1
|
Huang H, Park S, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative label-free digital holographic imaging of cardiomyocyte optical volume, nucleation, and cell division. J Mol Cell Cardiol 2024; 196:94-104. [PMID: 39251060 DOI: 10.1016/j.yjmcc.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in cell size and nucleation impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated and binucleated cardiomyocytes after CHIR99021 treatment, a model proliferative stimulus. This system enables long-term label-free quantitative tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our results confirm that chemical inhibition of glycogen synthase kinase 3 with CHIR99021 promotes complete cell division of both mononucleated and binucleated cardiomyocytes with high frequency. Quantitative tracking of cardiomyocyte volume dynamics during these proliferative events revealed that both mononucleated and binucleated cardiomyocytes reach a similar size-increase threshold prior to attempted cell division. Binucleated cardiomyocytes attempt to divide with lower frequency than mononucleated cardiomyocytes, which may be associated with inadequate increases in cell size. By defining the interrelationship between cardiomyocyte size, nucleation, and cell cycle control, we may better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Sangsoon Park
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ines Ross
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Joseph Moreno
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheamin Khyeam
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacquelyn Simmons
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Alexander Y Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA.
| |
Collapse
|
2
|
Arrieta A, Chapski DJ, Reese A, Kimball TH, Song K, Rosa-Garrido M, Vondriska TM. Circadian control of histone turnover during cardiac development and growth. J Biol Chem 2024; 300:107434. [PMID: 38830405 PMCID: PMC11261805 DOI: 10.1016/j.jbc.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting a role for the circadian clock in temporal control of histone turnover and coordinated cardiomyocyte gene expression. We sought to elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Bmal1 knockdown in neonatal rat ventricular myocytes decreased myocyte size, total cellular protein synthesis, and transcription of the fetal hypertrophic gene Nppb after treatment with serum or the α-adrenergic agonist phenylephrine. Depletion of Bmal1 decreased the expression of clock-controlled genes Per2 and Tcap, as well as Sik1, a Bmal1 target upregulated in adult versus embryonic hearts. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by micrococcal nuclease-quantitative PCR and impaired histone turnover as measured by metabolic labeling of acid-soluble chromatin fractions. Sik1 knockdown in turn decreased myocyte size, while simultaneously inhibiting natriuretic peptide B transcription and activating Per2 transcription. Linking these changes to chromatin remodeling, depletion of the replication-independent histone variant H3.3a inhibited myocyte hypertrophy and prevented phenylephrine-induced changes in clock-controlled gene transcription. Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription. Replication-independent histone turnover is required for transcriptional remodeling of clock-controlled genes in cardiac myocytes in response to growth stimuli.
Collapse
Affiliation(s)
- Adrian Arrieta
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Douglas J Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Anna Reese
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Todd H Kimball
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Kunhua Song
- Internal Medicine, Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, Florida, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA; Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA; Department of Physiology, UCLA, Los Angeles, California, USA; Molecular Biology Institute, UCLA, Los Angeles, California, USA.
| |
Collapse
|
3
|
Arrieta A, Chapski DJ, Reese A, Kimball T, Song K, Rosa-Garrido M, Vondriska TM. Circadian Control of Histone Turnover During Cardiac Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567086. [PMID: 38014083 PMCID: PMC10680691 DOI: 10.1101/2023.11.14.567086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rationale: During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting an unrecognized role for the circadian clock in temporal control of histone turnover and coordinate cardiomyocyte gene expression. Objective: To elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Methods and Results: Bmal1 knockdown in neonatal rat ventricular myocytes (NRVM) decreased myocyte size, total cellular protein, and transcription of the fetal hypertrophic gene Nppb following treatment with increasing serum concentrations or the α-adrenergic agonist phenylephrine (PE). Bmal1 knockdown decreased expression of clock-controlled genes Per2 and Tcap, and salt-inducible kinase 1 (Sik1) which was identified via gene ontology analysis of Bmal1 targets upregulated in adult versus embryonic hearts. Epigenomic analyses revealed co-localized chromatin accessibility and Bmal1 localization in the Sik1 promoter. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by MNase-qPCR and impaired histone turnover indicated by metabolic labeling of acid-soluble chromatin fractions and immunoblots of total and chromatin-associated core histones. Sik1 knockdown basally increased myocyte size, while simultaneously impairing and driving Nppb and Per2 transcription, respectively. Conclusions: Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription.
Collapse
|
4
|
Park S, Huang H, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative Three-dimensional Label-free Digital Holographic Imaging of Cardiomyocyte Size, Ploidy, and Cell Division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565407. [PMID: 37961676 PMCID: PMC10635088 DOI: 10.1101/2023.11.02.565407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in size and ploidy impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated diploid and binucleated tetraploid cardiomyocytes. This instrument coupled with the powerful Holomonitor App Suite software enables long-term label-free quantitative three-dimensional tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our digital holographic imaging results provide direct evidence that mononucleated cardiomyocytes retain significant proliferative potential as most can successfully divide with high frequency. In contrast, binucleated cardiomyocytes exhibit a blunted response to a proliferative stimulus with the majority not attempting to divide at all. Nevertheless, some binucleated cardiomyocytes were capable of complete division, suggesting that these cells still do retain limited proliferative capacity. By quantitatively tracking cardiomyocyte volume dynamics during these proliferative responses, we reveal that both mononucleated and binucleated cells reach a unique size threshold prior to attempted cell division. The absolute threshold is increased by binucleation, which may limit the ability of binucleated cardiomyocytes to divide. By defining the interrelationship between cardiomyocyte size, ploidy, and cell cycle control, we will better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
|
5
|
Eggertsen TG, Saucerman JJ. Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy. Br J Pharmacol 2023; 180:2721-2735. [PMID: 37302817 PMCID: PMC10592153 DOI: 10.1111/bph.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Pathological cardiomyocyte hypertrophy is a response to cardiac stress that typically leads to heart failure. Despite being a primary contributor to pathological cardiac remodelling, the therapeutic space that targets hypertrophy is limited. Here, we apply a network model to virtually screen for FDA-approved drugs that induce or suppress cardiomyocyte hypertrophy. EXPERIMENTAL APPROACH A logic-based differential equation model of cardiomyocyte signalling was used to predict drugs that modulate hypertrophy. These predictions were validated against curated experiments from the prior literature. The actions of midostaurin were validated in new experiments using TGFβ- and noradrenaline (NE)-induced hypertrophy in neonatal rat cardiomyocytes. KEY RESULTS Model predictions were validated in 60 out of 70 independent experiments from the literature and identify 38 inhibitors of hypertrophy. We additionally predict that the efficacy of drugs that inhibit cardiomyocyte hypertrophy is often context dependent. We predicted that midostaurin inhibits cardiomyocyte hypertrophy induced by TGFβ, but not noradrenaline, exhibiting context dependence. We further validated this prediction by cellular experiments. Network analysis predicted critical roles for the PI3K and RAS pathways in the activity of celecoxib and midostaurin, respectively. We further investigated the polypharmacology and combinatorial pharmacology of drugs. Brigatinib and irbesartan in combination were predicted to synergistically inhibit cardiomyocyte hypertrophy. CONCLUSION AND IMPLICATIONS This study provides a well-validated platform for investigating the efficacy of drugs on cardiomyocyte hypertrophy and identifies midostaurin for consideration as an antihypertrophic drug.
Collapse
Affiliation(s)
- Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
6
|
Billah M, Naz A, Noor R, Bhindi R, Khachigian LM. Early Growth Response-1: Friend or Foe in the Heart? Heart Lung Circ 2023; 32:e23-e35. [PMID: 37024319 DOI: 10.1016/j.hlc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Early growth response-1 (Egr-1) plays a critical regulatory role in a range of experimental models of cardiovascular diseases. Egr-1 is an immediate-early gene and is upregulated by various stimuli including shear stress, oxygen deprivation, oxidative stress and nutrient deprivation. However, recent research suggests a new, underexplored cardioprotective side of Egr-1. The main purpose of this review is to explore and summarise the dual nature of Egr-1 in cardiovascular pathobiology.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.
| | - Adiba Naz
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Rashed Noor
- School of Environmental and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Chen Y, An N, Zhou X, Mei L, Sui Y, Chen G, Chen H, He S, Jin C, Hu Z, Li W, Wang Y, Lin Z, Chen P, Jin L, Guan X, Wang X. Fibroblast growth factor 20 attenuates pathological cardiac hypertrophy by activating the SIRT1 signaling pathway. Cell Death Dis 2022; 13:276. [PMID: 35351862 PMCID: PMC8964679 DOI: 10.1038/s41419-022-04724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
Cardiac hypertrophy occurs initially in response to an increased cardiac load as a compensatory mechanism to maintain cardiac output. However, sustained pathological hypertrophy can develop into heart failure and cause sudden death. Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family, which involved in apoptosis, aging, inflammation, and autophagy. The precise function of FGF20 in pathological cardiac hypertrophy is unclear. In this study, we demonstrated that FGF20 was significantly decreased in response to hypertrophic stimulation. In contrast, overexpression of FGF20 protected against pressure overload-induced cardiac hypertrophy. Mechanistically, we found that FGF20 upregulates SIRT1 expression, causing deacetylation of FOXO1; this effect promotes the transcription of downstream antioxidant genes, thus inhibits oxidative stress. In content, the anti-hypertrophic effect of FGF20 was largely counteracted in SIRT1-knockout mice, accompanied by an increase in oxidative stress. In summary, our findings reveal a previously unknown protective effect of FGF20 on pathological cardiac hypertrophy by reducing oxidative stress through activation of the SIRT1 signaling pathway. FGF20 is a potential novel molecular target for preventing and treating pressure overload-induced myocardial injury.
Collapse
Affiliation(s)
- Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Ning An
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, 315041, Ningbo, PR China
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Lin Mei
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yanru Sui
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yang Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| |
Collapse
|
8
|
Bourque K, Hawey C, Jones-Tabah J, Pétrin D, Martin RD, Ling Sun Y, Hébert TE. Measuring hypertrophy in neonatal rat primary cardiomyocytes and human iPSC-derived cardiomyocytes. Methods 2021; 203:447-464. [PMID: 34933120 DOI: 10.1016/j.ymeth.2021.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
In the heart, left ventricular hypertrophy is initially an adaptive mechanism that increases wall thickness to preserve normal cardiac output and function in the face of coronary artery disease or hypertension. Cardiac hypertrophy develops in response to pressure and volume overload but can also be seen in inherited cardiomyopathies. As the wall thickens, it becomes stiffer impairing the distribution of oxygenated blood to the rest of the body. With complex cellular signalling and transcriptional networks involved in the establishment of the hypertrophic state, several model systems have been developed to better understand the molecular drivers of disease. Immortalized cardiomyocyte cell lines, primary rodent and larger animal models have all helped understand the pathological mechanisms underlying cardiac hypertrophy. Induced pluripotent stem cell-derived cardiomyocytes are also used and have the additional benefit of providing access to human samples with direct disease relevance as when generated from patients suffering from hypertrophic cardiomyopathies. Here, we briefly review in vitro and in vivo model systems that have been used to model hypertrophy and provide detailed methods to isolate primary neonatal rat cardiomyocytes as well as to generate cardiomyocytes from human iPSCs. We also describe how to model hypertrophy in a "dish" using gene expression analysis and immunofluorescence combined with automated high-content imaging.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yi Ling Sun
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
9
|
The Antiarrhythmic Activity of Novel Pyrrolidin-2-one Derivative S-75 in Adrenaline-Induced Arrhythmia. Pharmaceuticals (Basel) 2021; 14:ph14111065. [PMID: 34832847 PMCID: PMC8625052 DOI: 10.3390/ph14111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Arrhythmia is a quivering or irregular heartbeat that can often lead to blood clots, stroke, heart failure, and other heart-related complications. The limited efficacy and safety of antiarrhythmic drugs require the design of new compounds. Previous research indicated that pyrrolidin-2-one derivatives possess an affinity for α1-adrenergic receptors. The blockade of α1-adrenoceptor may play a role in restoring normal sinus rhythm; therefore, we aimed to verify the antiarrhythmic activity of novel pyrrolidin-2-one derivative S-75. In this study, we assessed the influence on sodium, calcium, potassium channels, and β1-adrenergic receptors to investigate the mechanism of action of S-75. Lack of affinity for β1-adrenoceptors and weak effects on ion channels decreased the role of these adrenoceptors and channels in the pharmacological activity of S-75. Next, we evaluated the influence of S-75 on normal ECG in rats and isolated rat hearts, and the tested derivative did not prolong the QTc interval, which may confirm the lack of the proarrhythmic potential. We tested antiarrhythmic activity in adrenaline-, aconitine- and calcium chloride-induced arrhythmia models in rats. The studied compound showed prophylactic antiarrhythmic activity in the adrenaline-induced arrhythmia, but no significant activity in the model of aconitine- or calcium chloride-induced arrhythmia. In addition, S-75 was not active in the model of post-reperfusion arrhythmias of the isolated rat hearts. Conversely, the compound showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia, reducing post-arrhythmogen heart rhythm disorders, and decreasing animal mortality. Thus, we suggest that the blockade of α1-adrenoceptor might be beneficial in restoring normal heart rhythm in adrenaline-induced arrhythmia.
Collapse
|
10
|
Magaye RR, Savira F, Xiong X, Huynh K, Meikle PJ, Reid C, Flynn BL, Kaye D, Liew D, Wang BH. Dihydrosphingosine driven enrichment of sphingolipids attenuates TGFβ induced collagen synthesis in cardiac fibroblasts. IJC HEART & VASCULATURE 2021; 35:100837. [PMID: 34277924 PMCID: PMC8264607 DOI: 10.1016/j.ijcha.2021.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023]
Abstract
The sphingolipid de novo synthesis pathway, encompassing the sphingolipids, the enzymes and the cell membrane receptors, are being investigated for their role in diseases and as potential therapeutic targets. The intermediate sphingolipids such as dihydrosphingosine (dhSph) and sphingosine (Sph) have not been investigated due to them being thought of as precursors to other more active lipids such as ceramide (Cer) and sphingosine 1 phosphate (S1P). Here we investigated their effects in terms of collagen synthesis in primary rat neonatal cardiac fibroblasts (NCFs). Our results in NCFs showed that both dhSph and Sph did not induce collagen synthesis, whilst dhSph reduced collagen synthesis induced by transforming growth factor β (TGFβ). The mechanisms of these inhibitory effects were associated with the increased activation of the de novo synthesis pathway that led to increased dihydrosphingosine 1 phosphate (dhS1P). Subsequently, through a negative feedback mechanism that may involve substrate-enzyme receptor interactions, S1P receptor 1 expression (S1PR1) was reduced.
Collapse
Key Words
- Akt, protein kinase B
- CTGF, connective tissue growth factor
- Cardiac fibroblasts
- Cer, ceramide
- Cer1P, ceramide 1 phosphate
- Coll1a1, collagen 1a1
- Collagen synthesis
- Degs1, dihydroceramide desaturase 1 gene
- Des-1, dihydroceramide desaturase 1 enzyme
- Dihydrosphingosine
- ECM, extracellular matrix inhibitor of nuclear kappa B (NFKβ) kinase alpha and beta (IKKα/β)
- MA3PK, mitogen activated protein kinase kinase kinase
- MAPK, mitogren activated protein kinase
- MI, myocardial infarct
- MMP2, matrix metalloproteinase 2
- NCF, neonatal cardiac fibroblasts
- RPS6, ribosomal protein S6
- S1P, sphingosine-1 Phosphate
- S1PR1, sphingosine -1-phosphate receptor 1
- S1PRs, sphingosine 1 phosphate receptor 1-5
- SK1, sphingosine kinase 1
- Sph, sphingosine
- Sphingolipid
- TAK1, transforming growth factor β activating kinase 1
- TGFβ
- TGFβ, transforming growth factor β
- TIMP1, tissue inhibitor of metalloproteinase 1
- d7dhSph, deuterated dihydrosphingosine
- dhCer, dihydroceramide
- dhS1P, dihydrosphingosine 1 phosphate
- mTOR, mammalian target for rapamycin
Collapse
Affiliation(s)
- Ruth R. Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
- Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, PR China
| | - Kevin Huynh
- Metabolomics Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Peter J. Meikle
- Metabolomics Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Public Health School, Curtin University, Perth, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
- School of Public Health School, Curtin University, Perth, Australia
| | - Bernard L. Flynn
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Bing H. Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| |
Collapse
|
11
|
Savira F, Magaye R, Scullino CV, Flynn BL, Pitson SM, Anderson D, Creek DJ, Hua Y, Xiong X, Huang L, Liew D, Reid C, Kaye D, Kompa AR, Wang BH. Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition. Toxicol Lett 2021; 350:133-142. [PMID: 34303789 DOI: 10.1016/j.toxlet.2021.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Non-dialysable protein-bound uremic toxins (PBUTs) contribute to the development of cardiovascular disease (CVD) in chronic kidney disease (CKD) and vice versa. PBUTs have been shown to alter sphingolipid imbalance. Dihydroceramide desaturase 1 (Des1) is an important gatekeeper enzyme which controls the non-reversible conversion of sphingolipids, dihydroceramide, into ceramide. The present study assessed the effect of Des1 inhibition on PBUT-induced cardiac and renal effects in vitro, using a selective Des1 inhibitor (CIN038). Des1 inhibition attenuated hypertrophy in neonatal rat cardiac myocytes and collagen synthesis in neonatal rat cardiac fibroblasts and renal mesangial cells induced by the PBUTs, indoxyl sulfate and p-cresol sulfate. This is at least attributable to modulation of NF-κB signalling and reductions in β-MHC, Collagen I and TNF-α gene expression. Lipidomic analyses revealed Des1 inhibition restored C16-dihydroceramide levels reduced by indoxyl sulfate. In conclusion, PBUTs play a critical role in mediating sphingolipid imbalance and inflammatory responses in heart and kidney cells, and these effects were attenuated by Des1 inhibition. Therefore, sphingolipid modifying agents may have therapeutic potential for the treatment of CVD and CKD and warrant further investigation.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Yue Hua
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew R Kompa
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Bing Hui Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
12
|
Riechert E, Kmietczyk V, Stein F, Schwarzl T, Sekaran T, Jürgensen L, Kamuf-Schenk V, Varma E, Hofmann C, Rettel M, Gür K, Ölschläger J, Kühl F, Martin J, Ramirez-Pedraza M, Fernandez M, Doroudgar S, Méndez R, Katus HA, Hentze MW, Völkers M. Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Rep 2021; 35:109100. [PMID: 33979607 DOI: 10.1016/j.celrep.2021.109100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
RNA-binding proteins (RBPs) control critical aspects of cardiomyocyte function, but the repertoire of active RBPs in cardiomyocytes during the growth response is largely unknown. We define RBPs in healthy and diseased cardiomyocytes at a system-wide level by RNA interactome capture. This identifies 67 cardiomyocyte-specific RBPs, including several contractile proteins. Furthermore, we identify the cytoplasmic polyadenylation element-binding protein 4 (Cpeb4) as a dynamic RBP, regulating cardiac growth both in vitro and in vivo. We identify mRNAs bound to and regulated by Cpeb4 in cardiomyocytes. Cpeb4 regulates cardiac remodeling by differential expression of transcription factors. Among Cpeb4 target mRNAs, two zinc finger transcription factors (Zeb1 and Zbtb20) are discovered. We show that Cpeb4 regulates the expression of these mRNAs and that Cpeb4 depletion increases their expression. Thus, Cpeb4 emerges as a critical regulator of cardiomyocyte function by differential binding to specific mRNAs in response to pathological growth stimulation.
Collapse
Affiliation(s)
- Eva Riechert
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Vivien Kmietczyk
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thileepan Sekaran
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lonny Jürgensen
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Verena Kamuf-Schenk
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Eshita Varma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Christoph Hofmann
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kira Gür
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Julie Ölschläger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Friederike Kühl
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Judit Martin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | | | | | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
13
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn BL, Kaye D, Liew D, Wang BH. Attenuating PI3K/Akt- mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells. Int J Biochem Cell Biol 2021; 134:105952. [PMID: 33609744 DOI: 10.1016/j.biocel.2021.105952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis and myocyte hypertrophy play contributory roles in the progression of diseases such as heart Failure (HF) through what is collectively termed cardiac remodelling. The phosphoinositide 3- kinase (PI3K), protein kinase B (Akt) and mammalian target for rapamycin (mTOR) signalling pathway (PI3K/Akt- mTOR) is an important pathway in protein synthesis, cell growth, cell proliferation, and lipid metabolism. The sphingolipid, dihydrosphingosine 1 phosphate (dhS1P) has been shown to bind to high density lipids in plasma. Unlike its analog, spingosine 1 phosphate (S1P), the role of dhS1P in cardiac fibrosis is still being deciphered. This study was conducted to investigate the effect of dhS1P on PI3K/Akt signalling in primary cardiac fibroblasts and myocytes. Our findings demonstrate that inhibiting PI3K reduced collagen synthesis in neonatal cardiac fibroblasts (NCFs), and hypertrophy in neonatal cardiac myocytes (NCMs) induced by dhS1P, in vitro. Reduced activation of the PI3K/Akt- mTOR signalling pathway led to impaired translation of fibrotic proteins such as collagen 1 (Coll1) and transforming growth factor β (TGFβ) and inhibited the transcription and translation of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). PI3K inhibition also affected the gene expression of S1P receptors and enzymes such as the dihydroceramide delta 4 desaturase (DEGS1) and sphingosine kinase 1 (SK1) in the de novo sphingolipid pathway. While in myocytes, PI3K inhibition reduced myocyte hypertrophy induced by dhS1P by reducing skeletal muscle α- actin (αSKA) mRNA expression, and protein translation due to increased glycogen synthase kinase 3β (GSK3β) mRNA expression. Our findings show a relationship between the PI3K/Akt- mTOR signalling cascade and exogenous dhS1P induced collagen synthesis and myocyte hypertrophy in primary neonatal cardiac cells.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, Melbourne, Australia.
| |
Collapse
|
14
|
Kurosawa R, Satoh K, Nakata T, Shindo T, Kikuchi N, Satoh T, Siddique MAH, Omura J, Sunamura S, Nogi M, Takeuchi Y, Miyata S, Shimokawa H. Identification of Celastrol as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension and Right Ventricular Failure Through Suppression of Bsg (Basigin)/CyPA (Cyclophilin A). Arterioscler Thromb Vasc Biol 2021; 41:1205-1217. [PMID: 33472404 DOI: 10.1161/atvbaha.120.315731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment. We previously reported that Bsg promotes cardiac fibrosis and failure in the left ventricle in response to pressure-overload in mice. However, the roles of Bsg and CyPA in RV failure remain to be elucidated. Approach and Results: First, we found that protein levels of Bsg and CyPA were upregulated in the heart of hypoxia-induced pulmonary hypertension (PH) in mice and monocrotaline-induced PH in rats. Furthermore, cardiomyocyte-specific Bsg-overexpressing mice showed exacerbated RV hypertrophy, fibrosis, and dysfunction compared with their littermates under chronic hypoxia and pulmonary artery banding. Treatment with celastrol, which we identified as a suppressor of Bsg and CyPA by drug screening, decreased proliferation, reactive oxygen species, and inflammatory cytokines in pulmonary artery smooth muscle cells. Furthermore, celastrol treatment ameliorated RV systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH in mice and SU5416/hypoxia-induced PH in rats with reduced Bsg, CyPA, and inflammatory cytokines in the hearts and lungs. CONCLUSIONS These results indicate that elevated Bsg in pressure-overloaded RV exacerbates RV dysfunction and that celastrol ameliorates RV dysfunction in PH model animals by suppressing Bsg and its ligand CyPA. Thus, celastrol can be a novel drug for PH and RV failure that targets Bsg and CyPA. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taijyu Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohammad A H Siddique
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Omura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichiro Sunamura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Nogi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaro Takeuchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Zhang J, Simpson PC, Jensen BC. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 320:H725-H733. [PMID: 33275531 DOI: 10.1152/ajpheart.00621.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than β1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.
Collapse
Affiliation(s)
- Jiandong Zhang
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Sun J, Niu C, Ye W, An N, Chen G, Huang X, Wang J, Chen X, Shen Y, Huang S, Wang Y, Wang X, Wang Y, Jin L, Cong W, Li X. FGF13 Is a Novel Regulator of NF-κB and Potentiates Pathological Cardiac Hypertrophy. iScience 2020; 23:101627. [PMID: 33089113 PMCID: PMC7567043 DOI: 10.1016/j.isci.2020.101627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
FGF13 is an intracellular FGF factor. Its role in cardiomyopathies has been rarely investigated. We revealed that endogenous FGF13 is up-regulated in cardiac hypertrophy accompanied by increased nuclear localization. The upregulation of FGF13 plays a deteriorating role both in hypertrophic cardiomyocytes and mouse hearts. Mechanistically, FGF13 directly interacts with p65 by its nuclear localization sequence and co-localizes with p65 in the nucleus in cardiac hypertrophy. FGF13 deficiency inhibits NF-κB activation in ISO-treated NRCMs and TAC-surgery mouse hearts, whereas FGF13 overexpression shows the opposite trend. Moreover, FGF13 overexpression alone is sufficient to activate NF-κB in cardiomyocytes. The interaction between FGF13 and p65 or the effects of FGF13 on NF-κB have nothing to do with IκB. Together, an IκB-independent mechanism for NF-κB regulation has been revealed in cardiomyocytes both under basal and stressful conditions, suggesting the promising application of FGF13 as a therapeutic target for pathological cardiac hypertrophy and heart failure. Endogenous FGF13 is up-regulated in cardiomyocytes under pressure overload FGF13 directly interacts with p65 Forced FGF13 overexpression activates NF-κB in cardiomyocytes
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ning An
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xixi Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shuai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University Wenzhou, 325000, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
17
|
Oka SI, Sabry AD, Horiuchi AK, Cawley KM, O’Very SA, Zaitsev MA, Shankar TS, Byun J, Mukai R, Xu X, Torres NS, Kumar A, Yazawa M, Ling J, Taleb I, Saijoh Y, Drakos SG, Sadoshima J, Warren JS. Perm1 regulates cardiac energetics as a downstream target of the histone methyltransferase Smyd1. PLoS One 2020; 15:e0234913. [PMID: 32574189 PMCID: PMC7310723 DOI: 10.1371/journal.pone.0234913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
The transcriptional regulatory machinery in mitochondrial bioenergetics is complex and is still not completely understood. We previously demonstrated that the histone methyltransferase Smyd1 regulates mitochondrial energetics. Here, we identified Perm1 (PPARGC-1 and ESRR-induced regulator, muscle specific 1) as a downstream target of Smyd1 through RNA-seq. Chromatin immunoprecipitation assay showed that Smyd1 directly interacts with the promoter of Perm1 in the mouse heart, and this interaction was significantly reduced in mouse hearts failing due to pressure overload for 4 weeks, where Perm1 was downregulated (24.4 ± 5.9% of sham, p<0.05). Similarly, the Perm1 protein level was significantly decreased in patients with advanced heart failure (55.2 ± 13.1% of donors, p<0.05). Phenylephrine (PE)-induced hypertrophic stress in cardiomyocytes also led to downregulation of Perm1 (55.7 ± 5.7% of control, p<0.05), and adenovirus-mediated overexpression of Perm1 rescued PE-induced downregulation of estrogen-related receptor alpha (ERRα), a key transcriptional regulator of mitochondrial energetics, and its target gene, Ndufv1 (Complex I). Pathway enrichment analysis of cardiomyocytes in which Perm1 was knocked-down by siRNA (siPerm1), revealed that the most downregulated pathway was metabolism. Cell stress tests using the Seahorse XF analyzer showed that basal respiration and ATP production were significantly reduced in siPerm1 cardiomyocytes (40.7% and 23.6% of scrambled-siRNA, respectively, both p<0.05). Luciferase reporter gene assay further revealed that Perm1 dose-dependently increased the promoter activity of the ERRα gene and known target of ERRα, Ndufv1 (Complex I). Overall, our study demonstrates that Perm1 is an essential regulator of cardiac energetics through ERRα, as part of the Smyd1 regulatory network.
Collapse
Affiliation(s)
- Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States of America
| | - Amira D. Sabry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Amanda K. Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Keiko M. Cawley
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Sean A. O’Very
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Maria A. Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Thirupura S. Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Jaemin Byun
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States of America
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States of America
| | - Xiaoyong Xu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States of America
- Department of Cardiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Natalia S. Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Anil Kumar
- Metabolic Phenotyping Core Facility, University of Utah, Salt Lake City, UT, United States of America
| | - Masayuki Yazawa
- Columbia Stem Cell Initiative, Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States of America
- Pharmacology, Columbia University, New York, NY, United States of America
| | - Jing Ling
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States of America
| | - Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States of America
| | - Junco S. Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- Institute of Resource Developmental and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Tian W, Yang L, Liu Y, He J, Yang L, Zhang Q, Liu F, Li J, Liu J, Sumi S, Shen Y, Qi Z. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J Nutr Biochem 2020; 79:108132. [DOI: 10.1016/j.jnutbio.2019.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
19
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn B, Kaye D, Liew D, Wang BH. Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1. Cell Signal 2020; 72:109629. [PMID: 32278008 DOI: 10.1016/j.cellsig.2020.109629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/03/2023]
Abstract
Cardiac fibrosis and myocyte hypertrophy are hallmarks of the cardiac remodelling process in cardiomyopathies such as heart failure (HF). Dyslipidemia or dysregulation of lipids contribute to HF. The dysregulation of high density lipoproteins (HDL) could lead to altered levels of other lipid metabolites that are bound to it such as sphingosine-1- phosphate (S1P). Recently, it has been shown that S1P and its analogue dihydrosphingosine-1-phosphate (dhS1P) are bound to HDL in plasma. The effects of dhS1P on cardiac cells have been obscure. In this study, we show that extracellular dhS1P is able to increase collagen synthesis in neonatal rat cardiac fibroblasts (NCFs) and cause hypertrophy of neonatal cardiac myocytes (NCMs). The janus kinase/signal transducer and activator (JAK/STAT) signalling pathway was involved in the increased collagen synthesis by dhS1P, through sustained increase of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). Extracellular dhS1P increased phosphorylation levels of STAT1 and STAT3 proteins, also caused an early increase in gene expression of transforming growth factor-β (TGFβ), and sustained increase in TIMP1. Inhibition of JAKs led to inhibition of TIMP1 and TGFβ gene and protein expression. We also show that dhS1P is able to cause NCM hypertrophy through S1P-receptor-1 (S1PR1) signalling which is opposite to that of its analogue, S1P. Taken together, our results show that dhS1P increases collagen synthesis in cardiac fibroblasts causing fibrosis through dhS1P-JAK/STAT-TIMP1 signalling.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia.
| |
Collapse
|
20
|
Tucker DC, Bishop SP. Use of Embryonic Heart Grafted In Oculo to Assess Neurohumoral Controls of Cardiac Development*. Toxicol Pathol 2020. [DOI: 10.1177/019262339001804a02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Culture of embryonic heart in the anterior eye chamber allows neurohumoral and genetic controls of cardiac development to be separated from the influence of hemodynamic load. Hearts from 12-day gestation rat embryos grafted into the anterior eye chamber of an adult host rat attach to the iris and become vascularized and innervated by collaterals from the host iris. The spontaneous beating of grafts is pacemaker-driven and under functional neural control. Grafts do not beat against a pressure load, allowing the influence of neurohumoral factors to be separated from altered hemodynamic load. In oculo, embryonic heart differentiates into mature myocardium by most morphologic and biochemical criteria. Mature intercalated disks and myofibrils with well-defined Z-lines and M-lines are observed. Mature grafts express the high levels of α-myosin heavy chain characteristic of young adult myocardium. Surgical sympathetic denervation of the anterior eye chamber prior to grafting of embryonic hearts compromises growth and increases the intrinsic pacemaker rate. Since the grafts are perfused by the host circulation, the hormonal milieu of the graft can be altered by treatment of the host. Thus, the interaction between hormones and innervation of grafts can be studied using the in oculo model system.
Collapse
Affiliation(s)
- Diane C. Tucker
- Department of Psychology, Neurobiology Research Center, Alabama 35294
| | - Sanford P. Bishop
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
21
|
Study of the Expression Transition of Cardiac Myosin Using Polarization-Dependent SHG Microscopy. Biophys J 2020; 118:1058-1066. [PMID: 31995740 DOI: 10.1016/j.bpj.2019.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023] Open
Abstract
Detection of the transition between the two myosin isoforms α- and β-myosin in living cardiomyocytes is essential for understanding cardiac physiology and pathology. In this study, the differences in symmetry of polarization spectra obtained from α- and β-myosin in various mammalian ventricles and propylthiouracil-treated rats are explored through polarization-dependent second harmonic generation microscopy. Here, we report for the, to our knowledge, first time that α- and β-myosin, as protein crystals, possess different symmetries: the former has C6 symmetry, and the latter has C3v. A single-sarcomere line scan further demonstrated that the differences in polarization-spectrum symmetry between α- and β-myosin came from their head regions: the head and neck domains of α- and β-myosin account for the differences in symmetry. In addition, the dynamic transition of the polarization spectrum from C6 to C3v line profile was observed in a cell culture in which norepinephrine induced an α- to β-myosin transition.
Collapse
|
22
|
Brezovjakova H, Tomlinson C, Mohd Naim N, Swiatlowska P, Erasmus JC, Huveneers S, Gorelik J, Bruche S, Braga VM. Junction Mapper is a novel computer vision tool to decipher cell-cell contact phenotypes. eLife 2019; 8:45413. [PMID: 31793877 PMCID: PMC7034980 DOI: 10.7554/elife.45413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Stable cell–cell contacts underpin tissue architecture and organization. Quantification of junctions of mammalian epithelia requires laborious manual measurements that are a major roadblock for mechanistic studies. We designed Junction Mapper as an open access, semi-automated software that defines the status of adhesiveness via the simultaneous measurement of pre-defined parameters at cell–cell contacts. It identifies contacting interfaces and corners with minimal user input and quantifies length, area and intensity of junction markers. Its ability to measure fragmented junctions is unique. Importantly, junctions that considerably deviate from the contiguous staining and straight contact phenotype seen in epithelia are also successfully quantified (i.e. cardiomyocytes or endothelia). Distinct phenotypes of junction disruption can be clearly differentiated among various oncogenes, depletion of actin regulators or stimulation with other agents. Junction Mapper is thus a powerful, unbiased and highly applicable software for profiling cell–cell adhesion phenotypes and facilitate studies on junction dynamics in health and disease.
Collapse
Affiliation(s)
- Helena Brezovjakova
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Chris Tomlinson
- Bioinformatics Data Science Group, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Noor Mohd Naim
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Jennifer C Erasmus
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Stephan Huveneers
- Department Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Julia Gorelik
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Susann Bruche
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Vania Mm Braga
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| |
Collapse
|
23
|
Blackwood EA, Hofmann C, Santo Domingo M, Bilal AS, Sarakki A, Stauffer W, Arrieta A, Thuerauf DJ, Kolkhorst FW, Müller OJ, Jakobi T, Dieterich C, Katus HA, Doroudgar S, Glembotski CC. ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb. Circ Res 2019; 124:79-93. [PMID: 30582446 DOI: 10.1161/circresaha.118.313854] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6α), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of increased protein synthesis, it is possible that protein folding and ER proteostasis are challenged during cardiac myocyte growth. However, it is not known whether ATF6 is activated, and if so, what its function is during hypertrophic growth of cardiac myocytes. OBJECTIVE To examine the activity and function of ATF6 during cardiac hypertrophy. METHODS AND RESULTS We found that ER stress and ATF6 were activated and ATF6 target genes were induced in mice subjected to an acute model of transverse aortic constriction, or to free-wheel exercise, both of which promote adaptive cardiac myocyte hypertrophy with preserved cardiac function. Cardiac myocyte-specific deletion of Atf6 (ATF6 cKO [conditional knockout]) blunted transverse aortic constriction and exercise-induced cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for ATF6 in compensatory myocyte growth. Transcript profiling and chromatin immunoprecipitation identified RHEB (Ras homologue enriched in brain) as an ATF6 target gene in the heart. RHEB is an activator of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), a major inducer of protein synthesis and subsequent cell growth. Both transverse aortic constriction and exercise upregulated RHEB, activated mTORC1, and induced cardiac hypertrophy in wild type mouse hearts but not in ATF6 cKO hearts. Mechanistically, knockdown of ATF6 in neonatal rat ventricular myocytes blocked phenylephrine- and IGF1 (insulin-like growth factor 1)-mediated RHEB induction, mTORC1 activation, and myocyte growth, all of which were restored by ectopic RHEB expression. Moreover, adeno-associated virus 9- RHEB restored cardiac growth to ATF6 cKO mice subjected to transverse aortic constriction. Finally, ATF6 induced RHEB in response to growth factors, but not in response to other activators of ATF6 that do not induce growth, indicating that ATF6 target gene induction is stress specific. CONCLUSIONS Compensatory cardiac hypertrophy activates ER stress and ATF6, which induces RHEB and activates mTORC1. Thus, ATF6 is a previously unrecognized link between growth stimuli and mTORC1-mediated cardiac growth.
Collapse
Affiliation(s)
- Erik A Blackwood
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Christoph Hofmann
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.).,Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Michelle Santo Domingo
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Alina S Bilal
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Anup Sarakki
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Winston Stauffer
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Adrian Arrieta
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Donna J Thuerauf
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Fred W Kolkhorst
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| | - Oliver J Müller
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Department of Internal Medicine III, University of Kiel, Germany, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Tobias Jakobi
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Christoph Dieterich
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.).,Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Germany (T.J., C.D.)
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., O.J.M., H.A.K., S.D.).,German Centre for Cardiovascular Research, Partner Site Heidelberg (C.H., O.J.M., T.J., C.D., H.A.K., S.D.)
| | - Christopher C Glembotski
- From the Department of Biology, San Diego State University Heart Institute, San Diego State University, CA (E.A.B., C.H., M.S.D., A.S.B., A.S., W.S., A.A., D.J.T., F.W.K., C.C.G.)
| |
Collapse
|
24
|
Loonat AA, Curtis MK, Richards MA, Nunez-Alonso G, Michl J, Swietach P. A high-throughput ratiometric method for imaging hypertrophic growth in cultured primary cardiac myocytes. J Mol Cell Cardiol 2019; 130:184-196. [PMID: 30986378 PMCID: PMC6520438 DOI: 10.1016/j.yjmcc.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Maladaptive hypertrophy of cardiac myocytes increases the risk of heart failure. The underlying signaling can be triggered and interrogated in cultured neonatal ventricular myocytes (NRVMs) using sophisticated pharmacological and genetic techniques. However, the methods for quantifying cell growth are, by comparison, inadequate. The lack of quantitative, calibratable and computationally-inexpensive high-throughput technology has limited the scope for using cultured myocytes in large-scale analyses. We present a ratiometric method for quantifying the hypertrophic growth of cultured myocytes, compatible with high-throughput imaging platforms. Protein biomass was assayed from sulforhodamine B (SRB) fluorescence, and image analysis calculated the quotient of signal from extra-nuclear and nuclear regions. The former readout relates to hypertrophic growth, whereas the latter is a reference for correcting protein-independent (e.g. equipment-related) variables. This ratiometric measure, when normalized to the number of cells, provides a robust quantification of cellular hypertrophy. The method was tested by comparing the efficacy of various chemical agonists to evoke hypertrophy, and verified using independent assays (myocyte area, transcripts of markers). The method's high resolving power and wide dynamic range were confirmed by the ability to generate concentration-response curves, track the time-course of hypertrophic responses with fine temporal resolution, describe drug/agonist interactions, and screen for novel anti-hypertrophic agents. The method can be implemented as an end-point in protocols investigating hypertrophy, and is compatible with automated plate-reader platforms for generating high-throughput data, thereby reducing investigator-bias. Finally, the computationally-minimal workflow required for obtaining measurements makes the method simple to implement in most laboratories. Maladaptive hypertrophy of myocytes can lead to heart failure. Common methods for tracking growth in cultured myocytes are inadequate. We design and test a method for tracking myocyte hypertrophy in vitro. The method provides a ratiometric index of growth for high throughput analyses. Using the method, we characterize further details of (anti)hypertrophic responses.
Collapse
Affiliation(s)
- Aminah A Loonat
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - M Kate Curtis
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Mark A Richards
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Graciela Nunez-Alonso
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Johanna Michl
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Pawel Swietach
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
25
|
Inhibition of Apoptosis Signal-Regulating Kinase 1 Attenuates Myocyte Hypertrophy and Fibroblast Collagen Synthesis. Heart Lung Circ 2019; 28:495-504. [DOI: 10.1016/j.hlc.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022]
|
26
|
|
27
|
Yang D, Xi J, Xing Y, Tang X, Dai X, Li K, Li H, Lv X, Lu D, Wang H. A new method for neonatal rat ventricular myocyte purification using superparamagnetic iron oxide particles. Int J Cardiol 2018; 270:293-301. [PMID: 29908831 DOI: 10.1016/j.ijcard.2018.05.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neonatal rat ventricular myocytes (NRVMs) have proven to be an ideal research model for cardiac disease. However, the current methods to purify NRVMs have a limitation to obtain high purity. The purpose of this study was to develop a NRVM purification method by using superparamagnetic iron oxide particles (SIOP). METHODS NRVMs were purified by using SIOP (SIOP group). The differential attachment with or without bromodeoxyuridine (BrdU) treatment served as control and BrdU groups, respectively. The Percoll gradient (Percoll) and magnetic-activated cell sorting (MACS) methods were performed to compare the purity and viability of NRVMs with SIOP method. RESULTS The SIOP group enriched NRVMs up to 93.9 ± 2.0% purity determined by flow cytometry (FCM) and 95.6 ± 1.3% by immunofluorescence count (IF). In contrast, the control group gave purities of 71.9 ± 2.9% (by FCM) and 66.8 ± 8.9% (by IF), and the BrdU group obtained 82.0 ± 1.3% (by FCM) and 83.1 ± 2.4% (by IF). The purity of SIOP-isolated NRVMs was not different from that of Percoll and MACS groups. However, the cardiomyocytes separated by these methods, except SIOP protocol, were mixed with intrinsic cardiac adrenergic cells. NRVMs purified by SIOP shaped the similar three-dimensional morphology, with no difference in cell yield, viability and cytosolic Ca2+ homeostasis at 24 h after isolation compared with NRVMs in other groups. Furthermore, SIOP-purified NRVMs retained the responses to phenylephrine and lipopolysaccharide challenge. CONCLUSION We first reported an efficient and novel method to purify NRVMs using SIOP, which may help accelerate innovative research in the field of cardiomyocyte biology.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junmin Xi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaomeng Dai
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Kaiying Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
28
|
Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome. PLoS One 2017; 12:e0187459. [PMID: 29107962 PMCID: PMC5673193 DOI: 10.1371/journal.pone.0187459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
Intracellular accumulation of protein-bound uremic toxins in the setting of cardiorenal syndrome leads to adverse effects on cardiorenal cellular functions, where cardiac hypertrophy and cardiorenal fibrosis are the hallmarks. In this study, we sought to determine if Apoptosis Signal-Regulated Kinase 1 (ASK1), an upstream regulator of cellular stress response, mediates cardiac hypertrophy and cardiorenal fibrosis induced by indoxyl sulfate (IS) and p-cresol sulfate (PCS) in vitro, and whether ASK1 inhibition is beneficial to ameliorate these cellular effects. PCS augmented cardiac myocyte hypertrophy and fibroblast collagen synthesis (as determined by 3H-leucine and 3H-proline incorporation, respectively), similar to our previous finding with IS. IS and PCS also increased collagen synthesis of proximal tubular cells and renal mesangial cells. Pro-hypertrophic (α-skeletal muscle actin and β-MHC) and pro-fibrotic genes (TGF-β1 and ctgf) were induced by both IS and PCS. Western blot analyses revealed the activation of ASK1 and downstream mitogen activated protein kinases (MAPKs) (p38MAPK and ERK1/2) as well as nuclear factor-kappa B (NF-κB) by IS and PCS. ASK1, OAT1/3, ERK1/2 and p38MAPK inhibitors suppressed all these effects. In summary, IS and PCS exhibit pro-hypertrophic and pro-fibrotic properties, at least in part, via the activation of ASK1 and its downstream pathways. ASK1 inhibitor is an effective therapeutic agent to alleviate protein-bound uremic toxin-induced cardiac hypertrophy and cardiorenal fibrosis in vitro, and may be translated further for cardiorenal syndrome therapy.
Collapse
|
29
|
Chuo CH, Devine SM, Scammells PJ, Krum H, Christopoulos A, May LT, White PJ, Wang BH. VCP746, a novel A1 adenosine receptor biased agonist, reduces hypertrophy in a rat neonatal cardiac myocyte model. Clin Exp Pharmacol Physiol 2017; 43:976-82. [PMID: 27377874 DOI: 10.1111/1440-1681.12616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022]
Abstract
VCP746 is a novel A1 adenosine receptor (A1 AR) biased agonist previously shown to be cytoprotective with no effect on heart rate. The aim of this study was to investigate the potential anti-hypertrophic effect of VCP746 in neonatal rat cardiac myocytes (NCM). NCM hypertrophy was stimulated with interleukin (IL)-1β (10 ng/mL), tumour necrosis factor (TNF)-α (10 ng/mL) or Ang II (100 nmol/L) and was assessed by (3) H-leucine incorporation assay. VCP746 significantly inhibited IL-1β-, TNF-α- and Ang II-stimulated NCM hypertrophy as determined by (3) H-leucine incorporation. The anti-hypertrophic effect of VCP746 was also more potent than that of the prototypical A1 AR agonist, N(6) -cyclopentyladenosine (CPA). Further investigation with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay showed that neither CPA nor VCP746 had any effect on cell viability, confirming that the reduction in (3) H-leucine incorporation mediated by CPA and VCP746 was not due to a reduction in cell viability. IL-1β, TNF-α and Ang II were also shown to increase the mRNA expression of hypertrophy biomarkers, ANP, β-MHC and α-SKA in NCM. Treatment with VCP746 at concentrations as low as 1 nmol/L suppressed mRNA expression of ANP, β-MHC and α-SKA stimulated by IL-1β, TNF-α or Ang II, demonstrating the broad mechanistic basis of the potent anti-hypertrophic effect of VCP746. This study has shown that the novel A1 AR agonist, VCP746, is able to attenuate cardiac myocyte hypertrophy. As such, VCP746 is potentially useful as a pharmacological agent in attenuating cardiac remodelling, especially in the post-myocardial infarction setting, given its previously established cytoprotective properties.
Collapse
Affiliation(s)
- Chung H Chuo
- Drug Discovery Biology, Monash University, Parkville, Vic., Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | | | - Lauren T May
- Drug Discovery Biology, Monash University, Parkville, Vic., Australia
| | - Paul J White
- Drug Discovery Biology, Monash University, Parkville, Vic., Australia
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
30
|
Montgomery MD, Chan T, Swigart PM, Myagmar BE, Dash R, Simpson PC. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice. PLoS One 2017; 12:e0168409. [PMID: 28081170 PMCID: PMC5231318 DOI: 10.1371/journal.pone.0168409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023] Open
Abstract
Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35-40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies.
Collapse
Affiliation(s)
- Megan D. Montgomery
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Trevor Chan
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Philip M. Swigart
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Bat-erdene Myagmar
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Rajesh Dash
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Paul C. Simpson
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
31
|
Oxygen cycling to improve survival of stem cells for myocardial repair: A review. Life Sci 2016; 153:124-31. [PMID: 27091653 DOI: 10.1016/j.lfs.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023]
Abstract
Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials.
Collapse
|
32
|
Mdaki KS, Larsen TD, Wachal AL, Schimelpfenig MD, Weaver LJ, Dooyema SDR, Louwagie EJ, Baack ML. Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol 2016; 310:H681-92. [PMID: 26801311 DOI: 10.1152/ajpheart.00795.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/15/2016] [Indexed: 01/26/2023]
Abstract
Offspring of diabetic pregnancies are at risk of cardiovascular disease at birth and throughout life, purportedly through fuel-mediated influences on the developing heart. Preventative measures focus on glycemic control, but the contribution of additional offenders, including lipids, is not understood. Cellular bioenergetics can be influenced by both diabetes and hyperlipidemia and play a pivotal role in the pathophysiology of adult cardiovascular disease. This study investigated whether a maternal high-fat diet, independently or additively with diabetes, could impair fuel metabolism, mitochondrial function, and cardiac physiology in the developing offspring's heart. Sprague-Dawley rats fed a control or high-fat diet were administered placebo or streptozotocin to induce diabetes during pregnancy and then delivered offspring from four groups: control, diabetes exposed, diet exposed, and combination exposed. Cardiac function, cellular bioenergetics (mitochondrial stress test, glycolytic stress test, and palmitate oxidation assay), lipid peroxidation, mitochondrial histology, and copy number were determined. Diabetes-exposed offspring had impaired glycolytic and respiratory capacity and a reduced proton leak. High-fat diet-exposed offspring had increased mitochondrial copy number, increased lipid peroxidation, and evidence of mitochondrial dysfunction. Combination-exposed pups were most severely affected and demonstrated cardiac lipid droplet accumulation and diastolic/systolic cardiac dysfunction that mimics that of adult diabetic cardiomyopathy. This study is the first to demonstrate that a maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancies through metabolic stress and serves as a critical step in understanding the role of cellular bioenergetics in developmentally programmed cardiac disease.
Collapse
Affiliation(s)
- Kennedy S Mdaki
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Tricia D Larsen
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Angela L Wachal
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | | | - Lucinda J Weaver
- Sanford School of Medicine-University of South Dakota, Sioux Falls, South Dakota
| | - Samuel D R Dooyema
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | | | - Michelle L Baack
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota; Sanford School of Medicine-University of South Dakota, Sioux Falls, South Dakota; Children's Health Specialty Clinic, Sanford Children's Hospital, Sioux Falls, South Dakota
| |
Collapse
|
33
|
Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell Signal 2015; 28:725-32. [PMID: 26475678 PMCID: PMC4872538 DOI: 10.1016/j.cellsig.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets.
Collapse
|
34
|
Cardiac sympathetic activity in hypertrophic cardiomyopathy and Tako-tsubo cardiomyopathy. Clin Transl Imaging 2015; 3:379-385. [PMID: 26457274 PMCID: PMC4592489 DOI: 10.1007/s40336-015-0133-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022]
Abstract
123I-meta-iodobenzylguanidine (123I-mIBG) scintigraphy has been established as an important technique to evaluate cardiac sympathetic function and it has been shown to be of clinical value, especially for the assessment of prognosis, in many cardiac diseases. The majority of 123I-mIBG scintigraphy studies have focused on patients with cardiac dysfunction due to hypertension, ischemic heart disease, or valvular disease. However less is known about the role of 123I-mIBG scintigraphy in primary cardiomyopathies. This overview shows the clinical value of 123I-mIBG scintigraphy in two types of primary cardiomyopathy: The genetic hypertrophic cardiomyopathy (HCM) and the acquired Tako-tsubo cardiomyopathy (TCM). Cardiac sympathetic activity is increased in HCM and correlates to the septal wall thickness and consequently to the LVOT obstruction. Moreover, increased cardiac sympathetic activity correlates with impaired diastolic and systolic LV function. In addition, 123I-mIBG scintigraphy may be useful for determining the risk of developing congestive heart failure and ventricular tachycardia in these patients. In TCM 123I-mIBG scintigraphy can be used to assess cardiac sympathetic hyperactivity. In addition, 123I-mIBG scintigraphy may identify those patients who are prone to TCM recurrence and may help to identify responders to individual (pharmacological) therapy.
Collapse
|
35
|
Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L, Dodoni G, Stangherlin A, Livie C, Jiang H, Sin YY, Gesellchen F, Terrin A, Baillie GS, Nicklin SA, Graham D, Szabo-Fresnais N, Krall J, Vandeput F, Movsesian M, Furlan L, Corsetti V, Hamilton G, Lefkimmiatis K, Sjaastad I, Zaccolo M. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circ Res 2015; 117:707-19. [PMID: 26243800 DOI: 10.1161/circresaha.114.305892] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
RATIONALE Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.
Collapse
Affiliation(s)
- Anna Zoccarato
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicoletta C Surdo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Jan M Aronsen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Laura A Fields
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Luisa Mancuso
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Giuliano Dodoni
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Alessandra Stangherlin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Craig Livie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - He Jiang
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Yuan Yan Sin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Frank Gesellchen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Anna Terrin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - George S Baillie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Stuart A Nicklin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Delyth Graham
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicolas Szabo-Fresnais
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Judith Krall
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Fabrice Vandeput
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Matthew Movsesian
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Leonardo Furlan
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Veronica Corsetti
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Graham Hamilton
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Konstantinos Lefkimmiatis
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Ivar Sjaastad
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Manuela Zaccolo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.).
| |
Collapse
|
36
|
Zhang B, Montgomery M, Davenport-Huyer L, Korolj A, Radisic M. Platform technology for scalable assembly of instantaneously functional mosaic tissues. SCIENCE ADVANCES 2015; 1:e1500423. [PMID: 26601234 PMCID: PMC4643798 DOI: 10.1126/sciadv.1500423] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/13/2015] [Indexed: 05/05/2023]
Abstract
Engineering mature tissues requires a guided assembly of cells into organized three-dimensional (3D) structures with multiple cell types. Guidance is usually achieved by microtopographical scaffold cues or by cell-gel compaction. The assembly of individual units into functional 3D tissues is often time-consuming, relying on cell ingrowth and matrix remodeling, whereas disassembly requires an invasive method that includes either matrix dissolution or mechanical cutting. We invented Tissue-Velcro, a bio-scaffold with a microfabricated hook and loop system. The assembly of Tissue-Velcro preserved the guided cell alignment realized by the topographical features in the 2D scaffold mesh and allowed for the instant establishment of coculture conditions by spatially defined stacking of cardiac cell layers or through endothelial cell coating. The assembled cardiac 3D tissue constructs were immediately functional as measured by their ability to contract in response to electrical field stimulation. Facile, on-demand tissue disassembly was demonstrated while preserving the structure, physical integrity, and beating function of individual layers.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Locke Davenport-Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Corresponding author. E-mail:
| |
Collapse
|
37
|
Rana I, Kompa AR, Skommer J, Wang BH, Lekawanvijit S, Kelly DJ, Krum H, Charchar FJ. Contribution of microRNA to pathological fibrosis in cardio-renal syndrome: impact of uremic toxins. Physiol Rep 2015; 3:3/4/e12371. [PMID: 25896982 PMCID: PMC4425975 DOI: 10.14814/phy2.12371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Progressive reduction in kidney function in patients following myocardial infarction (MI) is associated with an increase in circulating uremic toxins levels leading to increased extracellular matrix deposition. We have recently reported that treatment with uremic toxin adsorbent AST-120 in rats with MI inhibits serum levels of uremic toxin indoxyl sulfate (IS) and downregulates expression of cardiac profibrotic cytokine transforming growth factor beta (TGF-β1). In this study, we examined the effect of uremic toxins post-MI on cardiac microRNA-21 and microRNA-29b expression, and also the regulation of target genes and matrix remodeling proteins involved in TGFβ1 and angiotensin II signaling pathways. Sixteen weeks after MI, cardiac tissues were assessed for pathological and molecular changes. The percentage area of cardiac fibrosis was 4.67 ± 0.17 in vehicle-treated MI, 2.9 ± 0.26 in sham, and 3.32 ± 0.38 in AST-120-treated MI, group of rats. Compared to sham group, we found a twofold increase in the cardiac expression of microRNA-21 and 0.5-fold decrease in microRNA-29b in heart tissue from vehicle-treated MI. Treatment with AST-120 lowered serum IS levels and attenuated both, cardiac fibrosis and changes in expression of these microRNAs observed after MI. We also found increased mRNA expression of angiotensin-converting enzyme (ACE) and angiotensin receptor 1a (Agtr1a) in cardiac tissue collected from MI rats. Treatment with AST-120 attenuated both, expression of ACE and Agtr1a mRNA. Exposure of rat cardiac fibroblasts to IS upregulated angiotensin II signaling and altered the expression of both microRNA-21 and microRNA-29b. These results collectively suggest a clear role of IS in altering microRNA-21 and microRNA-29b in MI heart, via a mechanism involving angiotensin signaling pathway, which leads to cardiac fibrosis.
Collapse
Affiliation(s)
- Indrajeetsinh Rana
- School of Health Sciences Federation University Australia, Ballarat, Victoria, Australia
| | - Andrew R Kompa
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia Department of Medicine, University of Melbourne St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Joanna Skommer
- School of Health Sciences Federation University Australia, Ballarat, Victoria, Australia
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia
| | - Suree Lekawanvijit
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia
| | - Fadi J Charchar
- School of Health Sciences Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
38
|
An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells. Sci Rep 2015; 5:8807. [PMID: 25744085 PMCID: PMC4351515 DOI: 10.1038/srep08807] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 01/25/2023] Open
Abstract
In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms.
Collapse
|
39
|
Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide. In Vitro Cell Dev Biol Anim 2014; 51:353-60. [DOI: 10.1007/s11626-014-9844-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
40
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
41
|
Vinh NB, Devine SM, Munoz L, Ryan RM, Wang BH, Krum H, Chalmers DK, Simpson JS, Scammells PJ. Design, Synthesis, and Biological Evaluation of Tetra-Substituted Thiophenes as Inhibitors of p38α MAPK. ChemistryOpen 2014; 4:56-64. [PMID: 25861571 PMCID: PMC4380954 DOI: 10.1002/open.201402076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
p38α mitogen-activated protein kinase (MAPK) plays a role in several cellular processes and consequently has been a therapeutic target in inflammatory diseases, cancer, and cardiovascular disease. A number of known p38α MAPK inhibitors contain vicinal 4-fluorophenyl/4-pyridyl rings connected to either a 5- or 6-membered heterocycle. In this study, a small library of substituted thiophene-based compounds bearing the vicinal 4-fluorophenyl/4-pyridyl rings was designed using computational docking as a visualisation tool. Compounds were synthesised and evaluated in a fluorescence polarisation binding assay. The synthesised analogues had a higher binding affinity to the active phosphorylated form of p38α MAPK than the inactive nonphosphorylated form of the protein. 4-(2-(4-fluorophenyl)thiophen-3-yl)pyridine had a Ki value of 0.6 μm to active p38α MAPK highlighting that substitution of the core ring to a thiophene retains affinity to the enzyme and can be utilised in p38α MAPK inhibitors. This compound was further elaborated using a substituted phenyl ring in order to probe the second hydrophobic pocket. Many of these analogues exhibited low micromolar affinity to active p38α MAPK. The suppression of neonatal rat fibroblast collagen synthesis was also observed suggesting that further development of these compounds may lead to potential therapeutics having cardioprotective properties.
Collapse
Affiliation(s)
- Natalie B Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, VIC 3052 (Australia)
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, VIC 3052 (Australia)
| | - Lenka Munoz
- Discipline of Pharmacology, School of Medical Sciences and Bosch Institute, The University of Sydney Sydney, NSW 2006 (Australia)
| | - Renae M Ryan
- Discipline of Pharmacology, School of Medical Sciences and Bosch Institute, The University of Sydney Sydney, NSW 2006 (Australia)
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventative Medicine, Monash University 99 Commercial Road, Melbourne, VIC 3004 (Australia)
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventative Medicine, Monash University 99 Commercial Road, Melbourne, VIC 3004 (Australia)
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, VIC 3052 (Australia)
| | - Jamie S Simpson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, VIC 3052 (Australia)
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, VIC 3052 (Australia)
| |
Collapse
|
42
|
Chahine MN, Mioulane M, Sikkel MB, O'Gara P, Dos Remedios CG, Pierce GN, Lyon AR, Földes G, Harding SE. Nuclear pore rearrangements and nuclear trafficking in cardiomyocytes from rat and human failing hearts. Cardiovasc Res 2014; 105:31-43. [PMID: 25341891 PMCID: PMC4277256 DOI: 10.1093/cvr/cvu218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aims During cardiac hypertrophy, cardiomyocytes (CMs) increase in the size and expression of cytoskeletal proteins while reactivating a foetal gene programme. The process is proposed to be dependent on increased nuclear export and, since nuclear pore trafficking has limited capacity, a linked decrease in import. Our objective was to investigate the role of nuclear import and export in control of hypertrophy in rat and human heart failure (HF). Methods and results In myocardial tissue and isolated CMs from patients with dilated cardiomyopathy, nuclear size was increased; Nucleoporin p62, cytoplasmic RanBP1, and nuclear translocation of importins (α and β) were decreased while Exportin-1 was increased. CM from a rat HF model 16 weeks after myocardial infarction (MI) reproduced these nuclear changes. Nuclear import, determined by the rate of uptake of nuclear localization sequence (NLS)-tagged fluorescent substrate, was also decreased and this change was observed from 4 weeks after MI, before HF has developed. Treatment of isolated rat CMs with phenylephrine (PE) for 48 h produced similar cell and nuclear size increases, nuclear import and export protein rearrangement, and NLS substrate uptake decrease through p38 MAPK and HDAC-dependent pathways. The change in NLS substrate uptake occurred within 15 min of PE exposure. Inhibition of nuclear export with leptomycin B reversed established nuclear changes in PE-treated rat CMs and decreased NLS substrate uptake and cell/nuclear size in human CMs. Conclusions Nuclear transport changes related to increased export and decreased import are an early event in hypertrophic development. Hypertrophy can be prevented, or even reversed, by targeting import/export, which may open new therapeutic opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Grant N Pierce
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Alexander R Lyon
- NHLI, Imperial College, London, UK NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | | | | |
Collapse
|
43
|
Dambrot C, Braam SR, Tertoolen LGJ, Birket M, Atsma DE, Mummery CL. Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. J Cell Mol Med 2014; 18:1509-18. [PMID: 24981391 PMCID: PMC4190898 DOI: 10.1111/jcmm.12356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/27/2014] [Indexed: 11/27/2022] Open
Abstract
It has been known for over 20 years that foetal calf serum can induce hypertrophy in cultured cardiomyocytes but this is rarely considered when examining cardiomyocytes derived from pluripotent stem cells (PSC). Here, we determined how serum affected cardiomyocytes from human embryonic- (hESC) and induced pluripotent stem cells (hiPSC) and hiPSC from patients with hypertrophic cardiomyopathy linked to a mutation in the MYBPC3 gene. We first confirmed previously published hypertrophic effects of serum on cultured neonatal rat cardiomyocytes demonstrated as increased cell surface area and beating frequency. We then found that serum increased the cell surface area of hESC- and hiPSC-derived cardiomyocytes and their spontaneous contraction rate. Phenylephrine, which normally induces cardiac hypertrophy, had no additional effects under serum conditions. Likewise, hiPSC-derived cardiomyocytes from three MYBPC3 patients which had a greater surface area than controls in the absence of serum as predicted by their genotype, did not show this difference in the presence of serum. Serum can thus alter the phenotype of human PSC derived cardiomyocytes under otherwise defined conditions such that the effects of hypertrophic drugs and gene mutations are underestimated. It is therefore pertinent to examine cardiac phenotypes in culture media without or in low concentrations of serum.
Collapse
Affiliation(s)
- Cheryl Dambrot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
45
|
Affiliation(s)
- Christopher C Glembotski
- From the Department of Biology and The San Diego State University Heart Institute, San Diego, CA
| |
Collapse
|
46
|
Keung W, Boheler KR, Li RA. Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2014; 5:17. [PMID: 24467782 PMCID: PMC4055054 DOI: 10.1186/scrt406] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells, are abundant sources of cardiomyocytes (CMs) for cell replacement therapy and other applications such as disease modeling, drug discovery and cardiotoxicity screening. However, hPSC-derived CMs display immature structural, electrophysiological, calcium-handling and metabolic properties. Here, we review various biological as well as physical and topographical cues that are known to associate with the development of native CMs in vivo to gain insights into the development of strategies for facilitated maturation of hPSC-CMs.
Collapse
|
47
|
O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013; 66:308-33. [PMID: 24368739 DOI: 10.1124/pr.112.007203] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Collapse
Affiliation(s)
- Timothy D O'Connell
- VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121. ; or Dr. Timothy D. O'Connell, E-mail:
| | | | | | | |
Collapse
|
48
|
Ormiston ML, Deng Y, Rundle N, Bendjelloul F, Tsoporis JN, Parker TG, Stewart DJ, Courtman DW. A Lymphocyte-Dependent Mode of Action for Imatinib Mesylate in Experimental Pulmonary Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1541-51. [DOI: 10.1016/j.ajpath.2013.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/24/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022]
|
49
|
Hui K, Feng ZP. Efficient experimental design and analysis of real-time PCR assays. Channels (Austin) 2013; 7:160-70. [PMID: 23510941 DOI: 10.4161/chan.24024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Real-time polymerase chain reaction (qPCR) is currently the standard for gene quantification studies and has been extensively used in large-scale basic and clinical research. The operational costs and technical errors can become a significant issue due to the large number of sample reactions. In this paper, we present an experimental design strategy and an analysis procedure that are more efficient requiring fewer sample reactions than the traditional approach. We verified mathematically and experimentally the new design on a well-characterized model, to evaluate the gene expression levels of CACNA1C and CACNA1G in hypertrophic ventricular myocytes induced by phenylephrine treatment.
Collapse
Affiliation(s)
- Kwokyin Hui
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
50
|
Peters MF, Scott CW, Ochalski R, Dragan YP. Evaluation of Cellular Impedance Measures of Cardiomyocyte Cultures for Drug Screening Applications. Assay Drug Dev Technol 2012; 10:525-32. [DOI: 10.1089/adt.2011.442] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew F. Peters
- Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts
| | - Clay W Scott
- Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts
| | - Rafal Ochalski
- Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts
| | - Yvonne P. Dragan
- Safety Assessment, AstraZeneca Pharmaceuticals, Waltham, Massachusetts
| |
Collapse
|