1
|
Salehi S, Lippert Lozano E, Zhang Y, Guo Y, Liu R, Tran K, Messner F, Brandacher G, Grayson WL. Design of a Multiparametric Perfusion Bioreactor System for Evaluating Sub-Normothermic Preservation of Rat Abdominal Wall Vascularized Composite Allografts. Bioengineering (Basel) 2024; 11:307. [PMID: 38671729 PMCID: PMC11047557 DOI: 10.3390/bioengineering11040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models.
Collapse
Affiliation(s)
- Sara Salehi
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Ernesto Lippert Lozano
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Yichuan Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
| | - Yinan Guo
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
| | - Renee Liu
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Kenny Tran
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Franka Messner
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Warren L. Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 2121, USA
| |
Collapse
|
2
|
Namekata I, Tamura M, Kase J, Hamaguchi S, Tanaka H. Cardioprotective Effect against Ischemia-Reperfusion Injury of PAK-200, a Dihydropyridine Analog with an Inhibitory Effect on Cl - but Not Ca 2+ Current. Biomolecules 2023; 13:1719. [PMID: 38136589 PMCID: PMC10741401 DOI: 10.3390/biom13121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
We examined the effects of a dihydropyridine analog, PAK-200, on guinea pig myocardium during experimental ischemia and reperfusion. In isolated ventricular cardiomyocytes, PAK-200 (1 μM) had no effect on the basal peak inward and steady-state currents but inhibited the isoprenaline-induced time-independent Cl- current. In the right atria, PAK-200 had no effect on the beating rate and the chronotropic response to isoprenaline. In an ischemia-reperfusion model with coronary-perfused right ventricular tissue, a decrease in contractile force and a rise in tension were observed during a period of 30-min no-flow ischemia. Upon reperfusion, contractile force returned to less than 50% of preischemic values. PAK-200 had no effect on the decline in contractile force during the no-flow ischemia but reduced the rise in resting tension. PAK-200 significantly improved the recovery of contractile force after reperfusion to about 70% of the preischemic value. PAK-200 was also shown to attenuate the decrease in tissue ATP during ischemia. Treatment of ventricular myocytes with an ischemia-mimetic solution resulted in depolarization of the mitochondrial membrane potential and an increase in cytoplasmic and mitochondrial Ca2+ concentrations. PAK-200 significantly delayed these changes. Thus, PAK-200 inhibits the cAMP-activated chloride current in cardiac muscle and may have protective effects against ischemia-reperfusion injury through novel mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (I.N.); (M.T.); (J.K.); (S.H.)
| |
Collapse
|
3
|
Takata N, Miska JM, Morgan MA, Patel P, Billingham LK, Joshi N, Schipma MJ, Dumar ZJ, Joshi NR, Misharin AV, Embry RB, Fiore L, Gao P, Diebold LP, McElroy GS, Shilatifard A, Chandel NS, Oliver G. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14:4129. [PMID: 37452018 PMCID: PMC10349100 DOI: 10.1038/s41467-023-39672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Jason M Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neha Joshi
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nikita R Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryan B Embry
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Laboratory of Nanomedicine, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren P Diebold
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gregory S McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Milliken AS, Ciesla JH, Nadtochiy SM, Brookes PS. Distinct effects of intracellular vs. extracellular acidic pH on the cardiac metabolome during ischemia and reperfusion. J Mol Cell Cardiol 2023; 174:101-114. [PMID: 36481511 PMCID: PMC9868090 DOI: 10.1016/j.yjmcc.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/10/2022]
Abstract
Tissue ischemia results in intracellular pH (pHIN) acidification, and while metabolism is a known driver of acidic pHIN, less is known about how acidic pHIN regulates metabolism. Furthermore, acidic extracellular (pHEX) during early reperfusion confers cardioprotection, but how this impacts metabolism is unclear. Herein we employed LCMS based targeted metabolomics to analyze perfused mouse hearts exposed to: (i) control perfusion, (ii) hypoxia, (iii) ischemia, (iv) enforced acidic pHIN, (v) control reperfusion, and (vi) acidic pHEX (6.8) reperfusion. Surprisingly little overlap was seen between metabolic changes induced by hypoxia, ischemia, and acidic pHIN. Acidic pHIN elevated metabolites in the top half of glycolysis, and enhanced glutathione redox state. Meanwhile, acidic pHEX reperfusion induced substantial metabolic changes in addition to those seen in control reperfusion. This included elevated metabolites in the top half of glycolysis, prevention of purine nucleotide loss, and an enhancement in glutathione redox state. These data led to hypotheses regarding potential roles for methylglyoxal inhibiting the mitochondrial permeability transition pore, and for acidic inhibition of ecto-5'-nucleotidase, as potential mediators of cardioprotection by acidic pHEX reperfusion. However, neither hypothesis was supported by subsequent experiments. In contrast, analysis of cardiac effluents revealed complex effects of pHEX on metabolite transport, suggesting that mildly acidic pHEX may enhance succinate release during reperfusion. Overall, each intervention had distinct and overlapping metabolic effects, suggesting acidic pH is an independent metabolic regulator regardless which side of the cell membrane it is imposed.
Collapse
Affiliation(s)
- Alexander S Milliken
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Jessica H Ciesla
- Department of Biochemistry, University of Rochester Medical Center, USA
| | - Sergiy M Nadtochiy
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA
| | - Paul S Brookes
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA.
| |
Collapse
|
5
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
6
|
Mammadova N, Soukup J, Shkodivskyi P, Gudowski C, Ahmed A, Pliquett RU. A patient with severe metformin-associated lactic acidosis complicated by acute coronary syndrome: a case report. BMC Nephrol 2022; 23:174. [PMID: 35524187 PMCID: PMC9074216 DOI: 10.1186/s12882-022-02781-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Metformin-associated lactic acidosis (MALA) is a rare but life-threatening condition. Here, we report the outcome of a patient with MALA complicated by acute coronary syndrome. Case presentation A 47-year-old obese woman of Caucasian ethnicity was admitted for syncope and tachypnea with Kussmaul breathing. She had a type-2 diabetes and was on oral antidiabetic therapy. Hemoglobin A1c was 6.6%. On admission, a severe acute kidney injury (serum creatinine: 1251 µmol/L) with hyperkalemia (7.5 mmol/L) and severe lactic acidosis (ph:7.042, bicarbonate: 9.9 mmol/L, partial pressure of carbon dioxide: 21.8 mmHg, lactate: 20.0 mmol/L) was found. Despite bicarbonate therapy, ph further decreased. Within 2.5 h of admission, a temporary hemodialysis catheter was placed, and one session of a high-efficiency hemodialysis was performed. 8 h after admission, a continuous venovenous hemodiafiltration was initiated and maintained for 2 days. The metformin therapy was stopped. Supplemental oxygen, intravenous catecholamines (4 days) and antibiotic therapy (7 days) were applied. During this therapy of lactic acidosis, an acute coronary syndrome evolved by day 2 after admission and resolved by day 5 in hospital. After recovery, the patient was transferred to a general ward on day 7 and left the hospital on day 11. By discharge, both the acute kidney injury and the acute coronary syndrome were reversible. Conclusion In the patient with MALA complicated by acute coronary syndrome, the combination of a high-efficiency hemodialysis and, consecutively, continuous venovenous hemodiafiltration led to a favorable outcome.
Collapse
Affiliation(s)
- N Mammadova
- Department of Nephrology and Diabetology, Carl-Thiem Hospital, Cottbus, Germany
| | - J Soukup
- Department of Anaesthesiology and Intensive Care, Carl-Thiem Hospital, Cottbus, Germany
| | - P Shkodivskyi
- Department of Nephrology and Diabetology, Carl-Thiem Hospital, Cottbus, Germany
| | - C Gudowski
- Department of Nephrology and Diabetology, Carl-Thiem Hospital, Cottbus, Germany
| | - A Ahmed
- Department of Nephrology and Diabetology, Carl-Thiem Hospital, Cottbus, Germany
| | - R U Pliquett
- Department of Nephrology and Diabetology, Carl-Thiem Hospital, Cottbus, Germany.
| |
Collapse
|
7
|
Lyu Y, Thai PN, Ren L, Timofeyev V, Jian Z, Park S, Ginsburg KS, Overton J, Bossuyt J, Bers DM, Yamoah EN, Chen-Izu Y, Chiamvimonvat N, Zhang XD. Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. iScience 2022; 25:103624. [PMID: 35005560 PMCID: PMC8718820 DOI: 10.1016/j.isci.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and β-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
8
|
Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, Swietach P, Shattock MJ. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovasc Res 2021; 117:2794-2806. [PMID: 33135077 PMCID: PMC8683707 DOI: 10.1093/cvr/cvaa323] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Emipagliflozin (EMPA) is a potent inhibitor of the renal sodium-glucose co-transporter 2 (SGLT2) and an effective treatment for type-2 diabetes. In patients with diabetes and heart failure, EMPA has cardioprotective effects independent of improved glycaemic control, despite SGLT2 not being expressed in the heart. A number of non-canonical mechanisms have been proposed to explain these cardiac effects, most notably an inhibitory action on cardiac Na+/H+ exchanger 1 (NHE1), causing a reduction in intracellular [Na+] ([Na+]i). However, at resting intracellular pH (pHi), NHE1 activity is very low and its pharmacological inhibition is not expected to meaningfully alter steady-state [Na+]i. We re-evaluate this putative EMPA target by measuring cardiac NHE1 activity. METHODS AND RESULTS The effect of EMPA on NHE1 activity was tested in isolated rat ventricular cardiomyocytes from measurements of pHi recovery following an ammonium pre-pulse manoeuvre, using cSNARF1 fluorescence imaging. Whereas 10 µM cariporide produced near-complete inhibition, there was no evidence for NHE1 inhibition with EMPA treatment (1, 3, 10, or 30 µM). Intracellular acidification by acetate-superfusion evoked NHE1 activity and raised [Na+]i, reported by sodium binding benzofuran isophthalate (SBFI) fluorescence, but EMPA did not ablate this rise. EMPA (10 µM) also had no significant effect on the rate of cytoplasmic [Na+]i rise upon superfusion of Na+-depleted cells with Na+-containing buffers. In Langendorff-perfused mouse, rat and guinea pig hearts, EMPA did not affect [Na+]i at baseline nor pHi recovery following acute acidosis, as measured by 23Na triple quantum filtered NMR and 31P NMR, respectively. CONCLUSIONS Our findings indicate that cardiac NHE1 activity is not inhibited by EMPA (or other SGLT2i's) and EMPA has no effect on [Na+]i over a wide range of concentrations, including the therapeutic dose. Thus, the beneficial effects of SGLT2i's in failing hearts should not be interpreted in terms of actions on myocardial NHE1 or intracellular [Na+].
Collapse
Affiliation(s)
- Yu Jin Chung
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
| | - Sergiy Tokar
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - Thomas R Eykyn
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Davor Pavlovic
- Institute for Cardiovascular Sciences, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
| | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
| |
Collapse
|
9
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Aguayo-Ortiz R, Creech J, Jiménez-Vázquez EN, Guerrero-Serna G, Wang N, da Rocha AM, Herron TJ, Espinoza-Fonseca LM. A multiscale approach for bridging the gap between potency, efficacy, and safety of small molecules directed at membrane proteins. Sci Rep 2021; 11:16580. [PMID: 34400719 PMCID: PMC8368179 DOI: 10.1038/s41598-021-96217-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Membrane proteins constitute a substantial fraction of the human proteome, thus representing a vast source of therapeutic drug targets. Indeed, newly devised technologies now allow targeting "undruggable" regions of membrane proteins to modulate protein function in the cell. Despite the advances in technology, the rapid translation of basic science discoveries into potential drug candidates targeting transmembrane protein domains remains challenging. We address this issue by harmonizing single molecule-based and ensemble-based atomistic simulations of ligand-membrane interactions with patient-derived induced pluripotent stem cell (iPSC)-based experiments to gain insights into drug delivery, cellular efficacy, and safety of molecules directed at membrane proteins. In this study, we interrogated the pharmacological activation of the cardiac Ca2+ pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA2a) in human iPSC-derived cardiac cells as a proof-of-concept model. The combined computational-experimental approach serves as a platform to explain the differences in the cell-based activity of candidates with similar functional profiles, thus streamlining the identification of drug-like candidates that directly target SERCA2a activation in human cardiac cells. Systematic cell-based studies further showed that a direct SERCA2a activator does not induce cardiotoxic pro-arrhythmogenic events in human cardiac cells, demonstrating that pharmacological stimulation of SERCA2a activity is a safe therapeutic approach targeting the heart. Overall, this novel multiscale platform encompasses organ-specific drug potency, efficacy, and safety, and opens new avenues to accelerate the bench-to-patient research aimed at designing effective therapies directed at membrane protein domains.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico, Mexico
| | - Jeffery Creech
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric N Jiménez-Vázquez
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guadalupe Guerrero-Serna
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nulang Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro da Rocha
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Todd J Herron
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
- CARTOX, Inc., 56655 Grand River Ave., PO Box 304, New Hudson, MI, 48165, USA
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Espinoza-Fonseca LM. Structural Basis for the Function of the C-Terminal Proton Release Pathway in the Calcium Pump. Int J Mol Sci 2021; 22:ijms22073507. [PMID: 33805255 PMCID: PMC8037123 DOI: 10.3390/ijms22073507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
14
|
Shaul D, Azar A, Sapir G, Uppala S, Nardi-Schreiber A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: A potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance. NMR IN BIOMEDICINE 2021; 34:e4444. [PMID: 33258527 DOI: 10.1002/nbm.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases account for more than 30% of all deaths worldwide and many could be ameliorated with early diagnosis. Current cardiac imaging modalities can assess blood flow, heart anatomy and mechanical function. However, for early diagnosis and improved treatment, further functional biomarkers are needed. One such functional biomarker could be the myocardium pH. Although tissue pH is already determinable via MR techniques, and has been since the early 1990s, it remains elusive to use practically. The objective of this study was to explore the possibility to evaluate cardiac pH noninvasively, using in-cell enzymatic rates of hyperpolarized [1-13 C]pyruvate metabolism (ie, moles of product produced per unit time) determined directly in real time using magnetic resonance spectroscopy in a perfused mouse heart model. As a gold standard for tissue pH we used 31 P spectroscopy and the chemical shift of the inorganic phosphate (Pi) signal. The nonhomogenous pH distribution of the perfused heart was analyzed using a multi-parametric analysis of this signal, thus taking into account the heterogeneous nature of this characteristic. As opposed to the signal ratio of hyperpolarized [13 C]bicarbonate to [13 CO2 ], which has shown correlation to pH in other studies, we investigated here the ratio of two intracellular enzymatic rates: lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH), by way of determining the production rates of [1-13 C]lactate and [13 C]bicarbonate, respectively. The enzyme activities determined here are intracellular, while the pH determined using the Pi signal may contain an extracellular component, which could not be ruled out. Nevertheless, we report a strong correlation between the tissue pH and the LDH/PDH activities ratio. This work may pave the way for using the LDH/PDH activities ratio as an indicator of cardiac intracellular pH in vivo, in an MRI examination.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
15
|
Andreadou I, Tsoumani M, Vilahur G, Ikonomidis I, Badimon L, Varga ZV, Ferdinandy P, Schulz R. PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Front Physiol 2020; 11:602497. [PMID: 33262707 PMCID: PMC7688516 DOI: 10.3389/fphys.2020.602497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extensive evidence from epidemiologic, genetic, and clinical intervention studies has indisputably shown that elevated low-density lipoprotein cholesterol (LDL-C) concentrations play a central role in the pathophysiology of atherosclerotic cardiovascular disease. Apart from LDL-C, also triglycerides independently modulate cardiovascular risk. Reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for reducing plasma LDL-C, but it is also associated with a reduction in triglyceride levels potentially through modulation of the expression of free fatty acid transporters. Preclinical data indicate that PCSK9 is up-regulated in the ischaemic heart and decreasing PCSK9 expression impacts on infarct size, post infarct inflammation and remodeling as well as cardiac dysfunction following ischaemia/reperfusion. Clinical data support that notion in that PCSK9 inhibition is associated with reductions in the incidence of myocardial infarction, stroke, and coronary revascularization and an improvement of endothelial function in subjects with increased cardiovascular risk. The aim of the current review is to summarize the current knowledge on the importance of free fatty acid metabolism on myocardial ischaemia/reperfusion injury and to provide an update on recent evidence on the role of hyperlipidemia and PCSK9 in myocardial infarction and cardioprotection.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), Barcelona Spain
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Scranton K, John S, Escobar A, Goldhaber JI, Ottolia M. Modulation of the cardiac Na +-Ca 2+ exchanger by cytoplasmic protons: Molecular mechanisms and physiological implications. Cell Calcium 2019; 87:102140. [PMID: 32070924 DOI: 10.1016/j.ceca.2019.102140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/31/2023]
Abstract
A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm. The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.
Collapse
Affiliation(s)
- Kyle Scranton
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, UCLA, Los Angeles, CA 90095, USA
| | - Ariel Escobar
- Department of Bioengineering, School of Engineering, UC Merced, Merced, CA 95343, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Reversible Microvascular Hyporeactivity to Acetylcholine During Diabetic Ketoacidosis. Crit Care Med 2019; 46:e772-e778. [PMID: 29782357 DOI: 10.1097/ccm.0000000000003224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Metabolic acidosis is commonly observed in critically ill patients. Experimental studies suggested that acidosis by itself could impair vascular function, but this has been poorly investigated in human. DESIGN Prospective observational study. SETTING Medical ICU in a tertiary teaching hospital. PATIENTS To assess the relationship between metabolic acidosis severity and microvascular reactivity, we included adult diabetic patients admitted in ICU for ketoacidosis. Microvascular response to acetylcholine iontophoresis was measured at admission (baseline) and after correction of metabolic acidosis (24 hr). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Thirty-nine patients with diabetic ketoacidosis were included (68% male), with a median age of 43 (31-57) years. At admission, microvascular reactivity negatively correlated with acidosis severity (R = -0.53; p < 0.001). Microvascular response was strongly depressed at pH less than 7.20 (area under the curve, 1,779 [740-3,079] vs 12,944 [4,874-21,596] at pH > 7.20; p < 0.0001). In addition, acidosis severity was significantly correlated with capillary refill time (R = 0.50; p = 0.02). At H24, after rehydration and insulin infusion, clinical and biological disorders were fully corrected. After acidosis correction, microvascular reactivity increased more in patients with severe baseline acidosis (pH < 7.20) than in those with mild baseline acidosis (area under the curve, +453% [213%-1,470%] vs +121% [79%-312%]; p < 0.01). CONCLUSIONS We identified an alteration of microvascular reactivity during metabolic acidosis in critically ill patients with diabetic ketoacidosis. Microvascular hyporeactivity recovered after acidosis correction.
Collapse
|
18
|
Yang L, Zhao L, Cui L, Huang Y, Ye J, Zhang Q, Jiang X, Zhang D, Huang Y. Decreased α-tubulin acetylation induced by an acidic environment impairs autophagosome formation and leads to rat cardiomyocyte injury. J Mol Cell Cardiol 2019; 127:143-153. [DOI: 10.1016/j.yjmcc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
|
19
|
Donoiu I, Militaru C, Obleagă O, Hunter JM, Neamţu J, Biţă A, Scorei IR, Rogoveanu OC. Effects of boron-containing compounds on cardiovascular disease risk factors - A review. J Trace Elem Med Biol 2018; 50:47-56. [PMID: 30262316 DOI: 10.1016/j.jtemb.2018.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
Boron is considered to be a biological trace element but there is substantial and growing support for it to be classified as an essential nutrient for animals and humans, depending on its speciation. Boron-containing compounds have been reported to play an important role in biological systems. Although the exact biochemical functions of boron-containing compounds have not yet been fully elucidated, previous studies suggest an active involvement of these molecules in the mediation of inflammation and oxidative stress. Chronic inflammation and oxidative stress are known to amplify the effects of the main cardiovascular risk factors: smoking, diet, obesity, arterial hypertension, dyslipidemia, type 2 diabetes (as modifiable risk factors), and hyperhomocysteinemia and age (as independent risk factors). However, the role of boron-containing compounds in cardiovascular systems and disease prevention has yet to be established. This paper is a review of boron-containing compounds' existence in nature and their possible functions in living organisms, with a special focus on certain cardiovascular risk factors that may be diminished by intake of these compounds, leading to a reduction of cardiovascular morbidity and/or mortality.
Collapse
Affiliation(s)
- Ionuţ Donoiu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Constantin Militaru
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Oana Obleagă
- Department of Cardiology, Emergency County Hospital of Craiova, 1 Tabaci Street, 200642, Craiova, Romania
| | - John M Hunter
- VDF FutureCeuticals Inc., 2692 N. State Rt. 1-17, Momence, 60954, IL, USA
| | - Johny Neamţu
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Ion Romulus Scorei
- Bioboron Research Institute, 13A Păltiniş Street, 200128, Craiova, Romania; Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania.
| | - Otilia Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| |
Collapse
|
20
|
Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, Lopaschuk GD. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 2018; 24:3. [PMID: 30134787 PMCID: PMC6016884 DOI: 10.1186/s10020-018-0005-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Alterations in cardiac energy metabolism contribute to the development and severity of heart failure (HF). In severe HF, overall mitochondrial oxidative metabolism is significantly decreased resulting in a reduced energy reserve. However, despite the high prevalence of HF with preserved ejection fraction (HFpEF) in our society, it is not clear what changes in cardiac energy metabolism occur in HFpEF, and whether alterations in energy metabolism contribute to the development of contractile dysfunction. METHODS We directly assessed overall energy metabolism during the development of HFpEF in Dahl salt-sensitive rats fed a high salt diet (HSD) for 3, 6 and 9 weeks. RESULTS Over the course of 9 weeks, the HSD caused a progressive decrease in diastolic function (assessed by echocardiography assessment of E'/A'). This was accompanied by a progressive increase in cardiac glycolysis rates (assessed in isolated working hearts obtained at 3, 6, and 9 weeks of HSD). In contrast, the subsequent oxidation of pyruvate from glycolysis (glucose oxidation) was not altered, resulting in an uncoupling of glucose metabolism and a significant increase in proton production. Increased glucose transporter (GLUT)1 expression accompanied this elevation in glycolysis. Decreases in cardiac fatty acid oxidation and overall adenosine triphosphate (ATP) production rates were not observed in early HF, but both significantly decreased as HF progressed to HF with reduced EF (i.e. 9 weeks of HSD). CONCLUSIONS Overall, we show that increased glycolysis is the earliest energy metabolic change that occurs during HFpEF development. The resultant increased proton production from uncoupling of glycolysis and glucose oxidation may contribute to the development of HFpEF.
Collapse
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Jody L Levasseur
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Arata Fukushima
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Wei Wang
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada.
| |
Collapse
|
21
|
Sirish P, Ledford HA, Timofeyev V, Thai PN, Ren L, Kim HJ, Park S, Lee JH, Dai G, Moshref M, Sihn CR, Chen WC, Timofeyeva MV, Jian Z, Shimkunas R, Izu LT, Chiamvimonvat N, Chen-Izu Y, Yamoah EN, Zhang XD. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005267. [PMID: 29025768 DOI: 10.1161/circep.117.005267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intracellular pH (pHi) is critical to cardiac excitation and contraction; uncompensated changes in pHi impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pHi regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl-/HCO3- exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pHi, but also cardiac excitability. METHODS AND RESULTS To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout (Slc26a6-/- ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca2+ transient and sarcoplasmic reticulum Ca2+ load, together with decreased sarcomere shortening in Slc26a6-/- cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pHi is elevated in Slc26a6-/- cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl-/HCO3- exchange activities of Slc26a6. Moreover, Slc26a6-/- mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. CONCLUSIONS Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl-/HCO3- transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pHi, excitability, and contractility. pHi is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6-/- mice.
Collapse
Affiliation(s)
- Padmini Sirish
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Hannah A Ledford
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Valeriy Timofeyev
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Phung N Thai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Lu Ren
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Hyo Jeong Kim
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Seojin Park
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Jeong Han Lee
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Gu Dai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Maryam Moshref
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Choong-Ryoul Sihn
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Wei Chun Chen
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Maria Valeryevna Timofeyeva
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Zhong Jian
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Rafael Shimkunas
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Leighton T Izu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Nipavan Chiamvimonvat
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Ye Chen-Izu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Ebenezer N Yamoah
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Xiao-Dong Zhang
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.).
| |
Collapse
|
22
|
Gohbara M, Hayakawa A, Akazawa Y, Furihata S, Kondo A, Fukushima Y, Tomari S, Endo T, Kimura K, Tamura K. Association Between Acidosis Soon After Reperfusion and Contrast-Induced Nephropathy in Patients With a First-Time ST-Segment Elevation Myocardial Infarction. J Am Heart Assoc 2017; 6:JAHA.117.006380. [PMID: 28835362 PMCID: PMC5586466 DOI: 10.1161/jaha.117.006380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Contrast‐induced nephropathy (CIN) is associated with poor outcomes in patients with acute myocardial infarction. However, the predictors of CIN have yet to be fully elucidated. Methods and Results The study included 273 consecutive patients with a first‐time ST‐segment elevation myocardial infarction who underwent reperfusion within 12 hours of symptom onset. The exclusion criteria were hemodialysis, mechanical ventilation, or previous coronary artery bypass grafting. All patients underwent arterial blood gas analysis soon after reperfusion. CIN was defined as an increase of 0.5 mg/dL in serum creatinine or a 25% increase from baseline between 48 and 72 hours after contrast medium exposure. Acidosis was defined as an arterial blood pH <7.35. CIN was observed in 35 patients (12.8%). Multivariable logistic regression analysis with forward stepwise algorithm revealed a significant association between CIN and the following: reperfusion time, the prevalence of hypertension, peak creatine kinase‐MB, high‐sensitivity C‐reactive protein on admission, and the incidence of acidosis (P<0.05). Multivariable logistic regression analysis revealed that the incidence of acidosis was associated with CIN when adjusted for age, male sex, body mass index, amount of contrast medium used, estimated glomerular filtration rate on admission, glucose level on admission, high‐sensitivity C‐reactive protein on admission, and left ventricular ejection fraction (P<0.05). Moreover, the incidence of acidosis was associated with CIN when adjusted for the Mehran CIN risk score (odds ratio: 2.229, P=0.049). Conclusions The incidence of acidosis soon after reperfusion was associated with CIN in patients with a first‐time ST‐segment elevation myocardial infarction.
Collapse
Affiliation(s)
- Masaomi Gohbara
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Azusa Hayakawa
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Yusuke Akazawa
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Shuta Furihata
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Ai Kondo
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Yusuke Fukushima
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Sakie Tomari
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Tsutomu Endo
- Division of Cardiology, Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
23
|
Kon ZN, Bittle GJ, Pasrija C, Pham SM, Mazzeffi MA, Herr DL, Sanchez PG, Griffith BP. Venovenous Versus Venoarterial Extracorporeal Membrane Oxygenation for Adult Patients With Acute Respiratory Distress Syndrome Requiring Precannulation Hemodynamic Support: A Review of the ELSO Registry. Ann Thorac Surg 2017; 104:645-649. [DOI: 10.1016/j.athoracsur.2016.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
|
24
|
Espinoza-Fonseca LM. The Ca 2+-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum. MOLECULAR BIOSYSTEMS 2017; 13:633-637. [PMID: 28290590 DOI: 10.1039/c7mb00065k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ca2+ transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca2+ homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca2+ uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca2+ and other ions across the SR. During Ca2+ uptake by the SR Ca2+-ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca2+ transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca2+ release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca2+ transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Fernández-de Gortari E, Espinoza-Fonseca LM. Preexisting domain motions underlie protonation-dependent structural transitions of the P-type Ca 2+-ATPase. Phys Chem Chem Phys 2017; 19:10153-10162. [PMID: 28374038 PMCID: PMC5472844 DOI: 10.1039/c7cp00243b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have performed microsecond molecular dynamics (MD) simulations to determine the mechanism for protonation-dependent structural transitions of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), one of the most prominent members of the large P-type ATPase superfamily that transports ions across biological membranes. The release of two H+ from the transport sites activates SERCA by inducing a structural transition between low (E2) and high (E1) Ca2+-affinity states (E2-to-E1 transition), but the structural mechanism by which transport site deprotonation facilitates this transition is unknown. We performed microsecond all-atom MD simulations to determine the effects of transport site protonation on the structural dynamics of the E2 state in solution. We found that the protonated E2 state has structural characteristics that are similar to those observed in crystal structures of E2. Upon deprotonation, a single Na+ ion rapidly (<10 ns) binds to the transmembrane transport sites and induces a kink in M5, disrupts the M3-M5 interface, and increases the mobility of the M3/A-M3 linker. Principal component analysis showed that counter-rotation of the cytosolic N-A domains about the membrane normal axis, which is the primary motion driving the E2-to-E1 transition, is present in both protonated and deprotonated E2 states; however, protonation-dependent structural changes in the transmembrane domain control the hierarchical organization and amplitude of this motion. We propose that preexisting rigid-body domain motions underlie structural transitions of SERCA, where the functionally important directionality is preserved while transport site protonation controls the dominance and amplitude of motion to shift the equilibrium between the E1 and E2 states. We conclude that ligand-induced modulation of preexisting domain motions is likely a common theme in structural transitions of the P-type ATPase superfamily.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
26
|
Mise au point sur les conséquences hémodynamiques de l’acidose lactique dans les états de choc. MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Horst K, Simon TP, Pfeifer R, Teuben M, Almahmoud K, Zhi Q, Santos SA, Wembers CC, Leonhardt S, Heussen N, Störmann P, Auner B, Relja B, Marzi I, Haug AT, van Griensven M, Kalbitz M, Huber-Lang M, Tolba R, Reiss LK, Uhlig S, Marx G, Pape HC, Hildebrand F. Characterization of blunt chest trauma in a long-term porcine model of severe multiple trauma. Sci Rep 2016; 6:39659. [PMID: 28000769 PMCID: PMC5175194 DOI: 10.1038/srep39659] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Chest trauma has a significant relevance on outcome after severe trauma. Clinically, impaired lung function typically occurs within 72 hours after trauma. However, the underlying pathophysiological mechanisms are still not fully elucidated. Therefore, we aimed to establish an experimental long-term model to investigate physiological, morphologic and inflammatory changes, after severe trauma. Male pigs (sus scrofa) sustained severe trauma (including unilateral chest trauma, femur fracture, liver laceration and hemorrhagic shock). Additionally, non-injured animals served as sham controls. Chest trauma resulted in severe lung damage on both CT and histological analyses. Furthermore, severe inflammation with a systemic increase of IL-6 (p = 0.0305) and a local increase of IL-8 in BAL (p = 0.0009) was observed. The pO2/FiO2 ratio in trauma animals decreased over the observation period (p < 0.0001) but not in the sham group (p = 0.2967). Electrical Impedance Tomography (EIT) revealed differences between the traumatized and healthy lung (p < 0.0001). In conclusion, a clinically relevant, long-term model of blunt chest trauma with concomitant injuries has been developed. This reproducible model allows to examine local and systemic consequences of trauma and is valid for investigation of potential diagnostic or therapeutic options. In this context, EIT might represent a radiation-free method for bedside diagnostics.
Collapse
Affiliation(s)
- K Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Germany.,Harald Tscherne Research Laboratory, RWTH Aachen University, Germany
| | - T P Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Germany
| | - R Pfeifer
- Department of Orthopaedic Trauma, RWTH Aachen University, Germany.,Harald Tscherne Research Laboratory, RWTH Aachen University, Germany
| | - M Teuben
- Department of Orthopaedic Trauma, RWTH Aachen University, Germany.,Harald Tscherne Research Laboratory, RWTH Aachen University, Germany
| | - K Almahmoud
- Department of Orthopaedic Trauma, RWTH Aachen University, Germany.,Harald Tscherne Research Laboratory, RWTH Aachen University, Germany
| | - Q Zhi
- Harald Tscherne Research Laboratory, RWTH Aachen University, Germany
| | - S Aguiar Santos
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - C Castelar Wembers
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - S Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - N Heussen
- Department of Medical Statistics, RWTH Aachen University, Germany.,Medical School, Sigmund Freud Private University, Vienna, Austria
| | - P Störmann
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Frankfurt/Main, Germany
| | - B Auner
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Frankfurt/Main, Germany
| | - B Relja
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Frankfurt/Main, Germany
| | - I Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Frankfurt/Main, Germany
| | - A T Haug
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - M van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - M Kalbitz
- Department of Orthopedic Trauma, Hand-, Plastic-, and Reconstructive Surgery, University of Ulm, Germany
| | - M Huber-Lang
- Department of Orthopedic Trauma, Hand-, Plastic-, and Reconstructive Surgery, University of Ulm, Germany
| | - R Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Germany
| | - L K Reiss
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Germany
| | - S Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Germany
| | - G Marx
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Germany
| | - H C Pape
- Department of Orthopaedic Trauma, RWTH Aachen University, Germany
| | - F Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Germany
| |
Collapse
|
28
|
Zhao L, Cui L, Jiang X, Zhang J, Zhu M, Jia J, Zhang Q, Zhang J, Zhang D, Huang Y. Extracellular pH regulates autophagy via the AMPK-ULK1 pathway in rat cardiomyocytes. FEBS Lett 2016; 590:3202-12. [PMID: 27531309 DOI: 10.1002/1873-3468.12359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
Various pathological conditions contribute to pH fluctuations and affect the functions of vital organs such as the heart. In this study, we show that in rat cardiomyocytes, acidic extracellular pH (pHe) inhibits autophagy, whereas alkaline pHe stimulates it. We also find that adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Unc-51-like kinase 1 (ULK1) are very sensitive to pHe changes. Furthermore, by interfering with AMPK, mTOR or ULK1 activity, we demonstrate that the AMPK-ULK1 pathway, but not the mTOR pathway, plays a crucial role on pHe-regulated autophagy and cardiomyocyte viability. These data provide a potential therapeutic strategy against cardiomyocyte injury triggered by pH fluctuations.
Collapse
Affiliation(s)
- Liping Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Minghua Zhu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
29
|
Stoehr A, Yang Y, Patel S, Evangelista AM, Aponte A, Wang G, Liu P, Boylston J, Kloner PH, Lin Y, Gucek M, Zhu J, Murphy E. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2016; 110:346-58. [PMID: 27095734 DOI: 10.1093/cvr/cvw081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.
Collapse
Affiliation(s)
- Andrea Stoehr
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sajni Patel
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia M Evangelista
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Boylston
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip H Kloner
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute Myocardial Response to Stretch: What We (don't) Know. Front Physiol 2016; 6:408. [PMID: 26779036 PMCID: PMC4700209 DOI: 10.3389/fphys.2015.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility—known as the Frank-Starling mechanism—and a further progressive increase—the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- João S Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - André M Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Manuel Neiva-Sousa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - João Almeida-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Ricardo Castro-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| |
Collapse
|
31
|
Peters CH, Abdelsayed M, Ruben PC. Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:77-88. [DOI: 10.1016/j.pbiomolbio.2015.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/27/2015] [Accepted: 12/15/2015] [Indexed: 01/16/2023]
|
32
|
Espinoza-Fonseca LM, Autry JM, Ramírez-Salinas GL, Thomas DD. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Biophys J 2016; 108:1697-1708. [PMID: 25863061 DOI: 10.1016/j.bpj.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022] Open
Abstract
We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1-7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K(+) and 3 mM Mg(2+). Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K(+) ions bind transiently (≤5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K(+) in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1⋅H(+)771. This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca(2+)-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - G Lizbeth Ramírez-Salinas
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
33
|
Abstract
Myocardial infarction is defined as sudden ischemic death of myocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic occlusion of a coronary vessel caused by rupture of a vulnerable plaque. Ischemia induces profound metabolic and ionic perturbations in the affected myocardium and causes rapid depression of systolic function. Prolonged myocardial ischemia activates a "wavefront" of cardiomyocyte death that extends from the subendocardium to the subepicardium. Mitochondrial alterations are prominently involved in apoptosis and necrosis of cardiomyocytes in the infarcted heart. The adult mammalian heart has negligible regenerative capacity, thus the infarcted myocardium heals through formation of a scar. Infarct healing is dependent on an inflammatory cascade, triggered by alarmins released by dying cells. Clearance of dead cells and matrix debris by infiltrating phagocytes activates anti-inflammatory pathways leading to suppression of cytokine and chemokine signaling. Activation of the renin-angiotensin-aldosterone system and release of transforming growth factor-β induce conversion of fibroblasts into myofibroblasts, promoting deposition of extracellular matrix proteins. Infarct healing is intertwined with geometric remodeling of the chamber, characterized by dilation, hypertrophy of viable segments, and progressive dysfunction. This review manuscript describes the molecular signals and cellular effectors implicated in injury, repair, and remodeling of the infarcted heart, the mechanistic basis of the most common complications associated with myocardial infarction, and the pathophysiologic effects of established treatment strategies. Moreover, we discuss the implications of pathophysiological insights in design and implementation of new promising therapeutic approaches for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
34
|
Ramírez-Salinas GL, Espinoza-Fonseca LM. Atomistic Characterization of the First Step of Calcium Pump Activation Associated with Proton Countertransport. Biochemistry 2015; 54:5235-41. [PMID: 26250140 DOI: 10.1021/acs.biochem.5b00672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium pump [sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA)] transports Ca(2+) from the cytosol to the SR lumen at the expense of ATP hydrolysis and proton countertransport, thus playing a central role in Ca(2+) homeostasis and muscle contractility. Proton countertransport via deprotonation of transport site residue Glu309 is a critical first step in SERCA activation because it accelerates the E2-E1 structural transition. Previous studies have suggested that flipping of Glu309 toward the cytosol constitutes the primary mechanism for Glu309 deprotonation, but no conclusive data to support this hypothesis have been published. Therefore, we performed three independent 1 μs molecular dynamics simulations of the E2 state protonated at transport site residues Glu309, Glu771, and Glu908. Structural analysis and pKa calculations showed that Glu309 deprotonation occurs by an inward-to-outward side-chain transition. We also found that Glu309 deprotonation and proton countertransport occur through transient (~113 ps) water wires connecting Glu309 with the cytosol. Although both mechanisms are operational, we found that transient water wire formation, and not Glu309 flipping, is the primary mechanism for Glu309 deprotonation and translocation of protons to the cytosol. The outward-to-inward transition of protonated Glu309 and the presence of water wires suggest that protons from the cytosol might be passively transported to the lumen via Glu309. However, structural analysis indicates that passive SR proton leakage into the lumen unlikely occurs through Glu309 in the E2 state. These findings provide a time-resolved visualization of the first step in the molecular mechanism of SERCA activation and proton transport across the SR.
Collapse
Affiliation(s)
- G Lizbeth Ramírez-Salinas
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340, Mexico
| | - L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:175. [PMID: 25887061 PMCID: PMC4391479 DOI: 10.1186/s13054-015-0896-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactic acidosis is a very common biological issue for shock patients. Experimental data clearly demonstrate that metabolic acidosis, including lactic acidosis, participates in the reduction of cardiac contractility and in the vascular hyporesponsiveness to vasopressors through various mechanisms. However, the contributions of each mechanism responsible for these deleterious effects have not been fully determined and their respective consequences on organ failure are still poorly defined, particularly in humans. Despite some convincing experimental data, no clinical trial has established the level at which pH becomes deleterious for hemodynamics. Consequently, the essential treatment for lactic acidosis in shock patients is to correct the cause. It is unknown, however, whether symptomatic pH correction is beneficial in shock patients. The latest Surviving Sepsis Campaign guidelines recommend against the use of buffer therapy with pH ≥7.15 and issue no recommendation for pH levels <7.15. Furthermore, based on strong experimental and clinical evidence, sodium bicarbonate infusion alone is not recommended for restoring pH. Indeed, bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. This review addresses the principal hemodynamic consequences of shock-associated lactic acidosis. Despite the lack of formal evidence, this review also highlights the various adapted supportive therapy options that could be putatively added to causal treatment in attempting to reverse the hemodynamic consequences of shock-associated lactic acidosis.
Collapse
Affiliation(s)
- Antoine Kimmoun
- CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital de Brabois, Vandoeuvre-les-Nancy, 54511, France. .,Université de Lorraine, Nancy, 54000, France. .,INSERM U1116, Groupe Choc, Faculté de Médecine, Vandoeuvre-les-Nancy, 54511, France.
| | - Emmanuel Novy
- CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital de Brabois, Vandoeuvre-les-Nancy, 54511, France. .,Université de Lorraine, Nancy, 54000, France.
| | - Thomas Auchet
- CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital de Brabois, Vandoeuvre-les-Nancy, 54511, France.
| | - Nicolas Ducrocq
- CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital de Brabois, Vandoeuvre-les-Nancy, 54511, France.
| | - Bruno Levy
- CHU Nancy, Service de Réanimation Médicale Brabois, Pole Cardiovasculaire et Réanimation Médicale, Hôpital de Brabois, Vandoeuvre-les-Nancy, 54511, France. .,Université de Lorraine, Nancy, 54000, France. .,INSERM U1116, Groupe Choc, Faculté de Médecine, Vandoeuvre-les-Nancy, 54511, France.
| |
Collapse
|
36
|
Propofol increases morbidity and mortality in a rat model of sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:45. [PMID: 25887642 PMCID: PMC4344774 DOI: 10.1186/s13054-015-0751-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/16/2015] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Severe sepsis is associated with approximately 50% mortality and accounts for tremendous healthcare costs. Most patients require ventilatory support and propofol is commonly used to sedate mechanically ventilated patients. Volatile anesthetics have been shown to attenuate inflammation in a variety of different settings. We therefore hypothesized that volatile anesthetic agents may offer beneficial immunomodulatory effects during the course of long-term intra-abdominal sepsis in rats under continuous sedation and ventilation for up to 24 hours. METHODS Sham operation or cecal ligation and puncture (CLP) was performed in adult male Wistar rats followed by mechanical ventilation. Animals were sedated for 24 hours with propofol (7 to 20 mg/kg/h), sevoflurane, desflurane or isoflurane (0.7 minimal alveolar concentration each). RESULTS Septic animals sedated with propofol showed a mean survival time of 12 hours, whereas >56% of all animals in the volatile groups survived 24 hours (P <0.001). After 18 hours, base excess in propofol + CLP animals (-20.6 ± 2.0) was lower than in the volatile groups (isoflurane + CLP: -11.7 ± 4.2, sevoflurane + CLP: -11.8 ± 3.5, desflurane + CLP -14.2 ± 3.7; all P <0.03). Plasma endotoxin levels reached 2-fold higher levels in propofol + CLP compared to isoflurane + CLP animals at 12 hours (P <0.001). Also blood levels of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, interleukin-10, CXCL-2, interferon-γ and high mobility group protein-1) were accentuated in propofol + CLP rats compared to the isoflurane + CLP group at the same time point (P <0.04). CONCLUSIONS This is the first study to assess prolonged effects of sepsis and long-term application of volatile sedatives compared to propofol on survival, cardiovascular, inflammatory and end organ parameters. Results indicate that volatile anesthetics dramatically improved survival and attenuate systemic inflammation as compared to propofol. The main mechanism responsible for adverse propofol effects could be an enhanced plasma endotoxin concentration, leading to profound hypotension, which was unresponsive to fluid resuscitation.
Collapse
|
37
|
Swietach P, Spitzer KW, Vaughan-Jones RD. Na⁺ ions as spatial intracellular messengers for co-ordinating Ca²⁺ signals during pH heterogeneity in cardiomyocytes. Cardiovasc Res 2014; 105:171-81. [PMID: 25514933 PMCID: PMC4297422 DOI: 10.1093/cvr/cvu251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aims Contraction of the heart is regulated by electrically evoked Ca2+ transients (CaTs). H+ ions, the end products of metabolism, modulate CaTs through direct interactions with Ca2+-handling proteins and via Na+-mediated coupling between acid-extruding proteins (e.g. Na+/H+ exchange, NHE1) and Na+/Ca2+ exchange. Restricted H+ diffusivity in cytoplasm predisposes pH-sensitive Ca2+ signalling to becoming non-uniform, but the involvement of readily diffusible intracellular Na+ ions may provide a means for combatting this. Methods and results CaTs were imaged in fluo3-loaded rat ventricular myocytes paced at 2 Hz. Cytoplasmic [Na+] ([Na+]i) was imaged using SBFI. Intracellular acidification by acetate exposure raised diastolic and systolic [Ca2+] (also observed with acid-loading by ammonium prepulse or CO2 exposure). The systolic [Ca2+] response correlated with a rise in [Na+]i and sarcoplasmic reticulum Ca2+ load, and was blocked by the NHE1 inhibitor cariporide (CO2/HCO3−-free media). Exposure of one half of a myocyte to acetate using dual microperfusion (CO2/HCO3−-free media) raised diastolic [Ca2+] locally in the acidified region. Systolic [Ca2+] and CaT amplitude increased more uniformly along the length of the cell, but only when NHE1 was functional. Cytoplasmic Na+ diffusivity (DNa) was measured in quiescent cells, with strophanthidin present to inhibit the Na+/K+ pump. With regional acetate exposure to activate a local NHE-driven Na+-influx, DNa was found to be sufficiently fast (680 µm2/s) for transmitting the pH–systolic Ca2+ interaction over long distances. Conclusions Na+ ions are rapidly diffusible messengers that expand the spatial scale of cytoplasmic pH–CaT interactions, helping to co-ordinate global Ca2+ signalling during conditions of intracellular pH non-uniformity.
Collapse
Affiliation(s)
- Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, USA
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, UK
| |
Collapse
|
38
|
Effect of severe acidosis on vasoactive effects of epinephrine and norepinephrine in human distal mammary artery. J Thorac Cardiovasc Surg 2014; 147:1698-705. [DOI: 10.1016/j.jtcvs.2013.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 11/21/2022]
|
39
|
Akki A, Yang H, Gupta A, Chacko VP, Yano T, Leppo MK, Steenbergen C, Walston J, Weiss RG. Skeletal muscle ATP kinetics are impaired in frail mice. AGE (DORDRECHT, NETHERLANDS) 2014; 36:21-30. [PMID: 23695949 PMCID: PMC3889887 DOI: 10.1007/s11357-013-9540-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/03/2013] [Indexed: 05/15/2023]
Abstract
The interleukin-10 knockout mouse (IL10(tm/tm)) has been proposed as a model for human frailty, a geriatric syndrome characterized by skeletal muscle (SM) weakness, because it develops an age-related decline in SM strength compared to control (C57BL/6J) mice. Compromised energy metabolism and energy deprivation appear to play a central role in muscle weakness in metabolic myopathies and muscular dystrophies. Nonetheless, it is not known whether SM energy metabolism is altered in frailty. A combination of in vivo (31)P nuclear magnetic resonance experiments and biochemical assays was used to measure high-energy phosphate concentrations, the rate of ATP synthesis via creatine kinase (CK), the primary energy reserve reaction in SM, as well as the unidirectional rates of ATP synthesis from inorganic phosphate (Pi) in hind limb SM of 92-week-old control (n = 7) and IL10(tm/tm) (n = 6) mice. SM Phosphocreatine (20.2 ± 2.3 vs. 16.8 ± 2.3 μmol/g, control vs. IL10(tm/tm), p < 0.05), ATP flux via CK (5.0 ± 0.9 vs. 3.1 ± 1.1 μmol/g/s, p < 0.01), ATP synthesis from inorganic phosphate (Pi → ATP) (0.58 ± 0.3 vs. 0.26 ± 0.2 μmol/g/s, p < 0.05) and the free energy released from ATP hydrolysis (∆G ∼ATP) were significantly lower and [Pi] (2.8 ± 1.0 vs. 5.3 ± 2.0 μmol/g, control vs. IL10(tm/tm), p < 0.05) markedly higher in IL10(tm/tm) than in control mice. These observations demonstrate that, despite normal in vitro metabolic enzyme activities, in vivo SM ATP kinetics, high-energy phosphate levels and energy release from ATP hydrolysis are reduced and inorganic phosphate is elevated in a murine model of frailty. These observations do not prove, but are consistent with the premise, that energetic abnormalities may contribute metabolically to SM weakness in this geriatric syndrome.
Collapse
Affiliation(s)
- Ashwin Akki
- />Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Huanle Yang
- />Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ashish Gupta
- />Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Vadappuram P. Chacko
- />Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Toshiyuki Yano
- />Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Michelle K. Leppo
- />Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Charles Steenbergen
- />Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jeremy Walston
- />Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Robert G. Weiss
- />Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />The Johns Hopkins Hospital, Blalock 544, 600 N. Wolfe Street, Baltimore, MD 21287-6568 USA
| |
Collapse
|
40
|
De Giusti VC, Ciancio MC, Orlowski A, Aiello EA. Modulation of the cardiac sodium/bicarbonate cotransporter by the renin angiotensin aldosterone system: pathophysiological consequences. Front Physiol 2014; 4:411. [PMID: 24478712 PMCID: PMC3894460 DOI: 10.3389/fphys.2013.00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms in the cardiomyocytes. It has been demonstrated the existence of at least two functional isoforms, one that promotes the co-influx of 1 molecule of Na+ per 1 molecule of HCO−3 (electroneutral isoform; NBCn1) and the other one that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO−3 (electrogenic isoform; NBCe1). Both isoforms are important to maintain intracellular pH (pHi) and sodium concentration ([Na+]i). In addition, NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). The renin-angiotensin-aldosterone system (RAAS) is implicated in the modulation of almost all physiological cardiac functions and is also involved in the development and progression of cardiac diseases. It was reported that angiotensin II (Ang II) exhibits an opposite effect on NBC isoforms: it activates NBCn1 and inhibits NBCe1. The activation of NBCn1 leads to an increase in pHi and [Na+]i, which indirectly, due to the stimulation of reverse mode of the Na+/Ca2+ exchanger (NCX), conduces to an increase in the intracellular Ca2+ concentration. On the other hand, the inhibition of NBCe1 generates an APD prolongation, potentially representing a risk of arrhythmias. In the last years, the potentially altered NBC function in pathological scenarios, as cardiac hypertrophy and ischemia-reperfusion, has raised increasing interest among investigators. This review attempts to draw the attention on the relevant regulation of NBC activity by RAAS, since it modulates pHi and [Na+]i, which are involved in the development of cardiac hypertrophy, the damage produced by ischemia-reperfusion and the generation of arrhythmic events, suggesting a potential role of NBC in cardiac diseases.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - María C Ciancio
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - Alejandro Orlowski
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| | - Ernesto A Aiello
- Facultad de Ciencias Médicas, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, CONICET-La Plata La Plata, Argentina
| |
Collapse
|
41
|
Aiello EA, De Giusti VC. Regulation of the cardiac sodium/bicarbonate cotransporter by angiotensin II: potential Contribution to structural, ionic and electrophysiological myocardial remodelling. Curr Cardiol Rev 2013; 9:24-32. [PMID: 23116057 PMCID: PMC3584305 DOI: 10.2174/157340313805076340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
The sodium/ bicarbonate cotransporter (NBC) is, with the Na+/H+ exchanger (NHE), an important alkalinizing mechanism that maintains cellular intracellular pH (pHi). In the heart exists at least three isoforms of NBC, one that promotes the co-influx of 1 molecule of Na+ per 1molecule of HCO3-(electroneutral isoform; nNBC) and two others that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO3- (electrogenic isoforms; eNBC). In addition, the eNBC generates an anionic repolarizing current that modulate the cardiac action potential (CAP), adding to such isoforms the relevance to modulate the electrophysiological function of the heart. Angiotensin II (Ang II) is one of the main hormones that regulate cardiac physiology. The alkalinizing mechanisms (NHE and NBC) are stimulated by Ang II, increasing pHi and intracellular Na+ concentration, which indirectly, due to the stimulation of the Na+/Ca2+ exchanger (NCX) operating in the reverse form, leads to an increase in the intracellular Ca2+ concentration. Interestingly, it has been shown that Ang II exhibits an opposite effect on NBC isoforms: it activates the nNBC and inhibits the eNBC. This inhibition generates a CAP prolongation, which could directly increase the intracellular Ca2+ concentration. The regulation of the intracellular Na+ and Ca2+ concentrations is crucial for the cardiac cellular physiology, but these ions are also involved in the development of cardiac hypertrophy and the damage produced by ischemia-reperfusion, suggesting a potential role of NBC in cardiac diseases.
Collapse
Affiliation(s)
- Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900, La Plata, Argentina.
| | | |
Collapse
|
42
|
Couret D, de Bourmont S, Prat N, Cordier PY, Soureau JB, Lambert D, Prunet B, Michelet P. A pig model for blunt chest trauma: no pulmonary edema in the early phase. Am J Emerg Med 2013; 31:1220-5. [DOI: 10.1016/j.ajem.2013.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022] Open
|
43
|
Noori S, Wu TW, Seri I. pH effects on cardiac function and systemic vascular resistance in preterm infants. J Pediatr 2013; 162:958-63.e1. [PMID: 23164307 DOI: 10.1016/j.jpeds.2012.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/24/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effect of pH on cardiac function and systemic vascular resistance (SVR) in preterm infants. STUDY DESIGN In this prospective observational study, we evaluated hemodynamically stable, ≤ 30 weeks' gestation preterm infants during the first 2 postnatal weeks. Cardiac function was assessed by echocardiography at the time of arterial blood draw for clinically indicated blood gas analysis. Data were separately analyzed for the transitional (days 1-3) and post-transitional (days 4-14) periods. RESULTS We evaluated 147 pairs of arterial blood gases and echocardiograms in 29 preterm neonates (gestational age = 26.2 ± 1.5 weeks). Arterial pH ranged from 7.02-7.46. There was no linear relationship between pH and shortening fraction or stress-velocity index in transitional or post-transitional periods. We found a weak negative linear relationship between pH and left ventricular output and a positive linear relationship between pH and SVR only during the post-transitional period. These relationships were maintained after adjustment for the degree of base deficit. Arterial CO2 had effects similar to pH on myocardial function. CONCLUSIONS Unlike adults, myocardial contractility remains relatively unaffected by acidosis even at pH values close to 7.00 in hemodynamically stable preterm neonates during the first 2 postnatal weeks. However, as in adults, worsening acidosis in preterm neonates after the immediate transitional period is associated with a decrease in SVR along with an increase in left ventricular output. Thus, although myocardial contractility remains unaffected in preterm neonates during the first 2 postnatal weeks, the vascular response to acidosis undergoes a relatively rapid postnatal maturational process.
Collapse
Affiliation(s)
- Shahab Noori
- Division of Neonatology and the Center for Fetal and Neonatal Medicine, Department of Pediatrics, Children's Hospital Los Angeles and the LAC+USC Medical Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| | | | | |
Collapse
|
44
|
Akki A, Su J, Yano T, Gupta A, Wang Y, Leppo MK, Chacko VP, Steenbergen C, Weiss RG. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. Am J Physiol Heart Circ Physiol 2012; 303:H844-52. [PMID: 22886411 DOI: 10.1152/ajpheart.00268.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced myofibrillar ATP availability during prolonged myocardial ischemia may limit post-ischemic mechanical function. Because creatine kinase (CK) is the prime energy reserve reaction of the heart and because it has been difficult to augment ATP synthesis during and after ischemia, we used mice that overexpress the myofibrillar isoform of creatine kinase (CKM) in cardiac-specific, conditional fashion to test the hypothesis that CKM overexpression increases ATP delivery in ischemic-reperfused hearts and improves functional recovery. Isolated, retrograde-perfused hearts from control and CKM mice were subjected to 25 min of global, no-flow ischemia and 40 min of reperfusion while cardiac function [rate pressure product (RPP)] was monitored. A combination of (31)P-nuclear magnetic resonance experiments at 11.7T and biochemical assays was used to measure the myocardial rate of ATP synthesis via CK (CK flux) and intracellular pH (pH(i)). Baseline CK flux was severalfold higher in CKM hearts (8.1 ± 1.0 vs. 32.9 ± 3.8, mM/s, control vs. CKM; P < 0.001) with no differences in phosphocreatine concentration [PCr] and RPP. End-ischemic pH(i) was higher in CKM hearts than in control hearts (6.04 ± 0.12 vs. 6.37 ± 0.04, control vs. CKM; P < 0.05) with no differences in [PCr] and [ATP] between the two groups. Post-ischemic PCr (66.2 ± 1.3 vs. 99.1 ± 8.0, %preischemic levels; P < 0.01), CK flux (3.2 ± 0.4 vs. 14.0 ± 1.2 mM/s; P < 0.001) and functional recovery (13.7 ± 3.4 vs. 64.9 ± 13.2%preischemic RPP; P < 0.01) were significantly higher and lactate dehydrogenase release was lower in CKM than in control hearts. Thus augmenting cardiac CKM expression attenuates ischemic acidosis, reduces injury, and improves not only high-energy phosphate content and the rate of CK ATP synthesis in postischemic myocardium but also recovery of contractile function.
Collapse
Affiliation(s)
- Ashwin Akki
- Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287-6568, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Cao Y, He W. Synthesis and Characterization of Glucocorticoid Functionalized Poly(N-vinyl pyrrolidone): A Versatile Prodrug for Neural Interface. Biomacromolecules 2010; 11:1298-307. [DOI: 10.1021/bm100095t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Cao
- Departments of Materials Science and Engineering and Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee 37996
| | - Wei He
- Departments of Materials Science and Engineering and Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
47
|
Abstract
Liposomal nanocarriers anchored with a cell-penetrating peptide and a pH-sensitive PEG-shield where later has ability to provide simultaneously better systemic circulation and site-specific exposure of cell penetrating peptide. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE), while cell-penetrating peptide (TATp) was added as TATp-PEG-PE conjugate. Under normal conditions, liposome-grafted PEG "shielded" liposome-attached TATp moieties, since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes accumulate in targets via the EPR effect, but inside the "acidified" tumor or ischemic tissues lose their PEG coating because of the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. pH-responsive behavior of these constructs is successfully tested in cell cultures in vitro as well as in tumors in experimental mice in vivo. These nanocarriers also showed enhanced pGFP transfection efficiency upon intratumoral administration in mice, compared to control pH nonsensitive counterpart. These results can be considered as an important step in the development of tumor-specific stimuli-sensitive drug and gene delivery systems.
Collapse
Affiliation(s)
- Amit A Kale
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
48
|
Swietach P, Camelliti P, Hulikova A, Kohl P, Vaughan-Jones RD. Spatial regulation of intracellular pH in multicellular strands of neonatal rat cardiomyocytes. Cardiovasc Res 2009; 85:729-38. [DOI: 10.1093/cvr/cvp343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Nizet TAC, Heijdra YF, van den Elshout FJJ, van de Ven MJT, Bosch FH, Mulder PH, Folgering HTM. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia. Clin Physiol Funct Imaging 2009; 29:392-9. [PMID: 19624691 DOI: 10.1111/j.1475-097x.2009.00878.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish ventilatory failure and hypercapnia. On the other hand, it is known that acute metabolic acidosis can also negatively affect (respiratory) muscle function and, therefore, could lead to a deterioration of respiratory failure. Moreover, we reasoned that the impact of metabolic acidosis on respiratory muscle strength and respiratory muscle endurance could be more pronounced in COPD patients as compared to asthma patients and healthy subjects, due to already impaired respiratory muscle function. In this study, the effect of metabolic acidosis was studied on peripheral muscle strength, peripheral muscle endurance, airway resistance, and on arterial carbon dioxide tension (PaCO(2)). Acute metabolic acidosis was induced by administration of ammonium chloride (NH(4)Cl). The effect of metabolic acidosis was studied on inspiratory and expiratory muscle strength and on respiratory muscle endurance. Effects were studied in a randomized, placebo-controlled cross-over design in 15 healthy subjects (4 male; age 33.2 +/- 11.5 years; FEV(1) 108.3 +/- 16.2% predicted), 14 asthma patients (5 male; age 48.1 +/- 16.1 years; FEV(1) 101.6 +/- 15.3% predicted), and 15 moderate to severe COPD patients (9 male; age 62.8 +/- 6.8 years; FEV(1) 50.0 +/- 11.8% predicted). An acute metabolic acidemia of BE -3.1 mmol x L(-1) was induced. Acute metabolic acidemia did not significantly affect strength or endurance of respiratory and peripheral muscles, respectively. In all subjects airway resistance was significantly decreased after induction of metabolic acidemia (mean difference -0.1 kPa x sec x L(-1) [95%-CI: -0.1 - -0.02]. In COPD patients PaCO(2) was significantly lowered during metabolic acidemia (mean difference -1.73 mmHg [-3.0 - -0.08]. In healthy subjects and in asthma patients no such effect was found. Acute metabolic acidemia did not significantly decrease respiratory or peripheral muscle strength, respectively muscle endurance in nomal subjects, asthma, or COPD patients. Metabolic acidemia significantly decreased airway resistance in asthma and COPD patients, as well as in healthy subjects. Moreover, acute metabolic acidemia slightly improved blood gas values in COPD patients. The results suggest that stimulation of ventilation in respiratory failure, by induction of metabolic acidemia will not lead to deterioration of the respiratory failure.
Collapse
Affiliation(s)
- Tessa A C Nizet
- Department of Pulmonary, Rijnstate Hospital Arnhem, Arnhem, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kale AA, Torchilin VP. Environment-Responsive Polymers for Coating of Pharmaceutical Nanocarriers(,). POLYMER SCIENCE SERIES A 2009; 51:730-737. [PMID: 23150741 DOI: 10.1134/s0965545x09060182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyethylene glycol derivatives, such as block copolymers of polyethylene glycol and diacyllipids (for example, phosphatidylethanolamine) are widely used for surface modification of various pharmaceutical carriers in order to impart them longevity in the body. To make polyethylene glycol detachable from the surface of pharmaceutical carrier and facilitate the interaction of the carrier with target cells when in pathological zone, we have prepared a set of polyethylene glycol-phosphatidylethanolamine block copolymers with the pH sensitive hydrazone bond between polyethylene glycol and phosphatidylethanolamine, which destabilizes at lowered pH values typical for tumors and inflammation zones. We have demonstrated that the stability of the hydrazone bond at normal physiological pH (7.4) as well as the rate of its hydrolysis at pH 6 and below strongly depend on the type of substitutions at this bond. Using aliphatic and aromatic aldehydes and ketones, polyethylene glycol-phosphatidylethanolamine block copolymers were prepared with different stabilities and degradation rates, which can be useful in constructing stimuli-sensitive pharmaceutical carriers.
Collapse
Affiliation(s)
- A A Kale
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|