1
|
Notley SR, Akerman AP, D'Souza AW, Meade RD, McCourt ER, McCormick JJ, Kenny GP. Dose-dependent nonthermal modulation of whole body heat exchange during dynamic exercise in humans. Am J Physiol Regul Integr Comp Physiol 2024; 326:R53-R65. [PMID: 37955132 DOI: 10.1152/ajpregu.00203.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate whole body dry and evaporative heat exchange. These responses are modulated by the rise in body temperature (thermal factors), as well as several nonthermal factors implicated in the cardiovascular response to exercise (i.e., central command, mechanoreceptors, and metaboreceptors). However, the way these nonthermal factors interact with thermal factors to maintain heat balance remains poorly understood. We therefore used direct calorimetry to quantify the effects of dose-dependent increases in the activation of these nonthermal stimuli on whole body dry and evaporative heat exchange during dynamic exercise. In a randomized crossover design, eight participants performed 45-min cycling at a fixed metabolic heat production (200 W/m2) in warm, dry conditions (30°C, 20% relative humidity) on four separate occasions, differing only in the level of lower-limb compression applied via bilateral thigh cuffs pressurized to 0, 30, 60, or 90 mmHg. This model provoked increments in nonthermal activation while ensuring the heat loss required to balance heat production was matched across trials. At end-exercise, dry heat loss was 2 W/m2 [1, 3] lower per 30-mmHg pressure increment (P = 0.006), whereas evaporative heat loss was elevated 5 W/m2 [3, 7] with each pressure increment (P < 0.001). Body heat storage and esophageal temperature did not differ across conditions (both P ≥ 0.600). Our findings indicate that the nonthermal factors engaged during exercise exert dose-dependent, opposing effects on whole body dry and evaporative heat exchange, which do not significantly alter heat balance.NEW & NOTEWORTHY To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate dry and evaporative heat exchange. These responses are modulated by body temperatures (thermal factors) and several nonthermal factors (e.g., central command, metaboreceptors), although the way thermal and nonthermal factors interact to regulate body temperature is poorly understood. We demonstrate that nonthermal factors exert dose-dependent, opposing effects on dry and evaporative heat loss, without altering heat storage during dynamic exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew W D'Souza
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Bossenger NR, Lewis GN, Rice DA, Shepherd D. The autonomic and nociceptive response to acute exercise is impaired in people with knee osteoarthritis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100118. [PMID: 36711216 PMCID: PMC9873673 DOI: 10.1016/j.ynpai.2023.100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Objectives An acute bout of exercise typically leads to short term exercise induced hypoalgesia (EIH), but this response is more variable in many chronic pain populations, including knee osteoarthritis (OA) and fibromyalgia (FM). There is evidence of autonomic nervous system (ANS) dysfunction in some chronic pain populations that may contribute to impaired EIH, but this has not been investigated in people with knee OA. The aim of this study was to assess the acute effects of isometric exercise on the nociceptive and autonomic nervous systems in people with knee OA and FM, compared to pain-free controls. Methods A cross-sectional study was undertaken with 14 people with knee OA, 13 people with FM, and 15 pain free controls. Across two experimental sessions, baseline recordings and the response of the nociceptive and autonomic nervous systems to a 5-min submaximal isometric contraction of the quadriceps muscle was assessed. The nociceptive system was assessed using pressure pain thresholds at the knee and forearm. The ANS was assessed using high frequency heart rate variability, cardiac pre-ejection period, and electrodermal activity. Outcome measures were obtained before and during (ANS) or immediately after (nociceptive) the acute bout of exercise. Results Submaximal isometric exercise led to EIH in the control group. EIH was absent in both chronic pain groups. Both chronic pain groups showed lower vagal activity at rest. Furthermore, people with knee OA demonstrated reduced vagal withdrawal in response to acute isometric exercise compared to controls. Sympathetic reactivity was similar across groups. Discussion The findings of reduced tonic vagal activity and reduced autonomic modulation in response to isometric exercise raise the potential of a blunted ability to adapt to acute exercise stress and modulate nociception in people with knee OA. The impairment of EIH in knee OA may, in part, be due to ANS dysfunction.
Collapse
Affiliation(s)
- Neil R. Bossenger
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Gwyn N. Lewis
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
- Corresponding author at: Health and Rehabilitation Research Institute, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - David A. Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
- Waitematā Pain Services, Department of Anaesthesiology and Perioperative Medicine, Te Whatu Ora Waitematā, Auckland, New Zealand
| | - Daniel Shepherd
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
4
|
Qin L, Li J. Exaggerated blood pressure response to static exercise in hindlimb ischemia-reperfusion. Front Physiol 2022; 13:1048559. [PMID: 36589449 PMCID: PMC9794987 DOI: 10.3389/fphys.2022.1048559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral artery disease (PAD) reduces the blood flow supply in the affected limbs as one of the significant cardiovascular concerns. Revascularization surgery in the femoral artery plays a central role in treating PAD. Exercise is also a rehabilitation strategy suggested for PAD patients to improve vascular functions. However, the effects of limb ischemia-reperfusion (IR), one of the most predominant complications in revascularization surgery, on exercise-induced arterial blood pressure (BP) response are poorly understood. In the present study, we determined 1) the blood flow status in the hindlimb muscles of rats (plantar muscle, red and white portions of gastrocnemius) with different time points of the hindlimb IR; and 2) the BP response to static muscle contraction in rats at different time points after the blood flow reperfusion procedure. Results of this study indicated that, compared with the Sham group, the blood flow in the hindlimb muscles evaluated by Evans blue concentration was significantly reduced at 6 h of femoral artery occlusion (FAO 6 h) (vs. sham control, p < 0.05). The decreased blood flow was gradually recovered after the blood flow reperfusion for 18 (IR 18 h), 66 (IR 66 h), and 114 (IR 114 h) hours (p < 0.05 vs. FAO 6 h for all IR groups). The response of mean arterial pressure was 20 ± 4 mmHg in Sham rats (n = 7); 32 ± 10 mmHg in IR 18 h rats (n = 10); 27 ± 7 mmHg in IR 66 h rats (n = 13); 26 ± 4 mmHg in IR 114 h rats (n = 9) (p < 0.05 vs. Sham for all groups). No significant difference was observed in the peak-developed tension during muscle contraction among all the groups (p > 0.05). In conclusion, static exercise-induced BP response is exaggerated following IR. Whereas the BP response is not statistically significant but tends to decrease with a prolonged IR time, the exaggerated BP response remains through time points from post-IR 18 h-114 h.
Collapse
Affiliation(s)
- Lu Qin
- *Correspondence: Lu Qin, ; Jianhua Li,
| | | |
Collapse
|
5
|
Di Pino G, Mioli A, Altamura C, D'Alonzo M. Embodying an artificial hand increases blood flow to the investigated limb [version 3; peer review: 2 approved]. OPEN RESEARCH EUROPE 2022; 1:55. [PMID: 35747768 PMCID: PMC7612882 DOI: 10.12688/openreseurope.13641.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Background The autonomic nervous system is the main determinant of the blood flow directed towards a body part, and it is tightly connected to the representation of the body in the brain; would the experimental modulation of the sense of limb ownership affect its blood perfusion? Methods In healthy participants, we employed the rubber hand illusion paradigm to modulate limb ownership while we monitored the brachial artery blood flow and resistance index within the investigated limb. Results In all conditions with brush-stroking, we found an initial drop in the blood flow due to tactile stimulation. Subsequently, in the illusion condition (where both the rubber and real hand synchronous brush-stroking were present), the blood flow rose significantly faster and reached significantly higher values. Moreover, the increase in blood flow correlated with the extent of embodiment as measured by questionnaires and correlated negatively with the change of peripherical vascular resistance. Conclusions These findings suggest that modulating the representation of a body part impacts its blood perfusion.
Collapse
Affiliation(s)
- Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Alessandro Mioli
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, Rome, 00128, Italy
| | - Marco D'Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| |
Collapse
|
6
|
Di Pino G, Mioli A, Altamura C, D'Alonzo M. Embodying an artificial hand increases blood flow to the investigated limb. OPEN RESEARCH EUROPE 2021; 1:55. [PMID: 35747768 PMCID: PMC7612882 DOI: 10.12688/openreseurope.13641.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 08/31/2023]
Abstract
Background: The autonomic nervous system is the main determinant of the blood flow directed towards a body part, and it is tightly connected to the representation of the body in the brain; would the experimental modulation of the sense of ownership of the limb affect its blood perfusion? Methods: In healthy participants, we employed the rubber hand illusion paradigm to modulate limb ownership while we monitored the brachial artery blood flow and resistance of the investigated limb. Results: In all conditions with brush-stroking, we found an initial drop in the blood flow due to tactile stimulation. Subsequently, in the illusion condition where both the rubber and real hand experience synchronous brush-stroking, the blood flow rose significantly faster and reached significantly higher values. Moreover, the increase in blood flow correlated to the embodiment level measured by questionnaires and, negatively, to the change of peripherical vascular resistance. Conclusions: These findings demonstrate that modulating the representation of a body part impacts its blood perfusion.
Collapse
Affiliation(s)
- Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Alessandro Mioli
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| | - Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 200, Rome, 00128, Italy
| | - Marco D'Alonzo
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University of Rome, via Alvaro del Portillo, 5, Rome, 00128, Italy
| |
Collapse
|
7
|
Díaz-Sáez MC, La Touche R, Cuenca-Martínez F. Comparative analysis of the autonomic nervous system response during movement representation in healthy individuals and patients with chronic low back pain: a prospective cohort study. Somatosens Mot Res 2020; 38:68-76. [PMID: 33153350 DOI: 10.1080/08990220.2020.1845137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The primary objective was to compare the difference in autonomic nervous system (ANS) response between motor imagery (MI) group and action observation (AO) group. Both consisted of two subgroups: the control subgroup (CG), which consisted of asymptomatic individuals, and the patient subgroup (PG), which consisted of patients with chronic low back pain (CLBP). The secondary objective was to assess ANS activity during AO and MI training according to the fear-of-movement levels of the PGs. METHODS Sixty participants were randomly assigned. The autonomic outcome measures included skin conductance (SC), respiration rate (RR), and heart rate (HR). RESULTS Results showed that intergroup differences in RR were higher in the PG, with a large effect size (p = .007, d = 1.71). Only the PGs showed intragroup differences in SC (p <.05). In terms of ANS activity during the training, there were no statistically significant intergroup differences (p <.05). However, the strongest intragroup differences were among the AOPG with greater levels of kinesiophobia. For the SC and HR variables, only this condition showed significant differences between baseline and the first and second movements, with a large effect size (p <.001 and p = .002, respectively, and d >.80). CONCLUSIONS The results showed that AO and MI training in the PG and CG resulted in similar but not identical ANS activation, with slightly higher activation in the PG. The differences in the PG could be associated with kinesiophobia when visually exposed to low-back movements that could be interpreted as hazardous or unsafe.
Collapse
Affiliation(s)
- Marta Carlota Díaz-Sáez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, Spain
| | - Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Li Q, Garry MG. A murine model of the exercise pressor reflex. J Physiol 2020; 598:3155-3171. [PMID: 32406099 DOI: 10.1113/jp277602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The decerebrate mouse provides a novel working model of the exercise pressor reflex (EPR). The decerebrate mouse model of the EPR is similar to the previously described decerebrate rat model. Studying the EPR in transgenic mouse models can define exact mechanisms of the EPR in health and disease. ABSTRACT The exercise pressor reflex (EPR) is defined by a rise in mean arterial pressure (MAP) and heart rate (HR) in response to exercise and is necessary to match metabolic demand and prevent premature fatigue. While this reflex is readily tested in humans, mechanistic studies are largely infeasible. Here, we have developed a novel murine model of the EPR to allow for mechanistic studies in various mouse models. We observed that ventral root stimulation (VRS) in an anaesthetized mouse causes a depressor response and a reduction in HR. In contrast, the same stimulation in a decerebrate mouse causes a rise in MAP and HR which is abolished by dorsal rhizotomy or by neuromuscular blockade. Moreover, we demonstrate a reduced MAP response to VRS using TRPV1 antagonism or in Trpv1 null mice while the response to passive stretch remains intact. Additionally, we demonstrate that intra-arterial infusion of capsaicin results in a dose-related rise in MAP and HR that is significantly reduced by a selective and potent TRPV1 antagonist or is completely abolished in Trpv1 null mice. These data serve to validate the development of a decerebrate mouse model for the study of cardiovascular responses to exercise and further define the role of the TRPV1 receptor in mediating the EPR. This novel model will allow for extensive study of the EPR in unlimited transgenic and mutant mouse lines, and for an unprecedented exploration of the molecular mechanisms that control cardiovascular responses to exercise in health and disease.
Collapse
Affiliation(s)
- Qinglu Li
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
9
|
A pilot study: Wavelet cross-correlation of cardiovascular oscillations under controlled respiration in humans. Microvasc Res 2020; 130:103993. [PMID: 32194083 DOI: 10.1016/j.mvr.2020.103993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
The influence of deep controlled respiration on cardiovascular oscillations in 13 healthy young volunteers was studied. A measurement system comprising electrocardiography, laser Doppler flowmetry (LDF) and photoplethysmography (PPG) was used to estimate heart rate variability (HRV), tissue blood volume and skin blood perfusion at spontaneous respiration and during three tests at controlled conditions. In the latter case, respiration was controlled in both rate (0.04, 0.1 and 0.25 Hz) and depth. During respiration at 0.04 and 0.1 Hz, the amplification of a respiratory-related component in the spectra of HRV and PPG signals turned out to be more significant than that at spontaneous respiration, and at 0.25 Hz this component remained unchanged. Controlled respiration caused a significant increase in correlation in HRV-PPG, HRV-LDF and PPG-LDF pairs of signals compared to spontaneous one. At 0.25 Hz controlled respiration, no significant increase in correlation in these pairs of signals was found. The differences observed in this study can be attributed to the effects of the sympathetic nerve activity on vascular tone regulation.
Collapse
|
10
|
Cuenca-Martínez F, Suso-Martí L, León-Hernández JV, La Touche R. The Role of Movement Representation Techniques in the Motor Learning Process: A Neurophysiological Hypothesis and a Narrative Review. Brain Sci 2020; 10:brainsci10010027. [PMID: 31906593 PMCID: PMC7016972 DOI: 10.3390/brainsci10010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023] Open
Abstract
We present a neurophysiological hypothesis for the role of motor imagery (MI) and action observation (AO) training in the motor learning process. The effects of movement representation in the brain and those of the cortical–subcortical networks related to planning, executing, adjusting, and automating real movements share a similar neurophysiological activity. Coupled with the influence of certain variables related to the movement representation process, this neurophysiological activity is a key component of the present hypothesis. These variables can be classified into four domains: physical, cognitive–evaluative, motivational–emotional, and direct-modulation. The neurophysiological activity underlying the creation and consolidation of mnemonic representations of motor gestures as a prerequisite to motor learning might differ between AO and MI. Together with variations in cognitive loads, these differences might explain the differing results in motor learning. The mirror neuron system appears to function more efficiently through AO training than MI, and AO is less demanding in terms of cognitive load than MI. AO might be less susceptible to the influence of variables related to movement representation.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-740-1980 (ext. 310)
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Department of Physiotherapy, Cardenal Herrera University-CEU, CEU Universities, 46115 Valencia, Spain
| | - Jose Vicente León-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), 28008 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| |
Collapse
|
11
|
Walsh B, Smith A, Christ SL, Weber C. Sympathetic Nervous System Activity in Preschoolers Who Stutter. Front Hum Neurosci 2019; 13:356. [PMID: 31649519 PMCID: PMC6795148 DOI: 10.3389/fnhum.2019.00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In our Dynamic Pathways, account, we hypothesized that childhood stuttering reflects an impairment in speech sensorimotor control that is conditioned by cognitive, linguistic, and emotional factors. The purpose of this study was to investigate potential differences in levels of sympathetic arousal during performance of speech and non-speech tasks between children who do and do not stutter. METHODS Seventy-two preschool-aged children participated in the study, 47 children who stutter (CWS; 38 boys) and 25 children who do not stutter (CWNS; 18 boys). We recorded skin conductance and blood pulse volume (BPV) signals, indices of sympathetic arousal, during higher/lower load speech tasks (structured sentence production and picture description) and non-speech tasks (jaw wagging and forceful blowing). We included a measure that reflects children's attitudes about their communication skills and a parent-report assessment of temperament. RESULTS We found no significant differences between preschool CWS and CWNS in phasic skin conductance response amplitude or frequency, BPV, and pulse rate for any of the experimental tasks. However, compared to CWNS, CWS had, on average, significantly higher skin conductance levels (SCL), indexing slowly changing tonic sympathetic activity, across both speech and non-speech experimental conditions. We found distinctive task-related profiles of sympathetic arousal in both groups of preschool children. Most children produced the highest levels of sympathetic arousal in the physically demanding blowing task rather than in speech, as seen in previous studies of adults. We did not find differences in temperament between the two groups of preschool children nor a relationship among behavioral indices of temperament and communication attitude and physiological measures of sympathetic arousal. CONCLUSION We did not find that atypically high, speech-related sympathetic arousal is a significant factor in early childhood stuttering. Rather, CWS had higher, on average, task-related tonic SCLs across speech and non-speech tasks. A relationship among behavioral measures of temperament and physiological measures of sympathetic arousal was not confirmed. Key questions for future experiments are how the typical coupling of sympathetic and speech sensorimotor systems develops over childhood and adolescence and whether task related developmental profiles follow a different course in children who continue to stutter.
Collapse
Affiliation(s)
- Bridget Walsh
- Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Anne Smith
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Sharon L. Christ
- Human Development and Family Studies, Purdue University, West Lafayette, IN, United States
| | - Christine Weber
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
12
|
The origin, significance and plasticity of the thermoeffector thresholds: Extrapolation between humans and laboratory rodents. J Therm Biol 2019; 85:102397. [DOI: 10.1016/j.jtherbio.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023]
|
13
|
Cuenca-Martínez F, Suso-Martí L, Grande-Alonso M, Paris-Alemany A, La Touche R. Combining motor imagery with action observation training does not lead to a greater autonomic nervous system response than motor imagery alone during simple and functional movements: a randomized controlled trial. PeerJ 2018; 6:e5142. [PMID: 30002975 PMCID: PMC6037142 DOI: 10.7717/peerj.5142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Both motor imagery (MI) and action observation (AO) trigger the activation of the neurocognitive mechanisms that underlie the planning and execution of voluntary movements in a manner that resembles how the action is performed in a real way. The main objective of the present study was to compare the autonomic nervous system (ANS) response in an isolated MI group compared to a combined MI + AO group. The mental tasks were based on two simple movements that are recorded in the revised movement imagery questionnaire in third-person perspective. The secondary objective of the study was to test if there was any relationship between the ANS variables and the ability to generate mental motor imagery, the mental chronometry and the level of physical activity. The main outcomes that were measured were heart rate, respiratory rate and electrodermal activity. A Biopac MP150 system, a measurement device of autonomic changes, was used for the quantification and evaluation of autonomic variables. Forty five asymptomatic subjects were selected and randomized in three groups: isolated MI, MI + AO and control group (CG). In regards to the activation of the sympathetic nervous system (SNS), no differences were observed between MI and MI + AO groups (p > .05), although some differences were found between both groups when compared to the CG (p < .05). Additionally, even though no associations were reported between the ANS variables and the ability to generate mental motor imagery, moderate-strong positive associations were found in mental chronometry and the level of physical activity. Our results suggest that MI and MI + AO, lead to an activation of the SNS, although there are no significant differences between the two groups. Based on results obtained, we suggest that tasks of low complexity, providing a visual input through the AO does not facilitates their subsequent motor imagination. A higher level of physical activity as well as a longer time to perform mental task, seem to be associated with a greater increase in the ANS response.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Suso-Martí
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Grande-Alonso
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Paris-Alemany
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
14
|
Asahara R, Endo K, Liang N, Matsukawa K. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass. Eur J Appl Physiol 2018; 118:1689-1702. [DOI: 10.1007/s00421-018-3901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
|
15
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Morimoto A, Suga T, Tottori N, Wachi M, Misaki J, Tsuchikane R, Isaka T. Association between hand muscle thickness and whole-body skeletal muscle mass in healthy adults: a pilot study. J Phys Ther Sci 2017; 29:1644-1648. [PMID: 28932005 PMCID: PMC5599838 DOI: 10.1589/jpts.29.1644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/15/2017] [Indexed: 11/29/2022] Open
Abstract
[Purpose] Handgrip strength is a surrogate indicator for assessing disease-related and
age-related skeletal muscle loss. Clinical utility as such a surrogate can be at least
partially explained by the close relationship between handgrip strength and whole-body
skeletal muscle mass. The handgrip strength is related to hand muscle size. Thus, the
present study examined whether hand muscle thickness is associated with whole-body
skeletal muscle mass. [Subjects and Methods] Thirty healthy male adults participated in
this study. All subjects were right-hand dominant. Two muscle thicknesses (lumbrical and
interosseous muscles) in the right hand were measured using ultrasonography. Whole-body
and appendicular skeletal muscle masses were assessed using dual-energy X-ray
absorptiometry. [Results] Although lumbrical muscle thickness was not correlated with
whole-body skeletal muscle mass, there was a significant correlation with appendicular
skeletal muscle mass. Furthermore, interosseous muscle thickness was significantly
correlated with both whole-body and appendicular skeletal muscle masses. [Conclusion] The
present findings suggest that two muscle thicknesses in the hand are related to whole-body
and/or appendicular skeletal muscle mass in healthy adults. Therefore, we propose that
despite being smaller than other limb muscles, hand muscle thickness may be useful as
surrogate indicator for assessing disease-related and age-related skeletal muscle
loss.
Collapse
Affiliation(s)
- Akio Morimoto
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Nobuaki Tottori
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Michio Wachi
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Kanazawa Orthopaedic & Sports Medicine Clinic, Japan
| | - Jun Misaki
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Ryo Tsuchikane
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University: 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
Greaney JL, Kenney WL. Measuring and quantifying skin sympathetic nervous system activity in humans. J Neurophysiol 2017; 118:2181-2193. [PMID: 28701539 DOI: 10.1152/jn.00283.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/23/2023] Open
Abstract
Development of the technique of microneurography has substantially increased our understanding of the function of the sympathetic nervous system (SNS) in health and in disease. The ability to directly record signals from peripheral autonomic nerves in conscious humans allows for qualitative and quantitative characterization of SNS responses to specific stimuli and over time. Furthermore, distinct neural outflow to muscle (MSNA) and skin (SSNA) can be delineated. However, there are limitations and caveats to the use of microneurography, measurement criteria, and signal analysis and interpretation. MSNA recordings have a longer history and are considered relatively more straightforward from a measurement and analysis perspective. This brief review provides an overview of the development of the technique as used to measure SSNA. The focus is on the utility of measuring sympathetic activity directed to the skin, the unique issues related to analyzing and quantifying multiunit SSNA, and the challenges related to its interpretation.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
18
|
Sarmento ADO, Santos ADC, Trombetta IC, Dantas MM, Oliveira Marques AC, do Nascimento LS, Barbosa BT, Dos Santos MR, Andrade MDA, Jaguaribe-Lima AM, Brasileiro-Santos MDS. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly. Clin Interv Aging 2017; 12:1021-1028. [PMID: 28721030 PMCID: PMC5500489 DOI: 10.2147/cia.s120876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that regular physical activity improves neurovascular control of muscle blood flow and cardiac autonomic response during isometric handgrip exercise in healthy older adult subjects.
Collapse
Affiliation(s)
- Adriana de Oliveira Sarmento
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil.,Unit of Cardiovascular Rehabilitation and Exercise Physiology - Heart Institute (InCor/HC-FMUSP), University of São Paulo, São Paulo, Brazil.,Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil
| | - Amilton da Cruz Santos
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil.,Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
| | - Ivani Credidio Trombetta
- Unit of Cardiovascular Rehabilitation and Exercise Physiology - Heart Institute (InCor/HC-FMUSP), University of São Paulo, São Paulo, Brazil.,Graduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Marciano Moacir Dantas
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil
| | - Ana Cristina Oliveira Marques
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil.,Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
| | - Leone Severino do Nascimento
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil.,Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
| | - Bruno Teixeira Barbosa
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil.,Unit of Cardiovascular Rehabilitation and Exercise Physiology - Heart Institute (InCor/HC-FMUSP), University of São Paulo, São Paulo, Brazil
| | - Marcelo Rodrigues Dos Santos
- Unit of Cardiovascular Rehabilitation and Exercise Physiology - Heart Institute (InCor/HC-FMUSP), University of São Paulo, São Paulo, Brazil
| | | | - Anna Myrna Jaguaribe-Lima
- Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil.,Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Maria do Socorro Brasileiro-Santos
- Laboratory of Physical Training Studies Applied to Health, Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil.,Graduate Program in Physiotherapy, Federal University of Pernambuco, Recife, Brazil.,Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
| |
Collapse
|
19
|
Haqani B, Fujii N, Kondo N, Kenny GP. The mechanisms underlying the muscle metaboreflex modulation of sweating and cutaneous blood flow in passively heated humans. Physiol Rep 2017; 5:5/3/e13123. [PMID: 28183862 PMCID: PMC5309575 DOI: 10.14814/phy2.13123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/24/2022] Open
Abstract
Metaboreceptors can modulate cutaneous blood flow and sweating during heat stress but the mechanisms remain unknown. Fourteen participants (31 ± 13 years) performed 1‐min bout of isometric handgrip (IHG) exercise at 60% of their maximal voluntary contraction followed by a 3‐min occlusion (OCC), each separated by 10 min, initially under low (LHS, to activate sweating without changes in core temperature) and high (HHS, whole‐body heating to a core temperature increase of 1.0°C) heat stress conditions. Cutaneous vascular conductance (CVC) and sweat rate were measured continuously at four forearm skin sites perfused with 1) lactated Ringer's solution (Control), 2) 10 mmol L‐NAME [inhibits nitric oxide synthase (NOS)], 3) 10 mmol Ketorolac [inhibits cyclooxygenase (COX)], or 4) 4 mmol theophylline (THEO; inhibits adenosine receptors). Relative to pre‐IHG levels with Control, NOS inhibition attenuated the metaboreceptor‐mediated increase in sweating under LHS and HHS (P ≤ 0.05), albeit the attenuation was greater under LHS (P ≤ 0.05). In addition, a reduction from baseline was observed with THEO under LHS during OCC (P ≤ 0.05), but not HHS (both P > 0.05). In contrast, CVC was lower than Control with L‐NAME during OCC in HHS (P ≤ 0.05), but not LHS (P > 0.05). We show that metaboreceptor activation modulates CVC via the stimulation of NOS and adenosine receptors, whereas NOS, but not COX or adenosine receptors, contributes to sweating at all levels of heating.
Collapse
Affiliation(s)
- Baies Haqani
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa, Ottawa, Canada
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment Kobe University, Kobe, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa, Ottawa, Canada
| |
Collapse
|
20
|
Gordon CJ, Caldwell JN, Taylor NAS. Non-thermal modulation of sudomotor function during static exercise and the impact of intensity and muscle-mass recruitment. Temperature (Austin) 2016; 3:252-261. [PMID: 27857955 PMCID: PMC4964990 DOI: 10.1080/23328940.2016.1176102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 11/04/2022] Open
Abstract
Aim: Static muscle activation elicits intensity-dependent, non-thermal sweating that is presumably controlled by feedforward (central command) mechanisms. However, it is currently unknown how the size of the recruited muscle mass interacts with that mechanism. To investigate the possible muscle-size dependency of that non-thermal sweating, the recruitment of two muscle groups of significantly different size was investigated in individuals within whom steady-state thermal sweating had been established and clamped. Methods: Fourteen passively heated subjects (climate chamber and water-perfusion garment) performed 60-s, static handgrip and knee-extension activations at 30% and 50% of maximal voluntary force, plus a handgrip at 40% intensity (143.4 N) and a third knee extension at the same absolute force. Local sweating from four body segments (averaged to represent whole-body sudomotor activity), three deep-body and eight skin temperatures, heart rates and perceptions of physical effort were measured continuously, and analyzed over the final 30 s of exercise. Results: In the presence of thermal clamping and low-level, steady-state sweating, static muscle activation resulted in exercise-intensity dependent changes in the whole-body sudomotor response during these handgrip and knee-extension actions (P < 0.05). However, there was no evidence of a dependency on the size of the recruited muscle mass (P > 0.05), yet both dependencies were apparent for heart rate, and partially evident for the sensations of physical effort. Conclusion: These observations represent the first evidence that exercise-related sudomotor feedforward is not influenced by the size of the activated muscle mass, but is instead primarily dictated by the intensity of the exercise itself.
Collapse
Affiliation(s)
- Christopher J Gordon
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong , Wollongong, NSW, Australia
| | - Joanne N Caldwell
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong , Wollongong, NSW, Australia
| | - Nigel A S Taylor
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong , Wollongong, NSW, Australia
| |
Collapse
|
21
|
Li J, Cui J. Purinergic P2X Receptors and Heightened Exercise Pressor Reflex in Peripheral Artery Disease. INTERNAL MEDICINE REVIEW (WASHINGTON, D.C. : ONLINE) 2016; 2. [PMID: 29862378 DOI: 10.18103/imr.v2i10.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arterial blood pressure (BP) and vasoconstriction regulated by sympathetic nerve activity (SNA) are heightened during exercise in patients with peripheral artery disease (PAD). The exercise pressor reflex is considered as a neural mechanism responsible for the exaggerated autonomic responses to exercise in PAD. A series of studies have employed a rat model of PAD to examine signal pathways at receptor and cellular levels by which the exercise pressor reflex is amplified. This review will summarize results obtained from recent human and animal studies with respect to contribution of muscle afferents to augmented SNA and BP responses in PAD. The role played by adenosine triphosphate (ATP) and ATP sensitive purinergic P2X receptors will be emphasized.
Collapse
Affiliation(s)
- Jianhua Li
- Heart & Vascular Institute, The Penn State University College of Medicine, Hershey, PA 17033
| | - Jian Cui
- Heart & Vascular Institute, The Penn State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
22
|
Cui J, Blaha C, Sinoway LI. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans. J Appl Physiol (1985) 2016; 121:1178-1186. [PMID: 27763873 DOI: 10.1152/japplphysiol.00212.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Cheryl Blaha
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Health, Penn State Heart and Vascular Institute, Hershey, Pennsylvania
| |
Collapse
|
23
|
Choo HC, Nosaka K, Peiffer JJ, Ihsan M, Yeo CC, Abbiss CR. Reliability of laser Doppler, near-infrared spectroscopy and Doppler ultrasound for peripheral blood flow measurements during and after exercise in the heat. J Sports Sci 2016; 35:1715-1723. [DOI: 10.1080/02640414.2016.1235790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui C. Choo
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Jeremiah J. Peiffer
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Australia
| | - Mohammed Ihsan
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Sports Physiology Department, Singapore Sports Institute, Singapore, Singapore
| | - Chow C. Yeo
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Chris R. Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
24
|
Choo HC, Nosaka K, Peiffer JJ, Ihsan M, Yeo CC, Abbiss CR. Peripheral blood flow changes in response to postexercise cold water immersion. Clin Physiol Funct Imaging 2016; 38:46-55. [PMID: 27464622 DOI: 10.1111/cpf.12380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/30/2016] [Indexed: 01/30/2023]
Abstract
This study compared the effect of postexercise water immersion (WI) at different temperatures on common femoral artery blood flow (CFA), muscle (total haemoglobin; tHb) and skin perfusion (cutaneous vascular conductance; CVC), assessed by Doppler ultrasound, near-infrared spectroscopy (NIRS) and laser Doppler flowmetry, respectively. Given that heat stress may influence the vascular response during cooling, nine men cycled for 25 min at the first ventilatory threshold followed by intermittent 30-s cycling at 90% peak power until exhaustion at 32·8 ± 0·4°C and 32 ± 5% RH. They then received 5-min WI at 8·6 ± 0·2°C (WI9 ), 14·6 ± 0·3°C (WI15 ), 35·0 ± 0·4°C (WI35 ) or passive rest (CON) in a randomized, crossover manner. Heart rate (HR), mean arterial pressure (MAP), muscle (Tmu ), thigh skin (Tthigh ), rectal (Tre ) and mean body (Tbody ) temperatures were assessed. At 60 min postimmersion, decreases in Tre after WI35 (-0·6 ± 0·3°C) and CON (-0·6 ± 0·3°C) were different from WI15 (-1·0 ± 0·3°C; P<0·05), but not from WI9 (-1·0 ± 0·3°C; P = 0·074-0·092). WI9 and WI15 had reduced Tbody , Tthigh and Tmu compared with WI35 and CON (P <0·05). CFA, tHb and CVC were lower in WI9 and WI15 compared with CON (P<0·05). tHb following WI9 remained lower than CON (P = 0·044) at 30 min postimmersion. CVC correlated with tHb during non-cooling (WI35 and CON) (r2 = 0·532; P<0·001) and cooling recovery (WI9 and WI15 ) (r2 = 0·19; P = 0·035). WI9 resulted in prolonged reduction in muscle perfusion. This suggests that CWI below 10°C should not be used for short-term (i.e. <60 min) recovery after exercise.
Collapse
Affiliation(s)
- Hui C Choo
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jeremiah J Peiffer
- School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Mohammed Ihsan
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sports Physiology Department, Singapore Sports Institute, Singapore, Singapore
| | - Chow C Yeo
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
25
|
Kim HG, Kim JK, Kim KA, Nho H, Lee S, Chang MJ, Choi HM. The role of metaboreceptor on exercise in hyperthermic environment with college basketball players. SPRINGERPLUS 2016; 5:365. [PMID: 27066375 PMCID: PMC4805669 DOI: 10.1186/s40064-016-1989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
The objective of this study is to review physiological differences of college basketball players cardiovascular responses and group IV metaboreceptor interactions appearing post muscular ischemia exercise (PEMI) caused by a static handgrip exercise (SHE). The subjects were placed in a temperature and moisture stabilized indoor environment for 2 h in order to measure blood pressure. For the SHE, maximal voluntary contraction of arms with a relative strength of 50 % of the maximum muscular strength was put into isometric training for 2 min. After completing the exercises, cuffs worn on the arms of the subjects were pressurized up to 200 mmHg by applying PEMI to block the artery and vein. In this way, the cardiovascular responses created by SHE and PEMI were measured. Blood samples of subjects were collected from the vein of each upper arm before SHE and after PEMI to measure the metabolite hormone and catecholamine in the blood. Results from the measurements showed a significant decrease of blood pressure under high temperature environments compared to normal temperature environments. With respect to PEMI, increases in blood pressure under the high temperature environment were significantly lower compared to the normal temperature environment. In conclusion, this study revealed that college basketball players with good physical strength had higher sensitivities of arterial baroreceptor. However, blood pressure was not increased accordingly because the increase of cutaneous vasoconstriction due to stimuli of the metaboreceptor under a high temperature environment could not be compensated by arterial baroreflex due to the increase of total vascular conductance.
Collapse
Affiliation(s)
- Hyun-Gook Kim
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| | - Jong-Kyung Kim
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| | - Kyung-Ae Kim
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| | - Hosung Nho
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| | - Sungchul Lee
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| | - Myoung-Jae Chang
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| | - Hyun-Min Choi
- Graduate School of Physical Education, KyungHee University, Seocheon-dong Giheung-gu, Yongin-si, Gyeonggi-do 446-701 Korea
| |
Collapse
|
26
|
Metzler-Wilson K, Toma K, Sammons DL, Mann S, Jurovcik AJ, Demidova O, Wilson TE. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients. J Neurophysiol 2015; 114:1530-7. [PMID: 26133800 DOI: 10.1152/jn.00458.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component.
Collapse
Affiliation(s)
- Kristen Metzler-Wilson
- Marian University College of Osteopathic Medicine, Indianapolis, Indiana; Ohio Musculoskeletal and Neurological Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Kumika Toma
- Ohio Musculoskeletal and Neurological Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio; School of Kinesiology, College of Health Professions, Marshall University, Huntington, West Virginia; and
| | - Dawn L Sammons
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio; Oakview Dermatology, Athens, Ohio
| | - Sarah Mann
- Ohio Musculoskeletal and Neurological Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Andrew J Jurovcik
- Ohio Musculoskeletal and Neurological Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Olga Demidova
- Ohio Musculoskeletal and Neurological Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Thad E Wilson
- Marian University College of Osteopathic Medicine, Indianapolis, Indiana; Ohio Musculoskeletal and Neurological Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio; Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio; Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio;
| |
Collapse
|
27
|
|
28
|
Witting N, Kruuse C, Nyhuus B, Prahm KP, Citirak G, Lundgaard SJ, von Huth S, Vejlstrup N, Lindberg U, Krag TO, Vissing J. Effect of sildenafil on skeletal and cardiac muscle in Becker muscular dystrophy. Ann Neurol 2014; 76:550-7. [PMID: 25042931 DOI: 10.1002/ana.24216] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Patients with Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy lack neuronal nitric oxide synthase (nNOS). nNOS mediates physiological sympatholysis, thus ensuring adequate blood supply to working muscle. In mice lacking dystrophin, restoration of nNOS effects by a phosphodiesterase 5 (PDE5) inhibitor (sildenafil) improves skeletal and cardiac muscle performance. Sildenafil also improves blood flow in patients with BMD. We therefore hypothesized that sildenafil would improve blood flow, maximal work capacity, and heart function in patients with BMD. METHODS A randomized, double-blind, placebo-controlled crossover design with two 4-week periods of treatment, separated by 2-week washout was used. We assessed brachial artery blood flow during maximal handgrip exercise, 6-minute walk test, maximal oxidative capacity, and life quality; cardiac function was evaluated by magnetic resonance imaging (MRI) at rest and during maximal handgrip exercise. Muscle nNOS and PDE5 were tested with Western blotting in 5 patients. RESULTS Sixteen patients completed all skeletal muscle evaluations, and 13 completed the cardiac MRI investigations. Sildenafil had no effect on any of the outcome parameters. No serious adverse effects were recorded. PDE5 and nNOS were deficient in 5 of 5 biopsies. INTERPRETATION Despite positive evidence from animal models of dystrophinopathy and physiological findings in patients with BMD, this double-blind, placebo-controlled clinical study showed no effect of sildenafil on blood flow, maximal work capacity, and heart function in adults with BMD. This discrepancy may be explained by a significant downregulation of PDE5 in muscle.
Collapse
Affiliation(s)
- Nanna Witting
- Neuromuscular Research Unit and Department of Neurology, Rigshospitalet, University Hospital Glostrup, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yano T, Lian CS, Afroundeh R, Shirakawa K, Yunoki T. Comparison of oscillations of skin blood flow and deoxygenation in vastus lateralis in light exercise. Biol Sport 2014; 31:15-20. [PMID: 25187674 PMCID: PMC3994580 DOI: 10.5604/20831862.1083274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to compare oscillation of skin blood flow with that of deoxygenation in muscle during light exercise in order to determine the physiological significance of oscillations in deoxygenation. Prolonged exercise with 50% of peak oxygen uptake was performed for 60 min. Skin blood flow (SBF) was measured using a laser blood flow meter on the right vastus lateralis muscle. Deoxygenated haemoglobin/myoglobin (DHb/Mb) concentration in the left vastus lateralis were measured using a near-infrared spectroscopy system. SBF and DHb/Mb during exercise were analysed by fast Fourier transform. We classified frequency bands according to previous studies (Kvernmo et al. 1999, Kvandal et al. 2006) into phase I (0.005-0.0095 and 0.0095-0.02 Hz), phase II (0.02-0.06 Hz: phase II) and phase III (0.06-0.16 Hz). The first peak of power spectra density (PSD) in SBF appeared at 0.0078 Hz in phase I. The second peak of PSD in SBF appeared at 0.035 Hz. The third peak of PSD in SBF appeared at 0.078 Hz. The first peak of PSD in DHb/Mb appeared at 0.0039 Hz, which was out of phase I. The second peak of PSD in DHb/Mb appeared at 0.016 Hz. The third peak of PSD in DHb/Mb appeared at 0.035 Hz. The coefficient of cross correlation was very low. Cross power spectra density showed peaks of 0.0039, 0.016 and 0.035 Hz. It is concluded that a peak of 0.016 Hz in oscillations of DHb/Mb observed in muscle during exercise is associated with endothelium-dependent vasodilation (phase I) and that a peak of 0.035 Hz in DHb/Mb is associated with sympathetic nerve activity (phase II). It is also confirmed that each peak of SBF oscillations is observed in each phase.
Collapse
Affiliation(s)
- T Yano
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - C-S Lian
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - R Afroundeh
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - K Shirakawa
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - T Yunoki
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
30
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Hamada H, Ueno K, Kataoka T. Evidence for centrally induced cholinergic vasodilatation in skeletal muscle during voluntary one-legged cycling and motor imagery in humans. Physiol Rep 2013; 1:e00092. [PMID: 24303156 PMCID: PMC3831904 DOI: 10.1002/phy2.92] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/28/2022] Open
Abstract
We have recently reported that central command contributes to increased blood flow in both noncontracting and contracting vastus lateralis (VL) muscles at the early period of voluntary one-legged cycling. The purpose of this study was to examine whether sympathetic cholinergic vasodilatation mediates the increases in blood flows of both muscles during one-legged exercise. Following intravenous administration of atropine (10 μg/kg), eight subjects performed voluntary 1-min one-legged cycling (at 35% of maximal voluntary effort) and mental imagery of the exercise. The relative concentrations of oxygenated- and deoxygenated-hemoglobin (Oxy- and Deoxy-Hb) in the bilateral VL were measured as an index of muscle tissue blood flow with near-infrared spectroscopy (NIRS). The Oxy-Hb in both noncontracting and contracting VL increased at the early period of one-legged cycling, whereas the Deoxy-Hb did not alter at that period. Atropine blunted (P < 0.05) the Oxy-Hb responses of both VL muscles but did not affect the Deoxy-Hb responses. The time course and magnitude of the atropine-sensitive component in the Oxy-Hb response were quite similar between the noncontracting and contracting VL muscles. With no changes in the Deoxy-Hb and hemodynamics, imagery of one-legged cycling induced the bilateral increases in the Oxy-Hb, which were completely abolished by atropine. In contrast, imagery of a circle (with no relation to exercise) did not alter the NIRS signals, irrespective of the presence or absence of atropine. It is concluded that central command evokes cholinergic vasodilatation equally in bilateral VL muscles during voluntary one-legged cycling and motor imagery.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Muller MD, Sauder CL, Ray CA. Melatonin attenuates the skin sympathetic nerve response to mental stress. Am J Physiol Heart Circ Physiol 2013; 305:H1382-6. [PMID: 23997106 DOI: 10.1152/ajpheart.00470.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melatonin attenuates muscle sympathetic nerve responses to sympathoexcitatory stimuli, but it is unknown whether melatonin similarly attenuates reflex changes in skin sympathetic nerve activity (SSNA). In this double-blind, placebo-controlled, crossover study, we tested the hypothesis that melatonin (3 mg) would attenuate the SSNA response to mental stress (mental arithmetic). Twelve healthy subjects underwent experimental testing on two separate days. Three minutes of mental stress occurred before and 45 min after ingestion of melatonin (3 mg) or placebo. Skin temperature was maintained at 34°C. Reflex increases in SSNA (peroneal nerve), mean arterial pressure, and heart rate (HR) to mental stress before and after melatonin were determined. Melatonin lowered HR (pre, 66 ± 3 beats/min; and post, 62 ± 3 beats/min, P = 0.046) and SSNA (pre, 14,282 ± 3,706 arbitrary units; and post, 9,571 ± 2,609 arbitrary units, P = 0.034) at rest. In response to mental stress, SSNA increases were significantly attenuated following melatonin ingestion (second minute, 114 ± 30 vs. 74 ± 14%; and third minute, 111 ± 29 vs. 54 ± 12%, both P < 0.05). The mean arterial pressure increase to mental stress was blunted in the third minute (20 ± 2 vs. 17 ± 2 mmHg, P = 0.032), and the HR increase was blunted in the first minute (33 ± 3 vs. 29 ± 3 beats/min, P = 0.034) after melatonin. In summary, exogenous melatonin attenuates the SSNA response to mental stress.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Heart and Vascular Institute, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | |
Collapse
|
33
|
Collet C, Di Rienzo F, El Hoyek N, Guillot A. Autonomic nervous system correlates in movement observation and motor imagery. Front Hum Neurosci 2013; 7:415. [PMID: 23908623 PMCID: PMC3726866 DOI: 10.3389/fnhum.2013.00415] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/11/2013] [Indexed: 11/13/2022] Open
Abstract
The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes.
Collapse
Affiliation(s)
- C Collet
- Mental processes and Motor Performance Laboratory, EA 647 CRIS, University of Lyon - Claude Bernard University Lyon 1 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
34
|
Muller MD, Sauder CL, Ray CA. Mental Stress Elicits Sustained and Reproducible Increases in Skin Sympathetic Nerve Activity. Physiol Rep 2013; 1. [PMID: 23750321 PMCID: PMC3673729 DOI: 10.1002/phy2.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mental stress (MS) is a known trigger of myocardial infarction and sudden death. By activating the sympathetic nervous system, MS may have deleterious effect on the cardiovascular system but this process is not completely understood. The primary aim of this study was to quantify the effect of MS on skin sympathetic nerve activity (SSNA). The secondary aim was to determine the reproducibility of SSNA to MS within a given day and ∼1 week later. Ten subjects (26 ± 1 year) performed two bouts of mental arithmetic lasting 3 min. The bouts were separated by 45 min. One week later the subjects returned to repeat MS. All experiments were conducted in the supine posture during the morning hours. To maintain neutral skin temperature, each subject wore a custom suit (34–35°C). Skin blood flow and sweat rate were measured on the dorsal foot. MS elicited a marked increase in SSNA within the first 10 sec (184 ± 42%; P < 0.01) in all subjects, which was less during the remaining period of MS, but remained elevated (87 ± 20; P < 0.01). The pattern of responses to MS was unchanged during the second bout (10 sec, 247 ± 55%; 3 min average, 133 ± 29%) and during the retest 1 week later (10 sec, 196 ± 55%; 3 min average, 117 ± 36%). MS did not significantly affect cutaneous vascular conductance or sweat rate during any trial. In summary, MS elicits robust and reproducible increases in SSNA in humans, which may be followed over time to observe alterations in the regulation of the autonomic nervous system.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Heart & Vascular Institute, Department of Cellular and Molecular Physiology, Clinical Research Center, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033
| | | | | |
Collapse
|
35
|
Yano T, Lian CS, Arimitsu T, Yamanaka R, Afroundeh R, Shirakawa K, Yunoki T. Comparison of oscillation of oxygenation in skeletal muscle between early and late phases in prolonged exercise. Physiol Res 2013; 62:297-304. [PMID: 23489190 DOI: 10.33549/physiolres.932474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to compare the oscillations of oxygenation in skeletal muscle between early and late phases in prolonged exercise. During prolonged exercise at 60 % of peak oxygen uptake (V(.)o(2)) for 60 min and at rest, oxygenated hemoglobin/myoglobin (Hb/MbO(2)) and total Hb/Mb (THb/Mb) were determined by near-infrared spectroscopy in the vastus lateralis. Power spectra density (PSD) for the difference between Hb/MbO(2) and THb/Mb (-HHb/MbO(2): deoxygenation) was obtained by fast Fourier transform at rest, in the early phase (1-6 min) and in the late phase (55-60 min) in exercise. Peak PSD in the early phase was significantly higher than that at rest. There were at least three peaks of PSD in exercise. The highest peak was a band around 0.01 Hz, the next peak was a band around 0.04 Hz, and the lowest peak was a band around 0.06 Hz. PSD in the early phase was not significantly different from that in the late phase in exercise. Heart rate (HR) showed a continuous significant increase from 3 min in exercise until the end of exercise. Skin blood flow (SBF) around the early phase was significantly lower than that around the late phase. It was concluded that oscillation of oxygenation in the muscle oxygen system in the early phase is not different from that in the late phase in prolonged exercise despite cardiovascular drift.
Collapse
Affiliation(s)
- T Yano
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Morris NB, Cramer MN, Hodder SG, Havenith G, Jay O. A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate. J Appl Physiol (1985) 2013; 114:816-23. [DOI: 10.1152/japplphysiol.01088.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study assessed the accuracy of the technical absorbent (TA) method for measuring local sweat rate (LSR) relative to the well-established ventilated capsule (VC) method during steady-state and nonsteady-state sweating using large and small sample surface areas on the forearm and midback. Forty participants (38 males and two females) cycled at 60% peak oxygen consumption for 75 min in either a temperate [22.3 ± 0.9°C, 32 ± 17% relative humidity (RH)] or warm (32.5 ± 0.8°C, 29 ± 7% RH) environment. Simultaneous bilateral comparisons of 5-min LSR measurements using the TA and VC methods were performed for the back and forearm after 10, 30, 50, and 70 min. LSR values, measured using the TA method, were highly correlated with the VC method at all time points, irrespective of sample surface area and body region (all P < 0.001). On average, ∼79% of the variability observed in LSR measured with the VC method was described by the TA method. The mean difference in absolute LSR using the TA method (TA-VC with 95% confidence intervals) was −0.23 [−0.30,−0.16], −0.11 [−0.21,0.00], −0.03 [−0.14,+0.08], and +0.02 [−0.07,+0.11] mg·cm−2·min−1 after 10, 30, 50, and 70 min of exercise, respectively. Duplicate LSR measurements within each method during steady-state sweating were highly correlated (TA: r = 0.96, P < 0.001, n = 20; VC: r = 0.97, P < 0.001, n = 20) with a mean bias of +0.07 ± 0.14 and +0.01 ± 0.10 mg·cm−2·min−1 for TA and VC methods, respectively. The mean smallest detectable difference in LSR was 0.12 and 0.05 mg·min−1·cm−2 for TA and VC methods, respectively. These data support the TA method as a reliable alternative for measuring the rate of sweat appearance on the skin surface.
Collapse
Affiliation(s)
- Nathan B. Morris
- Thermal Ergonomics Laboratory, School of Human Kinetics, University of Ottawa, Ontario, Canada; and
| | - Matthew N. Cramer
- Thermal Ergonomics Laboratory, School of Human Kinetics, University of Ottawa, Ontario, Canada; and
| | - Simon G. Hodder
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Leicestershire, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Leicestershire, United Kingdom
| | - Ollie Jay
- Thermal Ergonomics Laboratory, School of Human Kinetics, University of Ottawa, Ontario, Canada; and
| |
Collapse
|
37
|
Modulation of vascular tone control under isometric muscular stress: role of estrogen receptors. Vascul Pharmacol 2012; 58:127-33. [PMID: 23070057 DOI: 10.1016/j.vph.2012.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this study was to evaluate isometric muscle contraction (handgrip) changes on key elements of cardiac afterload, before and after raloxifene administration in postmenopausal women. METHODS/RESULTS 12 postmenopausal and 12 fertile women were studied. Postmenopausal women underwent raloxifene administration (60 mg/day for 30 days). We evaluated vascular reactivity in superficial palmar arterial arch during handgrip in postmenopausal women before and after (M+R) drug administration, and in controls. Blood flow was higher after raloxifene administration (p<0.05). Mean arterial pressure (MAP)/mean arterial flow (Fmed) and arterial pulse pressure (APP)/systolic maximum arterial flow (Fmax syst) were lower after raloxifene administration (p<0.001). Systolic blood pressure (SBP)/R-R ratio was higher in postmenopausal women than in the controls and M+R (p<0.01). End-handgrip systolic and diastolic blood pressure were higher in patients before raloxifene administration than in controls (p<0.001); diastolic and mean arterial pressure reduced after raloxifene administration (p<0.001). End-effort APP/Fmax syst-ratio before treatment was higher than baseline (p<0.05). Controls and no-treated patients showed a MAP/Fmed ratio at end-handgrip higher than M+R group and rest (p<0.05). Handgrip reduced R-R interval and increased SBP/R-R ratio were shown in all groups (p<0.05). CONCLUSIONS Raloxifene reduced the vascular effects of isometric muscle contraction by modulating the vasomotor tone of peripheral vessels in relation to exercise.
Collapse
|
38
|
Lira FADS, Brasileiro-Santos MDS, Borba VVL, Costa MJC, Dantas PROF, Santos ADC. Influência da vitamina C na modulação autonômica cardíaca no repouso e durante o exercício isométrico em crianças obesas. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2012. [DOI: 10.1590/s1519-38292012000300006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJETIVOS: comparar, entre obesos e eutróficos, os parâmetros de modulação autonômica cardíaca e analisar o efeito da suplementação da vitamina C na modulação autonômica cardíaca em crianças obesas, no repouso e durante o exercício isométrico respectivamente. MÉTODOS: participaram oito crianças eutróficas (IMC = 18 ± 1Kg/cm²) e 21 obesas (IMC = 29 ± 1Kg/cm²), com idade entre 8 e 11 anos, ambos os gêneros, distribuídas em dois grupos: suplementadas com 500 mg de vitamina C (n=11), e placebo (n=10), durante 45 dias. Modulação autonômica cardíaca foi avaliada por análise espectral da variabilidade da frequência cardíaca em repouso e durante o exercício isométrico. RESULTADOS: crianças obesas, no repouso e durante o exercício isométrico, apresentaram uma maior ativação simpática cardíaca e uma menor atividade vagal. Quando se comparou os componentes espectrais de baixa e alta frequência entre os grupos avaliados, observaram-se diferenças significativas. Após suplementação com vitamina C, os componentes espectrais foram similares àqueles observados nas crianças eutróficas, tanto no repouso como durante o exercício isométrico. CONCLUSÕES: crianças obesas apresentam uma maior atividade simpática e menor atividade vagal no repouso e durante o exercício isométrico quando comparada as crianças eutróficas. Como também, a suplementação oral com vitamina C, em altas doses, pode restaurar a disfunção autonômica cardíaca em crianças obesas.
Collapse
|
39
|
Abstract
We used retrograde transneuronal transport of rabies virus from the rat kidney to identify the areas of the cerebral cortex that are potential sources of central commands for the neural regulation of this organ. Our results indicate that multiple motor and nonmotor areas of the cerebral cortex contain output neurons that indirectly influence kidney function. These cortical areas include the primary motor cortex (M1), the rostromedial motor area (M2), the primary somatosensory cortex, the insula and other regions surrounding the rhinal fissure, and the medial prefrontal cortex. The vast majority of the output neurons from the cerebral cortex were located in two cortical areas, M1 (68%) and M2 (15%). If the visceromotor functions of M1 and M2 reflect their skeletomotor functions, then the output to the kidney from each cortical area could make a unique contribution to autonomic control. The output from M1 could add precision and organ-specific regulation to descending visceromotor commands, whereas the output from M2 could add anticipatory processing which is essential for allostatic regulation. We also found that the output from M1 and M2 to the kidney originates predominantly from the trunk representations of these two cortical areas. Thus, a map of visceromotor representation appears to be embedded within the classic somatotopic map of skeletomotor representation.
Collapse
|
40
|
Murata J, Matsukawa K, Komine H, Tsuchimochi H. Modulation of radial blood flow during Braille character discrimination task. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:25-32. [PMID: 22425805 DOI: 10.1556/aphysiol.99.2012.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. RESULTS HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). CONCLUSIONS These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception.
Collapse
Affiliation(s)
- Jun Murata
- Nagasaki University Department of Physical and Occupational Therapy, Graduate School of Biomedical Sciences 1-7-1 Sakamoto Nagasaki 852-8520 Japan.
| | | | | | | |
Collapse
|
41
|
Rimaud D, Calmels P, Pichot V, Bethoux F, Roche F. Effects of compression stockings on sympathetic activity and heart rate variability in individuals with spinal cord injury. J Spinal Cord Med 2012; 35:81-8. [PMID: 22333734 PMCID: PMC3304561 DOI: 10.1179/2045772311y.0000000054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate whether wearing graduated compression stockings (GCS) could affect the sympatho-adrenergic and heart rate variability (HRV) responses at rest and after a strenuous wheelchair exercise in individuals with spinal cord injury (SCI). DESIGN Crossover trial. SETTING Department of Physical Medicine and Rehabilitation, Saint Etienne, France. PARTICIPANTS Nine men with SCI (five with low paraplegia: LP, four with high paraplegia: HP). INTERVENTIONS Two maximal wheelchair exercise tests: with and without GCS (21 mmHg). MAIN OUTCOME MEASURES HRV measurements: high frequency (HF), low frequency (LF), and LF/HF ratio. Norepinephrine (NOR) and epinephrine (EPI), at rest and post-exercise. Secondary measures were: blood pressure, heart rate, maximal power output, oxygen uptake, stroke volume, cardiac output, at rest, during and after exercise. RESULTS When wearing GCS: LFnu(wavelet-post) significantly increased and HFnu(wavelet-post) significantly decreased (P < 0.05) in SCI subjects, leading to an enhance ratio of LF(wavelet)/HF(wavelet) and a significantly increased in NOR(rest) (P < 0.05). CONCLUSIONS GCS induces an enhanced sympathetic activity in individuals with paraplegia, regardless of the level of the injury. Enhanced post-exercise sympathetic activity with GCS may help prevent orthostatic hypotension or post-exercise hypotension.
Collapse
Affiliation(s)
- Diana Rimaud
- Service de Medecine Physique et de Readaptation, CHU Bellevue, Saint Etienne, France.
| | - Paul Calmels
- Service de Medecine Physique et de Readaptation, CHU Bellevue, Saint Etienne, France
| | - Vincent Pichot
- Service de Physiologie Clinique et de l'Exercise, CHU Nord, Saint-Etienne, France
| | | | - Frederic Roche
- Service de Physiologie Clinique et de l'Exercise, CHU Nord, Saint-Etienne, France
| |
Collapse
|
42
|
Bernjak A, Cui J, Iwase S, Mano T, Stefanovska A, Eckberg DL. Human sympathetic outflows to skin and muscle target organs fluctuate concordantly over a wide range of time-varying frequencies. J Physiol 2011; 590:363-75. [PMID: 22063627 DOI: 10.1113/jphysiol.2011.214528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Frequency-domain analyses of simultaneously recorded skin and muscle sympathetic nerve activities may yield unique information on otherwise obscure central processes governing human neural outflows. We used wavelet transform and wavelet phase coherence methods to analyse integrated skin and muscle sympathetic nerve activities and haemodynamic fluctuations, recorded from nine healthy supine young men. We tested two null hypotheses: (1) that human skin and muscle sympathetic nerve activities oscillate congruently; and (2) that whole-body heating affects these neural outflows and their haemodynamic consequences in similar ways. Measurements included peroneal nerve skin and tibial nerve muscle sympathetic activities; the electrocardiogram; finger photoplethysmographic arterial pressure; respiration (controlled at 0.25 Hz, and registered with a nasal thermistor); and skin temperature, sweating, and laser-Doppler skin blood flow. We made recordings at ∼27°C, for ∼20 min, and then during room temperature increases to ∼38°C, over 35 min. We analysed data with a wavelet transform, using the Morlet mother wavelet and wavelet phase coherence, to determine the frequencies and coherences of oscillations over time. At 27°C, skin and muscle nerve activities oscillated coherently, at ever-changing frequencies between 0.01 and the cardiac frequency (∼1 Hz). Heating significantly augmented oscillations of skin sympathetic nerve activity and skin blood flow, arterial pressure, and R-R intervals, over a wide range of low frequencies, and modestly reduced coordination between skin and muscle sympathetic oscillations. These results suggest that human skin and muscle sympathetic motoneurones are similarly entrained by external influences, including those of arterial baroreceptors, respiration, and other less well-defined brainstem oscillators. Our study provides strong support for the existence of multiple, time-varying central sympathetic neural oscillators in human subjects.
Collapse
Affiliation(s)
- Alan Bernjak
- Ekholmen, 8728 Dick Woods Road, Afton, VA 22920, USA
| | | | | | | | | | | |
Collapse
|
43
|
Meissner K, Wittmann M. Body signals, cardiac awareness, and the perception of time. Biol Psychol 2011; 86:289-97. [PMID: 21262314 DOI: 10.1016/j.biopsycho.2011.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/25/2022]
|
44
|
Kadowaki A, Matsukawa K, Wakasugi R, Nakamoto T, Liang N. Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats. Am J Physiol Heart Circ Physiol 2011; 300:H1373-85. [PMID: 21297027 DOI: 10.1152/ajpheart.01296.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the motor activity, preceding the tachycardia response. The increase in CSNA lasted for 4-5 s and returned to the baseline, even though the motor activity was not ended. The increase of 6 ± 1 beats/min in heart rate appeared with the same time course of the increase in CSNA. In contrast, CVNA never decreased but increased throughout the motor activity, in parallel with a rise in mean arterial blood pressure (MAP). The peak increase in CVNA was 37 ± 9% at 5 s after the motor onset. The rise in MAP gradually developed to 21 ± 2 mmHg and was sustained throughout the spontaneous motor activity. Partial sinoaortic denervation (SAD) blunted the baroreflex sensitivity of the MAP-CSNA and MAP-CVNA relationship to 22-33% of the control. Although partial SAD blunted the initial increase in CSNA to 53% of the control, the increase in CSNA was sustained throughout the motor activity. In contrast, partial SAD almost abolished the increase in CVNA during the motor activity, despite the augmented elevation of 31 ± 1 mmHg in MAP. Because afferent inputs from both muscle receptors and arterial baroreceptors were absent or greatly attenuated in the partial SAD condition, only central command was operating during spontaneous fictive motor activity in decerebrate cats. Therefore, it is likely that central command causes activation of cardiac sympathetic outflow but does not produce withdrawal of cardiac parasympathetic outflow during spontaneous motor activity.
Collapse
Affiliation(s)
- Akito Kadowaki
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
45
|
Kaufman MP, Forster HV. Reflexes Controlling Circulatory, Ventilatory and Airway Responses to Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH. Central Neural Control of Respiration and Circulation During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Rowell LB, O'Leary DS, Kellogg DL. Integration of Cardiovascular Control Systems in Dynamic Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Cui J, Leuenberger UA, Blaha C, King NC, Sinoway LI. Effect of P2 receptor blockade with pyridoxine on sympathetic response to exercise pressor reflex in humans. J Physiol 2010; 589:685-95. [PMID: 21078590 DOI: 10.1113/jphysiol.2010.196709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During exercise, sympathetic nervous system activity increases and this contributes to an increase in blood pressure (i.e. exercise pressor reflex). Although animal studies suggest that purinergic P2 receptors on thin fibre sensory nerves are stimulated and evoke this reflex, human data are lacking. In this study, young healthy volunteers performed fatiguing isometric handgrip before and after a local infusion of pyridoxine (i.e. vitamin B(6)) into the 'isolated' circulation of the human forearm. Pyridoxine is converted into a P2-purinoceptor antagonist. Muscle sympathetic nerve activity and blood pressure responses to fatiguing handgrip and post-exercise circulatory occlusion were significantly less after pyridoxine than they were before. These effects were not observed after infusion of saline. These data suggest that P2 receptors contribute to the exercise pressor reflex in humans.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
49
|
Hayashi N, Someya N. Muscle metaboreflex activation by static exercise dilates pupil in humans. Eur J Appl Physiol 2010; 111:1217-21. [PMID: 21076842 DOI: 10.1007/s00421-010-1716-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2010] [Indexed: 11/28/2022]
Abstract
We examined a hypothesis that static exercise and activation of sympathetic activation by metabolically sensitive skeletal muscle afferents (metaboreflex) influence the sympathetic nervous activity modulating pupil diameter. Nine subjects performed 2 min isometric handgrip exercise at 30% maximal voluntary contraction, which was followed by either 2 min of postexercise muscle ischemia (PEMI) in the forearm or no PEMI (control trial). The pupil diameter and mean blood pressure (MAP) increased significantly from rest during exercise in PEMI and control trials (5 ± 1 and 7 ± 1% in diameter; 13 ± 2 and 12 ± 2 mmHg in MAP, respectively). These increases in the diameter and MAP were maintained during PEMI (7 ± 2% and 9 ± 2 mmHg) but not during the recovery period in the control trial (3 ± 2% and 1 ± 2 mmHg). These results demonstrate that static handgrip exercise increases the pupil diameter, and this increase is partly due to the activation of metaboreflex in humans.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Institute of Health Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
| | | |
Collapse
|
50
|
|