1
|
Fledderus J, Vanchin B, Brouwer L, Kuiper T, Jongman RM, van Meurs M, Harmsen MC, Krenning G. H3K27Me3 abundance is associated with a decreased barrier function of endothelial cells by directly silencing VE-cadherin expression. Atherosclerosis 2025; 406:119242. [PMID: 40398293 DOI: 10.1016/j.atherosclerosis.2025.119242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND AND AIMS Atherosclerosis develops mainly in predisposed, atheroprone regions characterised by the presence of disturbed flow i.e. oscillatory shear stress (OSS). OSS can induce endothelial cell (EC) activation, disruption of the EC barrier and increased permeability. The mechanisms that underly the loss of the EC barrier integrity are still incompletely understood. Enhancer of zeste homolog 2 (EZH2) and its epigenetic silencing mark H3K27Me3 are increased in the endothelium at atheroprone areas where EC barrier disruption is most prominent. Therefore, we hypothesized that increased H3K27Me3 abundance at atheroprone areas affects the barrier function of the endothelium. METHODS A knockdown model of EZH2 in human umbilical vein EC (HUVEC) was used for RNA-seq, to identify differentially expressed genes involved in EC barrier function. Additionally, the effect of OSS on endothelial gene expression was studied by applying laminar shear stress (LSS) on y-shaped slides as a model to mimic atheroprotective and atheroprone areas in vivo. Results were corroborated by a functional study of the barrier function using trans-endothelial electric resistance (TEER). RESULTS An increased H3K27Me3 abundance is present in areas under OSS, this coincides with a decreased expression of VE-cadherin. Differentially expression (DE) analysis of EZH2KD HUVEC vs control, revealed that EZH2 regulates genes involved in cell-cell adhesion and leukocyte transmigration. Chromatin immunoprecipitation (ChIP) of H3K27Me3 showed that H3K27Me3 directly silenced CDH5 gene expression. Additionally, a reduction of EZH2 appears to increase EC barrier stability. CONCLUSIONS Decreased H3K27Me3 abundance in ECs is beneficial for the formation and integrity of the EC barrier.
Collapse
Affiliation(s)
- Jolien Fledderus
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Byambasuren Vanchin
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Dept. of Cardiology, School of Medicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar, 14210, Mongolia
| | - Linda Brouwer
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Timara Kuiper
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rianne M Jongman
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Dept. of Anaesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - M van Meurs
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Dept. of Critical Care, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Martin C Harmsen
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Guido Krenning
- Dept. Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Dept. Clinical Pharmacy and Pharmacology, Div. Experimental Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (AP50), 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
2
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025; 45:882-900. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to changes in flow through the arteries that feed these small vessels. The resultant decreases or increases in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
3
|
Shah I, Molony D, Lefieux A, Crawford K, Piccinelli M, Sun H, Giddens D, Samady H, Veneziani A. Impact of the stent footprint on endothelial wall shear stress in patient-specific coronary arteries: A computational analysis from the SHEAR-STENT trial. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 266:108762. [PMID: 40245606 DOI: 10.1016/j.cmpb.2025.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND AND OBJECTIVE Wall shear stress (WSS) has been known to play a critical role in the development of several complications following coronary artery stenting, including in-stent restenosis and thrombosis. Computational fluid dynamics is often used to quantify the post-stenting WSS, which may potentially be used as a predictive metric. However, large-scale studies for WSS-based risk stratification often neglect the footprint of the stent due to reconstruction challenges. The primary objective of this study is to statistically evaluate the impact of the stent footprints (Xience and Resolute stents) on the computed endothelial WSS and quantitatively identify the relationship between these local hemodynamic alterations and the global properties of the vessel, such as curvature, on WSS. The ultimate goal is to evaluate whether and when it is worth including the footprint of the stent in an in-silico study to compute the WSS reliably. METHODS A previously developed semi-automated reconstruction approach for patient-specific coronaries was employed as a part of the SHEAR-STENT trial. A subset of patients was analyzed (N=30), and CFD simulations were performed with and without the stent to evaluate the impact of the stent footprint on WSS. Due to the computationally expensive nature of transient analyses, a sub-cohort of ten patients were used to assess the reliability of WSS obtained from steady computations as a surrogate for the time-averaged results. Global and local vessel curvature data were extracted for all cases and evaluated against stent-induced alterations in the WSS. The differences between the Xience and Resolute stent platforms were also examined to quantify each stent's unique WSS footprint. RESULTS Results from the surrogate analysis indicate that steady WSS serves as an excellent approximation of the time-averaged computations. The presence of either stent footprint causes a statistically significant decrease in the space-averaged WSS, and a significant increase in the endothelial regions exposed to very low WSS as well (<0.5 Pa). Negative correlations were observed between vessel curvature and WSS differences, indicating that macroscopic vessel characteristics play a more prominent role in determining endothelial WSS at higher curvature values. In our pool of cases, comparison of Xience and Resolute stents revealed that the Resolute platform seems to lead to lower space-averaged WSS and an increase in areas of very low WSS. CONCLUSION These results outline (1) the necessity of including the stent footprint for accurate in-silico WSS analysis; (2) the global features of stented arteries serving as the dominant determinant of WSS past a certain curvature threshold; and (3) the Xience stent resulting in a milder presence of hemodynamically unfavorable WSS regions compared to the Resolute stent.
Collapse
Affiliation(s)
- Imran Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Nerem Street NW, Atlanta, GA 30313, USA; Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA.
| | - David Molony
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA
| | - Adrien Lefieux
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA
| | - Kaylyn Crawford
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA
| | - Marina Piccinelli
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Hanyao Sun
- AU/UGA Medical Partnership, Medical College of Georgia, Prince Avenue, Athens, GA 30602, USA
| | - Don Giddens
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Nerem Street NW, Atlanta, GA 30313, USA; Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Habib Samady
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA; Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA; Department of Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Shen B, Zheng H, Liu H, Chen L, Yang G. Differential benefits of 12-week morning vs. evening aerobic exercise on sleep and cardiometabolic health: a randomized controlled trial. Sci Rep 2025; 15:18298. [PMID: 40419564 DOI: 10.1038/s41598-025-02659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Modern life and rising stress have contributed to increased sleep disorders and metabolic and cardiovascular diseases. While exercise is known to be an important health intervention, the optimal timing for its effectiveness remains uncertain. This study aims to investigate the effects of a 12-week timed exercise program on sleep, lipid profiles, and vascular function. Fifty-eight sedentary males were divided into three groups: morning exercise (ME) at 6-8 a.m., evening exercise (EE) at 6-8 p.m., and control group (CON) without exercise. The 12-week intervention involved moderate-intensity aerobic exercise (≥ 150 min/week). Sleep was assessed using the Munich ChronoType Questionnaire (MCTQ) and Dim Light Melatonin Onset (DLMO). Metabolic indicators were assessed through body composition and blood biochemical tests. Ultrasound imaging was performed to evaluate hemodynamics at the common carotid artery. Both exercise groups reduced body fat after 12-week exercises, with ME showing significant reductions as early as week 4. Total cholesterol and triglycerides in ME also decreased. Shortened sleep latency was observed in both exercise groups, with DLMO and sleep advanced in ME. Although both exercise groups showed decreased stiffness and increased wall shear stress, EE demonstrated greater enhancements in blood flow rate, center-line velocity, carotid artery dilation and lowering systolic blood pressure. A 12-week aerobic exercise significantly improves physical health in sedentary adults. Morning exercise (6-8 a.m.) is particularly effective for rapid body fat reduction, lowering plasma cholesterol and triglycerides, and advancing sleep-wake cycle. Evening exercise (6-8 p.m.) is more effective for enhancing vascular function.Trial registration: Chinese Clinical Trial Registry, ChiCTR2400094208, 18/12/2024.
Collapse
Affiliation(s)
- Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Huiwen Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Haibin Liu
- School of Sport and Health Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Guangrui Yang
- School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
5
|
Yang Y, Hua Y, Jia L. Relationship Between Carotid Artery Remodeling Characteristics and Early Carotid Atherosclerosis: An Ultrasonographic Multicenter Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:915-925. [PMID: 39835700 PMCID: PMC11976371 DOI: 10.1002/jum.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES This study analyzed carotid artery remodeling characteristics in early carotid atherosclerosis (ECAS). METHODS The 1021 participants were evaluated using ultrasonography and categorized into three groups: Group A, 391 participants with increased intima-media thickness (IMT); Group B, 300 participants with atherosclerotic plaque only on the carotid bulb (CB); and the control group (330 participants). The ratios of the diameters in the CB to those in the common carotid artery (DCCA) and internal carotid artery (DICA) were defined as carotid index1 (CI1) and 2 (CI2). RESULTS Group A had a higher DCCA, DCB, and CI2 than the controls (P < .05). Group B had a smaller DCB, CI1, and CI2 than Group A, and higher DCCA and smaller CI1 than the controls (P < .05). Logistic regression showed that CI2 was a positive influencing factor for increased IMT (OR: 3.42, 95% CI: 1.74-6.70, P < .001), and CI1 was a negative independent factor for CB plaque formation (OR: 0.11, 95% CI: 0.04-0.28, P < .001). Multiple linear regression showed that only in Group B, the vessel side had a significant influence on CI1 (β = 0.055, P < .05), while age, sex, body mass index, and cerebrovascular risk factors had no significant correlation with CI. CONCLUSIONS The CB and common carotid artery showed positive remodeling with increased IMT, however, the CB showed negative remodeling with plaque formation. CI changes were consistent with CB remodeling. CI was an independent influencing factor for ECAS, and it was only affected by vessel side, providing an objective predictive parameter for ECAS.
Collapse
Affiliation(s)
- Yujia Yang
- Department of Vascular Ultrasonography, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yang Hua
- Department of Vascular Ultrasonography, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Lingyun Jia
- Department of Vascular Ultrasonography, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Blanch-Granada A, LaDisa JF, Samyn MM, Cava JR, Handler SS, Gerardin JF, Goot B, Maadooliat M, Hraška V. Hemodynamic Evaluation of Norwood Aortic Arch Geometry Compared to Native Arch Controls. J Biomech Eng 2025; 147:051003. [PMID: 39992380 DOI: 10.1115/1.4068009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
The Norwood procedure creates a reconstructed neo-aorta to provide unobstructed systemic cardiac output for hypoplastic left heart syndrome patients. We used patient-specific computational fluid dynamics (CFD) simulations incorporating physiologic boundary conditions to quantify hemodynamics for reconstructed aortic arch geometries versus native aortic arches from a control group of single ventricle patients. We hypothesized that reconstructed arches from Norwood patients (n = 5) would experience significant differences in time-averaged wall shear stress normalized to body surface area (TAWSSnBSA), oscillatory shear index (OSI), energy efficiency (Eeff), and energy loss (EL) versus controls (n = 3). CFD simulations were conducted using 3 T cardiac magnetic resonance imaging, blood flow, and pressure data. Simulations incorporated downstream vascular resistance and compliance to replicate patient physiology. TAWSSnBSA and OSI were quantified axially and circumferentially. Global differences in Eeff and EL were compared. Significance was assessed by Mann-Whitney U test. Norwood patients had higher TAWSSnBSA distal to the transverse arch at locations of residual narrowing presenting following coarctation correction, as well as higher OSI within ascending aorta and transverse arch regions (p < 0.05). EL correlated with patient features including cardiac output (r = 0.9) and BT-shunt resistance (r = -0.63) but did not correlate with arch measurements or morphology. These results indicate reconstructed arches from Norwood patients are exposed to altered wall shear stress and energy indices linked to cellular proliferation and inefficiency in prior studies. These results may help clinicians further understand what constitutes an optimally reconstructed arch after confirmation in larger studies.
Collapse
Affiliation(s)
- Aloma Blanch-Granada
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233; Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Margaret M Samyn
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233; Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226
| | - Joseph R Cava
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233; Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226
| | - Stephanie S Handler
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226
- Medical College of Wisconsin
| | - Jennifer F Gerardin
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226
- Medical College of Wisconsin
| | - Benjamin Goot
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226
- Medical College of Wisconsin
| | - Mehdi Maadooliat
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI 53233
- Marquette University
| | - Viktor Hraška
- Herma Heart Institute, Children's Wisconsin, Milwaukee, WI 53226; Department of Surgery - Division of Pediatric Cardiothoracic Surgery, Children's Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226
- Medical College of Wisconsin
| |
Collapse
|
7
|
Mehanna LE, Boyd JD, Walker CG, Osborne AR, Grady ME, Berron BJ. Functional assessment of migration and adhesion to quantify cancer cell aggression. SOFT MATTER 2025; 21:2946-2957. [PMID: 40151848 DOI: 10.1039/d4sm01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
During epithelial-to-mesenchymal transition (EMT), cancer cells lose their cell-cell adhesion junctions as they become more metastatic, altering cell motility and focal adhesion disassembly associated with increased detachment from the primary tumor and a migratory response into nearby tissue and vasculature. Current in vitro strategies characterizing a cell's metastatic potential heavily favor quantifying the presence of cell adhesion biomarkers through biochemical analysis; however, mechanical cues such as adhesion and motility directly relate to cell metastatic potential without needing to first identify a cell specific biomarker for a particular type of cancer. This paper presents a comprehensive comparison of two functional metrics of cancer aggression, wound closure migration velocity and cell detachment from a culture surface, for three pairs of epithelial cancer cell lines (breast, endometrium, tongue tissue origins). It was found that one functional metric alone was not sufficient to categorize the cancer cell lines; instead, both metrics were necessary to identify functional trends and accurately place cells on the spectrum of metastasis. On average, cell lines with low metastatic potential (MCF-7, Ishikawa, and Cal-27) were more aggressive through wound closure migration compared to loss of cell adhesion. On the other hand, cell lines with high metastatic potential (MDA-MB-231, KLE, and SCC-25) were on average more aggressive through loss of cell adhesion compared to wound closure migration. This trend was true independent of the tissue type where the cells originated, indicating that there is a relationship between metastatic potential and the predominate type of cancer aggression. Our work presents one of the first combined studies relating cell metastatic potential to functional migration and adhesion metrics across cancer cell lines from selected tissue origins, without needing to identify tissue-specific biomarkers to achieve success. Using functional metrics provides powerful clinical relevancy for future predictive tools of cancer metastasis.
Collapse
Affiliation(s)
- Lauren E Mehanna
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - James D Boyd
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 151 Ralph G. Anderson Building, Lexington, KY 40506, USA.
| | - Chloe G Walker
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - Adrianna R Osborne
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - Martha E Grady
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 151 Ralph G. Anderson Building, Lexington, KY 40506, USA.
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| |
Collapse
|
8
|
Equbal A, Kalita P, Iqbal F. Impact of asymmetric stenosis and heart rate on the left coronary artery hemodynamics in elderly patients: a 3D computational study. Biomed Phys Eng Express 2025; 11:035011. [PMID: 40127499 DOI: 10.1088/2057-1976/adc45f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
The left coronary main (LCM) artery and its branches, particularly the left anterior descending (LAD) artery, are highly prone to atherosclerosis, especially as arterial stiffness increases with age. Irregularities in arterial geometry further contribute to the development of asymmetric plaques, underscoring the importance of three-dimensional (3D) hemodynamic studies, which remain limited in literature. Moreover, no existing research explores how hemodynamic variables change with different heart rates in the presence of asymmetric plaque in LAD, which is essential for assessing the disease severity and progression. To address this gap, our study conducts a 3D numerical analysis of the hemodynamic effects of heart rate (HR) and degree of stenosis (DOS) with asymmetric plaques in the LAD branch. The hemodynamic parameters - primary velocityVp, time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) - are analyzed to correlate HR and DOS with disease progression and severity. Analysis based on all these hemodynamic variables reveals that the atheroprone regions on the outer lateral walls expand as the DOS increases for a given HR. Conversely, such regions shrink in size as the HR increases for fixed DOS. While the inner lateral walls are safe in terms of OSI and RRT, they remain atheroprone due to alarmingly low TAWSS, especially at 75% DOS. At 45% DOS, TAWSS exceeds the upper-critical limit of 15 Pa at 120 beats per minute (bpm), making the branch thrombosis-prone. At 60% and 75% DOS, the thrombosis threshold is crossed at 100 bpm and at 75 bpm, respectively. Based on the threshold values, TAWSS is found to be a more conservative marker for assessing cardiovascular risks associated with these plaques compared to OSI and RRT.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Mechanical Engineering, Tezpur University, Assam-784028, India
| | - Paragmoni Kalita
- Department of Mechanical Engineering, Tezpur University, Assam-784028, India
| | - Farhin Iqbal
- Department of Cardiology, Gauhati Medical College and Hospital, Assam-781032, India
| |
Collapse
|
9
|
Jin YJ, Liang G, Li R, Wang S, Alnouri MW, Bentsen M, Kuenne C, Günther S, Yan Y, Li Y, Wettschureck N, Offermanns S. Phosphorylation of endothelial histone H3.3 serine 31 by PKN1 links flow-induced signaling to proatherogenic gene expression. NATURE CARDIOVASCULAR RESEARCH 2025; 4:180-196. [PMID: 39779823 PMCID: PMC11825370 DOI: 10.1038/s44161-024-00593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.3 phosphorylation at serine 31 (H3.3S31) regulates disturbed-flow-induced endothelial inflammation by allowing rapid induction of FOS and FOSB, required for inflammatory gene expression. We identified protein kinase N1 (PKN1) as the kinase responsible for disturbed-flow-induced H3.3S31 phosphorylation. Disturbed flow activates PKN1 in an integrin α5β1-dependent manner and induces its translocation into the nucleus, and PKN1 is also involved in the phosphorylation of the AP-1 transcription factor JUN. Mice with endothelium-specific PKN1 loss or endothelial expression of S31 phosphorylation-deficient H.3.3 mutants show reduced endothelial inflammation and disturbed-flow-induced vascular remodeling in vitro and in vivo. Together, we identified a pathway whereby disturbed flow through PKN1-mediated histone phosphorylation and FOS/FOSB induction promotes inflammatory gene expression and vascular inflammation.
Collapse
Affiliation(s)
- Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongxin Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany.
| |
Collapse
|
10
|
Moradicheghamahi J, Goswami D. Impact of Vein Wall Hyperelasticity and Blood Flow Turbulence on Hemodynamic Parameters in the Inferior Vena Cava with a Filter. MICROMACHINES 2024; 16:51. [PMID: 39858706 PMCID: PMC11767820 DOI: 10.3390/mi16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT). Simulations are conducted with varying sizes of clots captured in the filter. The findings show that, in regions of high wall shear stress, the rigid wall model predicted higher TAWSS values, suggesting an increased disease risk compared to the hyperelastic model. However, the laminar and turbulent flow models did not show significant differences in TAWSS predictions. Conversely, in areas of low wall shear stress, the rigid wall model indicated lower OSI and RRT, hinting at a reduced risk compared to the hyperelastic model, with this discrepancy being more evident with larger clots. While the predictions for OSI and TAWSS were closely aligned for both laminar and turbulent flows, divergences in RRT predictions became apparent, especially in scenarios with very large clots.
Collapse
Affiliation(s)
- Jafar Moradicheghamahi
- Liryc-Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33604 Pessac, France;
- Institute of Mathematics of Bordeaux, University of Bordeaux, 33400 Talence, France
| | - Debkalpa Goswami
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Lim J, Truong HD, Song TY, Giam WJH, Koh EL, Tan JKS. The interdependent hemodynamic influence between abdominal aortic aneurysm and renal artery stenosis. Sci Rep 2024; 14:31986. [PMID: 39738423 PMCID: PMC11685789 DOI: 10.1038/s41598-024-83622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide with abdominal aortic aneurysm (AAA) and renal artery stenosis (RAS) standing out as significant contributors to the vascular pathology spectrum. While these conditions have traditionally been approached as distinct entities, emerging evidence suggests a compelling interdependent relationship between AAA and RAS, challenging the conventional siloed understanding. The confluence of AAA and RAS represents a complex interplay within the cardiovascular system, one that is often overlooked in clinical practice and research. Here, we reveal a bidirectional consequential impact between these two diseases. The location of the AAA sac was investigated for its specific influence on the risk of RAS development. Although studies have shown a higher coincidence between the suprarenal AAA and RAS, our findings demonstrated that the presence of a suprarenal AAA correlated with the lowest risk of RAS development among the three investigated AAA locations. Notably, we also highlighted that the pre-existence of stenosis in the renal artery poses an elevated risk for the formation of suprarenal AAA, assessed by an increased wall shear stress gradient on the aortic wall. Our findings prompt a paradigm shift in the understanding and treatment of AAA and RAS in clinical practice.
Collapse
Affiliation(s)
- Jiaqi Lim
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Hung Dong Truong
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Tae Yoon Song
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Wilkin Jing Han Giam
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Evelyn Linyi Koh
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore
| | - Justin Kok Soon Tan
- Department of Biomedical Engineering, National University of Singapore, Block E7 #06-02, 15 Kent Ridge Cres, Singapore, 119276, Singapore.
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
12
|
Ma L, Chen Y, Chen P, Ma L, Yan D, Li R, Li Z, Zhang H, Han H, Yuan K, Li R, Lin F, Zhao Y, Chen X. Quantitative hemodynamics of draining veins in brain arteriovenous malformation: a preliminary study based on computational fluid dynamics. Front Neurol 2024; 15:1474857. [PMID: 39726760 PMCID: PMC11670193 DOI: 10.3389/fneur.2024.1474857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective This study initiated a preliminary computational fluid dynamics (CFD)-based study to investigate the relationship between quantitative hemodynamics of arteriovenous malformation (AVM) draining veins and rupture. Methods The quantitative hemodynamics of AVM draining veins were generated from computed tomography angiography (CTA)-based steady-state CFD models. Morphological and hemodynamic parameters were compared between the ruptured and unruptured groups. The boundary conditions of the drainage vein were obtained from quantitative digital subtraction angiography (QDSA). The draining veins were divided into 15 consecutive segments to analyze the spatial distribution of the hemodynamic parameters by linear regression analysis. Results From 11 AVMs, it was revealed that morphological parameters of drainage veins in ruptured and unruptured AVMs were similar. The intravascular pressure of the draining vein in the ruptured AVMs was significantly higher than those of the unruptured AVMs (pressure average: p = 0.006; pressure maximum: p = 0.045), and the WSS of the posterior segment was higher in ruptured AVMs (p = 0.045). WSS of draining veins in ruptured AVMs showed a linear increase trend with segmenting (R = 0.731, p < 0.001), and ruptured AVMs were more likely to be accompanied by high-velocity segments in the draining vein (40.0% vs. 14.7%, p = 0.037), especially in the posterior segment (p = 0.011). Conclusion The draining veins of ruptured AVMs had significantly higher intravascular pressure and posterior segment WSS. WSS showed a linear increase with segmentation in ruptured AVMs, and they often had more high-velocity segments in the draining vein, especially in the posterior segment.
Collapse
Affiliation(s)
- Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Kalita J, Show S, Biswas N, Datta A. Atherosclerosis risk assessment in human carotid artery with variation in sinus length: a numerical approach. Comput Methods Biomech Biomed Engin 2024; 27:2288-2302. [PMID: 37950444 DOI: 10.1080/10255842.2023.2275546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The mortality rates due to cardiovascular diseases are on a rise globally. One of the major cardiovascular diseases is stroke which occurs due to atherosclerotic plaques build-up in the carotid artery. The common carotid artery (CCA) bifurcates into the internal carotid artery (ICA) and external carotid artery (ECA). Sinus present at ICA is an ellipsoidal-shaped dilated region acting as a pressure receptor and blood flow regulator. Dimensions of the sinus vary from person to person, affecting the hemodynamics of the carotid artery. The current numerical study manifests a 3D flow analysis by varying the sinus length to investigate its local and global effects on the hemodynamics of the carotid artery using various biomechanical risk analysis parameters of atherosclerosis. User-defined function (UDF) dictates the pulsatile flow velocity profile imposed at the inlet. Near the outer wall (OW) of the sinus, the blood flow velocities are lower and recirculation zones are more. Though the recirculation zones for shorter sinus will be close to the inner wall (IW), interestingly, with an increase in the sinus length, the recirculation zones shift toward the OW with higher strength. These significantly decrease the x-wall shear stress (x-WSS) and time-averaged wall shear stress (TAWSS) values on the OW of the longer sinus. The other risk analysis parameters, like oscillatory shear index (OSI) and relative residence time (RRT), support the described consequences. These results reveal that sinus of increased length is more prone to developing atherosclerotic plaque.
Collapse
Affiliation(s)
- Jinmay Kalita
- Department of Mechanical Engineering, NIT Durgapur, Durgapur, India
| | - Subham Show
- Department of Mechanical Engineering, NIT Durgapur, Durgapur, India
| | - Nirmalendu Biswas
- Department of Power Engineering, Jadavpur University, Kolkata, India
| | - Aparesh Datta
- Department of Mechanical Engineering, NIT Durgapur, Durgapur, India
| |
Collapse
|
14
|
Górski G, Kucab K. Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:429-445. [PMID: 39422728 PMCID: PMC11561016 DOI: 10.1007/s00249-024-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Atherosclerosis is one of the important diseases of the circulatory system because atherosclerotic plaques cause significant disruption of blood flow. Therefore, it is very important to properly understand these processes and skillfully simulate blood flow. In our work, we consider blood flow through an abdominal aorta with iliac arteries, assuming that the right iliac artery is narrowed by an atherosclerotic lesion. Blood flow is simulated using the laminar, standard k - ω and standard k - ϵ models. The obtained results show that despite the use of identical initial conditions, the distribution of velocity flow and wall shear stress depends on the choice of flow simulation model. For the k - ϵ model, we obtain higher values of speed and wall shear stress on atherosclerotic plaque than in the other two models. The laminar and k - ω models predict larger areas where reverse blood flow occurs in the area behind the atherosclerotic lesion. This effect is associated with negative wall shear stress. These two models give very similar results. The results obtained by us, and those reported in the literature, indicate that k - ω model is the most suitable for blood flow analysis.
Collapse
Affiliation(s)
- Grzegorz Górski
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland.
| | - Krzysztof Kucab
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| |
Collapse
|
15
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
16
|
Sun C, Wang S, Tao K, Zhang X, Chen J. High accuracy patient-specific 3D coronary reconstruction from angiography and intravascular optical coherence tomography. OPTICS LETTERS 2024; 49:5423-5426. [PMID: 39352972 DOI: 10.1364/ol.537693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
The integration of digital subtraction angiography (DSA) with intravascular optical coherence tomography (IVOCT) offers a comprehensive 3D arterial model, which is invaluable for the analysis of vascular anatomy and biomechanics. However, the process of image fusion is often hindered by the challenge of accurately orienting IVOCT images. This paper introduces a novel, to our knowledge, dual-path 3D reconstruction method that leverages the guidewire and the vessel's centerline to establish cross sectional direction vectors within the IVOCT images and spatial direction vectors along the guidewire's trajectory. This approach minimizes the accumulation of reconstruction errors by ensuring the precise orientation of each vascular cross section. The efficacy of the proposed method is validated through vascular phantom experiments and the reconstruction of patient-specific 3D coronary models.
Collapse
|
17
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
18
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Żyłka M, Górski G, Żyłka W, Gala-Błądzińska A. Numerical analysis of blood flow in the abdominal aorta under simulated weightlessness and earth conditions. Sci Rep 2024; 14:15978. [PMID: 38987416 PMCID: PMC11237043 DOI: 10.1038/s41598-024-66961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Blood flow through the abdominal aorta and iliac arteries is a crucial area of research in hemodynamics and cardiovascular diseases. To get in to the problem, this study presents detailed analyses of blood flow through the abdominal aorta, together with left and right iliac arteries, under Earth gravity and weightless conditions, both at the rest stage, and during physical activity. The analysis were conducted using ANSYS Fluent software. The results indicate, that there is significantly less variation in blood flow velocity under weightless conditions, compared to measurement taken under Earth Gravity conditions. Study presents, that the maximum and minimum blood flow velocities decrease and increase, respectively, under weightless conditions. Our model for the left iliac artery revealed higher blood flow velocities during the peak of the systolic phase (systole) and lower velocities during the early diastolic phase (diastole). Furthermore, we analyzed the shear stress of the vessel wall and the mean shear stress over time. Additionally, the distribution of oscillatory shear rate, commonly used in hemodynamic analyses, was examined to assess the effects of blood flow on the blood vessels. Countermeasures to mitigate the negative effects of weightlessness on astronauts health are discussed, including exercises performed on the equipment aboard the space station. These exercises aim to maintain optimal blood flow, prevent the formation of atherosclerotic plaques, and reduce the risk of cardiovascular complications.
Collapse
Affiliation(s)
- Marta Żyłka
- The Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, av. Powstańców Warszawy 8, 35-959, Rzeszów, Poland.
| | - Grzegorz Górski
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| | - Wojciech Żyłka
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| | - Agnieszka Gala-Błądzińska
- Institute of Medical Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
- Internal Medicine, Nephrology and Endocrinology Clinic, St. Queen Jadwiga Clinical District Hospital No. 2 in Rzeszow, ul. Lwowska 60, 35-301, Rzeszów, Poland
| |
Collapse
|
20
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Bruoha S, Galli M, Sabouret P, Yosefy C, Taha L, Gragnano F, Savage MP, Shuvy M, Biondi-Zoccai G, Glikson M, Asher E. Atherosclerotic Plaque Erosion: Mechanisms, Clinical Implications, and Potential Therapeutic Strategies-A Review. J Cardiovasc Pharmacol 2024; 83:547-556. [PMID: 38421206 DOI: 10.1097/fjc.0000000000001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerosis is an insidious and progressive inflammatory disease characterized by the formation of lipid-laden plaques within the intima of arterial walls with potentially devastating consequences. While rupture of vulnerable plaques has been extensively studied, a distinct mechanism known as plaque erosion (PE) has gained recognition and attention in recent years. PE, characterized by the loss of endothelial cell lining in the presence of intact fibrous cap, contributes to a significant and growing proportion of acute coronary events. However, despite a heterogeneous substrate underlying coronary thrombosis, treatment remains identical. This article provides an overview of atherosclerotic PE characteristics and its underlying mechanisms, highlights its clinical implications, and discusses potential therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Bruoha
- Department of Cardiology, Barzilai Medical Center, the Ben-Gurion University of the Negev, Israel
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Pierre Sabouret
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- National College of French Cardiologists, 13 rue Niepce, 75014 Paris, France
| | - Chaim Yosefy
- Department of Cardiology, Barzilai Medical Center, the Ben-Gurion University of the Negev, Israel
| | - Louay Taha
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Michael P Savage
- Division of Cardiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mony Shuvy
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy ; and
- Mediterranea Cardiocentro, Naples, Italy
| | - Michael Glikson
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Elad Asher
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
22
|
Zhao M, Zhang L, Chen J, Gu S, Wu R, Jia C. Associations between carotid plaque shape, biomechanical parameters, and ischemic stroke in mild carotid stenosis with a single plaque. Ultrasonography 2024; 43:209-219. [PMID: 38644636 PMCID: PMC11079503 DOI: 10.14366/usg.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
PURPOSE This cross-sectional cohort-comparison observational study investigated the value of high-frame-rate vector flow (V Flow) imaging for evaluating differences in carotid plaque shape and biomechanical parameters in patients with mild stenosis according to a recent history of ipsilateral ischemic stroke. METHODS The present study included 352 patients from February 2023 to October 2023, who were categorized as symptomatic or asymptomatic based on a history of recent ischemic stroke and ipsilateral ischemic lesions detected on head computed tomography or magnetic resonance imaging. A Mindray Resona R9 system was used for B-mode ultrasonography and V Flow imaging. The upstream and downstream surfaces of the plaques were examined at the carotid bifurcation for wall shear stress (WSS), oscillatory shear index (OSI), and turbulence index, which performed peri-plaque biomechanical condition. Multivariable logistic regression models were used to determine associations between plaque shape, V Flow parameters, and ischemic stroke. RESULTS Symptomatic patients exhibited higher WSS values for the upstream and downstream surfaces of carotid plaque, as well as higher OSI and turbulence index values for the downstream surface. Type Ⅲ plaques and higher WSS and OSI values for the downstream surface of the plaque were significantly associated with ischemic stroke. Type Ⅲ plaques were more prevalent in symptomatic patients and demonstrated much higher WSS and OSI values for the downstream plaque surface in both groups. CONCLUSION High-frame-rate V Flow imaging could assess peri-plaque biomechanical forces and may provide effective imaging biomarkers for early prediction of ischemic stroke in patients with mild stenosis.
Collapse
Affiliation(s)
- Man Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luni Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Jing Chen
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyao Gu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Jia
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Das SS, Mahapatra SK. Comparative study of plaque surface temperature and blood heat transfer in a stenosed blood vessel with different symmetrical configurations. Comput Methods Biomech Biomed Engin 2024:1-21. [PMID: 38563314 DOI: 10.1080/10255842.2024.2330701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
The presence of macrophage cells inside plaque can lead to a change in plaque temperature, which can be measured by using arterial wall thermographic techniques to predict the severity of stenosis in the vessel without complicated surgery. This study aims to analyze the effect of plaque symmetricity with a similar degree of stenosis (DOS) on plaque surface temperature and blood heat transfer in a straight vessel. This analysis aims towards predicting the severity of stenosis in a straight blood vessel through plaque temperature as an indicator. Two cases are being analyzed here; case 1 and case 2 refer to having similar vessel dimensions and an overall degree of stenosis (DOS) of 70%, with the exception of case 1 having a symmetrically developed plaque while case 2 refers to an asymmetrically developed plaque. Euler-Euler multiphase method with the application of the granular model is being applied in this study. At peak systole (0.2 s into the 10th cardiac cycle) in a cardiac cycle, the increase in plaque surface temperature at exit is higher in case of a symmetrically developed stenosis compared to an asymmetric one but the reverse situation happens during end systole (0.5 s into the 10th cardiac cycle). Although the population of macrophages in a plaque is a deciding factor of the thermal signature of a plaque, the symmetricity variation also needs to be taken into consideration while plaque progression is being diagnosed through thermographic technique.
Collapse
|
24
|
Kwak D, Im Y, Nam H, Nam U, Kim S, Kim W, Kim HJ, Park J, Jeon JS. Analyzing the effects of helical flow in blood vessels using acoustofluidic-based dynamic flow generator. Acta Biomater 2024; 177:216-227. [PMID: 38253303 DOI: 10.1016/j.actbio.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The effects of helical flow in a blood vessel are investigated in a dynamic flow generator using surface acoustic wave (SAW) in the microfluidic device. The SAW, generated by an interdigital transducer (IDT), induces acoustic streaming, resulting in a stable and consistent helical flow pattern in microscale channels. This approach allows rapid development of helical flow within the channel without directly contacting the medium. The precise design of the window enables the creation of distinct unidirectional vortices, which can be controlled by adjusting the amplitude of the SAW. Within this device, optimal operational parameters of the dynamic flow generator to preserve the integrity of endothelial cells are found, and in such settings, the actin filaments within the cells are aligned to the desired state. Our findings reveal that intracellular Ca2+ concentrations vary in response to flow conditions. Specifically, comparable maximum intensity and graphical patterns were observed between low-flow rate helical flow and high-flow rate Hagen-Poiseuille flow. These suggest that the cells respond to the helical flow through mechanosensitive ion channels. Finally, adherence of monocytes is effectively reduced under helical flow conditions in an inflammatory environment, highlighting the atheroprotective role of helical flow. STATEMENT OF SIGNIFICANCE: Helical flow in blood vessels is well known to prevent atherosclerosis. However, despite efforts to replicate helical flow in microscale channels, there is still a lack of in vitro models which can generate helical flow for analyzing its effects on the vascular system. In this study, we developed a method for generating steady and constant helical flow in microfluidic channel using acoustofluidic techniques. By utilizing this dynamic flow generator, we were able to observe the atheroprotective aspects of helical flow in vitro, including the enhancement of calcium ion flux and reduction of monocyte adhesion. This study paves the way for an in vitro model of dynamic cell culture and offers advanced investigation into helical flow in our circulatory system.
Collapse
Affiliation(s)
- Daesik Kwak
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongtaek Im
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woohyuk Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun Jin Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jinsoo Park
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
25
|
Paloschi V, Pauli J, Winski G, Wu Z, Li Z, Botti L, Meucci S, Conti P, Rogowitz F, Glukha N, Hummel N, Busch A, Chernogubova E, Jin H, Sachs N, Eckstein H, Dueck A, Boon RA, Bausch AR, Maegdefessel L. Utilization of an Artery-on-a-Chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. Adv Healthc Mater 2024; 13:e2302907. [PMID: 37797407 PMCID: PMC11468405 DOI: 10.1002/adhm.202302907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Indexed: 10/07/2023]
Abstract
In this study, organ-on-chip technology is used to develop an in vitro model of medium-to-large size arteries, the artery-on-a-chip (AoC), with the objective to recapitulate the structure of the arterial wall and the relevant hemodynamic forces affecting luminal cells. AoCs exposed either to in vivo-like shear stress values or kept in static conditions are assessed to generate a panel of novel genes modulated by shear stress. Considering the crucial role played by shear stress alterations in carotid arteries affected by atherosclerosis (CAD) and abdominal aortic aneurysms (AAA) disease development/progression, a patient cohort of hemodynamically relevant specimens is utilized, consisting of diseased and non-diseased (internal control) vessel regions from the same patient. Genes activated by shear stress follow the same expression pattern in non-diseased segments of human vessels. Single cell RNA sequencing (scRNA-seq) enables to discriminate the unique cell subpopulations between non-diseased and diseased vessel portions, revealing an enrichment of flow activated genes in structural cells originating from non-diseased specimens. Furthermore, the AoC served as a platform for drug-testing. It reproduced the effects of a therapeutic agent (lenvatinib) previously used in preclinical AAA studies, therefore extending the understanding of its therapeutic effect through a multicellular structure.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Jessica Pauli
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Greg Winski
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Zhiyuan Wu
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Department of Vascular SurgeryBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing10073P. R. China
| | - Zhaolong Li
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Lorenzo Botti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | - Sandro Meucci
- Micronit MicrotechnologiesEnschede15 7521The Netherlands
| | - Pierangelo Conti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | | | - Nadiya Glukha
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Nora Hummel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Albert Busch
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Division of Vascular and Endovascular SurgeryDepartment for VisceralThoracic and Vascular SurgeryMedical Faculty Carl Gustav Carus and University HospitalTechnical University Dresden01069DresdenGermany
| | | | - Hong Jin
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Nadja Sachs
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Hans‐Henning Eckstein
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Anne Dueck
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Institute of Pharmacology and ToxicologyTechnical University of Munich80333MunichGermany
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam Cardiovascular Sciences (ACS)Amsterdam UMCVU University Medical CenterAmsterdam1081 HVThe Netherlands
- Institute of Cardiovascular RegenerationCenter of Molecular MedicineGoethe‐University60323FrankfurtGermany
- German Center for Cardiovascular Research DZHKPartner Site Frankfurt Rhine‐Main10785BerlinGermany
| | - Andreas R. Bausch
- Department of Cellular BiophysicsTechnical University of Munich80333MunichGermany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| |
Collapse
|
26
|
Richter K, Probst T, Hundertmark A, Eulzer P, Lawonn K. Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery. Comput Methods Biomech Biomed Engin 2024; 27:347-364. [PMID: 36880851 DOI: 10.1080/10255842.2023.2185478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
In this numerical study, areas of the carotid bifurcation and of a distal stenosis in the internal carotid artery are closely observed to evaluate the patient's current risks of ischemic stroke. An indicator for the vessel wall defects is the stress exerted by blood on the vessel tissue, typically expressed by the amplitude of the wall shear stress vector (WSS) and its oscillatory shear index. To detect negative shear stresses corresponding with reversal flow, we perform orientation-based shear evaluation. We investigate the longitudinal component of the wall shear vector, where tangential vectors aligned longitudinally with the vessel are necessary. However, resulting from imaging segmentation resolution of patients' computed tomography angiography scans and stenotic regions, the geometry model's mesh is non-smooth on its surface areas and the automatically generated tangential vector field is discontinuous and multi-directional, making an interpretation of our orientation-based risk indicators unreliable. We improve the evaluation of longitudinal shear stress by applying the projection of the vessel's centerline to the surface to construct smooth tangential field aligned longitudinally with the vessel. We validate our approach for the longitudinal WSS component and the corresponding oscillatory index by comparing them to results obtained using automatically generated tangents in both rigid and elastic vessel modeling and to amplitude-based indicators. We present the major benefit of our longitudinal WSS evaluation based on its directionality for the cardiovascular risk assessment, which is the detection of negative WSS indicating persistent reversal or transverse flow. This is impossible in the case of the amplitude-based WSS.
Collapse
Affiliation(s)
- Kevin Richter
- Institute of Mathematics, Faculty of Natural and Environmental Sciences, University of Kaiserslautern-Landau, Germany
| | - Tristan Probst
- Institute of Mathematics, Faculty of Natural and Environmental Sciences, University of Kaiserslautern-Landau, Germany
| | - Anna Hundertmark
- Institute of Mathematics, Faculty of Natural and Environmental Sciences, University of Kaiserslautern-Landau, Germany
| | - Pepe Eulzer
- Faculty of Mathematics and Computer Science, University of Jena, Germany
| | - Kai Lawonn
- Faculty of Mathematics and Computer Science, University of Jena, Germany
| |
Collapse
|
27
|
Cheng Y, Chen J, Zhao Q, Zhang J, Gao J. Association of carotid wall shear stress measured by vector flow mapping technique with ba-PWV: a pilot study. Front Cardiovasc Med 2023; 10:1293106. [PMID: 38144371 PMCID: PMC10748391 DOI: 10.3389/fcvm.2023.1293106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/26/2023] Open
Abstract
Objective Arterial stiffness is an important tissue biomarker of the progression of atherosclerotic diseases. Brachial-ankle pulse wave velocity (ba-PWV) is a gold standard of arterial stiffness measurement widely used in Asia. Changes in vascular wall shear stress (WSS) lead to artery wall remodeling, which could give rise to an increase in arterial stiffness. The study aimed to explore the association between ba-PWV and common carotid artery (CCA) WSS measured by a newly invented vascular vector flow mapping (VFM) technique. Methods We included 94 subjects free of apparent cardiovascular disease (CVD) and divided them into a subclinical atherosclerosis (SA) group (N = 47) and non subclinical atherosclerosis (NSA) group (N = 47). CCA WSS was measured using the VFM technique. Bivariate correlations between CCA WSS and other factors were assessed with Pearson's, Spearman's, or Kendall's coefficient of correlation, as appropriate. Partial correlation analysis was conducted to examine the influence of age and sex. Multiple linear stepwise regression was used for the analysis of independent determinants of CCA WSS. Receiver operating characteristic (ROC) analysis was performed to find the association between CCA WSS and 10-year CVD risk. Results The overall subjects had a mean age of 47.9 ± 11.2 years, and males accounted for 52.1%. Average systolic CCA WSS was significantly correlated with ba-PWV (r = -0.618, p < 0.001) in the SA group. Multiple linear stepwise regression analysis confirmed that ba-PWV was an independent determinant of average systolic CCA WSS (β = -0.361, p = 0.003). The area under the curve (AUC) of average systolic CCA WSS for 10-year CVD risk ≥10% was 0.848 (p < 0.001) in the SA group. Conclusions Average systolic CCA WSS was significantly correlated with ba-PWV and was associated with 10-year CVD risk ≥10% in the SA group. Therefore, CCA WSS measured by the VFM technique could be used for monitoring and screening subjects with potential CVD risks.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Diagnostic Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Chen
- Department of Diagnostic Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qing Zhao
- Department of Diagnostic Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinghan Zhang
- Department of Diagnostic Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junyi Gao
- Department of Cardiovascular Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
29
|
Sundström E, Jiang M, Najm HK, Tretter JT. Blood Speckle Imaging: An Emerging Method for Perioperative Evaluation of Subaortic and Aortic Valvar Repair. Bioengineering (Basel) 2023; 10:1183. [PMID: 37892913 PMCID: PMC10604765 DOI: 10.3390/bioengineering10101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND This article presents the use of blood speckle Imaging (BSI) as an echocardiographic approach for the pre- and post-operative evaluation of subaortic membrane resection and aortic valve repair. METHOD BSI, employing block-matching algorithms, provided detailed visualization of flow patterns and quantification of parameters from ultrasound data. The 9-year-old patient underwent subaortic membrane resection and peeling extensions of the membrane from under the ventricular-facing surface of all three aortic valve leaflets. RESULT Post-operatively, BSI demonstrated improvements in hemodynamic patterns, where quantified changes in flow velocities showed no signs of stenosis and trivial regurgitation. The asymmetric jet with a shear layer and flow reversal on the posterior aspect of the aorta was corrected resulting in reduced wall shear stress on the anterior aspect and reduced oscillatory shear index, which is considered a contributing element in cellular alterations in the structure of the aortic wall. CONCLUSION This proof-of-concept study demonstrates the potential of BSI as an emerging echocardiographic approach for evaluating subaortic and aortic valvar repair. BSI enhances the quantitative evaluation of the left ventricular outflow tract of immediate surgical outcomes beyond traditional echocardiographic parameters and aids in post-operative decision-making. However, larger studies are needed to validate these findings and establish standardized protocols for clinical implementation.
Collapse
Affiliation(s)
- Elias Sundström
- Department of Engineering Mechanics, FLOW Research Center, KTH Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden
| | - Michael Jiang
- Department of Pediatric Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hani K. Najm
- Congenital Valve Procedural Planning Center, Department of Pediatric Cardiology, Cleveland, OH 44195, USA
- Division of Pediatric Cardiac Surgery, and the Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Justin T. Tretter
- Congenital Valve Procedural Planning Center, Department of Pediatric Cardiology, Cleveland, OH 44195, USA
- Division of Pediatric Cardiac Surgery, and the Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
30
|
Pan C, Xu J, Gao Q, Li W, Sun T, Lu J, Shi Q, Han Y, Gao G, Li J. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitromodeling of arterial disorders initiation. Biofabrication 2023; 15:045017. [PMID: 37579751 DOI: 10.1088/1758-5090/aceffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
As the main precursor of arterial disorders, endothelial dysfunction preferentially occurs in regions of arteries prone to generating turbulent flow, particularly in branched regions of vasculatures. Although various diseased models have been engineered to investigate arterial pathology, producing a multiple-layered vascular model with branched geometries that can recapitulate the critical physiological environments of human arteries, such as intercellular communications and local turbulent flows, remains challenging. This study develops a sequentially suspended three-dimensional bioprinting (SSB) strategy and a visible-light-curable decellularized extracellular matrix bioink (abbreviated as 'VCD bioink') to construct a biomimetic human arterial model with tunable geometries. The engineered multiple-layered arterial models with compartmentalized vascular cells can exhibit physiological functionality and pathological performance under defined physiological flows specified by computational fluid dynamics simulation. Using different configurations of the vascular models, we investigated the independent and synergetic effects of cellular crosstalk and abnormal hemodynamics on the initiation of endothelial dysfunction, a hallmark event of arterial disorder. The results suggest that the arterial model constructed using the SSB strategy and VCD bioinks has promise in establishing diagnostic/analytic platforms for understanding the pathophysiology of human arterial disorders and relevant abnormalities, such as atherosclerosis, aneurysms, and ischemic diseases.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jingwen Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiqi Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qing Shi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
31
|
Pham TT, Le AH, Dang CP, Chong SY, Do DV, Peng B, Jayasinghe MK, Ong HB, Hoang DV, Louise RA, Loh Y, Hou HW, Wang J, Le MTN. Endocytosis of red blood cell extracellular vesicles by macrophages leads to cytoplasmic heme release and prevents foam cell formation in atherosclerosis. J Extracell Vesicles 2023; 12:e12354. [PMID: 37553837 PMCID: PMC10410060 DOI: 10.1002/jev2.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme-like phenotype, characterized by upregulation of heme oxygenase-1 (HO-1) and the ATP-binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF-α under inflammatory stimulation. The upregulation of HO-1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low-density lipoproteins (oxLDL)-treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high-fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Thach Tuan Pham
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cong Phi Dang
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dang Vinh Do
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Hong Boon Ong
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Dong Van Hoang
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Roma Anne Louise
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Yuin‐Han Loh
- A*STAR Institute of Molecular and Cell BiologySingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Han Wei Hou
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Minh TN Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- A*STAR Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
32
|
Rezvan A. PHACTR1 and Atherosclerosis: It's Complicated. Arterioscler Thromb Vasc Biol 2023; 43:1409-1411. [PMID: 37317846 PMCID: PMC10527601 DOI: 10.1161/atvbaha.123.319545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Amir Rezvan
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
33
|
Hong S, Dong Y, Song D, Liu M, Gao W, Li W, Wan Y, Du Y, Xu J, Dong F. Precise evaluation of blood flow patterns in human carotid bifurcation based on high-frame-rate vector flow imaging. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1070-1077. [PMID: 37203225 DOI: 10.1002/jcu.23489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE To investigate the feasibility of high-frame-rate vector flow imaging (HiFR-VFI) compared to ultrasound color Doppler flow imaging (CDFI) for precisely evaluating flow characteristics in the carotid bifurcation (CB) of presumed healthy adults. METHODS Forty-three volunteers were assessed for flow characteristics and their extensions using HiFR-VFI and CDFI in CBs. The flow patterns were classified according to the streamlines in HiFR-VFI and quantitatively measured using an innovative turbulence index (Tur-value). Interobserver agreement was also assessed. RESULTS HiFR-VFI was consistent with CDFI in detecting laminar and nonlaminar flow in 81.4% of the cases; however, in 18.6% of the cases, only HiFR-VFI identified the nonlaminar flow. HiFR-VFI showed a larger extension of complex flow (0.37 ± 0.26 cm2 ) compared to CDFI (0.22 ± 0.21 cm2 ; p < 0.05). The flow patterns were classified into four types: 3 type-I (laminar flow), 35 type-II (rotational flow), 27 type-III (reversed flow), and 5 type-IV (complex flow). The Tur-value of type-IV (50.03 ± 14.97)% is larger than type-III (44.57 ± 8.89)%, type-II (16.30 ± 8.16)%, and type-I (1.48 ± 1.43)% (p < 0.05). Two radiologists demonstrated almost perfect interobserver agreement on recognizing the change of streamlines (κ = 0.81, p < 0.001). The intraclass correlation coefficient of the Tur-value was 0.98. CONCLUSION HiFR-VFI can reliably characterize complex hemodynamics with quantitative turbulence measurement and may be an auxiliary diagnostic tool for assessing atherosclerotic arterial disease.
Collapse
Affiliation(s)
- Shaofu Hong
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yinghui Dong
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Di Song
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Mengmeng Liu
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Wenjing Gao
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Weiyue Li
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yong Wan
- Department of Neurosurgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yigang Du
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
34
|
Said S, Dardik A, Chaar CIO. What are the benefits and drawbacks of statins in carotid artery disease? A perspective review. Expert Rev Cardiovasc Ther 2023; 21:763-777. [PMID: 37994875 PMCID: PMC11493559 DOI: 10.1080/14779072.2023.2286011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION The prevalence of carotid artery stenosis in the general population is approximately 3%, but approximately 20% among people with acute ischemic stroke. Statins are recommended by multiple international guidelines as the drug of choice for lipid control in people with asymptomatic or symptomatic carotid artery stenosis due to their lipid-lowering and other pleiotropic effects. AREAS COVERED This review discusses the guidelines for statin usage as a cornerstone in the prevention and management of atherosclerotic carotid artery disease and the impact of statins on stroke incidence and mortality. Statin side effects, alternative therapy, and genetic polymorphisms are reviewed. EXPERT OPINION Statin therapy is associated with a decreased incidence of stroke and mortality as well as improved outcomes for patients treated with carotid revascularization. Statins are a safe and effective class of medications, but the initiation of therapy warrants close monitoring to avoid rare and potentially serious side effects. Lack of clinical efficacy or the presence of side effects suggests a need for treatment with an alternative therapy such as PCSK9 inhibitors. Understanding the interplay between the mechanisms of statins and PCSK9 inhibition therapies will allow optimal benefits while minimizing risks. Future research into genetic polymorphisms may improve patient selection for personalized therapy.
Collapse
Affiliation(s)
- Shreef Said
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Alan Dardik
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT
| | - Cassius Iyad Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT
| |
Collapse
|
35
|
Xiao M, Wu J, Chen D, Wang C, Wu Y, Sun T, Chen J. Ascending Aortic Volume: A Feasible Indicator for Ascending Aortic Aneurysm Elective Surgery? Acta Biomater 2023:S1742-7061(23)00353-7. [PMID: 37356784 DOI: 10.1016/j.actbio.2023.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Diameter-based criterion have been widely adopted for preventive surgery of ascending thoracic aortic aneurysm (ATAA). However, recent and growing evidence has shown that diameter-based methods may not be sufficient for identifying patients who are at risk of an ATAA. In this study, fluid-structure interaction (FSI) analysis was performed on one-hundred ATAA geometries reconstructed from clinical data to examine the relationship between hemodynamic conditions, ascending aortic volume (AAV), ascending aortic curvature, and aortic ratios measured from the reconstructed 3D models. The simulated hemodynamic and biomechanical parameters were compared among different groups of ATAA geometries classified based on AAV. The ATAAs with enlarged AAV showed significantly compromised hemodynamic conditions and higher mechanical wall stress. The maximum oscillatory shear index (OSI), particle residence time (PRT) and wall stress (WS) were significantly higher in enlarged ATAAs compared with controls (0.498 [0.497, 0.499] vs 0.499 [0.498, 0.499], p = 0.002, 312.847 [207.445, 519.391] vs 996.047 [640.644, 1573.140], p < 0.001, 769.680 [668.745, 879.795] vs 1072.000 [873.060, 1280.000] kPa, p < 0.001, respectively). Values were reported as median with interquartile range (IQR). AAV was also found to be more strongly correlated with these parameters compared to maximum diameter. The correlation coefficient between AAV and average WS was as high as 0.92 (p < 0.004), suggesting that AAV might be a feasible risk identifier for ATAAs. STATEMENT OF SIGNIFICANCE: Ascending thoracic aortic aneurysm is associated with the risk of dissection or rupture, creating life-threatening conditions. Current surgical intervention guidelines are purely diameter based. Recently, many studies proposed to incorporate other morphological parameters into the current clinical guidelines to better prevent severe adverse aortic events like rupture or dissection. The purpose of this study is to gain a better understanding of the relationship between morphological parameters and hemodynamic parameters in ascending aortic aneurysms using fluid-solid-interaction analysis on patient-specific geometries. Our results suggest that ascending aortic volume may be a better indicator for surgical intervention as it shows a stronger association with pathogenic hemodynamic conditions.
Collapse
Affiliation(s)
- Meng Xiao
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Guangzhou, China, 510000.; Department of Electrical and Computer Engineering, University of Alberta, 116 St & 85 Ave, Edmonton, AB, Canada, T6G 2R3..
| | - Jinlin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Guangzhou, China, 510000..
| | - Duanduan Chen
- Department of Biomedical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, China..
| | - Chenghu Wang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Guangzhou, China, 510000..
| | - Yanfen Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Guangzhou, China, 510000..
| | - Tucheng Sun
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Guangzhou, China, 510000..
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, 116 St & 85 Ave, Edmonton, AB, Canada, T6G 2R3..
| |
Collapse
|
36
|
Deng Z, Sun K, Sha D, Zhang Y, Guo J, Yan G, Zhang W, Liu M, Deng X, Kang H, Sun A. The counterbalance of endothelial glycocalyx and high wall shear stress to low-density lipoprotein concentration polarization in mouse ear skin arterioles. Atherosclerosis 2023; 377:24-33. [PMID: 37379795 DOI: 10.1016/j.atherosclerosis.2023.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis preferentially occurs at regions in arterial branching, curvature, and stenosis, which may be explained by the geometric predilection of low-density lipoprotein (LDL) concentration polarization that has been investigated in major arteries in previous studies. Whether this also happens in arterioles remains unknown. METHODS Herein, a radially non-uniform distribution of LDL particles and a heterogeneous endothelial glycocalyx layer in the mouse ear arterioles, as shown by fluorescein isothiocyanate labeled wheat germ agglutinin (WGA-FITC), were successfully observed by a non-invasive two-photon laser-scanning microscopy (TPLSM) technique. The stagnant film theory was applied as the fitting function to evaluate LDL concentration polarization in arterioles. RESULTS The concentration polarization rate (CPR, the ratio of the number of polarized cases to that of total cases) in the inner walls of curved and branched arterioles was 22% and 31% higher than the outer counterparts, respectively. Results from the binary logistic regression and multiple linear regression analysis showed that endothelial glycocalyx thickness increases CPR and the thickness of the concentration polarization layer (CPL). Flow field computation indicates no obvious disturbances or vortex in modeled arterioles with different geometries and the mean wall shear stress is about 7.7-9.0 Pa. CONCLUSIONS These findings suggest a geometric predilection of LDL concentration polarization in arterioles for the first time, and the existence of an endothelial glycocalyx, acting together with a relatively high wall shear stress in arterioles, may explain to some extent why atherosclerosis rarely occurs in these regions.
Collapse
Affiliation(s)
- Zhilan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yinuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
37
|
Li C, Zhan Y, Wang Z, Gao Y, Ye K, Lu X, Qiu P, Yao C. Effect of stent treatment on hemodynamics in iliac vein compression syndrome with collateral vein. Med Eng Phys 2023; 115:103983. [PMID: 37120173 DOI: 10.1016/j.medengphy.2023.103983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Iliac vein compression syndrome (IVCS) leads to blood flow obstruction in the lower extremities and is usually treated with stents, but stenting may worsen the hemodynamics and increase the risk of thrombosis in the iliac vein. The present work evaluates the advantages and disadvantages of the stent on IVCS with a collateral vein. METHODS The computational fluid dynamics method is adopted to analyze the preoperative and postoperative flow fields in a typical IVCS. The geometric models of the iliac vein are constructed from medical imaging data. The porous model is used to simulate the flow obstruction in IVCS. RESULTS The preoperative and postoperative hemodynamic characteristics in the iliac vein are obtained, e.g., the pressure gradient at two ends of the compressive region and the wall shear stress. It is found that the stenting restores the blood flow in the left iliac vein. CONCLUSION Impacts of the stent are classified into short-term and long-term effects. The short-term effects are beneficial in relieving IVCS, i.e., shortening the blood stasis and reducing the pressure gradient. The long-term effects increase the risk of thrombosis in the stent, i.e., enlarging wall shear stress due to a large corner and a diameter constriction in the distal vessel, and suggests the need to develop a venous stent for IVCS.
Collapse
Affiliation(s)
- Chaoqun Li
- College of Civil Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yanqing Zhan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230011, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Zhongming Wang
- College of Civil Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yongxin Gao
- College of Civil Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Cheng Yao
- College of Civil Engineering, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
38
|
Wei W, Lao H, Tan Y, Liang S, Ye Z, Qin C, Tang Y. Vascular tortuosity is related to reduced thalamic volume after middle cerebral artery occlusion. Heliyon 2023; 9:e15581. [PMID: 37159683 PMCID: PMC10163615 DOI: 10.1016/j.heliyon.2023.e15581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
The mechanisms underlying secondary brain injury in remote areas remains unclear. This study aimed to investigate the relationship between vascular tortuosity and thalamic volume. METHODS In this study, we retrospectively analyzed sixty-five patients with unilateral middle cerebral artery occlusion (MCAO) who underwent magnetic resonance angiography. We compared the vascular tortuosity in patients with MCAO and controls, and analyzed the relationship between vascular tortuosity and thalamic volume. RESULTS Compared with controls, the MCAO group exhibited a significantly smaller thalamus volume on the affected side (5874 ± 183 mm3 vs. 5635 ± 383 mm3, p < 0.0001). The vascular tortuosity of the posterior cerebral artery (PCA) was higher in the MCAO group than in the controls (82.8 ± 17.3 vs. 76.7 ± 17.3, p = 0.040). Logistic regression analysis revealed that PCA tortuosity was an independent risk factor for reduced thalamic volume after MCAO (p = 0.034). In the subgroup analysis, only the 4-7-day group was not statistically different in thalamic volume between the MCAO and control groups. In the MCAO group, patients older than 60 years and female patients had a more tortuous PCA. CONCLUSION Reduced thalamic volume after MCAO was associated with a tortuous PCA. After MCAO, PCA tortuosity increased more significantly in patients aged >60 years and in female patients.
Collapse
Affiliation(s)
- Wenxin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huan Lao
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, Guangxi 530000, China
| | - Yafu Tan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shushu Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author.
| | - Yanyan Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author.
| |
Collapse
|
39
|
Ono S, Hatayama N, Miyamoto K, Naito M, Ishimoto T, Ito Y. Intimal growth on the luminal surface of arteriovenous grafts in rats. Clin Exp Nephrol 2023; 27:402-410. [PMID: 36773176 DOI: 10.1007/s10157-023-02320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Endothelial cells are known to grow on the luminal surface of arteriovenous grafts (AVGs) used in hemodialysis. Although endothelial cells are important for preventing infection, a detailed growth of endothelial cells in AVGs is unknown. This study sought to create a simpler animal model of AVGs and to investigate how endothelial cells form on the luminal surface. METHODS Polyethylene grafts were placed between the cervical artery and vein of Wistar rats. The grafts were removed at 6 h, 24 h, 3 days, or 7 days after placement. The luminal surface was observed under optical and polarizing microscopy and stained with endothelial cell markers (LEL, CD31), the progenitor cell marker CD34, and the macrophage marker ED-1. RESULTS Microscopy demonstrated many diffuse vascular endothelial cells on the luminal surface of AVGs after placement. While there was no difference in the number of LEL-positive cells between the arterial side (AS) and venous side (VS) at 6 h or 7 days, there were significantly more of these cells on the VS at both 24 h and 3 days (p < 0.05). Analysis at 24 h showed some CD31-positive cells and few CD34-positive cells. CONCLUSIONS This was the first study to use a simple rat model of AVG placement. Endothelial cell formation was initially more active on the VS than on the AS, but these cells subsequently increased in number across the luminal surface. Future clinical studies might contribute clinically by confirming whether AS versus VS puncture results in different infection rates.
Collapse
Affiliation(s)
- Sumihisa Ono
- Department of Nephrology, Central Japan International Medical Center, 1-1, Kenkounomachi, Minokamoshi, Gifu, Japan.,Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi, Japan
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi, Japan.
| | - Kanyu Miyamoto
- Department of Nephrology, Central Japan International Medical Center, 1-1, Kenkounomachi, Minokamoshi, Gifu, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi, Japan
| | - Takuji Ishimoto
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi, Japan
| | - Yasuhiko Ito
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Yazakokarimata, Nagakute, Aichi, Japan.
| |
Collapse
|
40
|
Li Y, Chen F, Yang B, Xie S, Wang C, Guo R, Zhang X, Liu Z. Effect of Mid-Basilar Artery Angle and Plaque Characteristics on Pontine Infarction in Patients with Basilar Artery Plaque. J Atheroscler Thromb 2023; 30:182-191. [PMID: 35418542 PMCID: PMC9925201 DOI: 10.5551/jat.63520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS The basilar artery (BA) geometry and plaque characteristics may play an important role in the development of atherosclerosis. This study was performed to explore the relationship between the mid-BA angle and plaque characteristics and its effect on pontine infarction using high-resolution magnetic resonance imaging and three-dimensional time-of-flight magnetic resonance angiography. METHODS In total, 77 patients with BA plaques were included in this study. According to the presence of acute pontine infarction on diffusion-weighted imaging, the patients were divided into a pontine infarction group and pontine non-infarction group. The mid-BA angle, plaque burden, stenosis ratio, positive remodeling, and intraplaque hemorrhage were evaluated to investigate their effects on stroke. RESULTS The pontine infarction group had a greater plaque burden, stenosis ratio, positive remodeling, and mid-BA angle than the pontine non-infarction group. The correlation between the plaque burden and mid-BA angle was the highest (r=0.441, P<0.001). Multivariate logistic regression analysis showed that the plaque burden (odds ratio, 1.164; 95% confidence interval, 1.093-1.241; P<0.001) was an independent risk factor for pontine infarction. CONCLUSION The mid-BA angle may increase the incidence of pontine infarction by increasing the plaque burden.
Collapse
Affiliation(s)
- Yangchen Li
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Fengxin Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Yang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ce Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Runcai Guo
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xuebing Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
41
|
Lu AK, Baldwin J, Hans SS. Acute limb ischemia secondary to external iliac and common femoral artery dissection in a body builder. J Vasc Surg Cases Innov Tech 2023; 9:101099. [PMID: 36852317 PMCID: PMC9958061 DOI: 10.1016/j.jvscit.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Spontaneous external iliac artery dissection in highly trained athletes is becoming more recognized, but the reason as to why they are occurring remains a mystery. We present a patient with acute limb ischemia secondary to arterial dissection after strenuous exercise. Imaging showed complete occlusion of the distal common iliac artery, and the patient underwent successful revascularization of the right lower extremity using a hybrid approach.
Collapse
Affiliation(s)
- Alexander K. Lu
- General Surgery Residency Program, Henry Ford Macomb Hospital, Clinton Township, MI,Correspondence: Alexander K. Lu, DO, Henry Ford Macomb Hospital, General Surgery Residency, 15855 Nineteen Mile Rd., Clinton Township, MI, 48038
| | - Jordynn Baldwin
- General Surgery Residency Program, Henry Ford Macomb Hospital, Clinton Township, MI
| | - Sachinder S. Hans
- Henry Ford Vascular Surgery, Henry Ford Macomb Hospital, Clinton Township, MI
| |
Collapse
|
42
|
Tauchi M, Oshita K, Urschel K, Furtmair R, Kühn C, Stumpfe FM, Botos B, Achenbach S, Dietel B. The Involvement of Cx43 in JNK1/2-Mediated Endothelial Mechanotransduction and Human Plaque Progression. Int J Mol Sci 2023; 24:ijms24021174. [PMID: 36674690 PMCID: PMC9863493 DOI: 10.3390/ijms24021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
Atherosclerotic lesions preferentially develop at bifurcations, characterized by non-uniform shear stress (SS). The aim of this study was to investigate SS-induced endothelial activation, focusing on stress-regulated mitogen-activated protein kinases (MAPK) and downstream signaling, and its relation to gap junction proteins, Connexins (Cxs). Human umbilical vein endothelial cells were exposed to flow ("mechanical stimulation") and stimulated with TNF-α ("inflammatory stimulation"). Phosphorylated levels of MAPKs (c-Jun N-terminal kinase (JNK1/2), extracellular signal-regulated kinase (ERK), and p38 kinase (p38K)) were quantified by flow cytometry, showing the activation of JNK1/2 and ERK. THP-1 cell adhesion under non-uniform SS was suppressed by the inhibition of JNK1/2, not of ERK. Immunofluorescence staining and quantitative real-time PCR demonstrated an induction of c-Jun and c-Fos and of Cx43 in endothelial cells by non-uniform SS, and the latter was abolished by JNK1/2 inhibition. Furthermore, plaque inflammation was analyzed in human carotid plaques (n = 40) using immunohistochemistry and quanti-gene RNA-assays, revealing elevated Cx43+ cell counts in vulnerable compared to stable plaques. Cx43+ cell burden in the plaque shoulder correlated with intraplaque neovascularization and lipid core size, while an inverse correlation was observed with fibrous cap thickness. Our results constitute the first report that JNK1/2 mediates Cx43 mechanoinduction in endothelial cells by atheroprone shear stress and that Cx43 is expressed in human carotid plaques. The correlation of Cx43+ cell counts with markers of plaque vulnerability implies its contribution to plaque progression.
Collapse
Affiliation(s)
- Miyuki Tauchi
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Kurume 830-0011, Japan
| | - Kensuke Oshita
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Anesthesiology, School of Medicine, Kurume University, Kurume 830-0011, Japan
| | - Katharina Urschel
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Roman Furtmair
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Constanze Kühn
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Florian M. Stumpfe
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Balazs Botos
- Department of Vascular Surgery, Hospital of Nürnberg-Süd, 90471 Nürnberg, Germany
| | - Stephan Achenbach
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
43
|
Moniripiri M, Hassani Soukht Abandani M, Firoozabadi B. Simulation of LDL permeation into multilayer wall of a coronary bifurcation using WSS-dependent model: effects of hemorheology. Biomech Model Mechanobiol 2022; 22:711-727. [PMID: 36525181 DOI: 10.1007/s10237-022-01676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Atherosclerosis, due to the permeation of low-density lipoprotein (LDL) particles into the arterial wall, is one of the most common and deadly diseases in today's world. Due to its importance, numerous studies have been conducted on the factors affecting this disease. In this study, using numerical simulation, the effects of Wall Shear Stress (WSS), non-Newtonian behavior of blood, different values of hematocrit and blood pressure on LDL permeation into the arterial wall layers are investigated in a 4-layer wall model of a coronary bifurcation. To obtain the velocity and concentration fields in the fluid domain, the Navier-Stokes, Brinkman, and mass transfer equations are numerically solved in the lumen and wall layers. Results show that it is important to consider the effects of WSS on transport properties of endothelium layer in bifurcations and this leads to completely different concentration profiles compared to the constant properties model. Our computations show that a giant accumulation of LDL in the intima layer of the outer wall of the left anterior descending artery, especially in low WSS regions, may lead to atherosclerosis. It is also, necessary to consider the non-Newtonian behavior of blood in bifurcations due to its direct effect on WSS. A pressure-induced increase in the half-width of leaky junctions may be responsible for the higher risk of atherosclerosis in hypertension. In addition, it is shown that the dominant mechanism in LDL permeation into the wall is convection, and also, hypertension increases the effect of mass transfer by convection mechanism more than the diffusion mechanism. Furthermore, our results are consistent with various clinical studies.
Collapse
Affiliation(s)
- Mohammad Moniripiri
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Bahar Firoozabadi
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
44
|
Yang SS, Woo SY, Kim DI. Analysis of atherosclerotic plaque distribution in the carotid artery. Clin Cardiol 2022; 45:1272-1276. [PMID: 36086944 DOI: 10.1002/clc.23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The present study was designed to investigate the hypothesis that the outer wall at the carotid bifurcation is the most common area of atherosclerotic plaque deposition due to the low shear stress. HYPOTHESIS We hypothesized that the most common site of arteriosclerosis in carotid arteries is different in the early and late stages. METHODS This is an observational study of patients with <50% stenosis of the common and internal carotid arteries (ICAs) identified by Duplex ultrasound in our health promotion center. Plaque location was categorized as a quarter of the cross-section in the distal common carotid artery (CCA) and proximal ICA. Carotid plaque score (CPS) was calculated by the addition of one point for each detected section. The sum of CPSs was calculated for each section. RESULTS Among 3996 Duplex scans of carotid arteries in 999 patients between June 2020 and October 2020, a total of 569 patients (73.6% male; mean age, 68.4± 9.1 years; 652 CCAs and 567 ICAs) were included. Total CPS was high in the anterior and posterior sections. The distribution in the ICA was: 308 (31.0%) anterior, 90 (9.0%) medial, 373 (37.5%) posterior, and 224 (22.5%) lateral section. The distribution in the CCA was 385 (32.6%) anterior, 103 (8.7%) medial, 528 (44.7%) posterior, and 165 (14.0%) lateral section. The axial distribution of posterior and lateral sections was significantly different according to the directional flow (p < .001). CONCLUSIONS Anterior and posterior sections of the CCA and ICA were atherosclerotic plaque-prone sites. This result is different from the tendency of atherogenesis to affect the lateral section having low shear stress at the carotid bifurcation.
Collapse
Affiliation(s)
- Shin-Seok Yang
- Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shin-Young Woo
- Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Hann SY, Cui H, Chen G, Boehm M, Esworthy T, Zhang LG. 3D printed biomimetic flexible blood vessels with iPS cell-laden hierarchical multilayers. BIOMEDICAL ENGINEERING ADVANCES 2022; 4:100065. [PMID: 36582411 PMCID: PMC9794201 DOI: 10.1016/j.bea.2022.100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Successful recovery from vascular diseases has typically relied on the surgical repair of damaged blood vessels (BVs), with the majority of current approaches involving the implantation of autologous BVs, which is plagued by donor site tissue damage. Researchers have attempted to develop artificial vessels as an alternative solution to traditional approaches to BV repair. However, the manufacturing of small-diameter (< 6 mm) BVs is still considered one of the biggest challenges due to its difficulty in the precise fabrication and the replication of biomimetic architectures. In this study, we successfully developed 3D printed flexible small-diameter BVs that consist of smooth muscle cells and a vascularized endothelium. In the developed artificial BV, a rubber-like elastomer was printed as the outermost layer of the vessel, which demonstrated enhanced mechanical properties, while and human induced pluripotent stem cell (iPSC)-derived vascular smooth muscle cells (iSMCs) and endothelial cells (iECs) embedded fibrinogen solutions were coaxially extruded with thrombin solution to form cell-laden fibrin gel inner layers. Our results showed that the 3D BVs possessed proper mechanical properties, and the cells in the fibrin layers substantially proliferated over time to form a stable BV construct. Our study demonstrated that the 3D printed flexible small-diameter BV using iPSCs could be a promising platform for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University Medical Center, Washington, DC 20052, USA
| |
Collapse
|
46
|
The Need to Shift from Morphological to Structural Assessment for Carotid Plaque Vulnerability. Biomedicines 2022; 10:biomedicines10123038. [PMID: 36551791 PMCID: PMC9776071 DOI: 10.3390/biomedicines10123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Degree of luminal stenosis is generally considered to be an important indicator for judging the risk of atherosclerosis burden. However, patients with the same or similar degree of stenosis may have significant differences in plaque morphology and biomechanical factors. This study investigated three patients with carotid atherosclerosis within a similar range of stenosis. Using our developed fluid-structure interaction (FSI) modelling method, this study analyzed and compared the morphological and biomechanical parameters of the three patients. Although their degrees of carotid stenosis were similar, the plaque components showed a significant difference. The distribution range of time-averaged wall shear stress (TAWSS) of patient 2 was wider than that of patient 1 and patient 3. Patient 2 also had a much smaller plaque stress compared to the other two patients. There were significant differences in TAWSS and plaque stresses among three patients. This study suggests that plaque vulnerability is not determined by a single morphological factor, but rather by the combined structure. It is necessary to transform the morphological assessment into a structural assessment of the risk of plaque rupture.
Collapse
|
47
|
Katakia YT, Kanduri S, Bhattacharyya R, Ramanathan S, Nigam I, Kuncharam BVR, Majumder S. Angular difference in human coronary artery governs endothelial cell structure and function. Commun Biol 2022; 5:1044. [PMID: 36183045 PMCID: PMC9526720 DOI: 10.1038/s42003-022-04014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Blood vessel branch points exhibiting oscillatory/turbulent flow and lower wall shear stress (WSS) are the primary sites of atherosclerosis development. Vascular endothelial functions are essentially dependent on these tangible biomechanical forces including WSS. Herein, we explored the influence of blood vessel bifurcation angles on hemodynamic alterations and associated changes in endothelial function. We generated computer-aided design of a branched human coronary artery followed by 3D printing such designs with different bifurcation angles. Through computational fluid dynamics analysis, we observed that a larger branching angle generated more complex turbulent/oscillatory hemodynamics to impart minimum WSS at branching points. Through the detection of biochemical markers, we recorded significant alteration in eNOS, ICAM1, and monocyte attachment in EC grown in microchannel having 60o vessel branching angle which correlated with the lower WSS. The present study highlights the importance of blood vessel branching angle as one of the crucial determining factors in governing atherogenic-endothelial dysfunction. In silico and in vitro investigations reveal angular differences in the blood vessel branching points differentially alter the hemodynamics to impact endothelial structure and function.
Collapse
Affiliation(s)
- Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Satyadevan Kanduri
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ritobrata Bhattacharyya
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Srinandini Ramanathan
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ishan Nigam
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | | | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India.
| |
Collapse
|
48
|
Li X, Liu X, Deng X, Fan Y. Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction. Biomedicines 2022; 10:2157. [PMID: 36140258 PMCID: PMC9495955 DOI: 10.3390/biomedicines10092157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of morbidity and mortality worldwide, and early accurate diagnosis is the key point for improving and optimizing the prognosis of CVD. Recent progress in artificial intelligence (AI), especially machine learning (ML) technology, makes it possible to predict CVD. In this review, we first briefly introduced the overview development of artificial intelligence. Then we summarized some ML applications in cardiovascular diseases, including ML-based models to directly predict CVD based on risk factors or medical imaging findings and the ML-based hemodynamics with vascular geometries, equations, and methods for indirect assessment of CVD. We also discussed case studies where ML could be used as the surrogate for computational fluid dynamics in data-driven models and physics-driven models. ML models could be a surrogate for computational fluid dynamics, accelerate the process of disease prediction, and reduce manual intervention. Lastly, we briefly summarized the research difficulties and prospected the future development of AI technology in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyin Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoyan Deng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
49
|
Deletion of Macrophage-Specific Glycogen Synthase Kinase (GSK)-3α Promotes Atherosclerotic Regression in Ldlr−/− Mice. Int J Mol Sci 2022; 23:ijms23169293. [PMID: 36012557 PMCID: PMC9409307 DOI: 10.3390/ijms23169293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022] Open
Abstract
Recent evidence from our laboratory suggests that impeding ER stress–GSK3α/β signaling attenuates the progression and development of atherosclerosis in mouse model systems. The objective of this study was to determine if the tissue-specific genetic ablation of GSK3α/β could promote the regression of established atherosclerotic plaques. Five-week-old low-density lipoprotein receptor knockout (Ldlr−/−) mice were fed a high-fat diet for 16 weeks to promote atherosclerotic lesion formation. Mice were then injected with tamoxifen to induce macrophage-specific GSK3α/β deletion, and switched to standard diet for 12 weeks. All mice were sacrificed at 33 weeks of age and atherosclerosis was quantified and characterized. Female mice with induced macrophage-specific GSK3α deficiency, but not GSK3β deficiency, had reduced plaque volume (~25%) and necrosis (~40%) in the aortic sinus, compared to baseline mice. Atherosclerosis was also significantly reduced (~60%) in the descending aorta. Macrophage-specific GSK3α-deficient mice showed indications of increased plaque stability and reduced inflammation in plaques, as well as increased CCR7 and ABCA1 expression in lesional macrophages, consistent with regressive plaques. These results suggest that GSK3α ablation promotes atherosclerotic plaque regression and identify GSK3α as a potential target for the development of new therapies to treat existing atherosclerotic lesions in patients with cardiovascular disease.
Collapse
|
50
|
Del Brutto VJ, Dong C, Cullison K, Caunca MR, Simonetto M, Cabral DE, Gutierrez J, Elkind MSV, Sacco RL, Rundek T. Internal Carotid Artery Angle Variations are Poorly Explained by Vascular Risk Factors: The Northern Manhattan Study. J Stroke Cerebrovasc Dis 2022; 31:106540. [PMID: 35633588 PMCID: PMC9329273 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES The internal carotid artery (ICA) angle of origin may contribute to atherogenesis by altered hemodynamics. We aim to determine the contribution of vascular risk factors and arterial wall changes to ICA angle variations. METHODS We analyzed 1,065 stroke-free participants from the population-based Northern Manhattan Study who underwent B-mode ultrasound (mean age 68.7±8.9 years; 59% women). ICA angle was estimated at the intersection between the common carotid artery and the ICA center line projections. Narrower external angles translating into greater carotid bifurcation bending were considered unfavorable. Linear regression models were fitted to assess the relationship between ICA angle and demographics, vascular risk factors, and arterial wall changes including carotid intima-media thickness (cIMT) and plaque presence. RESULTS ICA angles were narrower on the left compared to the right side (153±15.4 degrees versus 161.4±12.7 degrees, p<0.01). Mean cIMT was 0.9±0.1 mm and 54.3% had at least one plaque. ICA angle was not associated with cIMT or plaque presence. Unfavorable left and right ICA angles were associated with advanced age (per 10-year increase β=-1.6; p=0.01, and -1.3; p=0.03, respectively) and being Black participant (β=-4.6; p<0.01 and -2.9; p=0.04, respectively), while unfavorable left ICA angle was associated with being female (β=-2.8; p=0.03) and increased diastolic blood pressure (per 10 mmHg increase β=-2.1; p<0.01). Overall, studied factors explained less than 10% of the variance in ICA angle (left R2=0.07; right R2=0.05). CONCLUSION Only a small portion of ICA angle variation were explained by demographics, vascular risk factors and arterial wall changes. Whether ICA angle is determined by other environmental or genetic factors, and is an independent risk factor for atherogenesis, requires further investigation.
Collapse
Affiliation(s)
- Victor J Del Brutto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL.
| | - Chuanhui Dong
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Kaylie Cullison
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Michelle R Caunca
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Marialaura Simonetto
- Department of Neurology, Weill Cornell Medical Center/New York Presbyterian Hospital, New York, NY
| | - Digna E Cabral
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Jose Gutierrez
- Department of Epidemiology, Mailman School of Public Health, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Mitchell S V Elkind
- Department of Epidemiology, Mailman School of Public Health, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ralph L Sacco
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL; Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL; Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|