1
|
GPCR-mediated EGFR transactivation ameliorates skin toxicities induced by afatinib. Acta Pharmacol Sin 2022; 43:1534-1543. [PMID: 34552215 PMCID: PMC9160022 DOI: 10.1038/s41401-021-00774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many G-protein-coupled receptor (GPCR) agonists have been studied for transactivating epidermal growth factor receptor (EGFR) signaling through extracellular or intracellular pathways. Accumulated evidence has confirmed that GPCR transactivation participates in various diseases. However, the clinical application of GPCR transactivation has not been explored, and more translational studies are needed to develop therapies to target GPCR-mediated EGFR transactivation. In cancer patients treated with EGFR inhibitors (EGFRi), especially afatinib, a unique acneiform rash is frequently developed. In this study, we first established the connection between GPCR transactivation and EGFRi-induced skin disease. We examined the ability of three different GPCR agonists to reverse signaling inhibition and ameliorate rash induced by EGFRi. The activation of different agonists follows unique time and kinase patterns. Rats treated with EGFRi show a similar skin phenotype, with rash occurring in the clinic; correspondingly, treatment with GPCR agonists reduced keratinocyte apoptosis, growth retardation and infiltration of inflammatory cytokines by transactivation. This phenomenon demonstrates that EGFR inhibition in keratinocytes regulates key factors associated with rash. Our findings indicate that maintaining EGFR signaling by GPCR agonists might provide a possible therapy for EGFR inhibitor-induced skin toxicities. Our study provides the first example of the translational application of GPCR transactivation in treating diseases.
Collapse
|
2
|
Miyachi H, Tara S, Otsuru S, Yi T, Lee YU, Drews JD, Nakayama H, Miyamoto S, Sugiura T, Shoji T, Breuer CK, Shinoka T. Imatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft. JVS Vasc Sci 2020; 1:57-67. [PMID: 34223286 PMCID: PMC8248522 DOI: 10.1016/j.jvssci.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Bioresorbable vascular grafts (BVGs) can transform biologically into active blood vessels and represent an alternative to traditional synthetic conduits, which are prone to complications such as infection and thrombosis. Although platelet-derived growth factors and c-Kit positive cells play an important role in smooth muscle cell (SMC) migration and proliferation in vascular injury, atherosclerosis, or allograft, their roles in the vascular remodeling process of an arterial BVG remains unknown. Thus, we assessed the neottisue formation on arterial BVG remodeling by administrating imatinib, which is both a platelet-derived growth factor receptor kinase inhibitor and c-Kit receptor kinase inhibitor, in a murine model. Methods BVGs were composed of an inner poly(L-lactic-co-ε-caprolactone) copolymer sponge layer and an outer electrospun poly(L-lactic acid) nanofiber layer, which were implanted into the infrarenal abdominal aortas of C57BL/6 mice. After graft implantation, saline or 100 mg/kg of imatinib was administrated intraperitoneally daily for 2 weeks (n = 20 per group). Five mice in each group were scheduled to be humanely killed at 3 weeks and 15 at 8 weeks, and BVGs were explanted for histologic assessments. Results Graft patency during the 8-week observational period was not significantly different between groups (control, 86.7% vs imatinib, 80.0%; P > .999). Neotissue formation consisting of endothelialization, smooth muscle proliferation, and deposition of collagen and elastin was not observed in either group at 3 weeks. Similar endothelialization was achieved in both groups at 8 weeks, but thickness and percent area of neotissue formation were significantly higher in the control group than in the imatinib group, (thickness, 30.1 ± 7.2 μm vs 19.6 ± 4.5 μm [P = .001]; percent area, 9.8 ± 2.7% vs 6.8 ± 1.8% [P = .005]). Furthermore, SMC layer and deposition of collagen and elastin were better organized at 8 weeks in the control group compared with the imatinib group. The thickness of SMC layer and collagen fiber area were significantly greater at 8 weeks in the control group than in the imatinib group (P < .001 and P = .026, respectively). Because there was no difference in the inner diameter of explanted BVGs (831.7 ± 63.4 μm vs 841.8 ± 41.9 μm; P = .689), neotissue formation was thought to advance toward the outer portion of the BVG with degradation of the polymer scaffold. Conclusions Imatinib attenuates neotissue formation during vascular remodeling in arterial bioresorbable vascular grafts (BVGs) by inhibiting SMC layer formation and extracellular matrix deposition. This study demonstrated that imatinib attenuated neotissue formation during vascular remodeling in arterial Bioresorbable vascular graft (BVG) by inhibiting smooth muscle cell formation and extracellular matrix deposition. In addition, as imatinib did not modify the inner diameter of BVG, neotissue advanced circumferentially toward the outer portion of the neovessel. Currently, BVGs have not yet been clinically applied to the arterial circulation. The results of this study are helpful for the design of BVG that can achieve an optimal balance between polymer degradation and neotissue formation.
Collapse
Affiliation(s)
- Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo
| | - Shuhei Tara
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore
| | - Tai Yi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Yong-Ung Lee
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | | | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus
| |
Collapse
|
3
|
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological Role of Caveolae in Hypertension. Front Med (Lausanne) 2019; 6:153. [PMID: 31355199 PMCID: PMC6635557 DOI: 10.3389/fmed.2019.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular Cavin 1-4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological processes like lipid uptake, mechanosensitivity, or signaling events and are involved in pathophysiological changes in the cardiovascular system. They serve as a specific membrane platform for a diverse set of signaling molecules like endothelial nitric oxide synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes the complete loss of caveolae; induces vascular disorders, endothelial dysfunction, and impaired myogenic tone; and alters numerous cellular processes, which all contribute to an increased risk for hypertension. This brief review describes our current knowledge on caveolae in vasculature, with special focus on their pathophysiological role in hypertension.
Collapse
Affiliation(s)
- Xiaoming Lian
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Matthaeus
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Berlin, Germany
| |
Collapse
|
4
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
5
|
Shen M, Morton J, Davidge ST, Kassiri Z. Loss of smooth muscle cell disintegrin and metalloproteinase 17 transiently suppresses angiotensin II-induced hypertension and end-organ damage. J Mol Cell Cardiol 2017; 103:11-21. [DOI: 10.1016/j.yjmcc.2016.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 11/27/2022]
|
6
|
Chan SL, Umesalma S, Baumbach GL. Epidermal growth factor receptor is critical for angiotensin II-mediated hypertrophy in cerebral arterioles. Hypertension 2015; 65:806-12. [PMID: 25733240 DOI: 10.1161/hypertensionaha.114.04794] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) is a major determinant of vascular remodeling in the cerebral circulation during chronic hypertension, which is an important risk factor for stroke. We examined the molecular mechanism of Ang II-mediated cerebrovascular remodeling that involves the epidermal growth factor receptor (EGFR) pathway. Mutant EGFR mice (waved-2), their heterozygous control (wild-type [WT]), and C57BL/6J mice were infused with Ang II (1000 ng kg(-1) min(-1)) or saline via osmotic minipumps for 28 days (n=8 per group). Eight of the Ang II-infused C57BL/6J mice were cotreated with AG1478 (12 mg/kg per day, IP), a specific EGFR tyrosine kinase inhibitor. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined in pressurized fixed cerebral arterioles. Expression of phosphorylated EGFR (p-EGFR), caveolin-1 (Cav-1), and c-Src was determined by western blotting and immunohistochemistry. Mutation of EGFR or AG1478 treatment did not affect Ang II-induced hypertension. Ang II increased the expression of p-EGFR in WT mice, confirming the activation of EGFR. Ang II induced hypertrophy and inward remodeling of cerebral arterioles in WT mice. Hypertrophy, but not remodeling, was prevented in waved-2 and AG1478-treated C57BL/6J mice. Ang II increased p-EGFR, Cav-1, and c-Src expression in WT but not in waved-2 or AG1478-treated C57BL/6J mice. These results suggest that Ang II-induced hypertrophy in cerebral arterioles involves EGFR-dependent signaling and may include Cav-1 and nonreceptor tyrosine kinase c-Src. This signaling pathway seems to be limited to Ang II-induced hypertrophy, but not inward remodeling, and is independent of blood pressure.
Collapse
Affiliation(s)
- Siu-Lung Chan
- From the Department of Pathology, University of Iowa College of Medicine, Iowa City
| | - Shaikamjad Umesalma
- From the Department of Pathology, University of Iowa College of Medicine, Iowa City
| | - Gary L Baumbach
- From the Department of Pathology, University of Iowa College of Medicine, Iowa City.
| |
Collapse
|
7
|
Wu SZ, Peng FF, Li JL, Ye F, Lei SQ, Zhang BF. Akt and RhoA activation in response to high glucose require caveolin-1 phosphorylation in mesangial cells. Am J Physiol Renal Physiol 2014; 306:F1308-17. [PMID: 24694591 DOI: 10.1152/ajprenal.00447.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic renal disease. Serine/threonine kinase PKC-β1 mediates glucose-induced Akt S473 phosphorylation, RhoA activation, and transforming growth factor (TGF)-β1 upregulation and finally leads to matrix upregulation in mesangial cells (MCs). It has been reported that glucose-induced PKC-β1 activation is dependent on caveolin-1 and the presence of intact caveolae in MCs; however, whether activated PKC-β1 regulates caveolin-1 expression and phosphorylation are unknown. Here, we showed that, although the caveolin-1 protein level had no significant change, the PKC-β-specific inhibitor LY-333531 blocked caveolin-1 Y14 phosphorylation in high glucose (HG)-treated MCs and in the renal cortex of diabetic rats. The Src-specific inhibitor SU-6656 prevented the HG-induced association between PKC-β1 and caveolin-1 and PKC-β1 membrane translocation, whereas PKC-β1 small interfering RNA failed to block Src activation, indicating that Src kinase is upstream of PKC-β1 activation. Although LY-333531 blocked PKC-β1 membrane translocation, it had no effect on the PKC-β1/caveolin-1 association, suggesting that PKC-β1 activation requires the interaction of caveolin-1 and PKC-β1. PKC-β1-mediated Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation in response to HG were prevented by SU-6656 and nonphosphorylatable mutant caveolin-1 Y14A. In conclusion, Src activation by HG mediates the PKC-β1/caveolin-1 association and PKC-β1 activation, which assists in caveolin-1 Y14 phosphorylation by Src kinase. The downstream effects, including Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation, require caveolin-1 Y14 phosphorylation. Caveolin-1 is thus an important mediator of the profibrogenic process in diabetic renal disease.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Fang-Fang Peng
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Jia-Lin Li
- Gannan Medical University, Ganzhou, People's Republic of China; and
| | - Feng Ye
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Shao-Qing Lei
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Bai-Fang Zhang
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857504. [PMID: 24738074 PMCID: PMC3967716 DOI: 10.1155/2014/857504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/02/2022]
Abstract
Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.
Collapse
|
9
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
10
|
Yu P, Han W, Villar VAM, Yang Y, Lu Q, Lee H, Li F, Quinn MT, Gildea JJ, Felder RA, Jose PA. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol 2014; 2:570-9. [PMID: 24688893 PMCID: PMC3969603 DOI: 10.1016/j.redox.2014.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022] Open
Abstract
NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5) gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs) are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT) and hypertensive subjects (HT). We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6-14/group). Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA), effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (-45.1±3.2% vs. mock-siRNA, n=6-8) in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (-32.5±1.8%) than HT (-14.8±1.8). In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.
Collapse
Affiliation(s)
- Peiying Yu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weixing Han
- Department of Cardiovascular Medicine, The First Hospital Affiliated to Anhui Medical University, Hefei, Anhui, PR China
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yu Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Quansheng Lu
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Hewang Lee
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fengmin Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark T Quinn
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT, USA
| | - John J Gildea
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA ; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Abstract
The myogenic response has a critical role in regulation of blood flow to the brain. Increased intraluminal pressure elicits vasoconstriction, whereas decreased intraluminal pressure induces vasodilatation, thereby maintaining flow constant over the normal physiologic blood pressure range. Improved understanding of the molecular mechanisms underlying the myogenic response is crucial to identify deficiencies with pathologic consequences, such as cerebral vasospasm, hypertension, and stroke, and to identify potential therapeutic targets. Three mechanisms have been suggested to be involved in the myogenic response: (1) membrane depolarization, which induces Ca(2+) entry, activation of myosin light chain kinase, phosphorylation of the myosin regulatory light chains (LC(20)), increased actomyosin MgATPase activity, cross-bridge cycling, and vasoconstriction; (2) activation of the RhoA/Rho-associated kinase (ROCK) pathway, leading to inhibition of myosin light chain phosphatase by phosphorylation of MYPT1, the myosin targeting regulatory subunit of the phosphatase, and increased LC(20) phosphorylation; and (3) activation of the ROCK and protein kinase C pathways, leading to actin polymerization and the formation of enhanced connections between the actin cytoskeleton, plasma membrane, and extracellular matrix to augment force transmission. This review describes these three mechanisms, emphasizing recent developments regarding the importance of dynamic actin polymerization in the myogenic response of the cerebral vasculature.
Collapse
|
12
|
Abstract
Although c-Abl and Arg non-receptor tyrosine kinases are well known for driving leukemia development, their role in solid tumors has not been appreciated until recently. Accumulating evidence now indicates that c-Abl and/or Arg are activated in some solid tumor cell lines via unique mechanisms that do not involve gene mutation/translocation, and c-Abl/Arg activation promotes matrix degradation, invasion, proliferation, tumorigenesis, and/or metastasis, depending on the tumor type. However, some data suggest that c-Abl also may suppress invasion, proliferation, and tumorigenesis in certain cell contexts. Thus, c-Abl/Arg may serve as molecular switches that suppress proliferation and invasion in response to some stimuli (e.g., ephrins) or when inactive/regulated, or as promote invasion and proliferation in response to other signals (e.g., activated growth factor receptors, loss of inhibitor expression), which induce sustained activation. Clearly, more data are required to determine the extent and prevalence of c-Abl/Arg activation in primary tumors and during progression, and additional animal studies are needed to substantiate in vitro findings. Furthermore, c-Abl/Arg inhibitors have been used in numerous solid tumor clinical trials; however, none of these trials were restricted to patients whose tumors expressed highly activated c-Abl/Arg (targeted trial). Targeted trials are critical for determining whether c-Abl/Arg inhibitors can be effective treatment options for patients whose tumors are driven by c-Abl/Arg.
Collapse
|
13
|
Wang R, Mercaitis OP, Jia L, Panettieri RA, Tang DD. Raf-1, actin dynamics, and abelson tyrosine kinase in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2012; 48:172-8. [PMID: 23087049 DOI: 10.1165/rcmb.2012-0315oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Raf-1 is a serine/threonine protein kinase that has an essential role in cell proliferation. The mechanisms that regulate Raf-1 in airway smooth muscle are not well understood. In this study, treatment with platelet-derived growth factor (PDGF) induced spatial redistribution of Raf-1 from the cytoplasm to the periphery of human airway smooth muscle cells. Moreover, a pool of Raf-1 was found in F-actin of human airway smooth muscle cells. Activation with PDGF led to an increase in the association of Raf-1 with cytoskeletal actin. Treatment of cells with the actin polymerization inhibitor latrunculin A (LAT-A), but not the microtubule depolymerizer nocodazole, inhibited the interaction of Raf-1 with actin in response to PDGF activation. Because abelson tyrosine kinase (Abl) is known to specifically regulate actin dynamics in smooth muscle, the role of Abl in modulating the coupling of Raf-1 with actin was also evaluated. Abl knockdown by RNA interference attenuated the association of Raf-1 with actin, which is recovered by Abl rescue. Treatment with LAT-A, but not nocodazole, inhibited the spatial redistribution of Raf-1 during PDGF activation. However, treatment with both LAT-A and nocodazole attenuated smooth muscle cell proliferation. Finally, Abl knockdown attenuated the redistribution of Raf-1 and cell proliferation, which were restored by Abl reexpression. The results suggest a novel mechanism that the interaction of Raf-1 with cytoskeletal actin is critical for Raf-1 redistribution and airway smooth muscle cell proliferation during activation with the growth factor.
Collapse
Affiliation(s)
- Ruping Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
14
|
Jia L, Wang R, Tang DD. Abl regulates smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 activation. Am J Physiol Cell Physiol 2012; 302:C1026-34. [PMID: 22301057 DOI: 10.1152/ajpcell.00373.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abl is a nonreceptor tyrosine kinase that has a role in regulating migration and adhesion of nonmuscle cells as well as smooth muscle contraction. The role of Abl in smooth muscle cell proliferation has not been investigated. In this study, treatment with endothelin-1 (ET-1) and platelet-derived growth factor (PDGF) increased Abl phosphorylation at Tyr(412) (an indication of Abl activation) in vascular smooth muscle cells. To assess the role of Abl in smooth muscle cell proliferation, we generated stable Abl knockdown cells by using lentivirus-mediated RNA interference. ET-1- and PDGF-induced cell proliferation was attenuated in Abl knockdown cells compared with cells expressing control shRNA and uninfected cells. Abl silencing also arrested cell cycle progression from G(0)/G(1) to S phase. Furthermore, activation of smooth muscle cells with ET-1 and PDGF induced phosphorylation of ERK1/2 and Akt. Abl knockdown attenuated ERK1/2 phosphorylation in smooth muscle cells stimulated with ET-1 and PDGF. However, Akt phosphorylation upon stimulation with ET-1 and PDGF was not reduced. Because Abl is known to regulate actin polymerization in smooth muscle, we also evaluated the effects of inhibition of actin polymerization on phosphorylation of ERK1/2. Pretreatment with the actin polymerization inhibitor latrunculin-A also blocked ERK1/2 phosphorylation during activation with ET-1 and PDGF. The results suggest that Abl may regulate smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 phosphorylation during mitogenic activation.
Collapse
Affiliation(s)
- Li Jia
- Center for Cardiovascular Sciences, Albany Medical College, NY 12208, USA
| | | | | |
Collapse
|
15
|
Ricchiuti V, Lapointe N, Pojoga L, Yao T, Tran L, Williams GH, Adler GK. Dietary sodium intake regulates angiotensin II type 1, mineralocorticoid receptor, and associated signaling proteins in heart. J Endocrinol 2011; 211:47-54. [PMID: 21746791 DOI: 10.1530/joe-10-0458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Liberal or high-sodium (HS) intake, in conjunction with an activated renin-angiotensin-aldosterone system, increases cardiovascular (CV) damage. We tested the hypothesis that sodium intake regulates the type 1 angiotensin II receptor (AT(1)R), mineralocorticoid receptor (MR), and associated signaling pathways in heart tissue from healthy rodents. HS (1.6% Na(+)) and low-sodium (LS; 0.02% Na(+)) rat chow was fed to male healthy Wistar rats (n=7 animals per group). Protein levels were assessed by western blot and immunoprecipitation analysis. Fractionation studies showed that MR, AT(1)R, caveolin-3 (CAV-3), and CAV-1 were located in both cytoplasmic and membrane fractions. In healthy rats, consumption of an LS versus a HS diet led to decreased cardiac levels of AT(1)R and MR. Decreased sodium intake was also associated with decreased cardiac levels of CAV-1 and CAV-3, decreased immunoprecipitation of AT(1)R-CAV-3 and MR-CAV-3 complexes, but increased immunoprecipitation of AT(1)R/MR complexes. Furthermore, decreased sodium intake was associated with decreased cardiac extracellular signal-regulated kinase (ERK), phosphorylated ERK (pERK), and pERK/ERK ratio; increased cardiac striatin; decreased endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS), but increased peNOS/eNOS ratio; and decreased cardiac plasminogen activator inhibitor-1. Dietary sodium restriction has beneficial effects on the cardiac expression of factors associated with CV injury. These changes may play a role in the cardioprotective effects of dietary sodium restriction.
Collapse
MESH Headings
- Animals
- Caveolin 1/drug effects
- Caveolin 1/physiology
- Caveolin 3/drug effects
- Caveolin 3/physiology
- Dose-Response Relationship, Drug
- Heart/drug effects
- Heart/physiology
- Male
- Models, Animal
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/physiology
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sodium, Dietary/pharmacology
Collapse
Affiliation(s)
- Vincent Ricchiuti
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Intracrine action of angiotensin II in the intact ventricle of the failing heart: angiotensin II changes cardiac excitability from within. Mol Cell Biochem 2011; 358:309-15. [PMID: 21744071 DOI: 10.1007/s11010-011-0981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
The influence of intracellular injection of angiotensin II (Ang II) on electrical properties of single right ventricular fibers from the failing heart of cardiomyopathic hamsters (TO2) was investigated in the intact ventricle of 8-month-old animals. Intracellular injection was performed using pressure pulses (40-70 psi) for short periods of time (20 ms) while recoding the action potential simultaneously from the same fiber. The results indicated that intracellular Ang II caused a hyperpolarization of 7.7 mV ± 4.3 mV (n = 39) (4 animals) (P < 0.05) followed by a small fall in membrane potential. The action potential duration was significantly increased at 50% and at 90% repolarization, and the refractoriness was significantly enhanced. The effect of intracellular Ang II on action potential duration was related to the inhibition of potassium conductance through PKC activation because Bis-1 (360 nM), a selective PKC inhibitor, abolished the effect of the peptide. Injections performed in different fibers of the same ventricle showed a variable effect of Ang II on action potential duration and generated spontaneous rhythmicity. The effect of intracellular Ang II on action potential duration and cardiac refractoriness remains for more than 1 h after interruption of the intracellular injection of the peptide.
Collapse
|
17
|
Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011; 32:1551-65. [PMID: 21699940 PMCID: PMC3137727 DOI: 10.1016/j.peptides.2011.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Although renin, the rate-limiting enzyme of the renin-angiotensin system (RAS), was first discovered by Robert Tigerstedt and Bergman more than a century ago, the research on the RAS still remains stronger than ever. The RAS, once considered to be an endocrine system, is now widely recognized as dual (circulating and local/tissue) or multiple hormonal systems (endocrine, paracrine and intracrine). In addition to the classical renin/angiotensin I-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor (AT₁/AT₂) axis, the prorenin/(Pro)renin receptor (PRR)/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, and the Ang IV/AT₄/insulin-regulated aminopeptidase (IRAP) axis have recently been discovered. Furthermore, the roles of the evolving RAS have been extended far beyond blood pressure control, aldosterone synthesis, and body fluid and electrolyte homeostasis. Indeed, novel actions and underlying signaling mechanisms for each member of the RAS in physiology and diseases are continuously uncovered. However, many challenges still remain in the RAS research field despite of more than one century's research effort. It is expected that the research on the expanded RAS will continue to play a prominent role in cardiovascular, renal and hypertension research. The purpose of this article is to review the progress recently being made in the RAS research, with special emphasis on the local RAS in the kidney and the newly discovered prorenin/PRR/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, the Ang IV/AT₄/IRAP axis, and intracrine/intracellular Ang II. The improved knowledge of the expanded RAS will help us better understand how the classical renin/ACE/Ang II/AT₁ receptor axis, extracellular and/or intracellular origin, interacts with other novel RAS axes to regulate blood pressure and cardiovascular and kidney function in both physiological and diseased states.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, the University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
18
|
Rhee CK, Kim JW, Park CK, Kim JS, Kang JY, Kim SJ, Kim SC, Kwon SS, Kim YK, Park SH, Lee SY. Effect of imatinib on airway smooth muscle thickening in a murine model of chronic asthma. Int Arch Allergy Immunol 2011; 155:243-51. [PMID: 21293142 DOI: 10.1159/000321261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Asthma is characterized by airway hyperresponsiveness (AHR), inflammation and remodeling. The tyrosine kinase inhibitor imatinib mesylate was developed to inhibit BCR-ABL kinase activity; however, it also has potent inhibitory activity against the c-Kit and platelet-derived growth factor receptors. The present study aimed to determine whether imatinib suppresses airway smooth muscle (ASM) remodeling and whether its effect is associated with growth factors such as transforming growth factor (TGF)-β1 and stem cell factor (SCF). METHODS We developed a mouse model of airway remodeling, which includes smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice a week for 3 months. Mice were treated with imatinib during the OVA challenge. RESULTS Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation and AHR compared with control mice. In addition, the mice chronically exposed to OVA developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of imatinib significantly inhibited the development of AHR, eosinophilic inflammation and, importantly, ASM remodeling in mice chronically exposed to OVA. Imatinib treatment significantly reduced the levels of interleukin-4, -5 and -13. In addition, TGF-β1 and SCF were significantly reduced in the imatinib-treated animals. CONCLUSIONS These results suggest that imatinib administration can prevent not only airway inflammation, but also airway remodeling associated with chronic allergen challenge. Imatinib may provide a clinically attractive therapy for chronic severe asthma.
Collapse
Affiliation(s)
- Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 2011; 9:956-70. [PMID: 21119733 DOI: 10.1038/nrd3297] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor and non-receptor tyrosine kinases are involved in multiple proliferative signalling pathways. Imatinib, one of the first tyrosine kinase inhibitors (TKIs) to be approved, revolutionized the treatment of chronic myelogenous leukaemia, and other TKIs with different spectra of kinase inhibition are used to treat renal cell carcinoma, non-small-cell lung cancer and colon cancer. Studies also support the potential use of TKIs as anti-proliferative agents in non-malignant disorders such as cardiac hypertrophy, and in benign-proliferative disorders including pulmonary hypertension, lung fibrosis, rheumatoid disorders, atherosclerosis, in-stent restenosis and glomerulonephritis. In this Review, we provide an overview of the most recent developments--both experimental as well as clinical--regarding the therapeutic potential of TKIs in non-malignant disorders.
Collapse
|
20
|
Masuda S, Nakano K, Funakoshi K, Zhao G, Meng W, Kimura S, Matoba T, Miyagawa M, Iwata E, Sunagawa K, Egashira K. Imatinib Mesylate-Incorporated Nanoparticle-Eluting Stent Attenuates In-Stent Neointimal Formation in Porcine Coronary Arteries. J Atheroscler Thromb 2011; 18:1043-53. [DOI: 10.5551/jat.8730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Takaguri A, Shirai H, Kimura K, Hinoki A, Eguchi K, Carlile-Klusacek M, Yang B, Rizzo V, Eguchi S. Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol 2010; 50:545-51. [PMID: 21172357 DOI: 10.1016/j.yjmcc.2010.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/22/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
A metalloprotease, ADAM17, mediates the generation of mature ligands for the epidermal growth factor receptor (EGFR). This is the key signaling step by which angiotensin II (AngII) induces EGFR transactivation leading to hypertrophy and migration of vascular smooth muscle cells (VSMCs). However, the regulatory mechanism of ADAM17 activity remains largely unclear. Here we hypothesized that caveolin-1 (Cav1), the major structural protein of a caveolae, a membrane microdomain, is involved in the regulation of ADAM17. In cultured VSMCs, infection of adenovirus encoding Cav1 markedly inhibited AngII-induced EGFR ligand shedding, EGFR transactivation, ERK activation, hypertrophy and migration, but not intracellular Ca(2+) elevation. Methyl-β-cyclodextrin and filipin, reagents that disrupt raft structure, both stimulated an EGFR ligand shedding and EGFR transactivation in VSMCs. In addition, non-detergent sucrose gradient membrane fractionations revealed that ADAM17 cofractionated with Cav1 in lipid rafts. These results suggest that lipid rafts and perhaps caveolae provide a negative regulatory environment for EGFR transactivation linked to vascular remodeling induced by AngII. These novel findings may provide important information to target cardiovascular diseases under the enhanced renin angiotensin system.
Collapse
Affiliation(s)
- Akira Takaguri
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schreiner CE, Kumerz M, Gesslbauer J, Schachner D, Joa H, Erker T, Atanasov AG, Heiss EH, Dirsch VM. Resveratrol blocks Akt activation in angiotensin II- or EGF-stimulated vascular smooth muscle cells in a redox-independent manner. Cardiovasc Res 2010; 90:140-7. [PMID: 21071431 PMCID: PMC3058730 DOI: 10.1093/cvr/cvq355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims Resveratrol (RV), an antioxidant, inhibits angiotensin II (Ang II)-induced hypertrophy and Ang II- or epidermal growth factor (EGF)-induced Akt phosphorylation in rat vascular smooth muscle cells (VSMCs). Both signalling pathways are reported to utilize reactive oxygen species (ROS). The aim of this study was to show whether RV reduces the ROS level in Ang II- or EGF-activated VSMCs and whether reduction of ROS causes the impeded signalling towards Akt in the presence of RV. Methods and results We show here that RV reduces intracellular ROS and extracellular H2O2 release from VSMCs as measured using 2′,7′-dichlorodihydrofluorescein-diacetate and Amplex Red™. Since NADPH oxidases (Nox) 1 and 4 are major ROS sources in VSMCs, we examined their need for Akt phosphorylation in response to Ang II or EGF. Experiments using the blocking peptide gp91ds-tat verified a role for Nox1 in Ang II signalling towards Akt, but excluded a role for Nox1 in the respective EGF signalling. A small interfering RNA-mediated knock-down of Nox4 showed that Nox4 was not required for Ang II- or EGF-induced Akt phosphorylation. Use of the flavoprotein inhibitor diphenyleneiodonium, N-acetyl-cysteine, and non-antioxidant RV derivatives revealed that the antioxidant capacity of RV is not required for the inhibition of Akt phosphorylation, in both rat and human VSMCs. Conclusion Thus, although RV acts as an antioxidant, the antihypertrophic response of RV in VSMCs and the signalling downstream of the EGF receptor towards Akt seem to be largely redox independent.
Collapse
Affiliation(s)
- Cornelia E Schreiner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Borza CM, Chen X, Mathew S, Mont S, Sanders CR, Zent R, Pozzi A. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J Biol Chem 2010; 285:40114-24. [PMID: 20940300 DOI: 10.1074/jbc.m110.156729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury.
Collapse
Affiliation(s)
- Corina M Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee 37212-2372, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Peng F, Gao B, Ingram AJ, Krepinsky JC. Mechanical strain-induced RhoA activation requires NADPH oxidase-mediated ROS generation in caveolae. Antioxid Redox Signal 2010; 13:959-73. [PMID: 20380579 DOI: 10.1089/ars.2009.2908] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased intraglomerular pressure leads to kidney fibrosis, and can be modeled by exposing glomerular mesangial cells (MC) to mechanical strain. We previously showed that RhoA mediates strain-induced matrix production. Here we investigate whether reactive oxygen species (ROS) are required for RhoA activation. Maximal RhoA activation (1 min) was inhibited by ROS scavenge or NADPH oxidase inhibition. Strain activated NADPH oxidase, with Rac1, p47(phox), and p67(phox) membrane translocation, and Rac1 activation, observed within 30 sec. Epidermal growth factor receptor (EGFR) inhibition blocked RhoA and Rac1 activation, p67(phox) membrane translocation, and ROS generation. However, EGFR activation was unaffected by ROS inhibitors, placing it upstream of ROS generation. We previously showed, using chemical disruption, that caveolae mediate strain-induced EGFR and RhoA activation. In MC from caveolin-1 knockout mice, which lack caveolae, RhoA and Rac1 activation, p67(phox) membrane translocation, and ROS generation were absent. These were rescued by caveolin-1 re-expression. ROS generation, Rac1 activation, and p67(phox) membrane translocation were also prevented by Src inhibition. They were absent in MC stably infected with caveolin-1 Y14A, a mutant resistant to Src phosphorylation. In MC, caveolae are thus important mediators of strain-induced ROS generation through NADPH oxidase, mediating a signaling cascade which results in RhoA activation.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | | | | | |
Collapse
|
25
|
Ma Y, Qiao X, Falone AE, Reslan OM, Sheppard SJ, Khalil RA. Gender-specific reduction in contraction is associated with increased estrogen receptor expression in single vascular smooth muscle cells of female rat. Cell Physiol Biochem 2010; 26:457-70. [PMID: 20798531 DOI: 10.1159/000320569] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 01/21/2023] Open
Abstract
Gender differences in the incidence of cardiovascular disease have been related to plasma estrogen levels; however, the role of vascular estrogen receptor (ER) subtypes in these sex differences is less clear. We tested whether the gender differences in vascular smooth muscle (VSM) function reflect differential expression/activity of ERalpha, ERbeta and the newly-identified GPR30. Single aortic VSM cells (VSMCs) were freshly isolated from male and female Sprague-Dawley rats, and their contraction to phenylephrine (PHE, 10(-5) M), AngII (10(-7) M) and membrane-depolarization by KCl (51 mM) was measured in the absence or presence of 10(-6) M 17beta-estradiol (E2, stimulant of most ERs), PPT (ERalpha agonist), DPN (ERbeta agonist), and ICI 182,780 (an ERalpha/ERbeta antagonist with GPR30 agonistic properties). The cells were fixed and fluorescently labeled with ERalpha, ERbeta or GPR30 antibody, and the subcellular distribution of ERs was examined using digital imaging microscopy. The mRNA expression and protein amount of aortic ER subtypes was examined using RT-PCR and Western blots. PHE, AngII, and KCl caused less contraction in VSMCs of females than males. Pretreatment of VSMCs with E2 reduced PHE-, AngII- and KCl-induced contraction in both males and females. PPT caused similar inhibition of PHE-, AngII- and KCl-induced contraction as E2, suggesting a role of ERalpha. DPN mainly inhibited PHE and KCl contraction, suggesting an interaction between ERbeta and Ca(2+) channels. ICI 182,780 did not reduce aortic VSMC contraction, suggesting little role for GPR30. RT-PCR and Western blots revealed greater expression of ERalpha and ERbeta in VSMCs of females than males, but similar amounts of GPR30. The total immunofluorescence signal for ERalpha and ERbeta was greater in VSMCs of females than males, and was largely localized in the nucleus. GPR30 fluorescence was similar in VSMCs of males and females, and was mainly in the cytosol. In PPT treated cells, nuclear ERalpha signal was enhanced. DPN did not affect the distribution of ERbeta, and ICI 182,780 did not significantly increase GPR30 in the cell surface. Thus, ER subtypes demonstrate similar responsiveness to specific agonists in VSMCs of male and female rats. The reduced contraction in VSMCs of females could be due to gender-related increase in the expression of ERalpha and ERbeta.
Collapse
Affiliation(s)
- Yukui Ma
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston
| | | | | | | | | | | |
Collapse
|
26
|
Jia L, Tang DD. Abl activation regulates the dissociation of CAS from cytoskeletal vimentin by modulating CAS phosphorylation in smooth muscle. Am J Physiol Cell Physiol 2010; 299:C630-7. [PMID: 20610769 DOI: 10.1152/ajpcell.00095.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abl is a nonreceptor tyrosine kinase that is required for smooth muscle contraction. However, the mechanism by which Abl regulates smooth muscle contraction is not completely understood. In the present study, Abl underwent phosphorylation at Tyr412 (an index of Abl activation) in smooth muscle in response to contractile activation. Treatment with a cell-permeable decoy peptide, but not the control peptide, attenuated Abl phosphorylation during contractile stimulation. Treatment with the decoy peptide did not affect the association of Abl with the cytoskeletal protein vinculin and the spatial location of vinculin in smooth muscle. Inhibition of Abl phosphorylation by the decoy peptide attenuated the agonist-induced phosphorylation of Crk-associated substrate (CAS), an adapter protein participating in the signaling processes that regulate force development in smooth muscle. Additionally, previous studies have shown that contractile stimulation triggers the dissociation of CAS from the vimentin network, which is important for cytoskeletal signaling and contraction in smooth muscle. In this report, the decrease in the amount of CAS in cytoskeletal vimentin in response to contractile activation was reversed by the Abl inhibition with the decoy peptide. Moreover, force development and the enhancement of F-actin-to-G-actin ratios (an indication of actin polymerization) upon contractile activation were also attenuated by the Abl inhibition. However, myosin phosphorylation induced by contractile activation was not affected by the inhibition of Abl. These results suggest that Abl regulates the dissociation of CAS from the vimentin network, actin polymerization, and contraction by modulating CAS phosphorylation in smooth muscle.
Collapse
Affiliation(s)
- Li Jia
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | |
Collapse
|
27
|
Maniatis NA, Balyasnikova IV, Metzger R, Castellon M, Visintine DJ, Schwartz DE, Minshall RD, Danilov SM. Reduced expression of angiotensin I-converting enzyme in caveolin-1 knockout mouse lungs. Microvasc Res 2010; 80:250-7. [PMID: 20430040 DOI: 10.1016/j.mvr.2010.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Reduced lung capillary expression of angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, and of caveolin-1, an important regulator of endothelial cell signalling, has been demonstrated in various models of pulmonary arterial hypertension (PAH). We addressed the relationship between PAH and ACE expression in caveolin-1 knockout mice (Cav1(-/-)), which have moderate PAH. Tissue ACE activity was reduced by 50% in lungs from 3-month-old Cav1(-/-) mice compared to wild type (WT). A similar reduction in lung endothelial ACE expression was observed by measuring the lung uptake of (125)I-labeled monoclonal anti-ACE antibody and by quantitative immunohistochemistry. These alterations in ACE are limited to capillary segments of the pulmonary circulation. Functionally, the increase in pulmonary artery pressure (PAP) in response to ACE conversion of angiotensin I to angiotensin II in isolated, perfused mouse lungs was reduced significantly in Cav1(-/-) mice compared to WT. Thus, these complementary approaches demonstrate the dependence of lung microvascular endothelial cell ACE protein expression on caveolin-1 expression and underscore the vital role of caveolin-1-regulated pulmonary vascular homeostasis on endothelial ACE expression and activity. In summary, we have revealed a novel role of caveolin-1 in the regulation of ACE expression in pulmonary capillary endothelial cells. Further understanding of the mechanism by which reduced caveolin-1 expression leads altered pulmonary vascular development, PAH, and reduced ACE expression may have important clinical implications in patients with these severe lung diseases.
Collapse
|
28
|
Pojoga LH, Adamová Z, Kumar A, Stennett AK, Romero JR, Adler GK, Williams GH, Khalil RA. Sensitivity of NOS-dependent vascular relaxation pathway to mineralocorticoid receptor blockade in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol 2010; 298:H1776-88. [PMID: 20363891 DOI: 10.1152/ajpheart.00661.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endothelial caveolin-1 (cav-1) is an anchoring protein in plasma membrane caveolae where it binds endothelial nitric oxide synthase (eNOS) and limits its activation, particularly in animals fed a high salt (HS) diet. Cav-1 also interacts with steroid receptors such as the mineralocorticoid receptor (MR). To test the hypothesis that vascular reactivity is influenced by an interplay between MR and cav-1 during HS diet, we examined the effects of MR blockade on NOS-mediated vascular relaxation in normal and cav-1-deficient mice. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) were fed for 14 days a HS (4% NaCl) diet with and without the MR antagonist eplerenone (Epl; 100 mg x kg(-1) x day(-1)). After systolic blood pressure (BP) was measured, the thoracic aorta was isolated for measurement of vascular reactivity, and the aorta and heart were used for measurement of eNOS and MR expression. BP was not different between WT + Epl and WT, but was higher in cav-1(-/-) + Epl than in cav-1(-/-) mice. Phenylephrine (Phe)-induced vascular contraction was less in cav-1(-/-) than WT, and significantly enhanced in cav-1(-/-) + Epl than in cav-1(-/-), but not in WT + Epl compared with WT. Endothelium removal and NOS blockade by N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced Phe contraction in cav-1(-/-), but not cav-1(-/-) + Epl. ACh-induced aortic relaxation was reduced in cav-1(-/-) + Epl versus cav-1(-/-), but not in WT + Epl compared with WT. Endothelium removal, l-NAME, and the guanylate cyclase inhibitor ODQ abolished the large ACh-induced relaxation in cav-1(-/-) and the remaining relaxation in the cav-1(-/-) + Epl but had similar inhibitory effect in WT and WT + Epl. Real-time RT-PCR indicated decreased eNOS mRNA expression in the aorta and heart, and Western blots revealed decreased total eNOS in the heart of cav-1(-/-) + Epl compared with cav-1(-/-). Vascular and cardiac MR expression was less in cav-1(-/-) than WT, but not in cav-1(-/-) + Epl compared with cav-1(-/-). Plasma aldosterone (Aldo) was not different between WT and cav-1(-/-) mice nontreated or treated with Epl. Thus in cav-1 deficiency states and HS diet MR blockade is associated with increased BP, enhanced vasoconstriction, and decreased NOS-mediated vascular relaxation and eNOS expression. The data suggest that, in the absence of cav-1, MR activation plays a beneficial role in regulating eNOS expression/activity and, consequently, the vascular function during HS diet.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Norambuena A, Palma F, Poblete MI, Donoso MV, Pardo E, González A, Huidobro-Toro JP. UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism. J Biol Chem 2009; 285:2940-50. [PMID: 19996104 DOI: 10.1074/jbc.m109.081166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Extracellular nucleotides transmit signals into the cells through the P2 family of cell surface receptors. These receptors are amply expressed in human blood vessels and participate in vascular tone control; however, their signaling mechanisms remain unknown. Here we show that in smooth muscle cells of isolated human chorionic arteries, the activation of the P2Y(2) receptor (P2Y(2)R) induces not only its partition into membrane rafts but also its rapid internalization. Cholesterol depletion with methyl-beta-cyclodextrin reduced the association of the agonist-activated receptor into membrane rafts but did not affect either the UTP-mediated vasoconstrictions or the vasomotor responses elicited by both serotonin and KCl. Ex vivo perfusion of human chorionic artery segments with 1-10 mum UTP, a selective P2Y(2)R agonist, displaced the P2Y(2)R localization into membrane rafts within 1 min, a process preceded by the activation of both RhoA and Rac1 GTPases. AG1478, a selective and potent inhibitor of the epidermal growth factor receptor tyrosine kinase activity, not only blocked the UTP-induced vasomotor activity but also abrogated both RhoA and Rac1 activation, the P2Y(2)R association with membrane rafts, and its internalization. Altogether, these results show for the first time that the plasma membrane distribution of the P2Y(2)R is transregulated by the epidermal growth factor receptor, revealing an unsuspected functional interplay that controls both the membrane distribution and the vasomotor activity of the P2Y(2)R in intact human blood vessels.
Collapse
Affiliation(s)
- Andrés Norambuena
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Centro de Regulación Celular y Patología JV Luco, Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
31
|
Singleton PA, Pendyala S, Gorshkova IA, Mambetsariev N, Moitra J, Garcia JGN, Natarajan V. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium. J Biol Chem 2009; 284:34964-75. [PMID: 19833721 DOI: 10.1074/jbc.m109.013771] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) generation, particularly by the endothelial NADPH oxidase family of proteins, plays a major role in the pathophysiology associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. We examined potential regulators of ROS production and discovered that hyperoxia treatment of human pulmonary artery endothelial cells induced recruitment of the vesicular regulator, dynamin 2, the non-receptor tyrosine kinase, c-Abl, and the NADPH oxidase subunit, p47(phox), to caveolin-enriched microdomains (CEMs). Silencing caveolin-1 (which blocks CEM formation) and/or c-Abl expression with small interference RNA inhibited hyperoxia-mediated tyrosine phosphorylation and association of dynamin 2 with p47(phox) and ROS production. In addition, treatment of human pulmonary artery endothelial cells with dynamin 2 small interfering RNA or the dynamin GTPase inhibitor, Dynasore, attenuated hyperoxia-mediated ROS production and p47(phox) recruitment to CEMs. Using purified recombinant proteins, we observed that c-Abl tyrosine-phosphorylated dynamin 2, and this phosphorylation increased p47(phox)/dynamin 2 association (change in the dissociation constant (K(d)) from 85.8 to 6.9 nm). Furthermore, exposure of mice to hyperoxia increased ROS production, c-Abl activation, dynamin 2 association with p47(phox), and pulmonary leak, events that were attenuated in the caveolin-1 knock-out mouse confirming a role for CEMs in ROS generation. These results suggest that hyperoxia induces c-Abl-mediated dynamin 2 phosphorylation required for recruitment of p47(phox) to CEMs and subsequent ROS production in lung endothelium.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Basset O, Deffert C, Foti M, Bedard K, Jaquet V, Ogier-Denis E, Krause KH. NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle. Antioxid Redox Signal 2009; 11:2371-84. [PMID: 19309260 DOI: 10.1089/ars.2009.2584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The superoxide-generating NADPH oxidase NOX1 is thought to be involved in signaling by the angiotensin II-receptor AT1R. However, underlying signaling steps are poorly understood. In this study, we investigated the effect of AngII on aortic smooth muscle from wild-type and NOX1-deficient mice. NOX1-deficient cells showed decreased basal ROS generation and did not produce ROS in response to AngII. Unexpectedly, AngII-dependent Ca(2+) signaling was markedly decreased in NOX1-deficient cells. Immunostaining demonstrated that AT1R was localized on the plasma membrane in wild-type, but intracellularly in NOX1-deficient cells. Immunohistochemistry and immunoblotting showed a decreased expression of AT1R in the aorta of NOX1-deficient mice. To investigate the basis of the abnormal AT1R targeting, we studied caveolin expression and phosphorylation. The amounts of total caveolin and of caveolae were not different in NOX1-deficient mice, but a marked decrease occurred in the phosphorylated form of caveolin. Exogenous H(2)O(2) or transfection of a NOX1 plasmid restored AngII responses in NOX1-deficient cells. Based on these findings, we propose that NOX1-derived reactive oxygen species regulate cell-surface expression of AT1R through mechanisms including caveolin phosphorylation. The lack cell-surface AT1R expression in smooth muscle could be involved in the decreased blood pressure in NOX1-deficient mice.
Collapse
MESH Headings
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Animals
- Aorta/anatomy & histology
- Calcium/metabolism
- Caveolins/metabolism
- Cells, Cultured
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- NADH, NADPH Oxidoreductases/deficiency
- NADH, NADPH Oxidoreductases/genetics
- NADPH Oxidase 1
- Phosphorylation
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Olivier Basset
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Bregeon J, Loirand G, Pacaud P, Rolli-Derkinderen M. Angiotensin II induces RhoA activation through SHP2-dependent dephosphorylation of the RhoGAP p190A in vascular smooth muscle cells. Am J Physiol Cell Physiol 2009; 297:C1062-70. [PMID: 19692654 DOI: 10.1152/ajpcell.00174.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) is a major regulator of blood pressure that essentially acts through activation of ANG II type 1 receptor (AT1R) of vascular smooth muscle cells (VSMC). AT1R activates numerous intracellular signaling pathways, including the small G protein RhoA known to control several VSMC functions. Nevertheless, the mechanisms leading to RhoA activation by AT1R are unknown. RhoA activation can result from activation of RhoA exchange factor and/or inhibition of Rho GTPase-activating protein (GAP). Here we hypothesize that a RhoGAP could participate to RhoA activation induced by ANG II in rat aortic VSMC. The knockdown of the RhoGAP p190A by small interfering RNA (siRNA) abolishes the activation of RhoA-Rho kinase pathway induced after 5 min of ANG II (0.1 microM) stimulation in rat aortic VSMC. We then show that AT1R activation induces p190A dephosphorylation and inactivation. In addition, expression of catalytically inactive or phosphoresistant p190A mutants increases the basal activity of RhoA-Rho kinase pathway, whereas phosphomimetic mutant inhibits early RhoA activation by ANG II. Using siRNA and mutant overexpression, we then demonstrate that the tyrosine phosphatase SHP2 is necessary for 1) maintaining p190A basally phosphorylated and activated by the tyrosine kinase c-Abl, and 2) inducing p190A dephosphorylation and RhoA activation in response to AT1R activation. Our work then defines p190A as a new mediator of RhoA activation by ANG II in VSMC.
Collapse
Affiliation(s)
- Jeremy Bregeon
- Institut National de la Santé et de la Recherche Médicale, UMR915, l'institut du thorax, 44322 Nantes cedex 3, France
| | | | | | | |
Collapse
|
34
|
Chen S, Wang R, Li QF, Tang DD. Abl knockout differentially affects p130 Crk-associated substrate, vinculin, and paxillin in blood vessels of mice. Am J Physiol Heart Circ Physiol 2009; 297:H533-9. [PMID: 19542491 DOI: 10.1152/ajpheart.00237.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin polymerization has recently emerged as an important cellular process that regulates smooth muscle contraction. Abelson tyrosine kinase (Abl) has been implicated in the regulation of actin dynamics and force development in vascular smooth muscle. In the present study, the systolic blood pressure was lower in Abl(-/-) knockout mice compared with wild-type mice. The knockout of Abl diminished the tyrosine phosphorylation of p130 Crk-associated substrate (CAS, an adapter protein associated with smooth muscle contraction) in resistance arteries upon stimulation with phenylephrine or angiotensin II. The agonist-elicited enhancement of F-actin-to-G-actin ratios in arteries assessed by fluorescent microscopy was also reduced in Abl(-/-) mice. It has been known that vinculin is a structural protein that links actin filaments to extracellular matrix via transmembrane integrins, whereas paxillin is a signaling protein associated with focal contacts mediating actin cytoskeleton remodeling. The expression of vinculin and paxillin at protein and messenger levels was lower in arterial vessels from Abl knockout mice. However, the agonist-induced increase in myosin phosphorylation was not attenuated in arteries from Abl knockout mice. These results indicate that Abl differentially regulates Crk-associated substrate, vinculin, and paxillin in arterial vessels. The Abl-regulated cellular process and blood pressure are independent of myosin activation in vascular smooth muscle.
Collapse
Affiliation(s)
- Shu Chen
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
35
|
Li QF, Spinelli AM, Tang DD. Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 2009; 297:C299-309. [PMID: 19494238 DOI: 10.1152/ajpcell.00037.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cdc42GAP (GTPase-activating protein) has been implicated in the regulation of cell motility, adhesion, proliferation, and apoptosis. In this study, Cdc42GAP was cloned from smooth muscle tissues. Cdc42GAP, but not inactive R282A Cdc42GAP (alanine substitution at arginine-282), enhanced the GTP hydrolysis of Cdc42 in an in vitro assay. Furthermore, we developed an assay to evaluate the activity of Cdc42GAP in vivo. Stimulation of smooth muscle cells with 5-hydroxytryptamine (5-HT) resulted in the decrease in Cdc42GAP activity. The agonist-induced GAP suppression was reversed by reactive oxygen species inhibitors. Treatment with hydrogen peroxide also inhibited GAP activity in smooth muscle cells. Because the vimentin cytoskeleton undergoes dynamic changes in response to contractile activation, we evaluated the role of Cdc42GAP in regulating vimentin filaments. Smooth muscle cells were infected with retroviruses encoding wild-type Cdc42GAP or its R282A mutant. Expression of wild-type Cdc42GAP, but not mutant R282A GAP, inhibited the increase in the activation of Cdc42 upon agonist stimulation. Phosphorylation of p21-activated kinase (PAK) at Thr-423 (an indication of PAK activation), vimentin phosphorylation (Ser-56), partial disassembly and spatial remodeling, and contraction were also attenuated in smooth muscle cells expressing Cdc42GAP. Our results suggest that the activity of Cdc42GAP is regulated upon contractile activation, which is mediated by intracellular ROS. Cdc42GAP regulates the vimentin network through the Cdc42-PAK pathway in smooth muscle cells during 5-HT stimulation.
Collapse
Affiliation(s)
- Qing-Fen Li
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
36
|
Abstract
Vascular smooth muscle is a key effector in the wall of blood vessels during the pathogenesis of hypertension. Various factors directly elicit smooth muscle cell contraction, migration, growth, and hypertrophy, which lead to the progression of hypertension. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has recently emerged as a critical cellular component that regulates smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility, cell migration, hypertrophy, and growth is presented. Regulation of CAS by novel tyrosine kinases/phosphatases and unique downstream signaling partners of CAS are also discussed. These new findings establish the important role for CAS in regulating vascular smooth muscle functions. The CAS-associated processes may be new biological targets for the development of new treatment of cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
37
|
Xu Y, Henning RH, Sandovici M, van der Want JJ, van Gilst WH, Buikema H. Enhanced myogenic constriction of mesenteric artery in heart failure relates to decreased smooth muscle cell caveolae numbers and altered AT1- and epidermal growth factor-receptor function. Eur J Heart Fail 2009; 11:246-55. [PMID: 19147448 DOI: 10.1093/eurjhf/hfn027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIMS We previously showed that enhanced myogenic constriction (MC) of peripheral resistance arteries involves active AT(1) receptors in chronic heart failure (CHF). Recent data suggest both transactivation of EGF receptors and caveolae-like microdomains to be implicated in the activity of AT(1) receptors. Thus, we assessed their roles in increased MC in mesenteric arteries of CHF rats. METHODS AND RESULTS Male Wistar rats underwent myocardial infarction to induce CHF and were sacrificed after 12 weeks. The number of caveolae in smooth muscle cells (SMC) of mesenteric arteries of CHF rats was decreased by 43.6 +/- 4.0%, this was accompanied by increased MC, which was fully normalized to the level of sham by antagonists of the AT(1)-receptor (losartan) or EGF-receptor (AG1478). Acute disruption of caveolae in sham rats affected caveolae numbers and MC to a similar extent as CHF, however MC was only reversed by the antagonist of the EGF-receptor, but not by the AT(1)-receptor antagonist. Further, in sham rats, MC was increased by a sub-threshold concentration of angiotensin II and reversed by both AT(1)- as well as EGF-receptor inhibition. In contrast, increased MC by a sub-threshold concentration of EGF was only reversed by EGF receptor inhibition. CONCLUSION These findings provide the first evidence that decreased SMC caveolae numbers are involved in enhanced MC in small mesenteric arteries, by affecting AT(1)- and EGF-receptor function. This suggests a novel mechanism involved in increased peripheral resistance in CHF.
Collapse
Affiliation(s)
- Ying Xu
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
c-Abl is a non-receptor tyrosine kinase which is localized both in the nucleus and cytoplasm, and is involved in the regulation of cell growth, survival and morphogenesis. Although c-Abl nuclear function has been extensively studied, recent data also indicate an important role in cytoplasmic signalling through mitogenic and adhesive receptors. Here, we review the mechanisms by which growth factors promote cytoplasmic c-Abl activation and signalling and its function in the induction of DNA synthesis, changes in cell morphology and receptor endocytosis. The importance of de-regulated c-Abl cytoplasmic signalling in solid tumours is also discussed.
Collapse
|
39
|
Activation of ERK5 in angiotensin II-induced hypertrophy of human aortic smooth muscle cells. Mol Cell Biochem 2008; 322:171-8. [PMID: 19011954 DOI: 10.1007/s11010-008-9954-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a recently discovered mitogen-activated protein kinase (MAPK), plays a key role in the development and pathogenesis of cardiovascular disease. In order to clarify the pathophysiological significance of ERK5 in vascular remodeling, we investigated ERK5 phosphorylation in hypertrophy of human aortic smooth muscle cells (HASMCs) induced by angiotensin II (Ang II). The AT1 receptor was involved in Ang II-induced ERK5 activity. Hypertrophy was detected by the measurement of protein synthesis with [(3)H]-Leu incorporation in cultured HASMCs. Ang II rapidly induced phosphorylation of ERK5 at Thr218/Tyr220 residues in a time- and dose-dependent manner. Activation of myocyte enhancer factor-2C (MEF2C) by ERK5 was inhibited by PD98059. Transfecting HASMCs with small interfering RNA (siRNA) to silence ERK5 inhibited Ang II-induced cell hypertrophy. Thus, ERK5 phosphorylation contributes to MEF2C activation and subsequent HASMC hypertrophy induced by Ang II, for a novel molecular mechanism in cardiovascular diseases induced by Ang II.
Collapse
|
40
|
Asghar M, Chillar A, Lokhandwala MF. Renal proximal tubules from old Fischer 344 rats grow into epithelial cells in cultures and exhibit increased oxidative stress and reduced D1 receptor function. Am J Physiol Cell Physiol 2008; 295:C1326-31. [PMID: 18799649 DOI: 10.1152/ajpcell.00367.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Earlier we reported defects in D1 receptor function in renal proximal tubules (RPTs) of aged Fischer 344 (F344) and obese Zucker rats. However, the defects in the receptor function in RPTs of obese Zucker rats do not pass onto primary cultures of RPTs from these animals. Here, we determined whether the defects in D1 receptor function in RPTs of aged F344 rats pass onto the primary cultures. RPTs from aged (24-mo) and adult (6-mo) F344 rats were grown into primary cultures. The microscopic studies showed that cells in cultures from adult and old rats were healthy as determined by the shape and size of the cells and nuclei. D1 receptor agonist SKF-38393 produced inhibition of (86)Rb (rubidium) uptake, index of Na-K-ATPase activity, in cells from adult rats, but this was reduced in old rats. Also, SKF-38393 increased the [(35)S]GTPgammaS binding, index of receptor activation, in the membranes of cells from adult rats but to a lesser extent from old rats. Furthermore, there was a downward trend in the levels of D1 receptor numbers and in the receptor proteins in old rats. Interestingly, gp(91phox) subunit of NADPH oxidase and cellular protein carbonyl levels (oxidative stress marker) were higher in cultures from old rats. These results show that RPTs from adult and old F344 rats grow into epithelial cells in cultures. Furthermore, cells in cultures from old rats are at a higher level of oxidative stress, which may be contributing to the reduced D1 receptor function in the cells from old compared with adult rats.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, Houston, TX 77204, USA.
| | | | | |
Collapse
|
41
|
Caveolae are an essential component of the pathway for endothelial cell signaling associated with abrupt reduction of shear stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1866-75. [PMID: 18573285 DOI: 10.1016/j.bbamcr.2008.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 01/10/2023]
Abstract
Abrupt cessation of flow representing the acute loss of shear stress (simulated ischemia) to flow-adapted pulmonary microvascular endothelial cells (PMVEC) leads to reactive oxygen species (ROS) generation that signals for EC proliferation. We evaluated the role of caveolin-1 on this cellular response with mouse PMVEC that were preconditioned for 72 h to laminar flow at 5 dyn/cm(2) followed by stop of flow ("ischemia"). Preconditioning resulted in a 2.7-fold increase in cellular expression of K(ATP) (K(IR) 6.2) channels but no change in expression level of caveolin-1, gp91(phox), or MAP kinases. The initial response to ischemia in wild type cells was cell membrane depolarization that was abolished by gene targeting of K(IR) 6.2. The subsequent response was increased ROS production associated with activation of NADPH oxidase (NOX2) and then phosphorylation of MAP kinases (Erk, JNK). After 24 h of ischemia in wild type cells, the cell proliferation index increased 2.5 fold and the % of cells in S+G(2)/M phases increased 6-fold. This signaling cascade (cell membrane depolarization, ROS production, MAP kinase activation and cell proliferation) was abrogated in caveolin-1 null PMVEC or by treatment of wild type cells with filipin. These studies indicate that caveolin-1 functions as a shear sensor in flow-adapted EC resulting in ROS-mediated cell signaling and endothelial cell proliferation following the abrupt reduction in flow.
Collapse
|
42
|
Pedrosa R, Villar VAM, Pascua AM, Simão S, Hopfer U, Jose PA, Soares-da-Silva P. H2O2 stimulation of the Cl-/HCO3- exchanger by angiotensin II and angiotensin II type 1 receptor distribution in membrane microdomains. Hypertension 2008; 51:1332-8. [PMID: 18391104 DOI: 10.1161/hypertensionaha.107.102434] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study tested the hypothesis that angiotensin II (Ang II)-induced oxidative stress and Ang II-stimulated Cl(-)/HCO(3)(-) exchanger are increased and related to the differential membrane Ang II type 1 (AT(1)) receptor and reduced nicotinamide-adenine dinucleotide phosphate oxidase expression in immortalized renal proximal tubular epithelial (PTE) cells from the spontaneously hypertensive rat (SHR) relative to its normotensive control (Wistar Kyoto rat [WKY]). The exposure of cells to Ang II increased Cl(-)/HCO(3)(-) exchanger activity with EC(50)s of 0.10 and 12.2 nmol/L in SHR and WKY PTE cells, respectively. SHR PTE cells were found to overexpress nicotinamide-adenine dinucleotide phosphate oxidase 2 and 4 and were endowed with an enhanced ability to generate H(2)O(2). The reduced nicotinamide-adenine dinucleotide phosphate oxidase inhibitor apocynin reduced the production of H(2)O(2) in SHR PTE cells and abolished their hypersensitivity to Ang II. The expression of the glycosylated form of the AT(1) receptor in both lipid and nonlipid rafts were higher in SHR cells than in WKY PTE cells. Pretreatment with apocynin reduced the abundance of AT(1) receptors in both microdomains, mainly the glycosylated form of the AT(1) receptor in lipid rafts, in SHR cells but not in WKY PTE cells. In conclusion, differences between WKY and SHR PTE cells in their sensitivity to Ang II correlate with the higher H(2)O(2) generation that provokes an enhanced expression of glycosylated and nonglycosylated AT(1) receptor forms in lipid rafts.
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Tang DD, Anfinogenova Y. Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 2008; 13:130-40. [PMID: 18212360 DOI: 10.1177/1074248407313737] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular smooth muscle tone plays a fundamental role in regulating blood pressure, blood flow, microcirculation, and other cardiovascular functions. The cellular and molecular mechanisms by which vascular smooth muscle contractility is regulated are not completely elucidated. Recent studies show that the actin cytoskeleton in smooth muscle is dynamic, which regulates force development. In this review, evidence for actin polymerization in smooth muscle upon external stimulation is summarized. Protein kinases such as Abelson tyrosine kinase, focal adhesion kinase, Src, and mitogen-activated protein kinase have been documented to coordinate actin polymerization in smooth muscle. Transmembrane integrins have also been reported to link to signaling pathways modulating actin dynamics. The roles of Rho family of the small proteins that bind to guanosine triphosphate (GTP), also known as GTPases, and the actin-regulatory proteins, including Crk-associated substrate, neuronal Wiskott-Aldrich Syndrome protein, the Arp2/3 complex, and profilin, and heat shock proteins in regulating actin assembly are discussed. These new findings promote our understanding on how smooth muscle contraction is regulated at cellular and molecular levels.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
44
|
Han W, Li H, Villar VAM, Pascua AM, Dajani MI, Wang X, Natarajan A, Quinn MT, Felder RA, Jose PA, Yu P. Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells. Hypertension 2008; 51:481-7. [PMID: 18195159 DOI: 10.1161/hypertensionaha.107.103275] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases, including hypertension. We tested the hypothesis that NADPH oxidase subunits and activity are regulated by LRs in human renal proximal tubule cells. We report that a high proportion of p22(phox) and the small GTPase Rac1 are expressed in LRs in human renal proximal tubule cells. The D(1)-like receptor agonist, fenoldopam (1 micromol/L per 20 minutes) dispersed Nox subunits within LRs and non-LRs and decreased oxidase activity (30.7+/-3.3%). In contrast, cholesterol depletion (2% methyl-beta-cyclodextrin [beta CD]) translocated NADPH oxidase subunits out of LRs and increased oxidase activity (154.0+/-10.5% versus control, 103.1+/-3.4%), which was reversed by cholesterol repletion (118.9+/-9.9%). Moreover, NADPH oxidase activation by beta CD (145.5+/-9.0%; control: 98.6+/-1.6%) was also abrogated by the NADPH oxidase inhibitors apocynin (100.4+/-3.2%) and diphenylene iodonium (9.5+/-3.3%). Furthermore, beta CD-induced reactive oxygen species production was reversed by knocking down either Nox2 (81.0+/-5.1% versus beta CD: 162.0+/-2.0%) or Nox4 (108.0+/-10.8% versus beta CD: 152.0+/-9.8%). We have demonstrated for the first time that disruption of LRs results in NADPH oxidase activation that is abolished by antioxidants and silencing of Nox2 or Nox4. Therefore, in human renal proximal tubule cells, LRs maintain NADPH oxidase in an inactive state.
Collapse
Affiliation(s)
- Weixing Han
- Department of Pediatrics, Georgetown University School of Medicine, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pojoga LH, Yao TM, Sinha S, Ross RL, Lin JC, Raffetto JD, Adler GK, Williams GH, Khalil RA. Effect of dietary sodium on vasoconstriction and eNOS-mediated vascular relaxation in caveolin-1-deficient mice. Am J Physiol Heart Circ Physiol 2008; 294:H1258-65. [PMID: 18178722 DOI: 10.1152/ajpheart.01014.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Changes in dietary sodium intake are associated with changes in vascular volume and reactivity that may be mediated, in part, by alterations in endothelial nitric oxide synthase (eNOS) activity. Caveolin-1 (Cav-1), a transmembrane anchoring protein in the plasma membrane caveolae, binds eNOS and limits its translocation and activation. To test the hypothesis that endothelial Cav-1 participates in the dietary sodium-mediated effects on vascular function, we assessed vascular responses and nitric oxide (NO)-mediated mechanisms of vascular relaxation in Cav-1 knockout mice (Cav-1-/-) and wild-type control mice (WT; Cav-1+/+) placed on a high-salt (HS; 4% NaCl) or low-salt (LS; 0.08% NaCl) diet for 16 days. After the systolic blood pressure was measured, the thoracic aorta was isolated for measurement of vascular reactivity and NO production, and the heart was used for measurement of eNOS expression and/or activity. The blood pressure was elevated in HS mice treated with NG-nitro-l-arginine methyl ester and more so in Cav-1-/- than WT mice and was significantly reduced during the LS diet. Phenylephrine caused vascular contraction that was significantly reduced in Cav-1-/- (maximum 0.25 +/- 0.06 g/mg) compared with WT (0.75 +/- 0.22 g/mg) on the HS diet, and the differences were eliminated with the LS diet. Also, vascular contraction in response to membrane depolarization by high KCl (96 mM) was reduced in Cav-1-/- (0.27 +/- 0.05 g/mg) compared with WT mice (0.53 +/- 0.12 g/mg) on the HS diet, suggesting that the reduced vascular contraction is not limited to a particular receptor. Acetylcholine (10(-5) M) caused aortic relaxation in WT mice on HS (23.6 +/- 3.5%) and LS (23.7 +/- 5.5%) that was enhanced in Cav-1-/- HS (72.6 +/- 6.1%) and more so in Cav-1-/- LS mice (93.6 +/- 3.5%). RT-PCR analysis indicated increased eNOS mRNA expression in the aorta and heart, and Western blots indicated increased total eNOS and phosphorylated eNOS in the heart of Cav-1-/- compared with WT mice on the HS diet, and the genotypic differences were less apparent during the LS diet. Thus Cav-1 deficiency during the HS diet is associated with decreased vasoconstriction, increased vascular relaxation, and increased eNOS expression and activity, and these effects are altered during the LS diet. The data support the hypothesis that endothelial Cav-1, likely through an effect on eNOS activity, plays a prominent role in the regulation of vascular function during substantial changes in dietary sodium intake.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pouchain D, Díaz-Mochón JJ, Bialy L, Bradley M. A 10,000 member PNA-encoded peptide library for profiling tyrosine kinases. ACS Chem Biol 2007; 2:810-8. [PMID: 18154268 DOI: 10.1021/cb700199k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 10,000 member peptide nucleic acid (PNA) encoded peptide library was prepared, treated with the Abelson tyrosine kinase (Abl), and decoded using a DNA microarray and a fluorescently labeled secondary antiphosphotyrosine antibody. A dual-color approach ensured internal referencing for each and every member of the library and the generation of robust data sets. Analysis identified 155 peptides (out of 10,000) that were strongly phosphorylated by Abl in full agreement with known Abl specificities. BLAST analysis identified known cellular Abl substrates such as c-Jun amino-terminal kinase as well as new potential target proteins such as the G-protein coupled receptor kinase 6 and diacylglycerol kinase gamma. To illustrate the generalization of this approach, two other tyrosine kinases, human epidermal growth factor 2 (Her2) and vascular endothelial growth factor receptor 2/kinase insert domain protein receptor (VEGFR2/KDR), were profiled allowing characterization of specific peptide sequences known to interact with these kinases; under these conditions Her2 was demonstrated to have a marked preference for D-proline perhaps offering a unique means of targeting and inhibiting this kinase.
Collapse
Affiliation(s)
- Delphine Pouchain
- EaStCHEM, School of Chemistry, University of Edinburgh,
Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Juan J. Díaz-Mochón
- EaStCHEM, School of Chemistry, University of Edinburgh,
Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Laurent Bialy
- EaStCHEM, School of Chemistry, University of Edinburgh,
Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, U.K
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh,
Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, U.K
| |
Collapse
|
47
|
Ding G, Zhang A, Huang S, Pan X, Zhen G, Chen R, Yang T. ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am J Physiol Renal Physiol 2007; 293:F1889-97. [PMID: 17881465 DOI: 10.1152/ajprenal.00112.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that ANG II induces mesangial cell (MC) proliferation via the JNK-activator protein-1 pathway. The present study attempted to determine the upstream mediators of JNK activation, with emphasis on reactive oxygen species (ROS) and the epidermal growth factor (EGF) receptor (EGFR). In cultured human MCs (HMCs), as early as 3 min, ANG II time dependently increased intracellular ROS production, which was sensitive to 10 microM diphenyleneiodonium sulfate and 500 microM apocynin, two structurally distinct NADPH oxidase inhibitors. In contrast, inhibitors of other oxidant-producing enzymes, including the mitochondrial complex I inhibitor rotenone, the xanthine oxidase inhibitor allopurinol, the cyclooxygenase inhibitor indomethacin, the lipoxygenase inhibitor nordihydroguiaretic acid, the cytochrome P-450 oxygenase inhibitor ketoconazole, and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester, were without effect. ANG II-induced ROS generation was inhibited by the angiotensin type 1 receptor antagonist losartan (10 muM) but not the angiotensin type 2 receptor antagonist PD-123319 (10 microM). ANG II induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane. The antioxidants almost abolished the ANG II mitogenic response, as assessed by [(3)H]thymidine incorporation and cell number, associated with a remarkable blockade of the activation of EGFR (90% inhibition) and JNK (83% inhibition). The EGFR inhibitor AG-1478 was able to mimic the effect of antioxidants, in that it inhibited the mitogenic response and the JNK activation following ANG II treatment. Together, these data suggest that the ROS-EGFR-JNK pathway is involved in transducing the proliferative effect of ANG II in cultured HMCs.
Collapse
MESH Headings
- Acridines
- Angiotensin II/biosynthesis
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Blotting, Western
- Cell Count
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA/biosynthesis
- DNA/genetics
- Enzyme Activation/drug effects
- ErbB Receptors/biosynthesis
- ErbB Receptors/genetics
- Glomerular Mesangium/cytology
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/enzymology
- Humans
- JNK Mitogen-Activated Protein Kinases/metabolism
- Luminescence
- NADPH Oxidases/metabolism
- Oxidation-Reduction
- Reactive Oxygen Species
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Guixia Ding
- Center of Pediatric Nephrology, Nanjing Childern's Hospital, Nanjing Medical Univ., Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Echarri A, Muriel O, Del Pozo MA. Intracellular trafficking of raft/caveolae domains: insights from integrin signaling. Semin Cell Dev Biol 2007; 18:627-37. [PMID: 17904396 DOI: 10.1016/j.semcdb.2007.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/10/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Cells have a complex system for delivering and compartmentalizing proteins and lipids in order to achieve spatio-temporal coordination of signaling. Rafts/caveolae are plasma membrane microdomains that regulate signaling pathways and processes such as cell migration, polarization and proliferation. Regulation of raft/caveolae trafficking involves multiple steps regulated by different proteins to ensure coordination of signaling cascades. The best studied raft-mediated endocytic route is controlled by caveolins. Recent data suggest integrin-mediated cell adhesion is a key regulator of caveolar endocytosis. In this review we examine the regulation of caveolar trafficking and the interplay between integrins, cell adhesion and caveolae internalization.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
49
|
Anfinogenova Y, Wang R, Li QF, Spinelli AM, Tang DD. Abl silencing inhibits CAS-mediated process and constriction in resistance arteries. Circ Res 2007; 101:420-8. [PMID: 17615370 PMCID: PMC2084484 DOI: 10.1161/circresaha.107.156463] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The tyrosine phosphorylated protein Crk-associated substrate (CAS) has previously been shown to participate in the cellular processes regulating dynamic changes in the actin architecture and arterial constriction. In the present study, treatment of rat mesenteric arteries with phenylephrine (PE) led to the increase in CAS tyrosine phosphorylation and the association of CAS with the adapter protein CrkII. CAS phosphorylation was catalyzed by Abl in an in vitro study. To determine the role of Abl tyrosine kinase in arterial vessels, plasmids encoding Abl short hairpin RNA (shRNA) were transduced into mesenteric arteries by chemical loading plus liposomes. Abl silencing diminished increases in CAS phosphorylation on PE stimulation. Previous studies have shown that assembly of the multiprotein compound containing CrkII, neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) and the Arp2/3 (Actin Related Protein) complex triggers actin polymerization in smooth muscle as well as in nonmuscle cells. In this study, Abl silencing attenuated the assembly of the multiprotein compound in resistance arteries on contractile stimulation. Furthermore, the increase in F/G-actin ratios (an index of actin assembly) and constriction on contractile stimulation were reduced in Abl-deficient arterial segments compared with control arteries. However, myosin regulatory light chain phosphorylation (MRLCP) elicited by contractile activation was not inhibited in Abl-deficient arteries. These results suggest that Abl may play a pivotal role in mediating CAS phosphorylation, the assembly of the multiprotein complex, actin assembly, and constriction in resistance arteries. Abl does not participate in the regulation of myosin activation in arterial vessels during contractile stimulation.
Collapse
Affiliation(s)
- Yana Anfinogenova
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
50
|
Sirvent A, Boureux A, Simon V, Leroy C, Roche S. The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene 2007; 26:7313-23. [PMID: 17533370 DOI: 10.1038/sj.onc.1210543] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytoplasmic tyrosine kinase Src has been implicated in signal transduction induced by growth factors and integrins. Src also shows oncogenic activity when deregulated. Accumulating evidence indicates that the tyrosine kinase Abl is an important substrate for Src signalling in normal cells. Here we show that Abl is also required for Src-induced transformation of mouse fibroblasts. Abl does not mediate tyrosine phosphorylation of Stat3 and Shc, two important regulators of Src oncogenic activity. In contrast, Abl controls the activation of the small GTPase Rac for oncogenic signalling and active Rac partly rescued Src transformation in cells with inactive Abl. Moreover, Abl mediates Src-induced extracellular regulated kinase 5 (ERK5) activation to drive cell transformation. Finally, we find that Abl/Rac and Abl/ERK5 pathways also operate in human MCF7 and BT549 breast cancer cells, where neoplastic transformation depends on Src-like activities. Therefore, Abl is an important regulator of Src oncogenic activity both in mouse fibroblasts and in human cancer cells. Targeting these Abl-dependent signalling cascades may be of therapeutic value in breast cancers where Src-like function is important.
Collapse
Affiliation(s)
- A Sirvent
- CRBM, CNRS UMR5237 - UMII, 1919 route de Mende, Montpellier, France
| | | | | | | | | |
Collapse
|