1
|
Piktel JS, Wan X, Kouk S, Laurita KR, Wilson LD. Beneficial Effect of Calcium Treatment for Hyperkalemia Is Not Due to "Membrane Stabilization". Crit Care Med 2024; 52:1499-1508. [PMID: 39312458 PMCID: PMC11410510 DOI: 10.1097/ccm.0000000000006376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Hyperkalemia is a common life-threatening condition causing severe electrophysiologic derangements and arrhythmias. The beneficial effects of calcium (Ca 2+ ) treatment for hyperkalemia have been attributed to "membrane stabilization," by restoration of resting membrane potential (RMP). However, the underlying mechanisms remain poorly understood. Our objective was to investigate the mechanisms underlying adverse electrophysiologic effects of hyperkalemia and the therapeutic effects of Ca 2+ treatment. DESIGN Controlled experimental trial. SETTING Laboratory investigation. SUBJECTS Canine myocytes and tissue preparations. INTERVENTIONS AND MEASUREMENTS Optical action potentials and volume averaged electrocardiograms were recorded from the transmural wall of ventricular wedge preparations ( n = 7) at baseline (4 mM potassium), hyperkalemia (8-12 mM), and hyperkalemia + Ca 2+ (3.6 mM). Isolated myocytes were studied during hyperkalemia (8 mM) and after Ca 2+ treatment (6 mM) to determine cellular RMP. MAIN RESULTS Hyperkalemia markedly slowed conduction velocity (CV, by 67% ± 7%; p < 0.001) and homogeneously shortened action potential duration (APD, by 20% ± 10%; p < 0.002). In all preparations, this resulted in QRS widening and the "sine wave" pattern observed in severe hyperkalemia. Ca 2+ treatment restored CV (increase by 44% ± 18%; p < 0.02), resulting in narrowing of the QRS and normalization of the electrocardiogram, but did not restore APD. RMP was significantly elevated by hyperkalemia; however, it was not restored with Ca 2+ treatment suggesting a mechanism unrelated to "membrane stabilization." In addition, the effect of Ca 2+ was attenuated during L-type Ca 2+ channel blockade, suggesting a mechanism related to Ca 2+ -dependent (rather than normally sodium-dependent) conduction. CONCLUSIONS These data suggest that Ca 2+ treatment for hyperkalemia restores conduction through Ca 2+ -dependent propagation, rather than restoration of membrane potential or "membrane stabilization." Our findings provide a mechanistic rationale for Ca 2+ treatment when hyperkalemia produces abnormalities of conduction (i.e., QRS prolongation).
Collapse
Affiliation(s)
- Joseph S Piktel
- Department of Emergency Medicine, Emergency Care and Research and Innovation, MetroHealth Campus, Case Western Reserve University, Cleveland, OH
| | - Xiaoping Wan
- Department of Physiology & Cell Biology, The Ohio State University, College of Medicine, Columbus, OH
| | - Shalen Kouk
- Orthopedic Surgery and Sports Medicine, Mercy Clinic, St. Louis, MO
| | - Kenneth R Laurita
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH
| | - Lance D Wilson
- Department of Emergency Medicine, Emergency Care and Research and Innovation, MetroHealth Campus, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
2
|
Kroll MW, Luceri RM, Efimov IR, Calkins H. The Mechanism of Death in Electrocution: A Historical Review of the Literature. Am J Forensic Med Pathol 2024:00000433-990000000-00211. [PMID: 39088698 DOI: 10.1097/paf.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
ABSTRACT Our present understanding of electrocution followed a long path of detours and speculation. It is now hard to appreciate how mysterious was an unexpected sudden death-without visible trauma-and we should be sympathetic to the surprising theories that came from well-intentioned attempts to find something in the autopsy of an electrocution victim.The early hypotheses (1880s) tended to favor effects on the central nervous system, but the emphasis switched to arterial and hematological mechanisms as well as respiratory arrest (ie, asphyxia) along with a widespread publication debate. While careful animal experimentation slowly established that electrocution was due to the induction of VF (ventricular fibrillation), the older hypotheses held sway for many decades. Even today, the neurogenic and asphyxial explanations reappear occasionally.Despite 170 years of research, the phenomenon of electrocution continues to generate new hypotheses for its mechanism.
Collapse
Affiliation(s)
- Mark W Kroll
- From the Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | | | - Igor R Efimov
- Biomedical Engineering and Medicine, Northwestern University, Chicago, IL
| | | |
Collapse
|
3
|
de Lima Conceição MR, Teixeira-Fonseca JL, Marques LP, Souza DS, da Silva Alcântara F, Orts DJB, Roman-Campos D. Extracellular acidification reveals the antiarrhythmic properties of amiodarone related to late sodium current-induced atrial arrhythmia. Pharmacol Rep 2024; 76:585-599. [PMID: 38619735 DOI: 10.1007/s43440-024-00597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.
Collapse
Affiliation(s)
- Michael Ramon de Lima Conceição
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Jorge Lucas Teixeira-Fonseca
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Leisiane Pereira Marques
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Fabiana da Silva Alcântara
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Diego Jose Belato Orts
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo Botucatu Street, 862, Biological Science Building, 7th floor,, São Paulo, Brazil.
| |
Collapse
|
4
|
Kroll MW, Luceri RM, Efimov IR, Calkins H. The electrophysiology of electrocution. Heart Rhythm O2 2023; 4:457-462. [PMID: 37520015 PMCID: PMC10373159 DOI: 10.1016/j.hroo.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Electrocution is a death caused by an application of electrical current to the human body. Our present understanding of electrocution-as the induction of ventricular fibrillation (VF)-followed a nearly century-long path of misunderstandings and speculation primarily focused on hypotheses of asphyxia as well as central nervous system trauma. It is hard for us today to appreciate the past mystery of an unexpected sudden death usually bereft of visible trauma. Even today, a false dogma exists that direct-current shocks can cause asystole instead of VF. A lightning discharge (up to 500 megavolts) is differentiated because it can cause substantial acute and chronic neural effects leading to other cardiac arrest rhythms. The human heart is exquisitely sensitive to alternating currents, and VF can be induced with currents of one-eighth that required for mere pacing. Because of these low currents, this effect obtains only in the TQ interval, and low-power electrocution does not involve the vulnerable period. If a current is strong enough to electrocute, generally it will do so in 1-2 seconds; longer shocks do not tend to be more dangerous. Regardless of concomitant drug dosing, the electrocution cardiac arrest rhythm is still VF, suggesting that electrocution is a stand-alone cause of death; the electrical current does not potentiate the effects of the drug. The experimental and clinical data supporting VF as the mechanism for electrocution are provided.
Collapse
Affiliation(s)
- Mark W. Kroll
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Richard M. Luceri
- Jim Moran Heart & Vascular Research Institute, Holy Cross Hospital (Emeritus), Fort Lauderdale, Florida
| | - Igor R. Efimov
- Department of Biomedical Engineering and Medicine, Northwestern University, Chicago, Illinois
| | - Hugh Calkins
- Electrophysiology Laboratory and Arrhythmia Service, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
5
|
Balakina-Vikulova NA, Katsnelson LB. Integrative Mathematical Model of Electrical, Metabolic and Mechanical Processes in Human Cardiomyocytes. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Supraventricular tachycardia associated with severe diabetic ketoacidosis in a child with new-onset type 1 diabetes mellitus. Cardiol Young 2022; 32:1677-1680. [PMID: 35094738 DOI: 10.1017/s1047951122000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetic ketoacidosis is one of the most serious and common complications of diabetes, with between 15 and 70% of new-onset type 1 diabetes mellitus worldwide presented with diabetic ketoacidosis. Supraventricular tachycardia, however, is an infrequent complication of diabetic ketoacidosis. We present the case of a child with a new-onset type 1 diabetes mellitus with supraventricular tachycardia as a complication of paediatric diabetic ketoacidosis. The patient received intravenous fluid resuscitation, insulin, and potassium supplementation and subsequently developed stable supraventricular tachycardia initially, confirmed on a 12-lead electrocardiogram despite a structurally normal heart and normal electrolytes. Vagal manoeuvers failed to achieve sinus rhythm. The patient went into respiratory distress and was intubated, for mechanical ventilation. She received one dose of adenosine with successful conversion to sinus rhythm and a heart rate decreased from 200 to 140 beats per minutes. We conclude that supraventricular tachycardia can occur as a complication of diabetic ketoacidosis, including in new-onset type 1 diabetes mellitus. Furthermore, a combination of acidosis, potassium derangement, falling magnesium, and phosphate levels may have precipitated the event. Here, we report a case of supraventricular tachycardia as a complication of paediatric diabetic ketoacidosis.
Collapse
|
7
|
Ventricular Tachycardia or Fibrillation Storm in Coronavirus Disease. Case Rep Cardiol 2022; 2022:1157728. [PMID: 36032053 PMCID: PMC9410984 DOI: 10.1155/2022/1157728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Ventricular tachycardia (VT) or ventricular fibrillation (VF) storm associated with severe acute respiratory syndrome coronavirus 2 infection is a potentially fatal complication; the correlation of these 2 disorders, however, has not been well studied. This retrospective case series examined outcomes of 2 patients who were admitted for repeated implantable cardioverter-defibrillator shocks with or without syncope and observed to have VT/VF storms with COVID-19. Mechanisms of VT/VF storms in COVID-19 are multifactorial including myocarditis, systemic inflammation, hyperadrenergic state, hemodynamic instability, hypoxia, acidosis, and proarrhythmic drugs. A higher incidence of VT/VF storm is observed in patients with comorbidities and those requiring critical care, with some studies reporting increased mortality. In our cohort, 1 of the 2 patients succumbed to the complications from COVID-19, and the other patient was discharged to home in stable condition. Monitoring of life-threatening arrhythmias in the setting of COVID-19 may need to be adopted to prevent morbidity and mortality.
Collapse
|
8
|
King DR, Hardin KM, Hoeker GS, Poelzing S. Re-evaluating methods reporting practices to improve reproducibility: an analysis of methodological rigor for the Langendorff whole-heart technique. Am J Physiol Heart Circ Physiol 2022; 323:H363-H377. [PMID: 35749719 PMCID: PMC9359653 DOI: 10.1152/ajpheart.00164.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent decades, the scientific community has seen an increased interest in rigor and reproducibility. In 2017, concerns of methodological thoroughness and reporting practices were implicated as significant barriers to reproducibility within the preclinical cardiovascular literature, particularly in studies employing animal research. The Langendorff, whole-heart technique has proven to be an invaluable research tool, being modified in a myriad of ways to probe questions across the spectrum of physio- and pathophysiologic function of the heart. As a result, significant variability in the application of the Langendorff technique exists. This literature review quantifies the different methods employed in the implementation of the Langendorff technique and provides brief examples of how individual parametric differences can impact the outcomes and interpretation of studies. From 2017-2020, significant variability of animal models, anesthesia, cannulation time, and perfusate composition, pH, and temperature demonstrate that the technique has diversified to meet new challenges and answer different scientific questions. The review also reveals which individual methods are most frequently reported, even if there is no explicit agreement upon which parameters should be reported. The analysis of methods related to the Langendorff technique suggests a framework for considering methodological approach when interpreting seemingly contradictory results, rather than concluding that results are irreproducible.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program. Virginia Polytechnic Institute and State University. Blacksburg, Virginia.,Dorothy M. Davis Heart and Lunch Research Institute, College of Medicine, The Ohio State University Wexner Medical Center. Columbus, Ohio
| | - Kathryn M Hardin
- Virginia Tech Carilion School of Medicine. Roanoke, Virginia.,Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia
| | - Steven Poelzing
- Virginia Tech Carilion School of Medicine. Roanoke, Virginia.,Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics. Virginia Polytechnic Institute and State University. Blacksburg, Virginia
| |
Collapse
|
9
|
Atici A, Tatlisu MA, Baycan OF, Yılmaz Y, Caliskan M. A rare cause of idiopathic right outflow tract premature ventricular contraction: Type-4 renal tubular acidosis. Pacing Clin Electrophysiol 2022; 45:811-814. [PMID: 35067955 DOI: 10.1111/pace.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/29/2022]
Abstract
The premature ventricular contractions (PVCs) have usually good prognosis in patients without structural heart disease. In case of left ventricular ejection fraction depression or symptoms, antiarrhythmic drugs or cardiac ablations could be an option for management. We present a case of a patient with high burden of PVC admitted for cardiac ablation. Preoperative assessment revealed hyperkalemia and metabolic acidosis which ended up with type-4 renal tubular acidosis (RTA). Its rare cause and management may draw attention to the possibility of type -4 RTA as the cause of the PVC, and hyperkalemia.
Collapse
Affiliation(s)
- Adem Atici
- Cardiology Department, Istanbul Medeniyet University Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Adem Tatlisu
- Cardiology Department, Istanbul Medeniyet University Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Omer Faruk Baycan
- Cardiology Department, Istanbul Medeniyet University Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Yusuf Yılmaz
- Cardiology Department, Istanbul Medeniyet University Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Caliskan
- Cardiology Department, Istanbul Medeniyet University Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Electrocution: Direct-Current Dogma Dies Hard. Am J Forensic Med Pathol 2021; 42:405-406. [PMID: 34483234 DOI: 10.1097/paf.0000000000000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Analysis of vulnerability to reentry in acute myocardial ischemia using a realistic human heart model. Comput Biol Med 2021; 141:105038. [PMID: 34836624 DOI: 10.1016/j.compbiomed.2021.105038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022]
Abstract
Electrophysiological alterations of the myocardium caused by acute ischemia constitute a pro-arrhythmic substrate for the generation of potentially lethal arrhythmias. Experimental evidence has shown that the main components of acute ischemia that induce these electrophysiological alterations are hyperkalemia, hypoxia (or anoxia in complete artery occlusion), and acidosis. However, the influence of each ischemic component on the likelihood of reentry is not completely established. Moreover, the role of the His-Purkinje system (HPS) in the initiation and maintenance of arrhythmias is not completely understood. In the present work, we investigate how the three components of ischemia affect the vulnerable window (VW) for reentry using computational simulations. In addition, we analyze the role of the HPS on arrhythmogenesis. A 3D biventricular/torso human model that includes a realistic geometry of the central and border ischemic zones with one of the most electrophysiologically detailed model of ischemia to date, as well as a realistic cardiac conduction system, were used to assess the VW for reentry. Four scenarios of ischemic severity corresponding to different minutes after coronary artery occlusion were simulated. Our results suggest that ischemic severity plays an important role in the generation of reentries. Indeed, this is the first 3D simulation study to show that ventricular arrhythmias could be generated under moderate ischemic conditions, but not in mild and severe ischemia. Moreover, our results show that anoxia is the ischemic component with the most significant effect on the width of the VW. Thus, a change in the level of anoxia from moderate to severe leads to a greater increment in the VW (40 ms), in comparison with the increment of 20 ms and 35 ms produced by the individual change in the level of hyperkalemia and acidosis, respectively. Finally, the HPS was a necessary element for the generation of approximately 17% of reentries obtained. The retrograde conduction from the myocardium to HPS in the ischemic region, conduction blocks in discrete sections of the HPS, and the degree of ischemia affecting Purkinje cells, are suggested as mechanisms that favor the generation of ventricular arrhythmias.
Collapse
|
12
|
Clerx M, Mirams GR, Rogers AJ, Narayan SM, Giles WR. Immediate and Delayed Response of Simulated Human Atrial Myocytes to Clinically-Relevant Hypokalemia. Front Physiol 2021; 12:651162. [PMID: 34122128 PMCID: PMC8188899 DOI: 10.3389/fphys.2021.651162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Although plasma electrolyte levels are quickly and precisely regulated in the mammalian cardiovascular system, even small transient changes in K+, Na+, Ca2+, and/or Mg2+ can significantly alter physiological responses in the heart, blood vessels, and intrinsic (intracardiac) autonomic nervous system. We have used mathematical models of the human atrial action potential (AP) to explore the electrophysiological mechanisms that underlie changes in resting potential (Vr) and the AP following decreases in plasma K+, [K+]o, that were selected to mimic clinical hypokalemia. Such changes may be associated with arrhythmias and are commonly encountered in patients (i) in therapy for hypertension and heart failure; (ii) undergoing renal dialysis; (iii) with any disease with acid-base imbalance; or (iv) post-operatively. Our study emphasizes clinically-relevant hypokalemic conditions, corresponding to [K+]o reductions of approximately 1.5 mM from the normal value of 4 to 4.5 mM. We show how the resulting electrophysiological responses in human atrial myocytes progress within two distinct time frames: (i) Immediately after [K+]o is reduced, the K+-sensing mechanism of the background inward rectifier current (IK1) responds. Specifically, its highly non-linear current-voltage relationship changes significantly as judged by the voltage dependence of its region of outward current. This rapidly alters, and sometimes even depolarizes, Vr and can also markedly prolong the final repolarization phase of the AP, thus modulating excitability and refractoriness. (ii) A second much slower electrophysiological response (developing 5-10 minutes after [K+]o is reduced) results from alterations in the intracellular electrolyte balance. A progressive shift in intracellular [Na+]i causes a change in the outward electrogenic current generated by the Na+/K+ pump, thereby modifying Vr and AP repolarization and changing the human atrial electrophysiological substrate. In this study, these two effects were investigated quantitatively, using seven published models of the human atrial AP. This highlighted the important role of IK1 rectification when analyzing both the mechanisms by which [K+]o regulates Vr and how the AP waveform may contribute to "trigger" mechanisms within the proarrhythmic substrate. Our simulations complement and extend previous studies aimed at understanding key factors by which decreases in [K+]o can produce effects that are known to promote atrial arrhythmias in human hearts.
Collapse
Affiliation(s)
- Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert J Rogers
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Wayne R Giles
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Howard MB, Basu S, Sherwin E, Cohen JS. Triple threat: New presentation with diabetic ketoacidosis, COVID-19, and cardiac arrhythmias. Am J Emerg Med 2021; 49:437.e5-437.e8. [PMID: 33895040 PMCID: PMC8053600 DOI: 10.1016/j.ajem.2021.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Patients with diabetes have increased susceptibility to infection with Severe acute respiratory syndrome-coronavirus 2 and increased morbidity and mortality from Coronavirus disease 2019 (COVID-19) infection. Mortality from COVID-19 is sometimes caused by cardiac arrhythmias. Electrolyte disturbances in patients with diabetic ketoacidosis (DKA) can increase the risk of cardiac arrhythmias. Despite these correlations, little has been reported about the co-incidence of these three conditions: COVID-19, DKA and cardiac arrhythmias. In this case report we describe two children with COVID-19, new-onset DKA and cardiac arrhythmias. These cases emphasize the importance of close cardiac and electrolyte monitoring in patients with COVID-19 infection.
Collapse
Affiliation(s)
| | - Sonali Basu
- Children's National Hospital, Washington, DC, United States; George Washington University School of Medicine and Health Sciences, United States
| | - Elizabeth Sherwin
- Children's National Hospital, Washington, DC, United States; George Washington University School of Medicine and Health Sciences, United States
| | - Joanna S Cohen
- Children's National Hospital, Washington, DC, United States; George Washington University School of Medicine and Health Sciences, United States.
| |
Collapse
|
14
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
15
|
Bergmann KR, Whitcomb V. Ventricular tachycardia in an adolescent with severe diabetic ketoacidosis. Am J Emerg Med 2020; 45:683.e1-683.e3. [PMID: 33376006 DOI: 10.1016/j.ajem.2020.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022] Open
Abstract
Diabetic ketoacidosis (DKA) occurs frequently among children and adolescents with type 1 diabetes. Although a number of complications may occur during episodes of DKA, significant cardiac arrhythmias are uncommon. We present the case of an adolescent who presented with severe DKA and wide complex tachycardia that was unresponsive to multiple doses of adenosine and ultimately required synchronized cardioversion. This case reminds the clinician of the importance of cardiac monitoring in children with DKA, particularly in the setting of hyperkalemia.
Collapse
Affiliation(s)
- Kelly R Bergmann
- Department of Pediatric Emergency Medicine, Children's Minnesota, Minneapolis, MN, USA.
| | - Valerie Whitcomb
- Department of Pediatric Emergency Medicine, Children's Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Lee S, Li G, Liu T, Tse G. COVID-19: Electrophysiological mechanisms underlying sudden cardiac death during exercise with facemasks. Med Hypotheses 2020; 144:110177. [PMID: 33254499 PMCID: PMC7417258 DOI: 10.1016/j.mehy.2020.110177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
The mandatory use of facemasks is a public health measure implemented by various countries in response to the novel coronavirus disease 19 (COVID-19) pandemic. However, there have been case reports of sudden cardiac death (SCD) with the wearing of facemasks during exercise. In this paper, we hypothesize that exercise with facemasks may increase the risk of ventricular tachycardia/ventricular fibrillation (VT/VF) leading to SCD via the development of acute and/or intermittent hypoxia and hypercapnia. We discuss the potential underlying mechanisms including increases in adrenergic stimulation and oxidative stress leading to electrophysiological abnormalities that promote arrhythmias via non-reentrant and reentrant mechanisms. Given the interplay of multiple variables contributing to the increased arrhythmic risk, we advise avoidance of a facemask during high intensity exercise, or if wearing of a mask is mandatory, exercise intensity should remain low to avoid precipitation of lethal arrhythmias. However, we cannot exclude the possibility of an arrhythmic substrate even with low intensity exercise especially in those with established chronic cardiovascular disease in whom baseline electrophysiological abnormalities may be found.
Collapse
Affiliation(s)
- Sharen Lee
- Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
17
|
Hoeker GS, James CC, Tegge AN, Gourdie RG, Smyth JW, Poelzing S. Attenuating loss of cardiac conduction during no-flow ischemia through changes in perfusate sodium and calcium. Am J Physiol Heart Circ Physiol 2020; 319:H396-H409. [PMID: 32678707 DOI: 10.1152/ajpheart.00112.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia leads to conduction slowing, cell-to-cell uncoupling, and arrhythmias. We previously demonstrated that varying perfusate sodium (Na+) and calcium (Ca2+) attenuates conduction slowing and arrhythmias during simulated ischemia with continuous perfusion. Cardioprotection was selectively associated with widening of the perinexus, a gap junction adjacent nanodomain important to ephaptic coupling. It is unknown whether perfusate composition affects the perinexus or ischemic conduction during nonsimulated ischemia, when coronary flow is reduced or halted. We hypothesized that altering preischemic perfusate composition could facilitate perinexal expansion and attenuate conduction slowing during global ischemia. To test this hypothesis, ex vivo guinea pig hearts (n = 49) were Langendorff perfused with 145 or 153 mM Na+ and 1.25 or 2.0 mM Ca2+ and optically mapped during 30 min of no-flow ischemia. Altering Na+ and Ca2+ did not substantially affect baseline conduction. Increasing Na+ and decreasing Ca2+ both lowered pacing thresholds, whereas increasing Ca2+ narrowed perinexal width (Wp). A least squares mean estimate revealed that reduced perfusate Na+ and Ca2+ resulted in the most severe conduction slowing during ischemia. Increasing Na+ alone modestly attenuated conduction slowing, yet significantly delayed the median time to conduction block (10 to 16 min). Increasing both Na+ and Ca2+ selectively widened Wp during ischemia (22.7 vs. 15.7 nm) and attenuated conduction slowing to the greatest extent. Neither repolarization nor levels of total or phosphorylated connexin43 correlated with conduction slowing or block. Thus, perfusate-dependent widening of the perinexus preserved ischemic conduction and may be an adaptive response to ischemic stress.NEW & NOTEWORTHY Conduction slowing during acute ischemia creates an arrhythmogenic substrate. We have shown that extracellular ionic concentrations can alter conduction by modulating ephaptic coupling. Here, we demonstrate increased extracellular sodium and calcium significantly attenuate conduction slowing during no-flow ischemia. This effect was associated with selective widening of the perinexus, an intercalated disc nanodomain and putative cardiac ephapse. These findings suggest that acute changes in ephaptic coupling may serve as an adaptive response to ischemic stress.
Collapse
Affiliation(s)
- Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Carissa C James
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Allison N Tegge
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Steven Poelzing
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
18
|
De Simone SA, Moyle S, Buccarello A, Dellenbach C, Kucera JP, Rohr S. The Role of Membrane Capacitance in Cardiac Impulse Conduction: An Optogenetic Study With Non-excitable Cells Coupled to Cardiomyocytes. Front Physiol 2020; 11:194. [PMID: 32273847 PMCID: PMC7113375 DOI: 10.3389/fphys.2020.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-excitable cells (NECs) such as cardiac myofibroblasts that are electrotonically coupled to cardiomyocytes affect conduction velocity (θ) by representing a capacitive load (CL: increased membrane to be charged) and a resistive load (RL: partial depolarization of coupled cardiomyocytes). In this study, we untangled the relative contributions of both loading modalities to NEC-dependent arrhythmogenic conduction slowing. Discrimination between CL and RL was achieved by reversibly removing the RL component by light activation of the halorhodopsin-based hyperpolarizing membrane voltage actuator eNpHR3.0-eYFP (enhanced yellow fluorescent protein) expressed in communication-competent fibroblast-like NIH3T3 cells (3T3HR cells) that served as a model of coupled NECs. Experiments were conducted with strands of neonatal rat ventricular cardiomyocytes coated at increasing densities with 3T3HR cells. Impulse conduction along preparations stimulated at 2.5 Hz was assessed with multielectrode arrays. The relative density of 3T3HR cells was determined by dividing the area showing eYFP fluorescence by the area covered with cardiomyocytes [coverage factor (CF)]. Compared to cardiomyocytes, 3T3HR cells exhibited a depolarized membrane potential (−34 mV) that was shifted to −104 mV during activation of halorhodopsin. Without illumination, 3T3HR cells slowed θ along the preparations from ∼330 mm/s (control cardiomyocyte strands) to ∼100 mm/s (CF = ∼0.6). Illumination of the preparation increased the electrogram amplitudes and induced partial recovery of θ at CF > 0.3. Computer simulations demonstrated that the θ deficit observed during illumination was attributable in full to the CL represented by coupled 3T3HR cells with θ showing a power-law relationship to capacitance with an exponent of −0.78 (simulations) and −0.99 (experiments). The relative contribution of CL and RL to conduction slowing changed as a function of CF with CL dominating at CF ≤ ∼0.3, both mechanisms being equally important at CF = ∼0.5, and RL dominating over CL at CF > 0.5. The finding that RL did not affect θ at CFs ≤ 0.3 is explained by the circumstance that, at the respective moderate levels of cardiomyocyte depolarization, supernormal conduction stabilized propagation. The findings provide experimental estimates for the dependence of θ on membrane capacitance in general and suggest that the myocardium can absorb moderate numbers of electrotonically coupled NECs without showing substantial alterations of θ.
Collapse
Affiliation(s)
- Stefano Andrea De Simone
- Laboratory of Cellular Optics II, Department of Physiology, University of Bern, Bern, Switzerland
| | - Sarah Moyle
- Laboratory of Cellular Optics II, Department of Physiology, University of Bern, Bern, Switzerland
| | - Andrea Buccarello
- Integrative Cardiac Bioelectricity Group, Department of Physiology, University of Bern, Bern, Switzerland
| | - Christian Dellenbach
- Laboratory of Cellular Optics II, Department of Physiology, University of Bern, Bern, Switzerland
| | - Jan Pavel Kucera
- Integrative Cardiac Bioelectricity Group, Department of Physiology, University of Bern, Bern, Switzerland
| | - Stephan Rohr
- Laboratory of Cellular Optics II, Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Nakashima T, Takasugi N, Sahashi Y, Watanabe T, Kanamori H, Okura H. Conduction disturbances caused by severe respiratory acidosis. J Cardiovasc Electrophysiol 2019; 30:2144-2146. [PMID: 31508855 DOI: 10.1111/jce.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Takashi Nakashima
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nobuhiro Takasugi
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yuki Sahashi
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takatomo Watanabe
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroyuki Okura
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
20
|
Kuzmin VS, Egorov YV, Rozenshtraukh LV. [Electrhopysiological Effect of the Polyamine Spermine in Normoxic and Ischemic Ventricular Myocardium]. ACTA ACUST UNITED AC 2019; 59:43-51. [PMID: 30990140 DOI: 10.18087/cardio.2019.3.10240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 11/18/2022]
Abstract
Cytoplasmic polyamines (PA) are involved in control of many cellular functions and are well known as regulators of so called inward-rectifier potassium ion channels. Nevertheless, functional significance of extracellular PA in the heart is poorly elucidated. Aim of this study was to study effects of endogenous PA spermine in the ventricular myocardium. Effects of the extracellular spermine were investigated in isolated multicellular preparations of rabbit and rat ventricular myocardium. Langendorff-perfused isolated rat and rabbit hearts were also used. Action potential (APs) duration and pattern of excitation in ventricular myocardium were estimated using standard microelectrode technique and optical mapping. Functional refractory periods were assessed in Langendorff perfused hearts with the help of programmedelectrical stimulation of the ventricle. In this study extracellular PA spermine (0.1-5 mM) induced shortening of the APs in multicellular preparations of rat ventricular myocardium registered using sharp microelectrode technique. However, spermine caused only weak effect in preparations of ventricular myocardium from rabbit heart: highest tested concentration of spermine (5 mM) induced 4.7 % APs shortening. Similarly, 0.1-1 mM of spermine was unable to alter substantially ventricular effective refractory periods in isolated perfused rabbit hearts. In two animal species tested (rat and rabbit) 0.1-1 mM of spermine failed to affect conduction velocity and activation pattern in ventricles of isolated Langendorff-perfused hearts under normoxia. However, in the rat no-flow model of ischemia-reperfusion extracellular spermine improved conduction of excitation in ventricles. Our results allow suggesting that extracellular spermine can prevent ischemia-induced proarrhythmic changes in ventricular myocardium probably due to reduction of calcium accumulation, but this effect is significant only when PA is applied in millimolar concentrations. Also, potential anti-ischemic effect of the PA may be species specific.
Collapse
Affiliation(s)
| | - Yu V Egorov
- Institute of Experimental Cardiology of National Medical Research Center for Cardiology
| | - L V Rozenshtraukh
- Institute of Experimental Cardiology of National Medical Research Center for Cardiology
| |
Collapse
|
21
|
George SA, Hoeker G, Calhoun PJ, Entz M, Raisch TB, King DR, Khan M, Baker C, Gourdie RG, Smyth JW, Nielsen MS, Poelzing S. Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts. Am J Physiol Heart Circ Physiol 2019; 316:H849-H861. [PMID: 30707595 DOI: 10.1152/ajpheart.00083.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Gregory Hoeker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Patrick J Calhoun
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Tristan B Raisch
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - D Ryan King
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Momina Khan
- Department of Human Food Nutrition and Exercise, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Chandra Baker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Robert G Gourdie
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|
22
|
Skjeflo GW, Nordseth T, Loennechen JP, Bergum D, Skogvoll E. ECG changes during resuscitation of patients with initial pulseless electrical activity are associated with return of spontaneous circulation. Resuscitation 2018; 127:31-36. [PMID: 29621571 DOI: 10.1016/j.resuscitation.2018.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulseless electrical activity (PEA) is a frequent initial rhythm in cardiac arrest, and ECG characteristics have been linked to prognosis. The aim of this study was to examine the development of ECG characteristics during advanced life support (ALS) and cardiopulmonary resuscitation (CPR) in cardiac arrest with initial PEA, and to assess any association with survival. METHODS Patients with in-hospital cardiac arrest with initial PEA at St. Olav Hospital (Trondheim, Norway) over a three-year period were included. A total of 2187 combined observations of QRS complex rate (heart rate) and QRS complex width for the duration of ALS were determined from defibrillator recordings from 74 episodes of cardiac arrest. RESULTS Increasing heart rate and decreasing QRS complex width during ALS was significantly more prevalent in patients who obtained return of spontaneous circulation compared to patients who were declared dead. CONCLUSION Changes in ECG characteristics during ALS in cardiac arrest presenting as PEA are related to prognosis. An increase in heart rate was observed in the last 3-6 min before ROSC was obtained.
Collapse
Affiliation(s)
- Gunnar Waage Skjeflo
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Trond Nordseth
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olav University Hospital, Department of Anesthesia and Intensive Care Medicine, NO-7006 Trondheim, Norway
| | - Jan Pål Loennechen
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olav University Hospital, Department of Cardiology, NO-7006 Trondheim, Norway
| | - Daniel Bergum
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olav University Hospital, Department of Anesthesia and Intensive Care Medicine, NO-7006 Trondheim, Norway
| | - Eirik Skogvoll
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olav University Hospital, Department of Anesthesia and Intensive Care Medicine, NO-7006 Trondheim, Norway
| |
Collapse
|
23
|
Finn BP, Fraser B, O'Connell SM. Supraventricular tachycardia as a complication of severe diabetic ketoacidosis in an adolescent with new-onset type 1 diabetes. BMJ Case Rep 2018; 2018:bcr-2017-222861. [PMID: 29545427 DOI: 10.1136/bcr-2017-222861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diabetic ketoacidosis (DKA) is one of the most common causes of morbidity and mortality in new-onset type 1 diabetes (T1D). Supraventricular tachycardia (SVT), however, is a very rare complication of DKA. We present the case of a patient with new-onset T1D who presented with DKA. He received intravenous fluid resuscitation, insulin and potassium supplementation and subsequently developed SVT, confirmed on a 12-lead electrocardiograph despite a structurally normal heart. Vagal manoeuvres and adenosine failed to restore sinus rhythm, but flecainide was successful. We conclude that SVT can occur as a complication of DKA, including in new-onset T1D. Our case is the first of this phenomenon occurring in new-onset childhood diabetes, as the few prior documented cases had established diabetes. Furthermore, a combination of potassium derangement, hypophosphataemia and falling magnesium levels may have precipitated the event.
Collapse
Affiliation(s)
| | - Brian Fraser
- Department of Paediatrics and Child Health, Cork University Hospital Group, Cork, Ireland
| | - Susan M O'Connell
- Department of Paediatrics and Child Health, Cork University Hospital Group, Cork, Ireland
| |
Collapse
|
24
|
Greer-Short A, Hund TJ. Editorial commentary: Mathematical modeling as a tool to elucidate fundamental principles in cardiac electrophysiology. Trends Cardiovasc Med 2017; 28:243-245. [PMID: 29269287 DOI: 10.1016/j.tcm.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH.
| |
Collapse
|
25
|
Kucera JP, Rohr S, Kleber AG. Microstructure, Cell-to-Cell Coupling, and Ion Currents as Determinants of Electrical Propagation and Arrhythmogenesis. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.004665. [DOI: 10.1161/circep.117.004665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Jan P. Kucera
- From the Department of Physiology, University of Bern, Switzerland (J.P.K., S.R.); and the Department of Pathology, Harvard Medical School, Boston, MA (A.G.K.)
| | - Stephan Rohr
- From the Department of Physiology, University of Bern, Switzerland (J.P.K., S.R.); and the Department of Pathology, Harvard Medical School, Boston, MA (A.G.K.)
| | - Andre G. Kleber
- From the Department of Physiology, University of Bern, Switzerland (J.P.K., S.R.); and the Department of Pathology, Harvard Medical School, Boston, MA (A.G.K.)
| |
Collapse
|
26
|
Bai X, Wang K, Yuan Y, Li Q, Dobrzynski H, Boyett MR, Hancox JC, Zhang H. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study. CHAOS (WOODBURY, N.Y.) 2017; 27:093934. [PMID: 28964153 DOI: 10.1063/1.5002664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.
Collapse
Affiliation(s)
- Xiangyun Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, The University of Manchester, M13 9PL Manchester, United Kingdom
| | - Mark R Boyett
- Institute of Cardiovascular Sciences, The University of Manchester, M13 9PL Manchester, United Kingdom
| | - Jules C Hancox
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, M13 9PL Manchester, United Kingdom
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
27
|
Liu MB, Ko CY, Song Z, Garfinkel A, Weiss JN, Qu Z. A Dynamical Threshold for Cardiac Delayed Afterdepolarization-Mediated Triggered Activity. Biophys J 2016; 111:2523-2533. [PMID: 27926853 PMCID: PMC5153551 DOI: 10.1016/j.bpj.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Ventricular myocytes are excitable cells whose voltage threshold for action potential (AP) excitation is ∼-60 mV at which INa is activated to give rise to a fast upstroke. Therefore, for a short stimulus pulse to elicit an AP, a stronger stimulus is needed if the resting potential lies further away from the INa threshold, such as in hypokalemia. However, for an AP elicited by a long duration stimulus or a diastolic spontaneous calcium release, we observed that the stimulus needed was lower in hypokalemia than in normokalemia in both computer simulations and experiments of rabbit ventricular myocytes. This observation provides insight into why hypokalemia promotes calcium-mediated triggered activity, despite the resting potential lying further away from the INa threshold. To understand the underlying mechanisms, we performed bifurcation analyses and demonstrated that there is a dynamical threshold, resulting from a saddle-node bifurcation mainly determined by IK1 and INCX. This threshold is close to the voltage at which IK1 is maximum, and lower than the INa threshold. After exceeding this dynamical threshold, the membrane voltage will automatically depolarize above the INa threshold due to the large negative slope of the IK1-V curve. This dynamical threshold becomes much lower in hypokalemia, especially with respect to calcium, as predicted by our theory. Because of the saddle-node bifurcation, the system can automatically depolarize even in the absence of INa to voltages higher than the ICa,L threshold, allowing for triggered APs in single myocytes with complete INa block. However, because INa is important for AP propagation in tissue, blocking INa can still suppress premature ventricular excitations in cardiac tissue caused by calcium-mediated triggered activity. This suppression is more effective in normokalemia than in hypokalemia due to the difference in dynamical thresholds.
Collapse
Affiliation(s)
- Michael B Liu
- Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christopher Y Ko
- Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhen Song
- Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alan Garfinkel
- Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - James N Weiss
- Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Physiology, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Cardiovascular Research Laboratory, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
28
|
Ideguchi T, Tsuruda T, Sato Y, Kitamura K. Coexisting Hyponatremia and Decline in Diastolic Blood Pressure Predispose to Atrial Standstill in Hyperkalemic Patients. Circ J 2016; 80:1781-6. [PMID: 27301330 DOI: 10.1253/circj.cj-16-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atrial standstill is one of the important clinical consequences on the heart in severe hyperkalemia, but it occurs even at modest potassium ion elevation. The extent to which other factors might potentiate the electrocardiographic changes induced by hyperkalemia remains unclear. METHODS AND RESULTS This was a retrospective review of the data on 12,639 hospital admissions over a 15-year period. A total of 778 patients with hyperkalemia were identified, 28 of whom had atrial standstill, and had several parameters measured prior to any treatment of hyperkalemia. Patients with atrial standstill were older (P=0.036), had lower diastolic blood pressure (DBP; P<0.0001) and serum sodium concentration (P<0.0001), higher serum potassium (P<0.0001), and high prevalence of angiotensin converting-enzyme inhibitor (ACEI; P=0.009) or mineral corticoid receptor (MR)-blocker (P=0.006), compared with those without atrial standstill. On multivariate logistic regression, DBP <67 mmHg (P=0.006), serum sodium ion <135 mmol/L (P=0.006) and serum potassium ion >6.1 mmol/L (P=0.018) were identified as independent indicators of atrial standstill, after adjusting for sex, age, chronic maintenance hemodialysis, diuretics use or ACEI/angiotensin receptor blocker and MR blocker. CONCLUSIONS Hyponatremia and decline in DBP are associated with atrial standstill in patients with hyperkalemia. (Circ J 2016; 80: 1781-1786).
Collapse
Affiliation(s)
- Takeshi Ideguchi
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki
| | | | | | | |
Collapse
|
29
|
George SA, Bonakdar M, Zeitz M, Davalos RV, Smyth JW, Poelzing S. Extracellular sodium dependence of the conduction velocity-calcium relationship: evidence of ephaptic self-attenuation. Am J Physiol Heart Circ Physiol 2016; 310:H1129-39. [PMID: 26945081 DOI: 10.1152/ajpheart.00857.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
Our laboratory previously demonstrated that perfusate sodium and potassium concentrations can modulate cardiac conduction velocity (CV) consistent with theoretical predictions of ephaptic coupling (EpC). EpC depends on the ionic currents and intercellular separation in sodium channel rich intercalated disk microdomains like the perinexus. We suggested that perinexal width (WP) correlates with changes in extracellular calcium ([Ca(2+)]o). Here, we test the hypothesis that increasing [Ca(2+)]o reduces WP and increases CV. Mathematical models of EpC also predict that reducing WP can reduce sodium driving force and CV by self-attenuation. Therefore, we further hypothesized that reducing WP and extracellular sodium ([Na(+)]o) will reduce CV consistent with ephaptic self-attenuation. Transmission electron microscopy revealed that increasing [Ca(2+)]o (1 to 3.4 mM) significantly decreased WP Optically mapping wild-type (WT) (100% Cx43) mouse hearts demonstrated that increasing [Ca(2+)]o increases transverse CV during normonatremia (147.3 mM), but slows transverse CV during hyponatremia (120 mM). Additionally, CV in heterozygous (∼50% Cx43) hearts was more sensitive to changes in [Ca(2+)]o relative to WT during normonatremia. During hyponatremia, CV slowed in both WT and heterozygous hearts to the same extent. Importantly, neither [Ca(2+)]o nor [Na(+)]o altered Cx43 expression or phosphorylation determined by Western blotting, or gap junctional resistance determined by electrical impedance spectroscopy. Narrowing WP, by increasing [Ca(2+)]o, increases CV consistent with enhanced EpC between myocytes. Interestingly, during hyponatremia, reducing WP slowed CV, consistent with theoretical predictions of ephaptic self-attenuation. This study suggests that serum ion concentrations may be an important determinant of cardiac disease expression.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Mohammad Bonakdar
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; and
| | - Michael Zeitz
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; and
| | - James W Smyth
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Roanoke, Virginia
| |
Collapse
|
30
|
Entz M, George SA, Zeitz MJ, Raisch T, Smyth JW, Poelzing S. Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs. Front Physiol 2016; 7:16. [PMID: 26869934 PMCID: PMC4735342 DOI: 10.3389/fphys.2016.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background: Recent studies suggested that cardiac conduction in murine hearts with narrow perinexi and 50% reduced connexin43 (Cx43) expression is more sensitive to relatively physiological changes of extracellular potassium ([K+]o) and sodium ([Na+]o). Purpose: Determine whether similar [K+]o and [Na+]o changes alter conduction velocity (CV) sensitivity to pharmacologic gap junction (GJ) uncoupling in guinea pigs. Methods: [K+]o and [Na+]o were varied in Langendorff perfused guinea pig ventricles (Solution A: [K+]o = 4.56 and [Na+]o = 153.3 mM. Solution B: [K+]o = 6.95 and [Na+]o = 145.5 mM). Gap junctions were inhibited with carbenoxolone (CBX) (15 and 30 μM). Epicardial CV was quantified by optical mapping. Perinexal width was measured with transmission electron microscopy. Total and phosphorylated Cx43 were evaluated by western blotting. Results: Solution composition did not alter CV under control conditions or with 15μM CBX. Decreasing the basic cycle length (BCL) of pacing from 300 to 160 ms decreased CV uniformly with both solutions. At 30 μM CBX, a change in solution did not alter CV either longitudinally or transversely at BCL = 300 ms. However, reducing BCL to 160 ms caused CV to decrease more in hearts perfused with Solution B than A. Solution composition did not alter perinexal width, nor did it change total or phosphorylated serine 368 Cx43 expression. These data suggest that the solution dependent CV changes were independent of altered perinexal width or GJ coupling. Action potential duration was always shorter in hearts perfused with Solution B than A, independent of pacing rate and/or CBX concentration. Conclusions: Increased heart rate and GJ uncoupling can unmask small CV differences caused by changing [K+]o and [Na+]o. These data suggest that modulating extracellular ionic composition may be a novel anti-arrhythmic target in diseases with abnormal GJ coupling, particularly when heart rate cannot be controlled.
Collapse
Affiliation(s)
- Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA
| | - Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA
| | - Michael J Zeitz
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State University Roanoke, VA, USA
| | - Tristan Raisch
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
31
|
Peters CH, Abdelsayed M, Ruben PC. Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:77-88. [DOI: 10.1016/j.pbiomolbio.2015.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/27/2015] [Accepted: 12/15/2015] [Indexed: 01/16/2023]
|
32
|
George SA, Poelzing S. Cardiac conduction in isolated hearts of genetically modified mice--Connexin43 and salts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:189-98. [PMID: 26627143 DOI: 10.1016/j.pbiomolbio.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Physiologic variations in perfusate composition have been identified as a new and important modulator of cardiac conduction velocity (CV), particularly when gap junctions (GJ) are reduced. We recently demonstrated in ex vivo hearts that perfusates with low sodium and high potassium preferentially slow ventricular CV in mice genetically engineered to express 50% less of the gap junction protein, connexin43 (Cx43). We also reported the possible role of calcium in modulating CV. In this review we discuss previous murine studies that explored the CV-GJ relationship in isolated mouse heart preparations with approximately 50% reduced Cx43. Studies were grouped according to the type of perfusate utilized, and CV during GJ uncoupling was compared. Studies in Group A preferentially used perfusates with low sodium, high potassium and non-physiologic calcium, and found CV slows and arrhythmias increase in mouse hearts with reduced Cx43. Studies in Group B used solutions with high sodium, low potassium and physiologic calcium, and did not observe CV slowing nor increased arrhythmia risk with loss of Cx3. Studies in Group C used solutions with low sodium, low potassium, physiologic calcium, creatine, taurine, and insulin. CV slowing was not observed, nor was arrhythmia risk increased with loss of Cx43. We suggest that perfusate ion composition may be a major determinant of whether CV slows when Cx43 is reduced. Furthermore, the review of these studies highlights important theoretical developments in the understanding of cardiac conduction and suggests that ionic milieu can conceal electrophysiologic remodeling secondary to reduced Cx43 expression as occurs in many cardiac diseases.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
33
|
Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View. BIOMED RESEARCH INTERNATIONAL 2015; 2015:798768. [PMID: 26229964 PMCID: PMC4502285 DOI: 10.1155/2015/798768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) associated with fibrosis is characterized by the appearance of interstitial myofibroblasts. These cells are responsible for the uncontrolled deposition of the extracellular matrix, which pathologically separate cardiomyocyte bundles. The enhanced fibrosis is thought to contribute to arrhythmias “indirectly” because a collagenous septum is a passive substrate for propagation, resulting in impulse conduction block and/or zigzag conduction. However, the emerging results demonstrate that myofibroblasts in vitro also promote arrhythmogenesis due to direct implications upon cardiomyocyte electrophysiology. This electrical interference may be considered beneficial as it resolves any conduction blocks; however, the passive properties of myofibroblasts might cause a delay in impulse propagation, thus promoting AF due to discontinuous slow conduction. Moreover, low-polarized myofibroblasts reduce, via cell-density dependence, the fast driving inward current for cardiac impulse conduction, therefore resulting in arrhythmogenic uniformly slow propagation. Critically, the subsequent reduction in cardiomyocytes resting membrane potential in vitro significantly increases the likelihood of ectopic activity. Myofibroblast densities and the degree of coupling at cellular border zones also impact upon this likelihood. By considering future in vivo studies, which identify myofibroblasts “per se” as a novel targets for cardiac arrhythmias, this review aims to describe the implications of noncardiomyocyte view in the context of AF.
Collapse
|
34
|
George SA, Sciuto KJ, Lin J, Salama ME, Keener JP, Gourdie RG, Poelzing S. Extracellular sodium and potassium levels modulate cardiac conduction in mice heterozygous null for the Connexin43 gene. Pflugers Arch 2015; 467:2287-97. [PMID: 25771952 DOI: 10.1007/s00424-015-1698-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Several studies have disagreed on measurements of cardiac conduction velocity (CV) in mice with a heterozygous knockout of the connexin gene Gja1--a mutation that reduces the gap junction (GJ) protein, Connexin43 (Cx43), by 50 %. We noted that perfusate ionic composition varied between studies and hypothesized that extracellular ionic concentration modulates CV dependence on GJs. CV was measured by optically mapping wild-type (WT) and heterozygous null (HZ) hearts serially perfused with solutions previously associated with no change (Solution 1) or CV slowing (Solution 2). In WT hearts, CV was similar for Solutions 1 and 2. However, consistent with the hypothesis, Solution 2 in HZ hearts slowed transverse CV (CVT) relative to Solution 1. Previously, we showed CV slowing in a manner consistent with ephaptic conduction correlated with increased perinexal inter-membrane width (W P) at GJ edges. Thus, W P was measured following perfusion with systematically adjusted [Na(+)]o and [K(+)]o in Solutions 1 and 2. A wider W P was associated with reduced CVT in WT and HZ hearts, with the greatest effect in HZ hearts. Increasing [Na(+)]o increased CVT only in HZ hearts. Increasing [K(+)]o slowed CVT in both WT and HZ hearts with large W P but only in HZ hearts with narrow W P. CONCLUSION When perinexi are wide, decreasing excitability by modulating [Na(+)]o and [K(+)]o increases CV sensitivity to reduced Cx43. By contrast, CV is less sensitive to Cx43 and ion composition when perinexi are narrow. These results are consistent with cardiac conduction dependence on both GJ and non-GJ (ephaptic) mechanisms.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Katherine J Sciuto
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Mohamed E Salama
- Department of Pathology, University of Utah and ARUP Reference Lab Institute of Research, Salt Lake City, UT, USA
| | - James P Keener
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Robert G Gourdie
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
35
|
Grand T, Salvarani N, Jousset F, Rohr S. Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress. Cardiovasc Res 2014; 104:489-500. [DOI: 10.1093/cvr/cvu227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Ferrero JM, Trenor B, Romero L. Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction. Europace 2014; 16:405-15. [PMID: 24569895 DOI: 10.1093/europace/eut405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ischaemic heart disease is considered as the single most frequent cause of death, provoking more than 7 000 000 deaths every year worldwide. A high percentage of patients experience sudden cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial ischaemia and infarction. These diseases are difficult to study using solely experimental means due to their complex dynamics and unstable nature. In the past decades, integrative computational simulation techniques have become a powerful tool to complement experimental and clinical research when trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is to briefly review some of the multiscale computational models of myocardial ischaemia and infarction developed in the past 20 years, ranging from the cellular level to whole-heart simulations.
Collapse
Affiliation(s)
- Jose M Ferrero
- Departamento de Ingeniería Electrónica, Instituto I3BH, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
37
|
Kazusa K, Nakamura Y, Watanabe Y, Ando K, Sugiyama A. Effects of pH on nifekalant-induced electrophysiological change assessed in the Langendorff heart model of guinea pigs. J Pharmacol Sci 2014; 124:153-9. [PMID: 24451996 DOI: 10.1254/jphs.13127fp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Since information regarding the effects of pH on the extent of nifekalant-induced repolarization delay and torsades de pointes remains limited, we assessed it with a Langendorff heart model of guinea pigs. First, we investigated the effects of pH change from 7.4 to 6.4 on the bipolar electrogram simulating surface lead II ECG, monophasic action potential (MAP), effective refractory period (ERP), and terminal repolarization period (TRP) and found that acidic condition transiently enhanced the ventricular repolarization. Next, we investigated the effects of pH change from 6.4 to 7.4 in the presence of nifekalant (10 μM) on the ECG, MAP, ERP, TRP, and short-term variability (STV) of MAP90 and found that the normalization of pH prolonged the MAP90 and ERP while the TRP remained unchanged, suggesting the increase in electrical vulnerability of the ventricle. Meanwhile, the STV of MAP90 was the largest at pH 6.4 in the presence of nifekalant, indicating the increase in temporal dispersion of repolarization, which gradually decreased with the return of pH to 7.4.Thus, a recovery period from acidosis might be more dangerous than during the acidosis, because electrical vulnerability may significantly increase for this period while temporal dispersion of repolarization remained increased.
Collapse
Affiliation(s)
- Katsuyuki Kazusa
- Department of Pharmacology, Faculty of Medicine, Toho University, Japan
| | | | | | | | | |
Collapse
|
38
|
Stables CL, Musa H, Mitra A, Bhushal S, Deo M, Guerrero-Serna G, Mironov S, Zarzoso M, Vikstrom KL, Cawthorn W, Pandit SV. Reduced Na⁺ current density underlies impaired propagation in the diabetic rabbit ventricle. J Mol Cell Cardiol 2014; 69:24-31. [PMID: 24412579 DOI: 10.1016/j.yjmcc.2013.12.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 12/12/2022]
Abstract
Diabetes is associated with an increased risk of sudden cardiac death, but the underlying mechanisms remain unclear. Our goal was to investigate changes occurring in the action potential duration (APD) and conduction velocity (CV) in the diabetic rabbit ventricle, and delineate the principal ionic determinants. A rabbit model of alloxan-induced diabetes was utilized. Optical imaging was used to record electrical activity in isolated Langendorff-perfused hearts in normo-, hypo- and hyper-kalemia ([K(+)]o=4, 2, 12 mM respectively). Patch clamp experiments were conducted to record Na(+) current (I(Na)) in isolated ventricular myocytes. The mRNA/protein expression levels for Nav1.5 (the α-subunit of I(Na)) and connexin-43 (Cx43), as well as fibrosis levels were examined. Computer simulations were performed to interpret experimental data. We found that the APD was not different, but the CV was significantly reduced in diabetic hearts in normo-, hypo-, and, hyper-kalemic conditions (13%, 17% and 33% reduction in diabetic vs. control, respectively). The cell capacitance (Cm) was increased (by ~14%), and the density of INa was reduced by ~32% in diabetic compared to control hearts, but the other biophysical properties of I(Na) were unaltered. The mRNA/protein expression levels for Cx43 were unaltered. For Nav1.5, the mRNA expression was not changed, and though the protein level tended to be less in diabetic hearts, this reduction was not statistically significant. Staining showed no difference in fibrosis levels between the control and diabetic ventricles. Computer simulations showed that the reduced magnitude of I(Na) was a key determinant of impaired propagation in the diabetic ventricle, which may have important implications for arrhythmogenesis.
Collapse
Affiliation(s)
- Catherine L Stables
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Hassan Musa
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Aditi Mitra
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Sandesh Bhushal
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Makarand Deo
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Sergey Mironov
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Manuel Zarzoso
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Karen L Vikstrom
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - William Cawthorn
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sandeep V Pandit
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Vilin YY, Peters CH, Ruben PC. Acidosis differentially modulates inactivation in na(v)1.2, na(v)1.4, and na(v)1.5 channels. Front Pharmacol 2012; 3:109. [PMID: 22701426 PMCID: PMC3372088 DOI: 10.3389/fphar.2012.00109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/22/2012] [Indexed: 11/13/2022] Open
Abstract
Na(V) channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of Na(V)1.2, Na(V)1.4, and Na(V)1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas Na(V)1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in Na(V)1.2 and Na(V)1.5 were profound. In Na(V)1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in Na(V)1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability.
Collapse
Affiliation(s)
- Yury Y Vilin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | | | |
Collapse
|
40
|
Miura M, Hattori T, Murai N, Nagano T, Nishio T, Boyden PA, Shindoh C. Regional increase in extracellular potassium can be arrhythmogenic due to nonuniform muscle contraction in rat ventricular muscle. Am J Physiol Heart Circ Physiol 2012; 302:H2301-9. [PMID: 22447939 DOI: 10.1152/ajpheart.01161.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the ischemic myocardium, extracellular potassium ([K(+)](o)) increases to ≥20 mmol/l. To determine how lethal arrhythmias occur during ischemia, we investigated whether the increased spatial pattern of [K(+)](o), i.e., a regional or a global increase, affects the incidence of arrhythmias. Force, sarcomere length, membrane potential, and nonuniform intracellular Ca(2+) ([Ca(2+)](i)) were measured in rat ventricular trabeculae. A "regional" or "global" increase in [K(+)](o) was produced by exposing a restricted region of muscle to a jet of 30 mmol/l KCl or by superfusing trabeculae with a solution containing 30 mmol/l KCl, respectively. The increase in [Ca(2+)](i) (Ca(CW)) during Ca(2+) waves was measured (24°C, 3.0 mmol/l [Ca(2+)](o)). A regional increase in [K(+)](o) caused nonuniform [Ca(2+)](i) and contraction. In the presence of isoproterenol, the regional increase in [K(+)](o) induced sustained arrhythmias in 10 of 14 trabeculae, whereas the global increase did not induce such arrhythmias. During sustained arrhythmias, Ca(2+) surged within the jet-exposed region. In the absence of isoproterenol, the regional increase in [K(+)](o) increased Ca(CW), whereas the global increase decreased it. This increase in Ca(CW) with the regional increase in [K(+)](o) was not suppressed by 100 μmol/l streptomycin, whereas it was suppressed by 1) a combination of 10 μmol/l cilnidipine and 3 μmol/l SEA0400; 2) 20 mmol/l 2,3-butanedione monoxime; and 3) 10 μmol/l blebbistatin. A regional but not a global increase in [K(+)](o) induces sustained arrhythmias, probably due to nonuniform excitation-contraction coupling. The same mechanism may underlie arrhythmias during ischemia.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kroll MW, Walcott GP, Ideker RE, Graham MA, Calkins H, Lakkireddy D, Luceri RM, Panescu D. The stability of electrically induced ventricular fibrillation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:6377-6381. [PMID: 23367388 DOI: 10.1109/embc.2012.6347453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The first recorded heart rhythm for cardiac arrest patients can either be ventricular fibrillation (VF) which is treatable with a defibrillator, or asystole or pulseless electrical activity (PEA) which are not. The time course for the deterioration of VF to either asystole or PEA is not well understood. Knowing the time course of this deterioration may allow for improvements in emergency service delivery. In addition, this may improve the diagnosis of possible electrocutions from various electrical sources including utility power, electric fences, or electronic control devices (ECDs) such as a TASER(®) ECD. We induced VF in 6 ventilated swine by electrically maintaining rapid cardiac capture, with resulting hypotension, for 90 seconds. No circulatory assistance was provided. They were then monitored for 40 minutes via an electrode in the right ventricle. Only 2 swine remained in VF; 3 progressed to asystole; 1 progressed to PEA. These results were used in a logistic regression model. The results are then compared to published animal and human data. The median time for the deterioration of electrically induced VF in the swine was 35 minutes. At 24 minutes VF was still maintained in all of the animals. We conclude that electrically induced VF is long-lived--even in the absence of chest compressions.
Collapse
Affiliation(s)
- Mark W Kroll
- Biomedical Engineering Dept., University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
SHENAI MAHESH, GRAMATIKOV BORIS, THAKOR NITISHV. COMPUTER MODELS OF DEPOLARIZATION ALTERATIONS INDUCED BY MYOCARDIAL ISCHEMIA: THE EFFECT OF SUPERIMPOSED ISCHEMIC INHOMOGENEITIES ON PROPAGATION IN SPACE AND TIME-FREQUENCY DOMAINS. J BIOL SYST 2011. [DOI: 10.1142/s0218339099000322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A two-dimensional modified Luo-Rudy model was created to represent a 40 mm by 40 mm slab of myocardial tissue. An inhomogeneity was introduced to simulate acute myocardial ischemia, with components of hyperkalemia, acidosis and anoxia. Simulations were carried out for various degrees of ischemia, to study both the interaction of the propagation front with the inhomogeneity, and the reconstructed signals. The simulations utilized a modified LR model, with a realistic anisotropy of myocardial tissue. Each cluster (.4 mm ×.4 mm) was given bulk electric properties, Rx and Ry (25Ω and 250Ω, respectively). The slab was stimulated and the 2D depolarization pattern was computed by numerical integration. To study ischemia, a circular inhomogeneity with concentric regions (ro=12.8 mm{border zone, BZ} , ri=11.2 mm{extreme zone, EZ} ) regions was introduced in the model. From the 2D simulations and the regional action potentials (AP), unipolar and bipolar lead potentials were reconstructed. Time-frequency decomposition was performed on the lead signals by wavelet analysis. Isochrone and (dV/dt) max maps were obtained to study depolarization. Our results indicate that spatial inhomogeneities yield dramatic spatial dispersion of the wavefront and are the origin of mid-frequency intra-QRS components in cardiac signals. Severe APD shortening and spatial distortion of the isochrone and upstroke maps are also observed.
Collapse
Affiliation(s)
- MAHESH SHENAI
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 720 Rutland Ave., Room 701 Traylor Bldg., Baltimore, MD, 21205, USA
| | - BORIS GRAMATIKOV
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 720 Rutland Ave., Room 701 Traylor Bldg., Baltimore, MD, 21205, USA
| | - NITISH V. THAKOR
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 720 Rutland Ave., Room 701 Traylor Bldg., Baltimore, MD, 21205, USA
| |
Collapse
|
43
|
Carro J, Rodríguez JF, Laguna P, Pueyo E. A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4205-32. [PMID: 21969673 DOI: 10.1098/rsta.2011.0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study, several modifications were introduced to a recently proposed human ventricular action potential (AP) model so as to render it suitable for the study of ventricular arrhythmias. These modifications were driven by new sets of experimental data available from the literature and the analysis of several well-established cellular arrhythmic risk biomarkers, namely AP duration at 90 per cent repolarization (APD(90)), AP triangulation, calcium dynamics, restitution properties, APD(90) adaptation to abrupt heart rate changes, and rate dependence of intracellular sodium and calcium concentrations. The proposed methodology represents a novel framework for the development of cardiac cell models. Five stimulation protocols were applied to the original model and the ventricular AP model developed here to compute the described arrhythmic risk biomarkers. In addition, those models were tested in a one-dimensional fibre in which hyperkalaemia was simulated by increasing the extracellular potassium concentration, [K(+)](o). The effective refractory period (ERP), conduction velocity (CV) and the occurrence of APD alternans were investigated. Results show that modifications improved model behaviour as verified by: (i) AP triangulation well within experimental limits (the difference between APD at 50 and 90 per cent repolarization being 78.1 ms); (ii) APD(90) rate adaptation dynamics characterized by fast and slow time constants within physiological ranges (10.1 and 105.9 s); and (iii) maximum S1S2 restitution slope in accordance with experimental data (S(S1S2)=1.0). In simulated tissues under hyperkalaemic conditions, APD(90) progressively shortened with the degree of hyperkalaemia, whereas ERP increased once a threshold in [K(+)](o) was reached ([K(+)](o)≈6 mM). CV decreased with [K(+)](o), and conduction was blocked for [K(+)](o)>10.4 mM. APD(90) alternans were observed for [K(+)](o)>9.8 mM. Those results adequately reproduce experimental observations. This study demonstrated the value of basing the development of AP models on the computation of arrhythmic risk biomarkers, as opposed to joining together independently derived ion channel descriptions to produce a whole-cell AP model, with the new framework providing a better picture of the model performance under a variety of stimulation conditions. On top of replicating experimental data at single-cell level, the model developed here was able to predict the occurrence of APD(90) alternans and areas of conduction block associated with high [K(+)](o) in tissue, which is of relevance for the investigation of the arrhythmogenic substrate in ischaemic hearts.
Collapse
Affiliation(s)
- Jesús Carro
- Aragón Institute of Engineering Research (I3A), IIS Aragón, Universidad de Zaragoza, Spain
| | | | | | | |
Collapse
|
44
|
Roberts BN, Christini DJ. NHE inhibition does not improve Na(+) or Ca(2+) overload during reperfusion: using modeling to illuminate the mechanisms underlying a therapeutic failure. PLoS Comput Biol 2011; 7:e1002241. [PMID: 22028644 PMCID: PMC3197652 DOI: 10.1371/journal.pcbi.1002241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 09/10/2011] [Indexed: 11/18/2022] Open
Abstract
Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function. Myocardial ischemia, commonly observed when arteries supplying the heart become occluded, results when cardiac tissue receives inadequate blood perfusion. In order to minimize the amount of cardiac damage, ischemic tissue must be reperfused. However, reperfusion can result in deleterious effects that leave the heart muscle sicker than if the ischemia had been allowed to continue. Examples of these reperfusion injuries include lethal arrhythmias and an increased region of cell death. Some of the early events that result in reperfusion injury include changes in pH and an overload of sodium inside the cell. During reperfusion, the sodium-proton exchanger (NHE) removes protons from the cell in an effort to restore normal pH, in turn importing sodium ions. Many strategies have been attempted to prevent reperfusion injury, including inhibition of the NHE, with little clinical effect. Using a mathematical model that we developed to study ischemia and reperfusion in cardiac cells, we found that NHE inhibition produces more severe sodium overload, largely due to adverse consequences of the delayed pH recovery produced by NHE inhibition. These results suggest that NHE inhibition alone may not be a viable strategy, and that therapies which prolong intracellular acidosis may be problematic.
Collapse
Affiliation(s)
- Byron N. Roberts
- Greenberg Division of Cardiology and Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - David J. Christini
- Greenberg Division of Cardiology and Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Sohn K, Sachse FB, Moreno AP, Ershler PR, Wende AR, Abel ED, Punske BB. The maximal downstroke of epicardial potentials as an index of electrical activity in mouse hearts. IEEE Trans Biomed Eng 2011; 58:3175-83. [PMID: 21859611 DOI: 10.1109/tbme.2011.2164075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The maximal upstroke of transmembrane voltage (dV(m)/dt(max)) has been used as an indirect measure of sodium current I(Na) upon activation in cardiac myocytes. However, sodium influx generates not only the upstroke of V(m), but also the downstroke of the extracellular potentials V(e) including epicardial surface potentials V(es). The purpose of this study was to evaluate the magnitude of the maximal downstroke of V(es) (|dV(es)/dt (min)|) as a global index of electrical activation, based on the relationship of dV(m)/dt(max) to I(Na). To fulfill this purpose, we examined |dV(es)/dt(min)| experimentally using isolated perfused mouse hearts and computationally using a 3-D cardiac tissue bidomain model. In experimental studies, a custom-made cylindrical "cage" array with 64 electrodes was slipped over mouse hearts to measure V(es) during hyperkalemia, ischemia, and hypoxia, which are conditions that decrease I(Na). Values of |dV(es)/dt(min)| from each electrode were normalized (|dV(es)/dt (min)|(n)) and averaged (|dV(es)/dt(min)|(na)). Results showed that |dV(es)/dt(min)|(na) decreased during hyperkalemia by 28, 59, and 79% at 8, 10, and 12 mM [K(+)](o), respectively. |dV(es)/dt(min)| also decreased by 54 and 84% 20 min after the onset of ischemia and hypoxia, respectively. In computational studies, |dV(es)/dt(min)| was compared to dV(m)/dt(max) at different levels of the maximum sodium conductance G(Na), extracellular potassium ion concentration [K(+)](o), and intracellular sodium ion concentration [Na(+)](i), which all influence levels of I(Na). Changes in |dV(es)/dt(min)|(n) were similar to dV(m)/dt (max) during alterations of G(Na), [K(+)](o), and [Na(+)](i). Our results demonstrate that |dV(es)/dt(min)|(na) is a robust global index of electrical activation for use in mouse hearts and, similar to dV(m)/dt(max), can be used to probe electrophysiological alterations reliably. The index can be readily measured and evaluated, which makes it attractive for characterization of, for instance, genetically modified mouse hearts and drug effects on cardiac tissue.
Collapse
Affiliation(s)
- Kwanghyun Sohn
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Bioengineering Department, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Caldwell JC, Burton FL, Cobbe SM, Smith GL. Slowing of Electrical Activity in Ventricular Fibrillation is Not Associated with Increased Defibrillation Energies in the Isolated Rabbit Heart. Front Physiol 2011; 2:11. [PMID: 21519386 PMCID: PMC3078558 DOI: 10.3389/fphys.2011.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/09/2011] [Indexed: 11/13/2022] Open
Abstract
Prolonged out-of-hospital ventricular fibrillation (VF) arrests are associated with reduced ECG dominant frequency (DF) and diminished defibrillation success. Partial reversal of ischemia increases ECG DF and improves defibrillation outcome. We have investigated the metabolic components of ischemia responsible for the decline in ECG DF and defibrillation success. Isolated Langendorff-perfused rabbit hearts were loaded with the voltage-sensitive dye RH237. Using a photodiode array, epicardial membrane potentials were recorded at 252 sites (15 mm × 15 mm) on the anterior surface of the left and right ventricles. Simultaneously, a global ECG was recorded. VF was induced by burst pacing, and after 60s, perfusion was either reduced to 6 ml/min or the perfusate composition changed to impose hypoxia (95% N(2)/5% CO(2)), pH 6.7 (80% O(2)/20% CO(2)), or hyperkalemia (8 mM). Using fast Fourier transform, power spectra were created from the optical signals and the global ECG. The optical power spectra were summated to give a global power spectrum (pseudoECG). At 600 s the minimum defibrillation voltage (MDV) was determined by step-up protocol. During VF, the ECG and pseudoECG DF were reduced by low-flow ischemia (9.0 ± 1.0 Hz, p < 0.01, n = 5) and raised [K(+)](o) (12.2 ± 1.3 Hz, p < 0.05, n = 7) compared to control (19.2 ± 1.5 Hz, n = 20), but were unaffected by acidic pH(o) (16.7 ± 1.1 Hz, n = 11) and hypoxia (14.0 ± 1.2 Hz, n = 10). In contrast, the MDV was raised by acidic pH (156.1 ± 26.4 V, p < 0.001) and hypoxia (154.1 ± 22.1 V, p < 0.01) compared to control (65.6 ± 2.3 V), but comparable changes were not observed in low-flow ischemia (61.0 ± 0.5 V) or raised [K(+)](o) (56 ± 3 V). In summary, different metabolites are responsible for the reduction in DF and the increase in defibrillation energy during ischemic VF.
Collapse
Affiliation(s)
- Jane C Caldwell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow Glasgow, UK
| | | | | | | |
Collapse
|
47
|
Henao ÓA, Ferrero de Loma-Osorio JM, Sáiz J, Reynolds J. Arritmias potenciadas por isquemia sub-epicárdica en pared transmural heterogénea cardiaca: un estudio teórico de simulación. REVISTA COLOMBIANA DE CARDIOLOGÍA 2011. [DOI: 10.1016/s0120-5633(11)70164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
48
|
|
49
|
Wiegerinck RF, Gálvez-Monton C, Jorge E, Martínez R, Ricart E, Cinca J. Changes in QRS duration and R-wave amplitude in electrocardiogram leads with ST segment elevation differentiate epicardial and transmural myocardial injury. Heart Rhythm 2010; 7:1667-73. [DOI: 10.1016/j.hrthm.2010.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
|
50
|
Podrid PJ. Aggravation of Arrhythmia by Antiarrhythmic Drugs (Proarrhythmia). Card Electrophysiol Clin 2010; 2:459-470. [PMID: 28770803 DOI: 10.1016/j.ccep.2010.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrhythmia aggravation by antiarrhythmic drugs (proarrhythmia) can be caused by worsening or a change of a preexisting arrhythmia, development of a new arrhythmia, or development of a bradyarrhythmia. Aggravation of arrhythmia usually occurs within several days of beginning an antiarrhythmic drug or increasing the dose of the drug. The time of occurrence is based on the particular drug and its pharmacokinetic properties. Although there are no ways to predict the patient at risk for developing arrhythmia aggravation with any specific agents, risk factors include QT interval prolongation, elevated serum levels of the drug, electrolyte abnormalities, presence of heart failure, a history of a sustained ventricular tachyarrhythmia, and underlying myocardial ischemia.
Collapse
Affiliation(s)
- Philip J Podrid
- Section of Cardiology, West Roxbury Veterans Administration Hospital, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| |
Collapse
|