1
|
Chiang HL, Wu KC, Chen YY, Ho CJ, Wang HL, Fu YH, Chen WY, Lin CJ. The Critical Role of Equilibrative Nucleoside Transporter-2 in Modulating Cerebral Damage and Vascular Dysfunction in Mice with Brain Ischemia-Reperfusion. Pharm Res 2023; 40:2541-2554. [PMID: 37498500 DOI: 10.1007/s11095-023-03565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion. METHODS Cerebral ischemia-reperfusion injury was examined in mice with transient middle cerebral artery occlusion (tMCAO) for 90 minutes, followed by 24-hour reperfusion. Infarct volume, brain edema, neuroinflammation, microvascular structure, regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (CMRO2), and the production of reactive oxygen species (ROS) were examined following the reperfusion. RESULTS Ent2 deletion reduced the infarct volume, brain edema, and neuroinflammation in mice with cerebral ischemia-reperfusion. tMCAO-induced disruption of brain microvessels was ameliorated in Ent2-/- mice, with a reduced expression of matrix metalloproteinases-9 and aquaporin-4 proteins. Following the reperfusion, the rCBF of the wild-type (WT) mice was quickly restored to the baseline, whereas, in Ent2-/- mice, rCBF was slowly recovered initially, but was then higher than that in the WT mice at the later phase of reperfusion. The improved CMRO2 and reduced ROS level support the beneficial effects caused by the changes in the rCBF of Ent2-/- mice. Further studies showed that the protective effects of Ent2 deletion in mice with tMCAO involve adenosine receptor A2AR. CONCLUSIONS Ent2 plays a critical role in modulating cerebral collateral circulation and ameliorating pathological events of brain ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Hui-Ling Chiang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chen Wu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming-Chiao-Tung University, Taipei, Taiwan
| | - Chin-Jui Ho
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang-Ming-Chiao-Tung University, Taipei, Taiwan
| | - Yu-Hua Fu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yu Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Mussen F, Broeckhoven JV, Hellings N, Schepers M, Vanmierlo T. Unleashing Spinal Cord Repair: The Role of cAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24098135. [PMID: 37175842 PMCID: PMC10179671 DOI: 10.3390/ijms24098135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.
Collapse
Affiliation(s)
- Femke Mussen
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
| | - Jana Van Broeckhoven
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Sadatpour O, Ebrahimi MT, Akhtari M, Ahmadzadeh N, Vojdanian M, Jamshidi A, Farhadi E, Mahmoudi M. A 2A adenosine receptor agonist reduced MMP8 expression in healthy M2-like macrophages but not in macrophages from ankylosing spondylitis patients. BMC Musculoskelet Disord 2022; 23:908. [PMID: 36221125 PMCID: PMC9555099 DOI: 10.1186/s12891-022-05846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is an inflammatory autoimmune disease that mostly affects different joints of the body. Macrophages are the predominant cells that mediate disease progression by secreting several pro-inflammatory mediators. Different receptors are involved in macrophages' function including the adenosine receptors (AR). Our main objective in this study was to assess the effect of applying A2A adenosine receptor agonist (CGS-21,680) on the gene expression of inflammatory mediators including bone morphogenetic proteins (BMP)-2, 4 and matrix metalloproteinases (MMP)-3, 8, 9, and 13 on the macrophages from AS patients compared to healthy macrophages. METHODS Monocytes were isolated from the whole blood of 28 individuals (AS patients and healthy controls in a 1:1 ratio). Macrophages were differentiated using macrophage colony-stimulating factor (M-CSF), and flow cytometry was performed to confirm surface markers. CGS-21,680 was used to treat cells that had been differentiated. Using SYBR green real-time PCR, relative gene expression was determined. RESULTS Activating A2AAR diminished MMP8 expression in healthy macrophages while it cannot reduce MMP8 expression in patients' macrophages. The effect of A2AAR activation on the expression of BMP2 and MMP9 reached statistical significance neither in healthy macrophages nor in the patients' group. We also discovered a significant positive connection between MMP8 expression and patient scores on the Bath ankylosing spondylitis functional index (BASFI). CONCLUSION Due to the disability of A2AAR activation in the reduction of MMP8 expression in patients' macrophages and the correlation of MMP8 expression with BASFI index in patients, these results represent defects and dysregulations in the related signaling pathway in patients' macrophages.
Collapse
Affiliation(s)
- Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Akhtari
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadzadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, P.O. Box: 1411713137, +98-218-822-1449, Tehran, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, P.O. Box: 1411713137, +98-218-822-1449, Tehran, Iran.
| |
Collapse
|
4
|
Fluoroquinolones Suppress TGF-β and PMA-Induced MMP-9 Production in Cancer Cells: Implications in Repurposing Quinolone Antibiotics for Cancer Treatment. Int J Mol Sci 2021; 22:ijms222111602. [PMID: 34769032 PMCID: PMC8584204 DOI: 10.3390/ijms222111602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Fluoroquinolones (FQs) are potent antimicrobials with multiple effects on host cells and tissues. Although FQs can attenuate cancer invasion and metastasis, the underlying molecular mechanisms remain unclear. Matrix metalloproteinase-9 (MMP-9) has functional roles in tumor angiogenesis, invasion, and metastasis, and is associated with cancer progression and poor prognosis, suggesting that inhibitors of MMP-9 activity and transcription are prime candidates for cancer therapy. Despite numerous preclinical data supporting the use of MMP-9 inhibitors as anticancer drugs, the few available examples are not therapeutically useful due to low specificity and off-target effects. We examined the effects of FQs on MMP-9 production in cancer cells following transforming growth factor beta (TGF-β) and phorbol 12-myristate 13-acetate (PMA) stimulation. EXPERIMENTAL APPROACHES Using confluent cultures of HepG2 and A549 cells, the effects of FQs (ciprofloxacin, levofloxacin, clinafloxacin, gatifloxacin, and enrofloxacin) on TGF-β and PMA-induced MMP-9 mRNA expression and production were studied in RNA extracts and culture supernatants, respectively. FQs specifically abrogated TGF-β and PMA-induced MMP-9 levels and activity in a concentration and time-dependent manner, without affecting other MMPs or proteins involved in epithelial-mesenchymal transition. Additionally, FQs inhibited TGF-β and PMA-induced cell migration via p38 and cyclic AMP signaling pathways. CONCLUSIONS AND IMPLICATIONS Overall, we demonstrated that FQs inhibit cancer cell migration and invasion by downregulating MMP-9 expression and revealed the cellular mechanisms underlying their potential value in cancer treatment.
Collapse
|
5
|
Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T, Bronckaers A. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines 2021; 9:703. [PMID: 34206420 PMCID: PMC8301462 DOI: 10.3390/biomedicines9070703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
Collapse
Affiliation(s)
- Laura Ponsaerts
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Lotte Alders
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Melissa Schepers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Jos Prickaerts
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annelies Bronckaers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
6
|
Matrix metalloproteinase 9 a potential major player connecting atherosclerosis and osteoporosis in high fat diet fed rats. PLoS One 2021; 16:e0244650. [PMID: 33571214 PMCID: PMC7877768 DOI: 10.1371/journal.pone.0244650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background Cardiovascular diseases (CVD) represent one of the major sequelae of obesity. On the other hand, the relationship between bone diseases and obesity remains unclear. An increasing number of biological and epidemiological studies suggest the presence of a link between atherosclerosis and osteoporosis, however, the precise molecular pathways underlying this close association remain poorly understood. The present work thus aimed to study Matrix Metalloproteinase 9 (MMP-9), as a proposed link between atherosclerosis and osteoporosis in high fat diet fed rats. Methods and findings 40 rats were randomly divided into 4 groups: control, untreated atherosclerosis group, atherosclerotic rats treated with carvedilol (10mg/kg/d) and atherosclerotic rats treated with alendronate sodium (10mg/kg/d). After 8 weeks, blood samples were collected for estimation of Lipid profile (Total cholesterol, HDL, TGs), inflammatory markers (IL-6, TNF-α, CRP and NO) and Bone turnover markers (BTMs) (Alkaline phosphatase, osteocalcin and pyridinoline). Rats were then euthanized and the aortas and tibias were dissected for histological examination and estimation of MMP-9, N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX) and NF-kB expression. Induction of atherosclerosis via high fat diet and chronic stress induced a significant increase in BTMs, inflammatory markers and resulted in a state of dyslipidaemia. MMP-9 has also shown to be significantly increased in the untreated atherosclerosis rats and showed a significant correlation with all measured parameters. Interestingly, Carvedilol and bisphosphonate had almost equal effects restoring the measured parameters back to normal, partially or completely. Conclusion MMP-9 is a pivotal molecule that impact the atherogenic environment of the vessel wall. A strong cross talk exists between MMP-9, cytokine production and macrophage function. It also plays an important regulatory role in osteoclastogenesis. So, it may be a key molecule in charge for coupling CVD and bone diseases in high fat diet fed rats. Therefore, we suggest MMP-9 as a worthy molecule to be targeted pharmacologically in order to control both conditions simultaneously. Further studies are needed to support, to invest and to translate this hypothesis into clinical studies and guidelines.
Collapse
|
7
|
Denner DR, Udan-Johns MLD, Nichols MR. Inhibition of matrix metalloproteinase-9 secretion by dimethyl sulfoxide and cyclic adenosine monophosphate in human monocytes. World J Biol Chem 2021; 12:1-14. [PMID: 33552397 PMCID: PMC7818474 DOI: 10.4331/wjbc.v12.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/17/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), including MMP-9, are an integral part of the immune response and are upregulated in response to a variety of stimuli. New details continue to emerge concerning the mechanistic and regulatory pathways that mediate MMP-9 secretion. There is significant evidence for regulation of inflammation by dimethyl sulfoxide (DMSO) and 3',5'-cyclic adenosine monophosphate (cAMP), thus investigation of how these two molecules may regulate both MMP-9 and tumor necrosis factor α (TNFα) secretion by human monocytes was of high interest. The hypothesis tested in this study was that DMSO and cAMP regulate MMP-9 and TNFα secretion by distinct mechanisms.
AIM To investigate the regulation of lipopolysaccharide (LPS)-stimulated MMP-9 and tumor necrosis factor α secretion in THP-1 human monocytes by dimethyl sulfoxide and cAMP.
METHODS The paper describes a basic research study using THP-1 human monocyte cells. All experiments were conducted at the University of Missouri-St. Louis in the Department of Chemistry and Biochemistry. Human monocyte cells were grown, cultured, and prepared for experiments in the University of Missouri-St. Louis Cell Culture Facility as per accepted guidelines. Cells were treated with LPS for selected exposure times and the conditioned medium was collected for analysis of MMP-9 and TNFα production. Inhibitors including DMSO, cAMP regulators, and anti-TNFα antibody were added to the cells prior to LPS treatment. MMP-9 secretion was analyzed by gel electrophoresis/western blot and quantitated by ImageJ software. TNFα secretion was analyzed by enzyme-linked immuno sorbent assay. All data is presented as the average and standard error for at least 3 trials. Statistical analysis was done using a two-tailed paired Student t-test. P values less than 0.05 were considered significant and designated as such in the Figures. LPS and cAMP regulators were from Sigma-Aldrich, MMP-9 standard and antibody and TNFα antibodies were from R&D Systems, and amyloid-β peptide was from rPeptide.
RESULTS In our investigation of MMP-9 secretion from THP-1 human monocytes, we made the following findings. Inclusion of DMSO in the cell treatment inhibited LPS-induced MMP-9, but not TNFα, secretion. Inclusion of DMSO in the cell treatment at different concentrations inhibited LPS-induced MMP-9 secretion in a dose-dependent fashion. A cell-permeable cAMP analog, dibutyryl cAMP, inhibited both LPS-induced MMP-9 and TNFα secretion. Pretreatment of the cells with the adenylyl cyclase activator forskolin inhibited LPS-induced MMP-9 and TNFα secretion. Pretreatment of the cells with the general cAMP phosphodiesterase inhibitor IBMX reduced LPS-induced MMP-9 and TNFα in a dose-dependent fashion. Pre-treatment of monocytes with an anti-TNFα antibody blocked LPS-induced MMP-9 and TNFα secretion. Amyloid-β peptide induced MMP-9 secretion, which occurred much later than TNFα secretion. The latter two findings strongly suggested an upstream role for TNFα in mediating LPS-stimulate MMP-9 secretion.
CONCLUSION The cumulative data indicated that MMP-9 secretion was a distinct process from TNFα secretion and occurred downstream. First, DMSO inhibited MMP-9, but not TNFα, suggesting that the MMP-9 secretion process was selectively altered. Second, cAMP inhibited both MMP-9 and TNFα with a similar potency, but at different monocyte cell exposure time points. The pattern of cAMP inhibition for these two molecules suggested that MMP-9 secretion lies downstream of TNFα and that TNFα may a key component of the pathway leading to MMP-9 secretion. This temporal relationship fit a model whereby early TNFα secretion directly led to later MMP-9 secretion. Lastly, antibody-blocking of TNFα diminished MMP-9 secretion, suggesting a direct link between TNFα secretion and MMP-9 secretion.
Collapse
Affiliation(s)
- Darcy R Denner
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St Louis, MO 63121, United States
| | - Maria LD Udan-Johns
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St Louis, MO 63121, United States
| | - Michael R Nichols
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St Louis, MO 63121, United States
| |
Collapse
|
8
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
9
|
Zhou YP, Ruan CC, Kong LR, Gao PJ. Adenosine A 2A receptor activation prevents DOCA-salt induced hypertensive cardiac remodeling via iBAT. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30301-6. [PMID: 32087969 DOI: 10.1016/j.bbrc.2020.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Hypertensive cardiac remodeling is a constellation of abnormalities that includes cardiomyocyte hypertrophy and death and tissue fibrosis. Adenosine is a long-known vasodilator, through interacting with its four cell surface receptor subtypes in cardiovascular system. However, it is unclear that whether adenosine A2A receptor (A2AR) activation is involved in the cardiac remodeling in hypertension. WT mice were utilized to induce DOCA-salt sensitive hypertension and received A2AR agonist CGS21680 or antagonist KW6002 treatment. Cardiac functional phenotyping measurement by echocardiography showed that CGS21680 improved cardiac dysfunction in DOCA-salt mice. Moreover, CGS21680 reduced cardiomyocyte hypertrophy, cardiac inflammation and fibrosis. However, iBAT depletion surgery induces dramatic cardiac remodeling in DOCA-salt mice, and the protective function of CGS21680 was blocked without intact iBAT. Mechanistically, A2AR agonist CGS21680 increased iBAT-derived fibroblast growth factor 21 (FGF21). Our data suggest that activation of A2AR could be a potential therapeutic strategy in preventing heart damage in hypertension.
Collapse
Affiliation(s)
- Yan-Ping Zhou
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
11
|
Abstract
The peritoneum protects the intraabdominal organs. This function is exploited by aggressive cancers originating from organs within the abdomen, resulting in peritoneal metastasis. We discuss genomic variants that may lead to peritoneal metastasis from multiple cancers. Peritoneal malignancies are attributed to epithelial-mesenchymal transition. These metastatic lesions harbor similar genetic mutations to the primary tumor yet may manifest clone-specific aberrations that promote propagation. Peritoneal metastasis are increasingly being treated with surgical resection as an adjunct to radiation, chemotherapy, and other biologic therapies. We describe genetic and genomic variances that are predictive markers for metastasis and burgeoning indicators for peritoneal malignancies.
Collapse
Affiliation(s)
- Enusha Karunasena
- Department of Oncology, GI Clinical Cancer Research and Cancer Immunology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institute, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Jonathan Sham
- Department of Surgery, Johns Hopkins Medical Institute, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Kevin Wyatt McMahon
- Department of Surgery, Johns Hopkins Medical Institute, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Nita Ahuja
- Department of Surgery, Johns Hopkins Medical Institute, 600 North Wolfe Street, Baltimore, MD 21287, USA; Cancer Biology, Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins Medical Institute, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Surgery, Yale School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| |
Collapse
|
12
|
Adenosine pretreatment attenuates angiotensin II-mediated p38 MAPK activation in a protein kinase A dependent manner. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Adenosine is known as a protective and anti-inflammatory nucleoside. Angiotensin II is the main hormone of the renin-angiotensin system. It is associated with endothelial permeability, recruitment, and activation of the immune cells through induction of inflammatory mediators. Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammatory processes mediated by macrophages. Objectives: Investigate whether adenosine pretreatment modulates angiotensin II-induced MMP-9 expression and activation of signaling molecules. Methods: Human monocytic U-937 cells were treated with either adenosine or angiotensin II alone or angiotensin II following a pretreatment with adenosine. Supernatants were analyzed for MMP-9 activity by zymography method. MMP-9 gene expression was analyzed using real-time PCR. Activation of inflammatory mediators IκB-α, NF-κB, JNK, p38 MAPK, and STAT3 were analyzed by a multi-target ELISA kit. Association of Protein kinase A (PKA) in adenosine effects was studied by pre-incubation with H89, a selective PKA inhibitor. Results: Treatment of the cells with angiotensin II significantly increased MMP-9 production (p <0.05). Adenosine pretreatment did not attenuate this angiotensin II effect. Angiotensin II treatment induced NF-κB, JNK and p38 activation. Pretreatment with adenosine prior to angiotensin II stimulation showed a 40% inhibitory effect on p38 induction (p <0.05). This effect was reversed by PKA inhibition. Conclusion: The present data confirmed that monocytic MMP-9 was a target gene for angiotensin II. Adenosine pretreatment did not inhibit MMP-9 increase in response to angiotensin II. However, it showed a potential inhibitory effect on angiotensin II inflammatory signaling.
Collapse
|
13
|
Wu CH, Liu FC, Pan CH, Lai MT, Lan SJ, Wu CH, Sheu MJ. Suppression of Cell Growth, Migration and Drug Resistance by Ethanolic Extract of Antrodia cinnamomea in Human Lung Cancer A549 Cells and C57BL/6J Allograft Tumor Model. Int J Mol Sci 2018. [PMID: 29522490 PMCID: PMC5877652 DOI: 10.3390/ijms19030791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to investigate the inhibitory activities of ethanolic extracts from Antrodia cinnamomea (EEAC) on lung cancer. Cell proliferation and cell cycle distribution were analyzed using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay and flow cytometry, respectively. Wound-healing assay, Western blotting, and a murine tumor model were separately used to examine cell migration, protein expression, and tumor repression. Our results showed that EEAC induced cell cycle arrest at the G0/G1 phase resulting decreased cell viability in A549 cells. Moreover, EEAC up-regulated the growth-suppressing proteins, adenosine 5′-monophosphate-activated protein kinase (AMPK), p21 and p27, but down-regulated the growth-promoting proteins, protein kinase B (Akt), mammalian tarfet of rapamycin (mTOR), extracellular signal-regulating kinase 1/2 (ERK1/2), retinoblastoma protein (Rb), cyclin E, and cyclin D1. EEAC also inhibited A549 cell migration and reduced expression of gelatinases. In addition, our data showed that tumor growth was suppressed after treatment with EEAC in a murine allograft tumor model. Some bioactive compounds from EEAC, such as cordycepin and zhankuic acid A, were demonstrated to reduce the protein expressions of matrix metalloproteinase (MMP)-9 and cyclin D1 in A549 cells. Furthermore, EEAC enhanced chemosensitivity of A549 to paclitaxel by reducing the protein levels of caveolin-1. Our data suggests that EEAC has the potential to be an adjuvant medicine for the treatment of lung cancer.
Collapse
Affiliation(s)
- Chi-Han Wu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare Taiwan, Taichung 40343, Taiwan.
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
14
|
The Application of Dextran Sedimentation as an Initial Step in Neutrophil Purification Promotes Their Stimulation, due to the Presence of Monocytes. J Immunol Res 2017; 2017:1254792. [PMID: 29164154 PMCID: PMC5661066 DOI: 10.1155/2017/1254792] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
The purification of human neutrophils for in vitro studies is challenging as they are easily activated through ex vivo manipulations. The technique of erythrocyte sedimentation combined with density gradient centrifugation remains widely practiced and was the subject of this study. Since in the sedimentation step the leukocytes are incubated with dextran, we have raised the likelihood that cellular activation would occur with mediator release leading to neutrophil activation. By comparing the activity of neutrophils purified from whole blood by the classical 2-step method of dextran sedimentation followed by low-density Ficoll-Hypaque (1.077 g/mL) medium, and the 1-step high-density Ficoll-Hypaque (1.114 g/mL) gradient centrifugation, we found that neutrophils from the 2-step method had a significant increase in cell surface CD11b expression and CD62L shedding and a marked increase in adhesion. Decreased random migration and chemotaxis and raised baseline oxidative burst activity were also observed. The effect was not specific to dextran, as using Ficoll for erythrocyte sedimentation replicated the elevated neutrophil adherence. Through the depletion of monocytes, lymphocytes, and platelets prior to sedimentation, we deduced that monocytes were responsible for the neutrophil activation. Our findings suggest that care needs to be exercised in choosing the method of neutrophil purification for functional studies.
Collapse
|
15
|
Abstract
The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis.
Collapse
|
16
|
Novitskaya T, Chepurko E, Covarrubias R, Novitskiy S, Ryzhov SV, Feoktistov I, Gumina RJ. Extracellular nucleotide regulation and signaling in cardiac fibrosis. J Mol Cell Cardiol 2016; 93:47-56. [PMID: 26891859 DOI: 10.1016/j.yjmcc.2016.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Following myocardial infarction, purinergic nucleotides and nucleosides are released via non-specific and specific mechanisms in response to cellular activation, stress, or injury. These extracellular nucleotides are potent mediators of physiologic and pathologic responses, contributing to the inflammatory and fibrotic milieu within the injured myocardium. Via autocrine or paracrine signaling, cell-specific effects occur through differentially expressed purinergic receptors of the P2X, P2Y, and P1 families. Nucleotide activation of the ionotropic (ligand-gated) purine receptors (P2X) and several of the metabotropic (G-protein-coupled) purine receptors (P2Y) or adenosine activation of the P1 receptors can have profound effects on inflammatory cell function, fibroblast function, and cardiomyocyte function. Extracellular nucleotidases that hydrolyze released nucleotides regulate the magnitude and duration of purinergic signaling. While there are numerous studies on the role of the purinergic signaling pathway in cardiovascular disease, the extent to which the purinergic signaling pathway modulates cardiac fibrosis is incompletely understood. Here we provide an overview of the current understanding of how the purinergic signaling pathway modulates cardiac fibroblast function and myocardial fibrosis.
Collapse
Affiliation(s)
- Tatiana Novitskaya
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Elena Chepurko
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Roman Covarrubias
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sergey Novitskiy
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Igor Feoktistov
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Pathology, Immunology and Microbiology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
Puhl SL, Kazakov A, Müller A, Fries P, Wagner DR, Böhm M, Maack C, Devaux Y. Adenosine A1 receptor activation attenuates cardiac hypertrophy and fibrosis in response to α1 -adrenoceptor stimulation in vivo. Br J Pharmacol 2015; 173:88-102. [PMID: 26406609 DOI: 10.1111/bph.13339] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenosine has been proposed to exert anti-hypertrophic effects. However, the precise regulation and the role of the different adenosine receptor subtypes in the heart and their effects on hypertrophic signalling are largely unknown. We aimed to characterize expression and function of adenosine A1 receptors following hypertrophic stimulation in vitro and in vivo. EXPERIMENTAL APPROACH Pro-hypertrophic stimuli and adenosine A1 receptor stimulation of neonatal rat cardiomyocytes and male C57/Bl6 mice, sc. drug administration, real-time PCR, (3) [H]-leucine-incorporation assay, immunostaining, tissue staining, Western blots, gravimetric analyses and echocardiography were applied in this study. KEY RESULTS In neonatal rat cardiomyocyte cultures, phenylephrine, but not angiotensin II or insulin-like growth factor 1 (IGF1), up-regulated adenosine A1 receptors concentration-dependently. The hypertrophic phenotype (cardiomyocyte size, sarcomeric organization, total protein synthesis, c-fos expression) mediated by phenylephrine (10 μM), but not that by angiotensinII (1 μM) or IGF1 (20 ng·mL(-1) ), was counteracted by the selective A1 receptor agonist, N6-cyclopentyladenosine. In C57/BL6 mice, continuous N6-cyclopentyladenosine infusion (2 mg·kg(-1) ·day(-1) ; 21 days) blunted phenylephrine (120 mg·kg(-1) ·day(-1) ; 21 days) induced hypertrophy (heart weight, cardiomyocyte size and fetal genes), fibrosis, MMP 2 up-regulation and generation of oxidative stress - all hallmarks of maladaptive remodelling. Concurrently, phenylephrine administration increased expression of adenosine A1 receptors. CONCLUSIONS AND IMPLICATIONS We have presented evidence for a negative feedback mechanism attenuating pathological myocardial hypertrophy following α1 -adrenoceptor stimulation. Our results suggest adenosine A1 receptors as potential targets for therapeutic strategies to prevent transition from compensated myocardial hypertrophy to decompensated heart failure due to chronic cardiac pressure overload.
Collapse
Affiliation(s)
- S-L Puhl
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - A Kazakov
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - A Müller
- Klinik for interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - P Fries
- Klinik for interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - D R Wagner
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - M Böhm
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - C Maack
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Y Devaux
- Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
18
|
Immunomodulation of endothelial differentiated mesenchymal stromal cells: impact on T and NK cells. Immunol Cell Biol 2015; 94:342-56. [PMID: 26510892 DOI: 10.1038/icb.2015.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Wharton's jelly mesenchymal stromal cells (WJ-MSCs) are promising candidates for tissue engineering, as their immunomodulatory activity allows them to escape immune recognition and to suppress several immune cell functions. To date, however, few studies have investigated the effect of differentiation of the MSCs on this immunomodulation. To address this question, we sought to determine the impact of differentiation toward endothelial cells on immunoregulation by WJ-MSCs. Following differentiation, the endothelial-like cells (ELCs) were positive for CD31, vascular endothelial cadherin and vascular endothelial growth factor receptor 2, and able to take up acetylated low-density lipoproteins. The expression of HLA-DR and CD86, which contribute to MSCs immunoprivilege, was still weak after differentiation. We then co-cultured un- and differentiated MSCs with immune cells, under conditions of both direct and indirect contact. The proliferation and phenotype of the immune cells were analyzed and the mediators secreted by both ELCs and WJ-MSCs quantified. Interleukin (IL)-6, IL-1β, prostaglandin E2 and in particular indoleamine-2,3-dioxygenase expression were upregulated in ELCs on stimulation by T and NK cells, suggesting the possible involvement of these factors in allosuppression. ELCs co-cultured with T cells were able to generate CD25(+) T cells, which were shown to be of the CD4(+)CD25(+)FoxP3(+) regulatory subset. Direct contact between NK cells and ELCs or WJ-MSCs decreased the level of NK-activating receptor natural-killer group 2, member D. Moreover, direct co-culturing with ELCs stimulates CD73 acquisition on NK cells, a mechanism which may induce adenosine secretion by the cells and lead to an immunosuppressive function. Taken together, our results show that ELCs obtained following differentiation of WJ-MSCs remain largely immunosuppressive.
Collapse
|
19
|
Puhl SL, Müller A, Wagner M, Devaux Y, Böhm M, Wagner DR, Maack C. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2015; 309:H345-59. [PMID: 26001415 DOI: 10.1152/ajpheart.00683.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Although exercise mediates beneficial effects in patients after myocardial infarction (MI), the underlying mechanisms as well as the question of whether an early start of exercise after MI is safe or even beneficial are incompletely resolved. The present study analyzed the effects of exercise before and reinitiated early after MI on cardiac remodeling and function. Male C57BL/6N mice were housed sedentary or with the opportunity to voluntarily exercise for 6 wk before MI induction (ligation of the left anterior descending coronary artery) or sham operation. After a 5-day exercise-free phase after MI, mice were allowed to reexercise for another 4 wk. Exercise before MI induced adaptive hypertrophy with moderate increases in heart weight, cardiomyocyte diameter, and left ventricular (LV) end-diastolic volume, but without fibrosis. In sedentary mice, MI induced eccentric LV hypertrophy with massive fibrosis but maintained systolic LV function. While in exercised mice gross LV end-diastolic volumes and systolic function did not differ from sedentary mice after MI, LV collagen content and thinning of the infarcted area were reduced. This was associated with ameliorated activation of inflammation, mediated by TNF-α, IL-1β, and IL-6, as well as reduced activation of matrix metalloproteinase 9. In contrast, no differences in the activation patterns of various MAPKs or adenosine receptor expressions were observed 5 wk after MI in sedentary or exercised mice. In conclusion, continuous exercise training before and with an early reonset after MI ameliorates adverse LV remodeling by attenuating inflammation, fibrosis, and scar thinning. Therefore, an early reonset of exercise after MI can be encouraged.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Andreas Müller
- Klinik für Interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Michael Wagner
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg; and
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Daniel R Wagner
- Division of Cardiology, Centre Hospitalier Luxembourg, Luxembourg
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| |
Collapse
|
20
|
Zhang L, Hamad EA, Vausort M, Funakoshi H, Feldman AM, Wagner DR, Devaux Y. Identification of candidate long noncoding RNAs associated with left ventricular hypertrophy. Clin Transl Sci 2015; 8:100-6. [PMID: 25382655 PMCID: PMC5350985 DOI: 10.1111/cts.12234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) constitute an emerging group of noncoding RNAs, which regulate gene expression. Their role in cardiac disease is poorly known. Here, we investigated the association between lncRNAs and left ventricular hypertrophy. METHODS Wild-type and adenosine A2A receptor overexpressing mice (A2A-Tg) were subjected to transverse aortic constriction (TAC) and expression of lncRNAs in the heart was investigated using genome-wide microarrays and an analytical pipeline specifically developed for lncRNAs. RESULTS Microarray analysis identified two lncRNAs up-regulated and three down-regulated in the hearts of A2A-Tg mice subjected to TAC. Quantitative PCR showed that lncRNAs 2900055J20Rik and Gm14005 were decreased in A2A-Tg mice (3.5- and 1.8-fold, p < 0.01). We found from public microarray dataset that 2900055J20Rik and Gm14005 were increased in TAC mice compared to sham-operated animals (1.8- and 1.4-fold, after 28 days, p < 0.01). Interestingly, in this public dataset, cardioprotective drug JQ1 decreased 2900055J20Rik and Gm14005 expression by 2.2- and 1.6-fold (p < 0.01). CONCLUSIONS First, we have shown that data on lncRNAs can be obtained from gene expression microarrays. Second, expression of lncRNAs 2900055J20Rik and Gm14005 is regulated after TAC and can be modulated by cardioprotective molecules. These observations motivate further investigation of the therapeutic value of lncRNAs in the heart.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory of Cardiovascular ResearchPublic Research Center – Health (CRP‐Santé)Luxembourg
| | - Eman A. Hamad
- Department of PhysiologyCardiovascular Research CenterTemple University School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mélanie Vausort
- Laboratory of Cardiovascular ResearchPublic Research Center – Health (CRP‐Santé)Luxembourg
| | | | - Arthur M. Feldman
- Department of PhysiologyCardiovascular Research CenterTemple University School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel R. Wagner
- Laboratory of Cardiovascular ResearchPublic Research Center – Health (CRP‐Santé)Luxembourg
- Division of CardiologyHospital CenterLuxembourg
| | - Yvan Devaux
- Laboratory of Cardiovascular ResearchPublic Research Center – Health (CRP‐Santé)Luxembourg
| |
Collapse
|
21
|
Abstract
RATIONALE Long noncoding RNAs (lncRNAs) constitute a novel class of noncoding RNAs that regulate gene expression. Although recent data suggest that lncRNAs may be associated with cardiac disease, little is known about lncRNAs in the setting of myocardial ischemia. OBJECTIVE To measure lncRNAs in patients with myocardial infarction (MI). METHODS AND RESULTS We enrolled 414 patients with acute MI treated by primary percutaneous coronary intervention. Blood samples were harvested at the time of reperfusion. Expression levels of 5 lncRNAs were measured in peripheral blood cells by quantitative polymerase chain reaction: hypoxia inducible factor 1A antisense RNA 2, cyclin-dependent kinase inhibitor 2B antisense RNA 1 (ANRIL), potassium voltage-gated channel, KQT-like subfamily, member 1 opposite strand/antisense transcript 1 (KCNQ1OT1), myocardial infarction-associated transcript, and metastasis-associated lung adenocarcinoma transcript 1. Levels of hypoxia inducible factor 1A antisense RNA 2, KCNQ1OT1, and metastasis-associated lung adenocarcinoma transcript 1 were higher in patients with MI than in healthy volunteers (P<0.01), and levels of ANRIL were lower in patients with MI (P=0.003). Patients with ST-segment-elevation MI had lower levels of ANRIL (P<0.001), KCNQ1OT1 (P<0.001), myocardial infarction-associated transcript (P<0.001), and metastasis-associated lung adenocarcinoma transcript 1 (P=0.005) when compared with patients with non-ST-segment-elevation MI. Levels of ANRIL were associated with age, diabetes mellitus, and hypertension. Patients presenting within 3 hours of chest pain onset had elevated levels of hypoxia inducible factor 1A antisense RNA 2 when compared with patients presenting later on. ANRIL, KCNQ1OT1, myocardial infarction-associated transcript, and metastasis-associated lung adenocarcinoma transcript 1 were significant univariable predictors of left ventricular dysfunction as assessed by an ejection fraction ≤40% at 4-month follow-up. In multivariable and reclassification analyses, ANRIL and KCNQ1OT1 improved the prediction of left ventricular dysfunction by a model, including demographic features, clinical parameters, and cardiac biomarkers. CONCLUSIONS Levels of lncRNAs in blood cells are regulated after MI and may help in prediction of outcome. This motivates further investigation of the role of lncRNAs after MI.
Collapse
Affiliation(s)
- Mélanie Vausort
- From the Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg (M.V., Y.D.); and Division of Cardiology, Centre Hospitalier, Luxembourg, Luxembourg (D.R.W.)
| | - Daniel R Wagner
- From the Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg (M.V., Y.D.); and Division of Cardiology, Centre Hospitalier, Luxembourg, Luxembourg (D.R.W.)
| | - Yvan Devaux
- From the Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg (M.V., Y.D.); and Division of Cardiology, Centre Hospitalier, Luxembourg, Luxembourg (D.R.W.).
| |
Collapse
|
22
|
Alakus H, Babicky ML, Ghosh P, Yost S, Jepsen K, Dai Y, Arias A, Samuels ML, Mose ES, Schwab RB, Peterson MR, Lowy AM, Frazer KA, Harismendy O. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med 2014; 6:43. [PMID: 24944587 PMCID: PMC4062050 DOI: 10.1186/gm559] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/23/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mucinous neoplasms of the appendix (MNA) are rare tumors which may progress from benign to malignant disease with an aggressive biological behavior. MNA is often diagnosed after metastasis to the peritoneal surfaces resulting in mucinous carcinomatosis peritonei (MCP). Genetic alterations in MNA are poorly characterized due to its low incidence, the hypo-cellularity of MCPs, and a lack of relevant pre-clinical models. As such, application of targeted therapies to this disease is limited to those developed for colorectal cancer and not based on molecular rationale. METHODS We sequenced the whole exomes of 10 MCPs of appendiceal origin to identify genome-wide somatic mutations and copy number aberrations and validated significant findings in 19 additional cases. RESULTS Our study demonstrates that MNA has a different molecular makeup than colorectal cancer. Most tumors have co-existing oncogenic mutations in KRAS (26/29) and GNAS (20/29) and are characterized by downstream PKA activation. High-grade tumors are GNAS wild-type (5/6), suggesting they do not progress from low-grade tumors. MNAs do share some genetic alterations with colorectal cancer including gain of 1q (5/10), Wnt, and TGFβ pathway alterations. In contrast, mutations in TP53 (1/10) and APC (0/10), common in colorectal cancer, are rare in MNA. Concurrent activation of the KRAS and GNAS mediated signaling pathways appears to be shared with pancreatic intraductal papillary mucinous neoplasm. CONCLUSIONS MNA genome-wide mutational analysis reveals genetic alterations distinct from colorectal cancer, in support of its unique pathophysiology and suggests new targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Hakan Alakus
- Division of Genome Information Sciences, Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, USA ; Department of General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany
| | - Michele L Babicky
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA ; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Shawn Yost
- Bioinformatics Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- Division of Genome Information Sciences, Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, USA
| | - Yang Dai
- Division of Genome Information Sciences, Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, USA
| | - Angelo Arias
- Division of Genome Information Sciences, Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, USA
| | | | - Evangeline S Mose
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Richard B Schwab
- Department of Medicine, University of California San Diego, La Jolla, CA, USA ; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Michael R Peterson
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA ; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kelly A Frazer
- Division of Genome Information Sciences, Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, USA ; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA ; Clinical and Translational Science Institute, University of California San Diego, La Jolla, CA, USA ; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Olivier Harismendy
- Division of Genome Information Sciences, Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, USA ; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA ; Clinical and Translational Science Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Kato H, Kuriyama N, Duarte S, Clavien PA, Busuttil RW, Coito AJ. MMP-9 deficiency shelters endothelial PECAM-1 expression and enhances regeneration of steatotic livers after ischemia and reperfusion injury. J Hepatol 2014; 60:1032-9. [PMID: 24412604 PMCID: PMC3995823 DOI: 10.1016/j.jhep.2013.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/14/2013] [Accepted: 12/17/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Organ shortage has led to the use of steatotic livers in transplantation, despite their elevated susceptibility to ischemia/reperfusion injury (IRI). Matrix metalloproteinase-9 (MMP-9), an inducible gelatinase, is emerging as a central mediator of leukocyte traffic into inflamed tissues. However, its role in steatotic hepatic IRI has yet to be demonstrated. METHODS We examined the function of MMP-9 in mice fed with a high-fat diet (HFD), which developed approximately 50% hepatic steatosis, predominantly macrovesicular, prior to partial hepatic IRI. RESULTS The inability of MMP-9(-/-) deficient steatotic mice to express MMP-9 significantly protected these mice from liver IRI. Compared to fatty controls, MMP-9(-/-) steatotic livers showed significantly reduced leukocyte infiltration, proinflammatory cytokine expression, and liver necrosis. Loss of MMP-9 activity preserved platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, a modulator of vascular integrity at the endothelial cell-cell junctions in steatotic livers after IRI. Using in vitro approaches, we show that targeted inhibition of MMP-9 sheltered the extracellular portion of PECAM-1 from proteolytic processing, and disrupted leukocyte migration across this junctional molecule. Moreover, the evaluation of distinct parameters of regeneration, proliferating cell nuclear antigen (PCNA) and histone H3 phosphorylation (pH3), provided evidence that hepatocyte progression into S phase and mitosis was notably enhanced in MMP-9(-/-) steatotic livers after IRI. CONCLUSIONS MMP-9 activity disrupts vascular integrity at least partially through a PECAM-1 dependent mechanism and interferes with regeneration of steatotic livers after IRI. Our novel findings establish MMP-9 as an important mediator of steatotic liver IRI.
Collapse
Affiliation(s)
- Hiroyuki Kato
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Naohisa Kuriyama
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Pierre-Alain Clavien
- Swiss HPB (Hepato-Pancreato-Biliary) Center, Department of Surgery, University Hospital Zurich, 100 Raemistrasse, 8091 Zurich, Switzerland
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ana J. Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA,Contact Information: Ana J. Coito, The Dumont-UCLA Transplant Center, 77-120 CHS, Box: 957054, Los Angeles, CA 90095-7054.
| |
Collapse
|
24
|
Iyer RP, de Castro Brás LE, Jin YF, Lindsey ML. Translating Koch's postulates to identify matrix metalloproteinase roles in postmyocardial infarction remodeling: cardiac metalloproteinase actions (CarMA) postulates. Circ Res 2014; 114:860-71. [PMID: 24577966 DOI: 10.1161/circresaha.114.301673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first matrix metalloproteinase (MMP) was described in 1962; and since the 1990s, cardiovascular research has focused on understanding how MMPs regulate many aspects of cardiovascular pathology from atherosclerosis formation to myocardial infarction and stroke. Although much information has been gleaned by these past reports, to a large degree MMP cardiovascular biology remains observational, with few studies homing in on cause and effect relationships. Koch's postulates were first developed in the 19th century as a way to establish microorganism function and were modified in the 20th century to include methods to establish molecular causality. In this review, we outline the concept for establishing a similar approach to determine causality in terms of MMP functions. We use left ventricular remodeling postmyocardial infarction as an example, but this approach will have broad applicability across both the cardiovascular and the MMP fields.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- From the San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research (R.P.I., L.E.d.C.B., Y.-F.J., M.L.L.) and Department of Biophysics and Physiology (R.P.I., L.E.d.C.B., M.L.L.), University of Mississippi Medical Center, Jackson; Department of Electrical and Computer Engineering, University of Texas at San Antonio (Y.-F.J.); and Research Service, G.V. (Sonny) Department of Physiology and Biophysics, Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | | | | | | |
Collapse
|
25
|
Lenoir B, Wagner DR, Blacher S, Sala-Newby GB, Newby AC, Noel A, Devaux Y. Effects of adenosine on lymphangiogenesis. PLoS One 2014; 9:e92715. [PMID: 24651845 PMCID: PMC3961410 DOI: 10.1371/journal.pone.0092715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/25/2014] [Indexed: 02/01/2023] Open
Abstract
Background The lymphatic system controls tissue homeostasis by draining protein-rich lymph to the vascular system. Lymphangiogenesis, the formation of lymphatic vessels, is a normal event in childhood but promotes tumor spread and metastasis during adulthood. Blocking lymphangiogenesis may therefore be of therapeutic interest. Production of adenosine is enhanced in the tumor environment and contributes to tumor progression through stimulation of angiogenesis. In this study, we determined whether adenosine affects lymphangiogenesis. Methods Lymphatic endothelial cells (HMVEC-dLy) were cultured in presence of adenosine and their proliferation, migration and tube formation was assessed. Gelatin sponges embedded with the stable analogue of adenosine 2-chloro adenosine were implanted in mice ear and lymphangiogenesis was quantified. Mice were intravenously injected with adenoviruses containing expression vector for 5′-endonucleotidase, which plays a major role in the formation of adenosine. Results In vitro, we observed that adenosine decreased the proliferation of lymphatic endothelial cells, their migration and tube formation. However, in vivo, gelatin sponges containing 2-chloro adenosine and implanted in mice ear displayed an elevated level of lymphangiogenesis (2.5-fold, p<0.001). Adenovirus-mediated over-expression of cytosolic 5′-nucleotidase IA stimulated lymphangiogenesis and the recruitment of macrophages in mouse liver. Proliferation of lymphatic endothelial cells was enhanced (2-fold, p<0.001) when incubated in the presence of conditioned medium from murine macrophages. Conclusion We have shown that adenosine stimulates lymphangiogenesis in vivo, presumably through a macrophage-mediated mechanism. This observation suggests that blockade of adenosine receptors may help in anti-cancer therapies.
Collapse
Affiliation(s)
- Bénédicte Lenoir
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP – Santé), Luxembourg
| | - Daniel R. Wagner
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP – Santé), Luxembourg
- Division of Cardiology, Centre Hospitalier Luxembourg, Luxembourg
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée - Cancer, University of Liège, Liège, Belgium
| | - Graciela B. Sala-Newby
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Andrew C. Newby
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée - Cancer, University of Liège, Liège, Belgium
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP – Santé), Luxembourg
- * E-mail:
| |
Collapse
|
26
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
27
|
Bousquenaud M, Maskali F, Poussier S, Zangrando J, Marie PY, Boutley H, Fay R, Karcher G, Wagner DR, Devaux Y. Cardioprotective effects of adenosine within the border and remote areas of myocardial infarction. EJNMMI Res 2013; 3:65. [PMID: 24028474 PMCID: PMC3847228 DOI: 10.1186/2191-219x-3-65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/31/2013] [Indexed: 11/17/2022] Open
Abstract
Background Adenosine may have beneficial effects on left ventricular function after myocardial infarction (MI), but the magnitude of this effect on remote and MI areas is controversial. We assessed the long-term effects of adenosine after MI using electrocardiogram-triggered 18 F-fluorodeoxyglucose positron emission tomography. Methods Wistar rats were subjected to coronary ligation and randomized into three groups treated daily for 2 months by NaCl (control; n = 7), 2-chloroadenosine (CADO; n = 8) or CADO with 8-sulfophenyltheophilline, an antagonist of adenosine receptors (8-SPT; n = 8). Results After 2 months, control rats exhibited left ventricular remodelling, with increased end-diastolic volume and decreased ejection fraction. Left ventricular remodelling was not significantly inhibited by CADO. Segmental contractility, as assessed by the change in myocardial thickening after 2 months, was improved in CADO rats compared to control rats (+1.6% ± 0.8% vs. −2.3% ± 0.8%, p < 0.001). This improvement was significant in border (+5.6% ± 0.8% vs. +1.5% ± 0.8%, p < 0.001) and remote (−4.0% ± 1.0% vs. −10.4% ± 1.3%, p < 0.001) segments, but absent in MI segments. Histological analyses revealed that CADO reduced fibrosis, cardiomyocyte hypertrophy and apoptosis. Protective effects of CADO were blunted by 8-SPT. Conclusion Long-term administration of adenosine protects the left ventricle from contractile dysfunction following MI.
Collapse
Affiliation(s)
- Mélanie Bousquenaud
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé, 84 Val Fleuri, Luxembourg L1526, Luxembourg.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Snitker S, Xie K, Ryan KA, Yu D, Shuldiner AR, Mitchell BD, Gong DW. Correlation of circulating MMP-9 with white blood cell count in humans: effect of smoking. PLoS One 2013; 8:e66277. [PMID: 23825535 PMCID: PMC3692499 DOI: 10.1371/journal.pone.0066277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/03/2013] [Indexed: 12/03/2022] Open
Abstract
Background Matrix metalloproteinase-9 (MMP-9) is an emerging biomarker for several disease conditions, where white blood cell (WBC) count is also elevated. In this study, we examined the relationship between MMP-9 and WBC levels in apparently healthy smoking and non-smoking human subjects. Methods We conducted a cross-sectional study to assess the relationship of serum MMP-9 with WBC in 383 men and 356 women. Next, we divided the male population (women do not smoke in this population) into three groups: never (n = 243), current (n = 76) and former (n = 64) smokers and compared the group differences in MMP-9 and WBC levels and their correlations within each group. Results Circulating MMP-9 and WBC count are significantly correlated in men (R2 = 0.13, p<0.001) and women (R2 = 0.19, p<0.001). After stratification by smoking status, MMP-9 level was significantly higher in current smokers (mean ± SE; 663.3±43.4 ng/ml), compared to never (529.7±20.6) and former smokers (568±39.3). WBC count was changed in a similar pattern. Meanwhile, the relationship became stronger in current smokers with increased correlation coefficient of r = 0.45 or R2 = 0.21 (p<0.001) and steeper slope of ß = 1.16±0.30 (p<0.001) in current smokers, compared to r = 0.26 or R2 = 0.07 (p<0.001) and ß = 0.34±0.10 (p<0.001) in never smokers. Conclusions WBC count accounts for 13% and 19% of MMP-9 variance in men and women, respectively. In non-smoking men, WBC count accounts for 7% of MMP-9 variance, but in smoking subjects, it accounts for up to 21% of MMP-9 variance. Thus, we have discovered a previously unrecognized correlation between the circulating MMP-9 and WBC levels in humans.
Collapse
Affiliation(s)
- Soren Snitker
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Keming Xie
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathophysiology, Medical College of Soochow University, Suzhou, China
| | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Daozhan Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Bao Y, Chen Y, Ledderose C, Li L, Junger WG. Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 2013; 288:22650-7. [PMID: 23798685 DOI: 10.1074/jbc.m113.476283] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells, which regulate cell migration in a chemotactic gradient field. We have previously shown that ATP release via pannexin 1 (PANX1) channels and autocrine stimulation of P2Y2 receptors contribute to the excitatory signals at the front. Here we show that PANX1 also contributes to the inhibitory signals at the back, namely by providing the ligand for A2A adenosine receptors. In resting neutrophils, we found that A2A receptors are uniformly distributed across the cell surface. In polarized cells, A2A receptors redistributed to the back where their stimulation triggered intracellular cAMP accumulation and protein kinase A (PKA) activation, which blocked chemoattractant receptor signaling. Inhibition of PANX1 blocked A2A receptor stimulation and cAMP accumulation in response to formyl peptide receptor stimulation. Treatments that blocked endogenous A2A receptor signaling impaired the polarization and migration of neutrophils in a chemotactic gradient field and resulted in enhanced ERK and p38 MAPK signaling in response to formyl peptide receptor stimulation. These findings suggest that chemoattractant receptors require PANX1 to trigger excitatory and inhibitory signals that synergize to fine-tune chemotactic responses at the front and back of neutrophils. PANX1 channels thus link local excitatory signals to the global inhibitory signals that orchestrate chemotaxis of neutrophils in gradient fields.
Collapse
Affiliation(s)
- Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
30
|
Li J, Zhao L, He X, Zeng YJ, Dai SS. Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling. PLoS One 2013; 8:e59257. [PMID: 23555007 PMCID: PMC3598653 DOI: 10.1371/journal.pone.0059257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/12/2013] [Indexed: 02/07/2023] Open
Abstract
Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A2A receptor (A2AR) expression, and the protective effect of SIN was abolished in A2AR knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A2AR by SIN and showed that A2AR-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A2AR-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China
| | - Xie He
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China
| | - Yi-Jun Zeng
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
31
|
Bhamidipati CM, Mehta GS, Moehle CW, Meher AK, Su G, Vigneshwar NG, Barbery C, Sharma AK, Kron IL, Laubach VE, Owens GK, Upchurch GR, Ailawadi G. Adenosine 2A receptor modulates inflammation and phenotype in experimental abdominal aortic aneurysms. FASEB J 2013; 27:2122-31. [PMID: 23413358 DOI: 10.1096/fj.12-214197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation of the adenosine 2A receptor (A2AR) reduces inflammation in models of acute injury but contribution in development of chronic abdominal aortic aneurysms (AAAs) is unknown. Elastase perfusion to induce AAA formation in A2AR-knockout (A2ARKO) and C57BL6/J wild-type (WT) mice resulted in nearly 100% larger aneurysms in A2ARKO compared to WT at d 14 (P<0.05), with evidence of greater elastin fragmentation, more immune cell infiltration, and increased matrix metallatoproteinase (MMP) 9 expression (P<0.05). Separately, exogenous A2AR antagonism in elastase-perfused WT mice also resulted in larger aneurysms (P<0.05), while A2AR agonism limited aortic dilatation (P<0.05). Activated Thy-1.2(+) T lymphocytes from WT mice treated in vitro with A2AR antagonist increased cytokine production, and treatment with A2AR agonist decreased cytokine production (P<0.05 for all). Primary activated CD4(+) T lymphocytes from A2ARKO mice exhibited greater chemotaxis (P<0.05). A2AR antagonist increased chemotaxis of activated CD4(+) cells from WT mice in vitro, and A2AR agonist reduced this effect (P<0.05). A2AR activation attenuates AAA formation partly by inhibiting immune cell recruitment and reducing elastin fragmentation. These findings support augmenting A2AR signaling as a putative target for limiting aneurysm formation.
Collapse
Affiliation(s)
- Castigliano M Bhamidipati
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rolland-Turner M, Goretti E, Bousquenaud M, Léonard F, Nicolas C, Zhang L, Maskali F, Marie PY, Devaux Y, Wagner D. Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150. PLoS One 2013; 8:e54135. [PMID: 23326587 PMCID: PMC3541240 DOI: 10.1371/journal.pone.0054135] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Administration of endothelial progenitor cells (EPC) represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α) and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001). CXCR4 expression at the cell surface was also increased. This effect involved the A(2B) receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION Adenosine increases the migration of EPC. The mechanism involves A(2B) receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These results suggest that adenosine may be used to enhance the capacity of EPC to revascularize the ischemic heart.
Collapse
Affiliation(s)
- Magali Rolland-Turner
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Emeline Goretti
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Mélanie Bousquenaud
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Frédérique Léonard
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Christelle Nicolas
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Lu Zhang
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Fatiha Maskali
- Nancyclotep Experimental Imaging Platform, Vandoeuvre-les-Nancy, France
| | - Pierre-Yves Marie
- Nancyclotep Experimental Imaging Platform, Vandoeuvre-les-Nancy, France
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
| | - Daniel Wagner
- Laboratory of Cardiovascular Research, Public Research Centre – Health (CRP – Santé), Luxembourg, Luxembourg
- Division of Cardiology, Centre Hospitalier, Luxembourg, Luxembourg
| |
Collapse
|
33
|
Lee KY, Liu L, Jin Y, Fu SB, Rosales JL. Cdk5 mediates vimentin Ser56 phosphorylation during GTP-induced secretion by neutrophils. J Cell Physiol 2012; 227:739-50. [PMID: 21465480 DOI: 10.1002/jcp.22782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Secretion by neutrophils contributes to acute inflammation following injury or infection. Vimentin has been shown to be important for secretion by neutrophils but little is known about its dynamics during secretion, which is regulated by cyclin-dependent kinase 5 (Cdk5). In this study, we sought to examine the vimentin dynamics and its potential regulation by Cdk5 during neutrophil secretion. We show that vimentin is a Cdk5 substrate that is specifically phosphorylated at Ser56. In response to neutrophil stimulation with GTP, vimentin Ser56 was phosphorylated and colocalized with Cdk5 in the cytoplasmic compartment. Vimentin pSer56 and Cdk5 colocalization was consistent with coimmunoprecipitation from stimulated cells. Vimentin Ser56 phosphorylation occurred immediately after stimulation, and a remarkable increase in phosphorylation was noted later in the secretory process. Decreased GTP-induced vimentin Ser56 phosphorylation and secretion resulted from inhibition of Cdk5 activity by roscovitine or olomoucine or by depletion of Cdk5 by siRNA, suggesting that GTP-induced Cdk5-mediated vimentin Ser56 phosphorylation may be related to GTP-induced Cdk5-mediated secretion by neutrophils. Indeed, inhibition of vimentin Ser56 phosphorylation led to a corresponding inhibition of GTP-induced secretion, indicating a link between these two events. While fMLP also induced vimentin Ser56 phosphorylation, such phosphorylation was unaffected by roscovitine, which nonetheless, inhibited secretion, suggesting that Cdk5 regulates fMLP-induced secretion via a mechanism independent of Cdk5-mediated vimentin Ser56 phosphorylation. These findings demonstrate the distinct involvement of Cdk5 in GTP- and fMLP-induced secretion by neutrophils, and support the notion that specific targeting of Cdk5 may serve to inhibit the neutrophil secretory process.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
34
|
Haas B, Leonard F, Ernens I, Rodius S, Vausort M, Rolland-Turner M, Devaux Y, Wagner DR. Adenosine reduces cell surface expression of toll-like receptor 4 and inflammation in response to lipopolysaccharide and matrix products. J Cardiovasc Transl Res 2011; 4:790-800. [PMID: 21538184 DOI: 10.1007/s12265-011-9279-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/11/2011] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that Toll-like receptor 4 (TLR4) is not only involved in innate immunity but is also an important mediator of adverse left ventricular remodeling and heart failure following acute myocardial infarction (MI). TLR4 is activated by lipopolysaccharide (LPS) but also by products of matrix degradation such as hyaluronic acid and heparan sulfate. Although cardioprotective properties of adenosine (Ado) have been extensively studied, its potential to interfere with TLR4 activation is unknown. We observed that TLR4 pathway is activated in white blood cells from MI patients. TLR4 mRNA expression correlated with troponin T levels (R (2) = 0.75; P = 0.01) but not with levels of white blood cells and C-reactive protein. Ado downregulated TLR4 expression at the surface of human macrophages (-50%, P < 0.05). Tumor necrosis factor-α production induced by the TLR4 ligands LPS, hyaluronic acid, and heparan sulfate was potently inhibited by Ado (-75% for LPS, P < 0.005). This effect was reproduced by the A2A Ado receptor agonist CGS21680 and the non-selective agonist NECA and was inhibited by the A2A antagonist SCH58261 and the A2A/A2B antagonist ZM241,385. In contrast, Ado induced a 3-fold increase of TLR4 mRNA expression (P = 0.008), revealing the existence of a feedback mechanism to compensate for the loss of TLR4 expression at the cell surface. In conclusion, the TLR4 pathway is activated after MI and correlates with infarct severity but not with the extent of inflammation. Reduction of TLR4 expression by Ado may therefore represent an important strategy to limit remodeling post-MI.
Collapse
Affiliation(s)
- Benjamin Haas
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, 120 route d'Arlon 1150, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Azuaje F, Léonard F, Rolland-Turner M, Devaux Y, Wagner DR. Proof-of-principle investigation of an algorithmic model of adenosine-mediated angiogenesis. Theor Biol Med Model 2011; 8:7. [PMID: 21477269 PMCID: PMC3090359 DOI: 10.1186/1742-4682-8-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background We investigated an algorithmic approach to modelling angiogenesis controlled by vascular endothelial growth factor (VEGF), the anti-angiogenic soluble VEGF receptor 1 (sVEGFR-1) and adenosine (Ado). We explored its feasibility to test angiogenesis-relevant hypotheses. We illustrated its potential to investigate the role of Ado as an angiogenesis modulator by enhancing VEGF activity and antagonizing sVEGFR-1. Results We implemented an algorithmic model of angiogenesis consisting of the dynamic interaction of endothelial cells, VEGF, sVEGFR-1 and Ado entities. The model is based on a logic rule-based methodology in which the local behaviour of the cells and molecules is encoded using if-then rules. The model shows how Ado may enhance angiogenesis through activating and inhibiting effects on VEGF and sVEGFR-1 respectively. Despite the relative simplicity of the model, it recapitulated basic features observed in in vitro models. However, observed disagreements between our models and in vitro data suggest possible knowledge gaps and may guide future experimental directions. Conclusions The proposed model can support the exploration of hypotheses about the role of different molecular entities and experimental conditions in angiogenesis. Future expansions can also be applied to assist research planning in this and other biomedical domains.
Collapse
Affiliation(s)
- Francisco Azuaje
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé (CRP-Santé), L-1150 Luxembourg, Luxembourg.
| | | | | | | | | |
Collapse
|
36
|
Chen H, Koupenova M, Yang D, Sume SS, Trackman PC, Ravid K. Regulation of MMP-9 expression by the A2b adenosine receptor and its dependency on TNF-α signaling. Exp Hematol 2011; 39:525-30. [PMID: 21320567 DOI: 10.1016/j.exphem.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/13/2011] [Accepted: 02/08/2011] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage- and vascular-derived matrix metalloproteinase (MMP)-9 plays an important role in neointima formation after vascular injury. The A2b adenosine receptor (A2bAR) elevates cyclic adenosine monophosphate and suppresses tumor necrosis factor-α (TNF-α) levels at baseline and after vascular injury. Considering the influences of TNF-α on MMP-9 expression and activity, here we examined the effect of the A2bAR on the expression of MMP-9 and its potential dependency on TNF-α. MATERIALS AND METHODS We applied protein activity and mRNA analyses of MMP-9 in macrophages derived from A2bAR knockout (KO) and TNF-α receptor KO mice. We employed guidewire-induced femoral artery injuries on A2bAR KO and control mice and analyzed by immunohistochemistry MMP-9 expression in the neointima area. RESULTS MMP-9 activity is somewhat less in resident A2bAR KO macrophages compared with wild-type cells. However, MMP-9 is increased in activated macrophages from A2bAR KO when TNF-α is further elevated, or in wild-type cells after TNF-α treatment. In accordance, A2bAR activation downregulates MMP-9 expression in wild-type macrophages, which is ablated in TNF-α receptor KO cells. A greater vascular lesion after femoral artery injury in A2bAR KO mice is associated with elevated TNF-α levels and augmented MMP-9, compared to control mice. CONCLUSIONS Ablation of the A2bAR in activated macrophages increases MMP-9. A2bAR activation reduces MMP-9 expression, which depends on TNF-α and could contribute to the protective role of A2bAR in a vascular injury model.
Collapse
Affiliation(s)
- Hongjie Chen
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
37
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
38
|
Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 2010; 285:40104-13. [PMID: 20940302 PMCID: PMC3000993 DOI: 10.1074/jbc.m110.184606] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.
Collapse
Affiliation(s)
- Sapna Thakur
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Uemura K, Zheng C, Li M, Kawada T, Sugimachi M. Early Short-Term Vagal Nerve Stimulation Attenuates Cardiac Remodeling After Reperfused Myocardial Infarction. J Card Fail 2010; 16:689-99. [DOI: 10.1016/j.cardfail.2010.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/19/2010] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
|
40
|
Anderson R, Tintinger G, Cockeran R, Potjo M, Feldman C. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System. Pharmaceuticals (Basel) 2010; 3:1694-1710. [PMID: 27713324 PMCID: PMC4034004 DOI: 10.3390/ph3051694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/26/2010] [Accepted: 05/24/2010] [Indexed: 11/30/2022] Open
Abstract
In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.
Collapse
Affiliation(s)
- Ronald Anderson
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Gregory Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
- Division of Pulmonology, Department of Internal Medicine, Steve Biko Pretoria Academic Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Riana Cockeran
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Moliehi Potjo
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
41
|
Azuaje F, Devaux Y, Wagner DR. Identification of potential targets in biological signalling systems through network perturbation analysis. Biosystems 2010; 100:55-64. [DOI: 10.1016/j.biosystems.2010.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
|
42
|
Guri AJ, Hontecillas R, Bassaganya-Riera J. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clin Nutr 2010; 29:824-31. [PMID: 20236740 DOI: 10.1016/j.clnu.2010.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). METHODS C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. RESULTS ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. CONCLUSIONS We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression.
Collapse
Affiliation(s)
- Amir J Guri
- Laboratory of Nutritional Immunology & Molecular Nutrition, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
43
|
Abstract
Neutrophils are well-recognized phagocytes in the first line of host defense, and are also a major source of pro-inflammatory cytokines, chemokines and lipid mediators, thereby contributing to the onset and early orchestration of the inflammatory response. In contrast, recent studies indicate that neutrophils have tools to limit the magnitude and length of an inflammatory response, and may take part in engaging the resolution process. This article describes endogenous signals that may transform the phenotype of a neutrophil: from a pro-inflammatory cell to one that promotes resolution. Adenosine, an autacoid which can be found at high concentrations in inflammatory sites, inhibits several inflammatory functions of the neutrophil via engagement of the A2A receptor and reshapes the profile of lipid mediators and cytokines released, causing cells to terminate the release of pro-inflammatory signals while progressing toward resolution. These endogenous resolution pathways may represent a key target for better treatments of inflammatory diseases.
Collapse
Affiliation(s)
- Aline Dumas
- Centre de recherche en rhumatologie et immunologie du CHUQ, et département d'anatomie-physiologie, CHUL, Faculté de médecine, Université Laval, 2705, boulevard Laurier, bureau T1-49, Québec (Québec), G1V 4G2 Canada.
| | | |
Collapse
|
44
|
Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol 2010; 79:1483-95. [PMID: 20096265 DOI: 10.1016/j.bcp.2010.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/15/2022]
Abstract
In this work, we investigated the biological functions of adenosine (ado) in metalloproteinase-9 (MMP-9) regulation in U87MG human glioblastoma cells. The nucleoside was able to increase both MMP-9 mRNA and protein levels through A3 receptors activation. We revealed that A3 receptor stimulation induced an increase of MMP-9 protein levels in cellular extracts of U87MG cells by phosphorylation of extracellular signal-regulated protein kinases (ERK1/2), c-Jun N-terminal kinase/stress-activated protein kinase (pJNK/SAPK), protein kinase B (Akt/PKB) and finally activator protein 1 (AP-1). A3 receptor activation stimulated also an increase of extracellular MMP-9 in the supernatants from U87MG glioblastoma cells. Finally, the Matrigel invasion assay demonstrated that A3 receptors, by inducing an increase in MMP-9 levels, was responsible for an increase of glioblastoma cells invasion. Collectively, these results suggest that ado, through A3 receptors activation, modulates MMP-9 protein levels and plays a role in increasing invasion of U87MG cells.
Collapse
|
45
|
Ernens I, Léonard F, Vausort M, Rolland-Turner M, Devaux Y, Wagner DR. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem Biophys Res Commun 2010; 392:351-6. [PMID: 20067761 DOI: 10.1016/j.bbrc.2010.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/28/2022]
Abstract
It is known from animal models that the cardioprotective nucleoside adenosine stimulates angiogenesis mainly through up-regulation of vascular endothelial growth factor (VEGF). Since macrophages infiltrate the heart after infarction and because adenosine receptors behave differently across species, we evaluated the effect of adenosine on VEGF in human macrophages. Adenosine dose-dependently up-regulated VEGF expression and secretion by macrophages from healthy volunteers. VEGF production was also increased by blockade of extracellular adenosine uptake with dipyridamole. This effect was exacerbated by the toll-like receptor-4 ligands heparan sulfate, hyaluronic acid and lipopolysaccharide, and was associated with an increase of hypoxia inducible factor-1alpha expression, the main transcriptional inducer of VEGF in hypoxic conditions. The agonist of the adenosine A2A receptor CGS21680 reproduced the increase of VEGF and the antagonist SCH58261 blunted it. In conclusion, these results provide evidence that activation of adenosine A2A receptor stimulates VEGF production in human macrophages. This study suggests that adenosine is a unique pro-angiogenic molecule that may be used to stimulate cardiac repair.
Collapse
Affiliation(s)
- Isabelle Ernens
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg
| | | | | | | | | | | |
Collapse
|
46
|
Hwang TL, Li GL, Lan YH, Chia YC, Hsieh PW, Wu YH, Wu YC. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radic Biol Med 2009; 46:520-8. [PMID: 19100830 DOI: 10.1016/j.freeradbiomed.2008.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/23/2008] [Accepted: 11/18/2008] [Indexed: 01/15/2023]
Abstract
Fissistigma oldhamii is widely used in traditional Chinese medicine to treat rheumatoid arthritis. Activation of neutrophils is a key feature of inflammatory diseases. Herein, the anti-inflammatory functions of isopedicin, a flavanone derived from F. oldhamii, and its underlying mechanisms were investigated in human neutrophils. Isopedicin potently and concentration-dependently inhibited superoxide anion (O(2)(*)(-)) production in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils with an IC(50) value of 0.34+/-0.03 microM. Furthermore, isopedicin displayed no superoxide-scavenging ability, and it failed to alter subcellular NADPH oxidase activity. The inhibitory effect of isopedicin on O(2)(*)(-) production was reversed by protein kinase A (PKA) inhibitors. Moreover, isopedicin increased cAMP formation and PKA activity in FMLP-activated human neutrophils, which occurred through the inhibition of phosphodiesterase (PDE) activity but not an increase in adenylate cyclase function. In addition, isopedicin reduced FMLP-induced phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase, which was reversed by the PKA inhibitor. In contrast, isopedicin failed to alter FMLP-induced phosphorylation of p38 mitogen-activated protein kinase and calcium mobilization. In summary, these results demonstrate that inhibition of O(2)(*)(-) production in human neutrophils by isopedicin is associated with an elevation of cellular cAMP and activation of PKA through its inhibition of cAMP-specific PDE.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Souza LFD, Jardim FR, Sauter IP, Souza MMD, Barreto F, Margis R, Bernard EA. Lipoteichoic acid from Staphylococcus aureus increases matrix metalloproteinase 9 expression in RAW 264.7 macrophages: Modulation by A2A and A2B adenosine receptors. Mol Immunol 2009; 46:937-42. [DOI: 10.1016/j.molimm.2008.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/15/2023]
|
48
|
Kim DH, Ryu JH. Activation of Adenosine A2AReceptor Impairs Memory Acquisition but not Consolidation or Retrieval Phases. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.4.320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Kim YH, Hwang HS, Kim YT, Kim HS, Park YW. Modulation of Matrix Metalloproteinase Secretion by Adenosine A3 Receptor in Preeclamptic Villous Explants. Reprod Sci 2008; 15:939-49. [DOI: 10.1177/1933719108322431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Young-Han Kim
- Department of Obstetrics and Gynecology, Yonsei University Health System, Seoul, Korea
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Yonsei University Health System, Seoul, Korea
| | - Young-Tae Kim
- Department of Obstetrics and Gynecology, Yonsei University Health System, Seoul, Korea
| | - Haeng-Soo Kim
- Department of Obstetrics and Gynecology, Ajou University College of Medicine, Suwon, South Korea
| | - Yong-Won Park
- Department of Obstetrics and Gynecology, Yonsei University Health System, Seoul, Korea,
| |
Collapse
|
50
|
Velot E, Haas B, Léonard F, Ernens I, Rolland-Turner M, Schwartz C, Longrois D, Devaux Y, Wagner DR. Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovasc Res 2008; 80:246-54. [DOI: 10.1093/cvr/cvn201] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|