂∙--mediated intraneuronal signaling. To query this, Nox4 immunofluorescent staining and mitochondrial enrichment were performed in a mouse catecholaminergic neuronal cell model (CATH.a). Nox4 was shown to be present in neuron mitochondria as evidenced by colocalization with both the mitochondrial-localized protein manganese superoxide dismutase (MnSOD) and dye MitoTracker Red. Moreover, Nox4 expression was significantly increased in enriched mitochondrial fractions compared with whole cell lysates. Additionally, adenoviral-encoded small interfering RNA for Nox4 (AdsiNox4) caused a robust knockdown in Nox4 mRNA and protein levels, which led to the attenuation of ANG II-induced mitochondrial O₂∙- production. Finally, in the subfornical organ (SFO) of the brain, Nox4 not only demonstrated mitochondrial localization but was induced by chronic, peripheral infusion of ANG II. Collectively, these data suggest that Nox4 is a source of O₂∙- in neuron mitochondria that contributes to ANG II intraneuronal signaling.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
24
|
Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 2013; 124:597-615. [PMID: 23379642 DOI: 10.1042/cs20120212] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis is a key feature of many diseases including retinopathies such as ROP (retinopathy of prematurity) and DR (diabetic retinopathy). There is considerable evidence that increased production of ROS (reactive oxygen species) in the retina participates in retinal angiogenesis, although the mechanisms by which this occurs are not fully understood. ROS is produced by a number of pathways, including the mitochondrial electron transport chain, cytochrome P450, xanthine oxidase and uncoupled nitric oxide synthase. The family of NADPH oxidase (Nox) enzymes are likely to be important given that their primary function is to produce ROS. Seven isoforms of Nox have been identified named Nox1-5, Duox (dual oxidase) 1 and Duox2. Nox1, Nox2 and Nox4 have been most extensively studied and are implicated in the development of conditions such as hypertension, cardiovascular disease and diabetic nephropathy. In recent years, evidence has accumulated to suggest that Nox1, Nox2 and Nox4 participate in pathological angiogenesis; however, there is no clear consensus about which Nox isoform is primarily responsible. In terms of retinopathy, there is growing evidence that Nox contribute to vascular injury. The RAAS (renin-angiotensin-aldosterone system), and particularly AngII (angiotensin II), is a key stimulator of Nox. It is known that a local RAAS exists in the retina and that blockade of AngII and aldosterone attenuate pathological angiogenesis in the retina. Whether the RAAS influences the production of ROS derived from Nox in retinopathy is yet to be fully determined. These topics will be reviewed with a particular emphasis on ROP and DR.
Collapse
|
25
|
Jiang N, Shi P, Desland F, Kitchen-Pareja MC, Sumners C. Interleukin-10 inhibits angiotensin II-induced decrease in neuronal potassium current. Am J Physiol Cell Physiol 2013; 304:C801-7. [PMID: 23426971 DOI: 10.1152/ajpcell.00398.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we demonstrated that viral-mediated increased expression of the anti-inflammatory cytokine interleukin-10 within the paraventricular nucleus of the hypothalamus significantly reduces blood pressure in normal rats made hypertensive by infusion of angiotensin II. However, the exact cellular locus of this interleukin-10 action within the paraventricular nucleus is unknown. In the present study we tested whether interleukin-10 exerts direct effects at its receptors located on hypothalamic neurons to offset the neuronal excitatory actions of angiotensin II via its type 1 receptors. The results indicated the presence of immunoreactive interleukin-10 receptors on neurons in normal rat paraventricular nucleus and that receptors for this cytokine were also expressed in neurons cultured from the hypothalamus. Patch-clamp electrophysiological recordings from these cultures revealed that extracellular application of interleukin-10 alone did not exert any alterations in neuronal membrane delayed rectifier or transient potassium currents. However, angiotensin II elicited a significant decrease in delayed rectifier potassium current, an effect that was abolished by interleukin-10 application. Since decreases in delayed rectifier potassium current contribute to increased neuronal excitability, this result is consistent with a direct inhibitory action of interleukin-10 on angiotensin-induced excitation of hypothalamic neurons. As such, these data are the first indication of a neuronal locus of action of interleukin-10 to temper the actions of angiotensin II in the hypothalamus.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physiology and Functional Genomics, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
26
|
Kruk JS, Vasefi MS, Liu H, Heikkila JJ, Beazely MA. 5-HT1A receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells. Cell Signal 2013; 25:133-43. [DOI: 10.1016/j.cellsig.2012.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 01/23/2023]
|
27
|
Detraining differentially preserved beneficial effects of exercise on hypertension: effects on blood pressure, cardiac function, brain inflammatory cytokines and oxidative stress. PLoS One 2012; 7:e52569. [PMID: 23285093 PMCID: PMC3527563 DOI: 10.1371/journal.pone.0052569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/20/2012] [Indexed: 11/19/2022] Open
Abstract
Aims This study sought to investigate the effects of physical detraining on blood pressure (BP) and cardiac morphology and function in hypertension, and on pro- and anti-inflammatory cytokines (PICs and AIC) and oxidative stress within the brain of hypertensive rats. Methods and Results Hypertension was induced in male Sprague-Dawley rats by delivering AngiotensinII for 42 days using implanted osmotic minipumps. Rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise (ExT) for 42 days, whereas, detrained groups underwent 28 days of exercise followed by 14 days of detraining. BP and cardiac function were evaluated by radio-telemetry and echocardiography, respectively. At the end, the paraventricular nucleus (PVN) was analyzed by Real-time RT-PCR and Western blot. ExT in AngII-infused rats caused delayed progression of hypertension, reduced cardiac hypertrophy, and improved diastolic function. These results were associated with significantly reduced PICs, increased AIC (interleukin (IL)-10), and attenuated oxidative stress in the PVN. Detraining did not abolish the exercise-induced attenuation in MAP in hypertensive rats; however, detraining failed to completely preserve exercise-mediated improvement in cardiac hypertrophy and function. Additionally, detraining did not reverse exercise-induced improvement in PICs in the PVN of hypertensive rats; however, the improvements in IL-10 were abolished. Conclusion These results indicate that although 2 weeks of detraining is not long enough to completely abolish the beneficial effects of regular exercise, continuing cessation of exercise may lead to detrimental effects.
Collapse
|
28
|
Koba S, Watanabe R, Kano N, Watanabe T. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II. Am J Physiol Heart Circ Physiol 2012; 304:H142-53. [PMID: 23086992 DOI: 10.1152/ajpheart.00423.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.
Collapse
Affiliation(s)
- Satoshi Koba
- Division of Integrative Physiology, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori, Japan.
| | | | | | | |
Collapse
|
29
|
Chan SHH, Chan JYH. Brain stem oxidative stress and its associated signaling in the regulation of sympathetic vasomotor tone. J Appl Physiol (1985) 2012; 113:1921-8. [PMID: 22837172 DOI: 10.1152/japplphysiol.00610.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is now compelling evidence from studies in humans and animals that overexcitation of the sympathetic nervous system plays an important role in the pathogenesis of cardiovascular diseases. An excellent example is neurogenic hypertension, in which central sympathetic overactivation is involved in the development, staging, and progression of the disease, and one of the underlying mechanisms involves oxidative stress in key brain stem sites that are engaged in the regulation of sympathetic vasomotor tone. Using the rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) as two illustrative brain stem neural substrates, this article provides an overview of the impact of reactive oxygen species and antioxidants on RVLM and NTS in the pathogenesis of neurogenic hypertension. This is followed by a discussion of the redox-sensitive signaling pathways, including several kinases, ion channels, and transcription factors that underpin the augmentation in sympathetic vasomotor tone. In addition, the emerging view that brain stem oxidative stress is also causally related to a reduction in sympathetic vasomotor tone and hypotension during brain stem death, methamphetamine intoxication, and temporal lobe status epilepticus will be presented, along with the causal contribution of the oxidant peroxynitrite formed by a reaction between nitric oxide synthase II (NOS II)-derived nitric oxide and superoxide. Also discussed as a reasonable future research direction is dissection of the cellular mechanisms and signaling cascades that may underlie the contributory role of nitric oxide generated by different NOS isoforms in the differential effects of oxidative stress in the RVLM or NTS on sympathetic vasomotor tone.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
30
|
Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J Hypertens 2012; 30:97-106. [PMID: 22157590 DOI: 10.1097/hjh.0b013e32834e1df4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The rostral ventrolateral medulla (RVLM) of the brainstem and the paraventricular nucleus (PVN) of the hypothalamus play crucial roles in central cardiovascular regulation. In hypertensive rats, an imbalance of excitatory and inhibitory inputs to the RVLM enhances central sympathetic outflow. Increased reactive oxygen species (ROS) in the RVLM also contribute to sympathoexcitation, leading to hypertension. The aim of the present study was to elucidate whether ROS in the RVLM modulate synaptic transmission via excitatory and inhibitory amino acids and influence the excitatory inputs to the RVLM from the PVN in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS We transfected adenovirus vectors encoding the manganese superoxide dismutase (AdMnSOD) gene to scavenge ROS in the RVLM both in Wistar-Kyoto rats and SHRs. The decreases in blood pressure and renal sympathetic nerve activity (RSNA) evoked by injecting kynurenic acid, a glutamate receptor blocker, into the RVLM were attenuated, and the increases in blood pressure and RSNA evoked by injecting bicuculline, a γ-amino butyric acid (GABA) receptor blocker, into the RVLM were enhanced in AdMnSOD-transfected SHRs compared with adenovirus vectors encoding the β-galactosidase (AdLacZ) gene-transfected SHRs. Furthermore, the increases in blood pressure and RSNA evoked by injecting bicuculline into the PVN were attenuated in AdMnSOD-transfected SHRs compared with AdLacZ-transfected SHRs. CONCLUSION These findings suggest that ROS in the RVLM enhance glutamatergic excitatory inputs and attenuate GABAergic inhibitory inputs to the RVLM, thereby increasing sympathoexcitatory input to the RVLM from the PVN in SHRs.
Collapse
|
31
|
Shinohara K, Hirooka Y, Kishi T, Sunagawa K. Reduction of Nitric Oxide-Mediated γ-Amino Butyric Acid Release in Rostral Ventrolateral Medulla Is Involved in Superoxide-Induced Sympathoexcitation of Hypertensive Rats. Circ J 2012; 76:2814-21. [DOI: 10.1253/circj.cj-12-0399] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keisuke Shinohara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| |
Collapse
|
32
|
Mertens B, Varcin M, Michotte Y, Sarre S. The neuroprotective action of candesartan is related to interference with the early stages of 6-hydroxydopamine-induced dopaminergic cell death. Eur J Neurosci 2011; 34:1141-8. [PMID: 21936877 DOI: 10.1111/j.1460-9568.2011.07840.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have revealed that manipulation of the renin angiotensin system results in reduced progression of nigrostriatal damage in different animal models of Parkinson's disease. In the present work, the effect of daily treatment of rats with the angiotensin II (Ang II) type 1 (AT(1) ) receptor antagonist candesartan (3 mg/kg per day, s.c.) initiated 7 days before the intrastriatal injection of 6-hydroxydopamine (6-OHDA) was investigated by means of tyrosine hydroxylase-positive cell counts in the substantia nigra, and dopamine and 3,4-dihydroxyphenylacetic acid measurements in the striatum. In this experimental set-up, candesartan protected dopaminergic neurons of the nigrostriatal tract against the neurotoxin-induced cell death. However, the beneficial effects of AT(1) receptor blockade were not confirmed when treatment was started 24 h after the lesion, suggesting that candesartan interferes with the early events of the 6-OHDA-induced cell death. Stimulation of the AT(1) receptor with Ang II increased the formation of hydroxyl radicals in the striatum of intact rats as measured by the in vivo microdialysis salicylate trapping technique. This Ang II-induced production of reactive oxygen species was suppressed by candesartan perfusion. Furthermore, the Ang II-induced production of reactive oxygen species was nicotinamide adenine dinucleotide phosphate - oxidase and protein kinase C dependent as it could be blocked in the presence of apocynin, an nicotinamide adenine dinucleotide phosphate - oxidase inhibitor, and chelerythrine, an inhibitor of protein kinase C. Together, these data further support the hypothesis that Ang II might contribute in an early stage to the neurotoxicity of 6-OHDA by reinforcing the cascade of oxidative stress.
Collapse
Affiliation(s)
- Birgit Mertens
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | | | | | | |
Collapse
|
33
|
Csányi G, Cifuentes-Pagano E, Ghouleh IA, Ranayhossaini DJ, Egaña L, Lopes LR, Jackson HM, Kelley EE, Pagano PJ. Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic Biol Med 2011; 51:1116-25. [PMID: 21586323 PMCID: PMC3204933 DOI: 10.1016/j.freeradbiomed.2011.04.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/22/2022]
Abstract
In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-, but not the Nox1- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1-, or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O(2)(•-)) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O(2)(•-) production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eugenia Cifuentes-Pagano
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Imad Al Ghouleh
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel J Ranayhossaini
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Loreto Egaña
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lucia R. Lopes
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, 05508 900, Brazil
| | - Heather M. Jackson
- Department of Pathology and Experimental Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric E. Kelley
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patrick J. Pagano
- Vascular Medicine Institute, Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 2011; 34:407-12. [PMID: 21346766 DOI: 10.1038/hr.2011.14] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the sympathetic nervous system has an important role in the pathogenesis of hypertension. However, the precise mechanisms involved are not fully understood. Oxidative stress may be important in hypertension as well as in other cardiovascular disorders. We investigated the role of oxidative stress, particularly in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the sympathetic nervous system in hypertension. We observed that the reactive oxygen species (ROS) production increases in the RVLM in hypertensive rats, thereby enhancing the central sympathetic outflow, which leads to hypertension. Furthermore, the environmental factors of high salt intake and a high-calorie diet may also increase the ROS production in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. The activation of the nicotinamide adenine dinucleotide phosphate oxidase via the angiotensin type 1 (AT1) receptors is suggested to be the major source of ROS production, and an altered downstream signaling pathway is involved in the activation of the RVLM neurons, leading to enhanced central sympathetic outflow and hypertension. Thus, the brain AT1 receptors may be novel therapeutic targets, and, in fact, oral treatment with angiotensin receptor blockers has been found to inhibit the central AT1 receptors, despite the blood-brain barrier.
Collapse
|
35
|
Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 300:R818-26. [PMID: 21289238 DOI: 10.1152/ajpregu.00426.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those of others strongly indicate that an imbalance between NO bioavailability and ROS generation in the CNS, including the brain stem, activates the sympathetic nervous system, and this mechanism is involved in the pathogenesis of neurogenic aspects of hypertension. In this review, we focus on the role of NO and ROS in the regulation of the sympathetic nervous system within the brain stem and subsequent cardiovascular control. Multiple mechanisms are proposed, including modulation of neurotransmitter release, inhibition of receptors, and alterations of intracellular signaling pathways. Together, the evidence indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
36
|
Zimmerman MC. Angiotensin II and angiotensin-1-7 redox signaling in the central nervous system. Curr Opin Pharmacol 2011; 11:138-43. [PMID: 21257347 DOI: 10.1016/j.coph.2011.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are important intra-neuronal signaling intermediates in angiotensin II (AngII)-related neuro-cardiovascular diseases associated with excessive sympathoexcitation, including hypertension and heart failure. ROS-sensitive effector mechanisms, such as modulation of ion channel activity, indicate that elevated levels of ROS increase neuronal activity. Nitric oxide, which may work to counter the effects of ROS, particularly superoxide, has been identified as a signaling molecule in angiotensin-1-7 (Ang-(1-7)) stimulated neurons. This review focuses on recent studies that have revealed details on the AngII-activated sources of ROS, the downstream redox-sensitive effectors, Ang-(1-7)-stimulated increase in nitric oxide, and the neuro-cardiovascular (patho)physiological responses modulated by these reactive species. Understanding these intra-neuronal signaling mechanisms should provide insight for the development of new redox-based therapeutics for the improved treatment of angiotensin-dependent neuro-cardiovascular diseases.
Collapse
Affiliation(s)
- Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Burmeister MA, Young CN, Braga VA, Butler SD, Sharma RV, Davisson RL. In vivo bioluminescence imaging reveals redox-regulated activator protein-1 activation in paraventricular nucleus of mice with renovascular hypertension. Hypertension 2010; 57:289-97. [PMID: 21173341 DOI: 10.1161/hypertensionaha.110.160564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renovascular hypertension in mice is characterized by an elevation in hypothalamic angiotensin II levels. The paraventricular nucleus (PVN) is a major cardioregulatory site implicated in the neurogenic component of renovascular hypertension. Increased superoxide (O(2)(-·)) production in the PVN is involved in angiotensin II-dependent neurocardiovascular diseases such as hypertension and heart failure. Here, we tested the hypothesis that excessive O(2)(-·) production and activation of the redox-regulated transcription factor activator protein-1 (AP-1) in PVN contributes to the development and maintenance of renovascular hypertension. Male C57BL/6 mice underwent implantation of radiotelemeters, bilateral PVN injections of an adenovirus (Ad) encoding superoxide dismutase (AdCuZnSOD) or a control gene (LacZ), and unilateral renal artery clipping (2-kidney, one-clip [2K1C]) or sham surgery. AP-1 activity was longitudinally monitored in vivo by bioluminescence imaging in 2K1C or sham mice that had undergone PVN-targeted microinjections of an Ad encoding the firefly luciferase (Luc) gene downstream of AP-1 response elements (AdAP-1Luc). 2K1C evoked chronic hypertension and an increase in O(2)(-·) production in the PVN. Viral delivery of CuZnSOD to the PVN not only prevented the elevation in O(2)(-·) but also abolished renovascular hypertension. 2K1C also caused a surge in AP-1 activity in the PVN, which paralleled the rise in O(2)(-·) production in this brain region, and this was prevented by treatment with AdCuZnSOD. Finally, Ad-mediated expression of a dominant-negative inhibitor of AP-1 activity in the PVN prevented 2K1C-evoked hypertension. These results implicate oxidant signaling and AP-1 transcriptional activity in the PVN as key mediators in the pathogenesis of renovascular hypertension.
Collapse
Affiliation(s)
- Melissa A Burmeister
- Biomedical Sciences, College of Veterinary Medicine, Weill Cornell Medical College, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Brain angiotensin II (Ang II) induces tonic sympathoexcitatory effects through AT1 receptor stimulation of glutamatergic neurons and sympathoinhibitory effects via GABAergic neurons in the rostral ventrolateral medulla, the brainstem 'pressor area'. NADPH-derived superoxide production and reactive oxygen species signalling is critical in these actions, and AT2 receptors in the rostral ventrolateral medulla appear to mediate opposing effects on sympathetic outflow. In the hypothalamic paraventricular nucleus, Ang II has AT1 receptor-mediated sympathoexcitatory effects and enhances nitric oxide formation, which in turn inhibits the Ang II effects through a GABAergic mechanism. Ang II also decreases the tonic sympathoinhibitory effect of gamma amino butyric acid within the paraventricular nucleus. Angiotensin III and Angiotensin IV increase blood pressure via brain AT1 receptor stimulation. Angiotensin (1-7) influences cardiovascular function through a specific Mas-receptor. This review examines the evidence that brain angiotensin peptides, glutamate, gamma amino butyric acid and nitric oxide interact within the rostral ventrolateral medulla and paraventricular nucleus to control sympathetic tone and blood pressure.
Collapse
|
39
|
Silva J, Pastorello M, Arzola J, Zavala LE, De Jesús S, Varela M, Matos MG, del Rosario Garrido M, Israel A. AT₁ receptor and NAD(P)H oxidase mediate angiotensin II-stimulated antioxidant enzymes and mitogen-activated protein kinase activity in the rat hypothalamus. J Renin Angiotensin Aldosterone Syst 2010; 11:234-42. [PMID: 20807796 DOI: 10.1177/1470320310376987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Angiotensin II (AngII) regulates blood pressure and water and electrolyte metabolism through the stimulation of NAD(P)H oxidase and production of reactive oxygen species (ROS) such as O₂⁻, which is metabolised by superoxide dismutase, catalase and glutathione peroxidase. We assessed the role of AT₁ and AT₂ receptors, NAD(P)H oxidase and protein kinase C (PKC) in Ang II-induced sodium and water excretion and their capacity to stimulate antioxidant enzymes in the rat hypothalamus, a brain structure known to express a high density of AngII receptors. MATERIALS AND METHODS Male Sprague-Dawley rats were intracerebroventricularly (ICV) injected with AngII and urinary sodium and water excretion was assessed. Urine sodium concentration was determined using flame photometry. After decapitation the hypothalamus was microdissected under stereomicroscopic control. Superoxide dismutase, catalase and glutathione peroxidase activity were determined spectrophotometrically and extracellular signal-regulated kinase (ERK1/2) activation was analysed by Western blot. RESULTS AngII-ICV resulted in antidiuresis and natriuresis. ICV administration of losartan, PD123319, apocynin and chelerythrine blunted natriuresis. In hypothalamus, AngII increased catalase, superoxide dismutase and glutation peroxidase activity and ERK1/2 phosphorylation. These actions were prevented by losartan, apocynin and chelerythrine, and increased by PD123319. CONCLUSIONS AT₁ and AT₂ receptors, NAD(P)H oxidase and PKC pathway are involved in the regulation of hydromineral metabolism and antioxidant enzyme activity induced by AngII.
Collapse
Affiliation(s)
- José Silva
- School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hypertensive effects of central angiotensin II infusion and restraint stress are reduced with age. J Hypertens 2010; 28:1298-306. [PMID: 20308921 DOI: 10.1097/hjh.0b013e328338a075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated the effect of age on cardiovascular responses mediated by central angiotensin II (AngII) after intracerebroventricular infusion of AngII, and during restraint stress. METHODS Blood pressure (BP) and heart rate (HR) of young (5-month-old) and old (27-month-old) male Fischer-344 x Brown-Norway rats were measured using radiotelemetry. AngII was infused intracerebroventricularly using osmotic minipumps (10 ng/0.5 microl/h for 11 days). BP and HR responses to stress were evaluated by placing animals in restrainers for 20 min before and after intracerebroventricular infusion of the AngII-type-1 receptor inhibitor losartan (15 microg/microl per h for 3 days). RESULTS Resting BP was significantly elevated and HR was significantly lower in old rats compared with young. AngII-induced BP increase was markedly reduced in old rats, but HR responses were similar. Diurnal variation of both BP and HR was lower in old animals, and AngII reduced the amplitude of BP variation in young rats, but not in old. Restraint stress-induced BP and HR elevations were reduced with age. BP responses were diminished by central losartan infusion in both young and old, but this effect was more significant in young rats. In addition, expression of CuZn-superoxide dismutase and catalase declined significantly with age in the hypothalamus, whereas baseline oxidative stress increased. In contrast, AngII-induced increase in hypothalamic oxidative stress decreased with age. CONCLUSION This study demonstrates that the role of central AngII diminishes with age in the regulation of BP both during baseline conditions and during stress, whereas the involvement of AngII in the regulation of HR remains unaffected.
Collapse
|
41
|
Affiliation(s)
- Srinivasa Raju Datla
- Emory University, Division of Cardiology, 319 WMB, 1639 Pierce Dr, Atlanta, GA 30322, USA
| | | |
Collapse
|
42
|
Sumbalová Z, Kucharská J, Kristek F. Losartan improved respiratory function and coenzyme Q content in brain mitochondria of young spontaneously hypertensive rats. Cell Mol Neurobiol 2010; 30:751-8. [PMID: 20145991 DOI: 10.1007/s10571-010-9501-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/27/2010] [Indexed: 01/23/2023]
Abstract
Increased production of free radicals and impairment of mitochondrial function are important factors in the pathogenesis of hypertension. This study examined the impact of hypertension on mitochondrial respiratory chain function, coenzyme Q(9) (CoQ(9)), coenzyme Q(10) (CoQ(10)), and alpha-tocopherol content in brain mitochondria, and the effect of blockade of angiotensin II type 1 receptors (AT1R) in the prehypertensive period on these parameters. In addition, blood pressure, heart and brain weight to body weight ratios, and the geometry of the basilar artery supplying the brain were evaluated. In the 9th week blood pressure and heart weight/body weight ratio were significantly increased and brain weight/body weight ratio was significantly decreased in spontaneously hypertensive rats (SHR) when compared to Wistar rats (WR). The cross-sectional area of the basilar artery was increased in SHR. Glutamate-supported respiration, the rate of ATP production, and concentrations of CoQ(9), CoQ(10), and alpha-tocopherol were decreased in SHR. The succinate-supported function and cytochrome oxidase activity were not changed. The treatment of SHR with losartan (20 mg/kg/day) from 4th to 9th week of age exerted preventive effect against hypertension, heart and arterial wall hypertrophy, and brain weight/body weight decline. After the therapy, the rate of ATP production and the concentration of CoQ increased in comparison to untreated SHR. The impairment of energy production and decreased level of lipid-soluble antioxidants in brain mitochondria as well as structural alterations in the basilar artery may contribute to increased vulnerability of brain tissue in hypertension. Long-term treatment with AT1R blockers may prevent brain dysfunction in hypertension.
Collapse
Affiliation(s)
- Z Sumbalová
- Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Faculty of Medicine, Comenius University, Spitálska 24, 81372 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
43
|
Infanger DW, Cao X, Butler SD, Burmeister MA, Zhou Y, Stupinski JA, Sharma RV, Davisson RL. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis. Circ Res 2010; 106:1763-74. [PMID: 20413786 DOI: 10.1161/circresaha.109.213025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial infarction (MI)-induced heart failure is characterized by central nervous system-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in heart failure. Redox signaling in the PVN and other central nervous system sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Noxs) is implicated in some neuro-cardiovascular diseases. OBJECTIVE We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. METHODS AND RESULTS Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homolog compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the periinfarct region of the heart. CONCLUSIONS These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced heart failure.
Collapse
Affiliation(s)
- David W Infanger
- Professor of Molecular Physiology, Biomedical Sciences and Cell and Developmental Biology, Cornell University, T9-014 Veterinary Research Tower, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hirooka Y, Sagara Y, Kishi T, Sunagawa K. Oxidative stress and central cardiovascular regulation. - Pathogenesis of hypertension and therapeutic aspects -. Circ J 2010; 74:827-35. [PMID: 20424336 DOI: 10.1253/circj.cj-10-0153] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is a key factor in the pathogenesis of hypertension and target organ damage, beginning in the earliest stages. Extensive evidence indicates that the pivotal role of oxidative stress in the pathogenesis of hypertension is due to its effects on the vasculature in relation to the development of atherosclerotic processes. It remains unclear, however, whether oxidative stress in the brain, particularly the autonomic nuclei (including the vasomotor center), has an important role in the occurrence and maintenance of hypertension via activation of the sympathetic nervous system. The aim of the present review is to describe the contribution of oxidative stress in the brain to the neural mechanisms that underlie hypertension, and discuss evidence that brain oxidative stress is a potential therapeutic target.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | |
Collapse
|
45
|
Rosenbaugh EG, Roat JW, Gao L, Yang RF, Manickam DS, Yin JX, Schultz HD, Bronich TK, Batrakova EV, Kabanov AV, Zucker IH, Zimmerman MC. The attenuation of central angiotensin II-dependent pressor response and intra-neuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase. Biomaterials 2010; 31:5218-26. [PMID: 20378166 DOI: 10.1016/j.biomaterials.2010.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/09/2010] [Indexed: 12/19/2022]
Abstract
Adenoviral-mediated overexpression of the intracellular superoxide (O(2)(*-)) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O(2)(*-), as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K(+) current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng WH, Lu PJ, Ho WY, Tung CS, Cheng PW, Hsiao M, Tseng CJ. Angiotensin II Inhibits Neuronal Nitric Oxide Synthase Activation Through the ERK1/2-RSK Signaling Pathway to Modulate Central Control of Blood Pressure. Circ Res 2010; 106:788-95. [DOI: 10.1161/circresaha.109.208439] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rationale
:
Angiotensin (Ang) II exerts diverse physiological actions in both the peripheral and central neural systems. It was reported that the activity of Ang II is higher in the nucleus tractus solitarii (NTS) of spontaneously hypertensive rats (SHRs) and that angiotensin type-1 receptors are colocalized with NAD(P)H oxidase in the neurons of the NTS, resulting in the induction of local reactive oxygen species production by Ang II. However, the signaling mechanisms of Ang II that induce hypertension remain unclear.
Objective
:
The aim of this study was to investigate the possible signaling pathways involved in Ang II–mediated blood pressure regulation in the NTS.
Methods and Results
:
Male SHRs were treated with losartan or tempol for 2 weeks, after which systolic blood pressure was observed to decrease significantly. Dihydroethidium staining showed many cells with high reactive oxygen species in the NTS of SHRs. The addition of losartan or tempol decreased the numbers of reactive oxygen species–positive cells in the NTS. The systemic administration of losartan or tempol reduced the systolic blood pressure and increased NO production. Immunoblotting and immunohistochemical analysis further showed that inhibition of Ang II activity by losartan or tempol significantly increased the expression extracellular signal-regulated kinase (ERK)1/2, ribosomal protein S6 kinase (RSK), and also increased neuronal NO synthase (nNOS) phosphorylation. RSK was also found to bind directly to nNOS and induce phosphorylation at the Ser1416 position.
Conclusions
:
Taken together, these results suggest that the ERK1/2-RSK-nNOS signaling pathway may play a significant role in Ang II–mediated central blood pressure regulation.
Collapse
Affiliation(s)
- Wen-Han Cheng
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Pei-Jung Lu
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Wen-Yu Ho
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Che-Se Tung
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Pei-Wen Cheng
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Michael Hsiao
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Ching-Jiunn Tseng
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| |
Collapse
|
47
|
Yin JX, Yang RF, Li S, Renshaw AO, Li YL, Schultz HD, Zimmerman MC. Mitochondria-produced superoxide mediates angiotensin II-induced inhibition of neuronal potassium current. Am J Physiol Cell Physiol 2010; 298:C857-65. [PMID: 20089930 DOI: 10.1152/ajpcell.00313.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS), particularly superoxide (O(2)(.-)), have been identified as key signaling intermediates in ANG II-induced neuronal activation and sympathoexcitation associated with cardiovascular diseases, such as hypertension and heart failure. Studies of the central nervous system have identified NADPH oxidase as a primary source of O(2)(.-) in ANG II-stimulated neurons; however, additional sources of O(2)(.-), including mitochondria, have been mostly overlooked. Here, we tested the hypothesis that ANG II increases mitochondria-produced O(2)(.-) in neurons and that increased scavenging of mitochondria-produced O(2)(.-) attenuates ANG II-dependent intraneuronal signaling. Stimulation of catecholaminergic (CATH.a) neurons with ANG II (100 nM) increased mitochondria-localized O(2)(.-) levels, as measured by MitoSOX Red fluorescence. This response was significantly attenuated in neurons overexpressing the mitochondria-targeted O(2)(.-)-scavenging enzyme Mn-SOD. To examine the biological significance of the ANG II-mediated increase in mitochondria-produced O(2)(.-), we used the whole cell configuration of the patch-clamp technique to record the well-characterized ANG II-induced inhibition of voltage-gated K(+) current (I(Kv)) in neurons. Adenovirus-mediated Mn-SOD overexpression or pretreatment with the cell-permeable antioxidant tempol (1 mM) significantly attenuated ANG II-induced inhibition of I(Kv). In contrast, pretreatment with extracellular SOD protein (400 U/ml) had no effect. Mn-SOD overexpression also inhibited ANG II-induced activation of Ca(2+)/calmodulin kinase II, a redox-sensitive protein known to modulate I(Kv). These data indicate that ANG II increases mitochondrial O(2)(.-), which mediates, at least in part, ANG II-induced activation of Ca(2+)/calmodulin kinase II and inhibition of I(Kv) in neurons.
Collapse
Affiliation(s)
- Jing-Xiang Yin
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Cuadra AE, Shan Z, Sumners C, Raizada MK. A current view of brain renin-angiotensin system: Is the (pro)renin receptor the missing link? Pharmacol Ther 2010; 125:27-38. [PMID: 19723538 PMCID: PMC2815255 DOI: 10.1016/j.pharmthera.2009.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) plays a central role in the brain to regulate blood pressure (BP). This role includes the modulation of sympathetic nerve activity (SNA) that regulates vascular tone; the regulation of secretion of neurohormones that have a critical role in electrolyte as well as fluid homeostasis; and by influencing behavioral processes to increase salt and water intake. Based on decades of research it is clear that angiotensin II (Ang II), the major bioactive product of the RAS, mediates these actions largely via its Ang II type 1 receptor (AT1R), located within hypothalamic and brainstem control centers. However, the mechanisms of brain RAS function have been questioned, due in large part to low expression levels of the rate limiting enzyme renin within the central nervous system. Tissue localized RAS has been observed in heart, kidney tubules and vascular cells. Studies have also given rise to the hypothesis for localized RAS function within the brain, so that Ang II can act in a paracrine manner to influence neuronal activity. The recently discovered (pro)renin receptor (PRR) may be key in this mechanism as it serves to sequester renin and prorenin for localized RAS activity. Thus, the PRR can potentially mitigate the low levels of renin expression in the brain to propagate Ang II action. In this review we examine the regulation, expression and functional properties of the various RAS components in the brain with particular focus on the different roles that PRR may have in BP regulation and hypertension.
Collapse
Affiliation(s)
- Adolfo E Cuadra
- University of Florida College of Medicine, Department of Physiology and Functional Genomics, 100274 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Mertens B, Vanderheyden P, Michotte Y, Sarre S. The role of the central renin-angiotensin system in Parkinson's disease. J Renin Angiotensin Aldosterone Syst 2009; 11:49-56. [PMID: 19861346 DOI: 10.1177/1470320309347789] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the discovery of a renin-angiotensin system (RAS) in the brain, several studies have linked this central RAS to neurological disorders such as ischaemia, Alzheimer's disease and depression. In the last decade, evidence has accumulated that the central RAS might also play a role in Parkinson's disease. Although the exact cause of this progressive neurodegenerative disorder of the basal ganglia remains unidentified, inflammation and oxidative stress have been suggested to be key factors in the pathogenesis and the progression of the disease. Since angiotensin II is a pro-inflammatory compound that can induce the production of reactive oxygen species due to activation of the NADPH-dependent oxidase complex, this peptide might contribute to dopaminergic cell death. In this review, three different strategies to interfere with the pathogenesis or the progression of Parkinson's disease are discussed. They include inhibition of the angiotensin-converting enzyme, blockade of the angiotensin II type 1 receptor and stimulation of the angiotensin II type 2 receptor.
Collapse
Affiliation(s)
- Birgit Mertens
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Neuropharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|