1
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
2
|
Noh JY, Lim KM, Bae ON, Chung SM, Lee SW, Joo KM, Lee SD, Chung JH. Procoagulant and prothrombotic activation of human erythrocytes by phosphatidic acid. Am J Physiol Heart Circ Physiol 2010; 299:H347-55. [DOI: 10.1152/ajpheart.01144.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Increased phosphatidic acid (PA) and phospholipase D (PLD) activity are frequently observed in various disease states including cancers, diabetes, sepsis, and thrombosis. Previously, PA has been regarded as just a precursor for lysophosphatidic acid (LPA) and diacylglycerol (DAG). However, increasing evidence has suggested independent biological activities of PA itself. In the present study, we demonstrated that PA can enhance thrombogenic activities in human erythrocytes through phosphatidylserine (PS) exposure in a Ca2+-dependent manner. In freshly isolated human erythrocytes, treatment of PA or PLD induced PS exposure. PA-induced PS exposure was not attenuated by inhibitors of phospholipase A2or phosphatidate phosphatase, which converts PA to LPA or DAG. An intracellular Ca2+increase and the resultant activation of Ca2+-dependent PKC-α appeared to underlie the PA-induced PS exposure through the activation of scramblase. A marginal decrease in flippase activity was also noted, contributing further to the maintenance of exposed PS on the outer membrane. PA-treated erythrocytes showed strong thrombogenic activities, as demonstrated by increased thrombin generation, endothelial cell adhesion, and erythrocyte aggregation. Importantly, these procoagulant activations by PA were confirmed in a rat in vivo venous thrombosis model, where PA significantly enhanced thrombus formation. In conclusion, these results suggest that PA can induce thrombogenic activities in erythrocytes through PS exposure, which can increase thrombus formation and ultimately contribute to the development of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Wook Lee
- School of Electrical Engineering, Seoul National University, Seoul; and
| | - Kyung-Mi Joo
- Research and Development Center, Amorepacific Company, Gyeonggi-do, Korea
| | - Sin-Doo Lee
- School of Electrical Engineering, Seoul National University, Seoul; and
| | | |
Collapse
|
3
|
Singer JW, Rursten SL, Rice GC, Perry Gordon W, Bianco JA. Inhibitors of intracellular phosphatidic acid production: novel therapeutics with broad clinical applications. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.3.6.631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Chang YJ, Kim YL, Lee YK, Sacket SJ, Kim K, Kim HL, Han M, Bae YS, Okajima F, Im DS. Dioleoyl phosphatidic acid increases intracellular Ca2+ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts. Prostaglandins Other Lipid Mediat 2007; 83:268-76. [PMID: 17499746 DOI: 10.1016/j.prostaglandins.2007.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/21/2007] [Accepted: 01/26/2007] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in C6 rat glioma and L2071 mouse fibroblast cells. Dioleoyl PA (PA, 18:1) was the most efficacious, followed by dipalmitoyl PA (16:0 PA) and dimyristoyl PA (14:0 PA). Lysophosphatidic acid (LPA) also increased the [Ca(2+)](i) in the both cells. PA desensitized LPA-induced Ca(2+) response completely in C6 cells, but partly in L2071 cells. Treatment of pertussis toxin (PTX), a specific inhibitor of G(i/o)-type G proteins, completely ameliorated LPA- and PA-induced Ca(2+) response in C6 cells. However, in L2071 cells, PTX inhibited PA-induced Ca(2+) increase by 80% and LPA-induced one by 20%. Ki16425, a specific inhibitor of LPA(1)/LPA(3) receptors, completely inhibited both LPA- and PA-induced Ca(2+) responses in C6 cells. On the other hand, in L2071 cells, Ki16425 completely inhibited PA-induced Ca(2+) response, but partly LPA-induced one. VPC32183, another specific inhibitor of LPA(1)/LPA(3) receptors, completely inhibited LPA- and PA-induced Ca(2+) responses in both C6 and L2071 cells. Therefore, PA and LPA appear to increase [Ca(2+)](i) through Ki16425/VPC32183-sensitive LPA receptor coupled to PTX-sensitive G proteins in C6 cells. In L2071 cells, however, LPA increases [Ca(2+)](i) through Ki16425-insensitive LPA receptor coupled to PTX-insensitive G proteins and Ki16425-sensitive LPA receptor coupled to PTX-sensitive G protein, whereas PA utilized only the latter pathway. Our results suggest that PA acts as a partial agonist on endogenous LPA receptors, which are sensitive to Ki16425 and coupled to PTX-sensitive G protein, but not on LPA receptors, which are not sensitive to Ki16425 and coupled to PTX-insensitive G protein.
Collapse
Affiliation(s)
- Young-Ja Chang
- Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University, San 30, Jang-Jun-dong, Geum-Jung-gu, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yahagi H, Takeda M, Asaumi Y, Okumura K, Takahashi R, Takahashi J, Ohta J, Tada H, Minatoya Y, Sakuma M, Watanabe J, Goto K, Shirato K, Kagaya Y. Differential regulation of diacylglycerol kinase isozymes in cardiac hypertrophy. Biochem Biophys Res Commun 2005; 332:101-8. [PMID: 15896305 DOI: 10.1016/j.bbrc.2005.04.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 04/21/2005] [Indexed: 11/20/2022]
Abstract
To examine the involvement of diacylglycerol kinase (DGK) and phosphatidic acid phosphatase (PAP) in pressure overloaded cardiac hypertrophy, rats were subjected to either ascending aortic banding for 3, 7, and 28 days or sham operation. In comparison with sham-operated rats, the left ventricular (LV) weight of the aortic-banded rats increased progressively. At 28 days after surgery, the expression of DGKepsilon mRNA but not DGKzeta or PAP2b mRNA in the LV myocardium significantly decreased in the aortic-banded rats compared with the sham-operated rats. DGKzeta protein in the LV myocardium translocated from the particulate to the cytosolic compartment in the aortic-banded rats. Furthermore, the myocardial content of 1,2-diacylglycerol and PKCdelta protein expression in the particulate fraction of the LV myocardium significantly increased in aortic-banded rats compared with sham-operated rats. These results suggest that DGKepsilon and DGKzeta play distinct roles in the development of pressure overloaded cardiac hypertrophy and that the two isozymes are differentially regulated.
Collapse
Affiliation(s)
- Hirokazu Yahagi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tappia PS, Asemu G, Aroutiounova N, Dhalla NS. Defective sarcolemmal phospholipase C signaling in diabetic cardiomyopathy. Mol Cell Biochem 2005; 261:193-9. [PMID: 15362504 DOI: 10.1023/b:mcbi.0000028756.31782.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phospholipase C (PLC) activity is known to influence cardiac function. This study was undertaken to examine the status of PLC beta3 in the cardiac cell plasma membrane (sarcolemma, SL) in an experimental model of chronic diabetes. SL membrane was isolated from diabetic rat hearts at 8 weeks after a single i.v. injection of streptozotocin (65 mg/kg body weight). The total SL PLC was decreased in diabetes and was associated with a decrease in SL PLC beta3 activity, which immunofluorescence in frozen diabetic left ventricular tissue sections revealed to be due to a decrease in PLC beta3 protein abundance. In contrast, the SL abundance of Gqalpha was significantly increased during diabetes. These changes were associated with a loss of contractile function (+/- dP/dt). A 2-week insulin treatment of 6-week diabetic animals partially normalized all of these parameters. These findings suggest a defect in PLC beta3-mediated signaling processes may contribute to the cardiac dysfunction seen during diabetes.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Manitoba, Canada.
| | | | | | | |
Collapse
|
7
|
Tappia PS, Maddaford TG, Hurtado C, Dibrov E, Austria JA, Sahi N, Panagia V, Pierce GN. Defective phosphatidic acid–phospholipase C signaling in diabetic cardiomyopathy. Biochem Biophys Res Commun 2004; 316:280-9. [PMID: 15003542 DOI: 10.1016/j.bbrc.2004.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 11/23/2022]
Abstract
The effects of exogenous phosphatidic acid (PA) on Ca2+ transients and contractile activity were studied in cardiomyocytes isolated from chronic streptozotocin-induced diabetic rats. In control cells, 25 microM PA induced a significant increase in active cell shortening and Ca2+ transients. PA increased IP3 generation in the control cardiomyocytes and its inotropic effects were blocked by a phospholipase C inhibitor. In cardiomyocytes from diabetic rats, PA induced a 25% decrease in active cell shortening and no significant effect on Ca2+ transients. Basal and PA-induced IP3 generation in diabetic rat cardiomyocytes was 3-fold lower as compared to control cells. Sarcolemmal membrane PLC activity was impaired. Insulin treatment of the diabetic animals resulted in a partial recovery of PA responses. Our results, therefore, identify an important defect in the PA-PLC signaling pathway in diabetic rat cardiomyocytes, which may have significant implications for heart dysfunction during diabetes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cardiomyopathies/metabolism
- Cardiomyopathies/physiopathology
- Cells, Cultured
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Inositol 1,4,5-Trisphosphate/metabolism
- Isoenzymes/metabolism
- Kinetics
- Male
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Phosphatidic Acids/pharmacology
- Phospholipase C delta
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bhugra P, Xu YJ, Rathi S, Dhalla NS. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid. Biochem Pharmacol 2003; 65:2091-8. [PMID: 12787890 DOI: 10.1016/s0006-2952(03)00201-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC.
Collapse
Affiliation(s)
- Praveen Bhugra
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, Man., Canada R2H 2A6
| | | | | | | |
Collapse
|
9
|
Tappia PS, Maddaford TG, Hurtado C, Panagia V, Pierce GN. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes. Biochem Biophys Res Commun 2003; 300:457-63. [PMID: 12504106 DOI: 10.1016/s0006-291x(02)02835-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre (R3020), 351 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6.
| | | | | | | | | |
Collapse
|
10
|
Hu Q, Natarajan V, Ziegelstein RC. Phospholipase D regulates calcium oscillation frequency and nuclear factor-kappaB activity in histamine- stimulated human endothelial cells. Biochem Biophys Res Commun 2002; 292:325-32. [PMID: 11906165 DOI: 10.1006/bbrc.2002.6675] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine stimulates [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC), the frequency of which regulates the activity of nuclear factor-kappaB (NF-kappaB). This study was performed to determine whether phospholipase D (PLD) is involved in this signaling pathway. At a concentration of 1 microM, which stimulates [Ca(2+)](i) oscillations in this cell type, histamine initiated a twofold increase in [(32)P]phosphatidybutanol (PBt), an index of PLD activity as early as 5 min after stimulation. During established [Ca(2+)](i) oscillations induced by 1 microM histamine, 0.3% n-butanol, which "functionally" redirects phosphatidic acid formed by PLD to PBt, decreased [Ca(2+)](i) oscillation frequency by approximately 50% and produced a similar reduction in NF-kappaB activity. In the presence of the inositol 1,4,5-trisphosphate receptor blocker xestospongin C, which itself decreases the frequency of histamine-stimulated [Ca(2+)](i) oscillations, n-butanol produced a further decrease in oscillation frequency that was not associated with an additional reduction in NF-kappaB activity. This study shows that activation of PLD by histamine regulates [Ca(2+)](i) oscillation frequency and NF-kappaB activity in HAEC.
Collapse
Affiliation(s)
- Qinghua Hu
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland 21224-2780, USA.
| | | | | |
Collapse
|
11
|
Liu P, Hopfner RL, Xu YJ, Gopalakrishnan V. Vasopressin-evoked [Ca2+]i responses in neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 1999; 34:540-6. [PMID: 10511129 DOI: 10.1097/00005344-199910000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of arginine vasopressin (AVP) V1 receptors on neonatal rat cardiomyocytes (NRCs) linked to processes capable of elevating intracellular free calcium ([Ca2+]i) is now firmly established. This study examined the sources and signaling involved in [Ca2+]i elevations evoked by AVP in NRCs. AVP promoted increases in both [Ca2+]i and 1,4,5-inositoltrisphosphate (IP3) levels in NRCs. The degree of [Ca2+]i elevation was less than that of angiotensin II, but greater than that of endothelin-1. Extracellular Mg2+ depletion led to diminution of the maximal [Ca2+]i response, with a rightward shift in the concentration-response curves to AVP. The phospholipase C inhibitors, D-609, NCDC, or U73122, and the IP3 receptor blocker, heparin, abolished the [Ca2+]i response to AVP. Neither cyclooxygenase inhibition with indomethacin nor PKC inhibition with staurosporine had any effect. Neither ryanodine nor caffeine, which deplete sarcoplasmic reticulum (SR) Ca2+ stores, nor ruthenium red, which inhibits both SR and mitochondrial Ca2+ stores, affected [Ca2+]i responses to AVP. The SR Ca2+ pump inhibitor, cyclopiazonic acid, abolished, and removal of extracellular Ca2+ attenuated, the response to AVP. These data indicate that activation of cardiac V1 receptors by AVP results in mobilization of Ca2+ from a distinct, non-SR, nonmitochondrial, intracellular Ca2+ pool that is Ca2+ pump replenished and IP3 sensitive. This process occurs secondary to phospholipase C (PLC)-mediated generation of IP3, requires the presence of Mg2+ and extracellular Ca2+, and occurs in a manner independent of PKC and cyclooxygenase activation. Such mechanisms of Ca2+ mobilization might indicate a distinct role for AVP in cardiac physiology and disease.
Collapse
Affiliation(s)
- P Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
12
|
Liu P, Xu Y, Hopfner RL, Gopalakrishnan V. Phosphatidic acid increases inositol-1,4,5,-trisphosphate and [Ca2+]i levels in neonatal rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:89-99. [PMID: 10477828 DOI: 10.1016/s1388-1981(99)00115-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatidic acid (PA), which can be synthesized de novo, or as a product of phosphatidylcholine hydrolysis and/or phosphorylation of 1,2-diacylglycerol (DAG), mediates diverse cellular functions in various cell types, including cardiomyocytes. We set out to characterize the effect of PA on intracellular free calcium ([Ca2+]i) and inositol-1,4,5-trisphosphate (IP(3)) levels in primary cultures of neonatal rat cardiomyocytes. Addition of PA led to rapid, concentration and time dependent increases in both IP(3) and [Ca2+]i levels in adherent cells. There was strong correlation in the concentration-response relationships between IP(3) and [Ca2+]i increases evoked by PA. Incubation with the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA), significantly attenuated the PA evoked [Ca2+]i increase but had no significant effect on IP(3) accumulation. The phospholipase C (PLC) inhibitor, D-609, attenuated both IP(3) and [Ca2+]i elevations evoked by PA whereas staurosporine (STS), a potent and non-selective PKC inhibitor, had no significant effect on either. Another PLC inhibitor, U73122, but not its inactive analog, U73343, also inhibited PA evoked increases in [Ca2+]i. Depletion of extracellular calcium attenuated both basal and PA evoked increases in [Ca2+]i. The PLA(2) inhibitors, bromophenylacyl-bromide (BPB) and CDP-choline, had no effect on PA evoked [Ca2+]i responses. Neither the DAG analog, dioctanoylglycerol, nor the DAG kinase inhibitor, R59949, affected PA evoked changes in [Ca2+]i. Taken together, these data indicate that PA, in a manner independent of PKC, DAG, or PLA(2), may enhance Ca2+ release from IP(3) sensitive SR Ca(2+) stores via activation of PLC in neonatal rat cardiomyocytes.
Collapse
Affiliation(s)
- P Liu
- Cardiovascular Risk Factor Reduction Unit (CRFRU), Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
13
|
Lindmar R, Löffelholz K. Phospholipase D in rat myocardium: formation of lipid messengers and synergistic activation by G-protein and protein kinase C. Biochem Pharmacol 1998; 56:799-805. [PMID: 9774141 DOI: 10.1016/s0006-2952(97)00636-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of phospholipase D (PLD) and phosphoinositide-specific phospholipase C (PI-PLC) by fluoride, to stimulate heterotrimeric G-proteins, and by phorbol esters, to stimulate protein kinase C (PKC), was studied in rat atria. Fluoride and 4beta-phorbol-12beta,13alpha-dibutyrate (PDB), in contrast to 4beta-phorbol-13alpha-acetate (PAc), activated PLD, catalyzing the formation of [3H]-phosphatidylethanol ([3H]-PETH), [3H]-phosphatidic acid ([3H]-PA), choline and sn-1,2-diacylglycerol (DAG). Basal PLD activity was resistant to drastic changes in Ca2+ and to Ro 31-8220, a PKC inhibitor, but was decreased by genistein, an inhibitor of tyrosine kinase, and increased by vanadate, a tyrosine phosphatase inhibitor; both effects were, however, very small. Fluoride-evoked PLD activity was resistant to Ro 31-8220 and to genistein, but was Ca2+-dependent. The rate of fluoride-induced PLD activation was maintained for at least 60 min. In contrast, PDB-mediated PLD activity was blocked by Ro 31-8220 and was resistant to extracellular Ca2+-depletion and desensitized within ca. 15 min. PDB markedly potentiated the fluoride-evoked generation of [3H]-phosphatidylethanol and of choline, but inhibited the formation of [3H]-inositol phosphates ([3H]-IP(1-3)). Ethanol (2%) blocked the PDB-evoked generation of both [3H]-phosphatidic acid and of sn-1,2-diacylglycerol, whereas fluoride-evoked responses were reduced only to approximately 50%. In conclusion, the trimeric G-protein-PLD pathway in heart tissue did not enclose PKC activation and was long-lasting and Ca2+-dependent; there was no evidence for an involvement of tyrosine phosphorylation. However, PKC activation modulated G-protein-coupled PLD and PI-PLC activities in opposite directions. PLD activity significantly contributed to the mass production of sn-1,2-diacylglycerol in the heart. The evidence for a pathophysiological role of PLD activation in cardiac hypertrophy and in ischemic preconditioning is discussed.
Collapse
Affiliation(s)
- R Lindmar
- Department of Pharmacology, University of Mainz, Germany
| | | |
Collapse
|
14
|
Carpio LC, Dziak R. Phosphatidic acid effects on cytosolic calcium and proliferation in osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids 1998; 59:101-9. [PMID: 9774173 DOI: 10.1016/s0952-3278(98)90088-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous studies show that epidermal growth factor (EGF) stimulates phospholipase D (PLD)-induced phosphatidic acid (PA) formation in rat calvarial osteoblastic cells. This study investigated the effects of PA on cytosolic calcium ([Ca2+]i) and proliferation, and the possible involvement of the PLD pathway in EGF effects on [Ca2+]i and proliferation in rat calvarial osteoblastic cells. PA markedly increased [Ca2+]i. This response was unaffected by thapsigargin, which depletes [Ca2+]i pools, blocked by verapamil, a calcium channel blocker, and enhanced by propanolol, an inhibitor of PA-phosphohydrolase. PA also reduced the EGF dependent-[Ca2+]i increase by 60%, while a PLD inhibitor blocked these effects. Furthermore, PA significantly increased cell proliferation (P < 0.05) which was inhibited by verapamil and enhanced by H-7 (PKC inhibitor). The PLD inhibitor significantly (P < 0.05) reduced the EGF-induced increase in proliferation. In summary, PA stimulates rat calvarial osteoblastic cell proliferation and mobilization of [Ca2+]i using extracellular pools, and EGF's mitogenic effect on these cells requires activation of PLD.
Collapse
Affiliation(s)
- L C Carpio
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
15
|
Viko H, Sandnes D, Skomedal T, Osnes JB. Effect of concomitant beta-adrenoceptor stimulation on alpha 1-adrenoceptor-mediated increase of inositol-1,4,5-trisphosphate mass in adult rat cardiomyocytes. PHARMACOLOGY & TOXICOLOGY 1998; 83:23-8. [PMID: 9764422 DOI: 10.1111/j.1600-0773.1998.tb01437.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to investigate the accumulation of inositol-1,4,5-trisphosphate (IP3) in isolated adult rat ventricular cardiomyocytes after alpha 1- and beta-adrenoceptor stimulation, separate and in combination, in order to elucidate a possible influence of concomitant beta-adrenoceptor stimulation on the alpha 1-adrenoceptor stimulated response. IP3 was measured by a radioligand binding assay based on an (1,4,5)IP3-specific binding protein from bovine adrenal cortex. The basal IP3 content was 4.06 +/- 0.31 pmol/mg protein (N = 56). alpha 1-Adrenoceptor stimulation resulted in a rapid increase in the IP3 level, which reached a plateau, 50-80% above basal level, at 10-30 sec. The plateau lasted at least up to 120 sec., while at 300 sec. there was no significant difference between control values and values after alpha 1-adrenoceptor stimulation. Li+ did not affect either the basal IP3 level, or the magnitude or time course of alpha 1-adrenoceptor-stimulated IP3 accumulation. Combined adrenoceptor stimulation gave a similar response as separate alpha 1-adrenoceptor stimulation, whereas there was no significant change in the IP3 level after beta-adrenoceptor stimulation. No inhibitory influence of simultaneous beta-adrenoceptor stimulation on the alpha 1-adrenoceptor-stimulated increase of IP3 mass was revealed.
Collapse
Affiliation(s)
- H Viko
- Department of Pharmacology, University of Oslo, Norway
| | | | | | | |
Collapse
|
16
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
17
|
Williams SA, Tappia PS, Yu CH, Binaglia L, Panagia V, Dhalla NS. Subcellular alterations in cardiac phospholipase D activity in chronic diabetes. Prostaglandins Leukot Essent Fatty Acids 1997; 57:95-9. [PMID: 9250614 DOI: 10.1016/s0952-3278(97)90498-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several studies have suggested that myocardial phospholipase D (PLD) and its hydrolytic product, phosphatidic acid (PtdOH), may regulate Ca2+ movements and contractile performance of the heart. Since abnormal intracellular Ca2+ handling is a major factor of myocardial dysfunction in chronic diabetes, we examined subcellular changes in PLD activity in myocardium from insulin-dependent diabetic rats. Diabetes in rats was induced by a single i.v. injection of streptozotocin (65 mg/kg body wt) and 8 weeks later the ventricular tissue was processed for the isolation of sarcolemma, sarcoplasmic reticulum and mitochondria. Compared to age-matched controls, the sarcolemmal, sarcoplasmic reticular and mitochondrial PLD activities were significantly depressed in the diabetic animals. The depressed sarcolemmal PLD activity was normalized, whereas the sarcoplasmic reticular and mitochondrial enzyme activities were partially reversed upon treating the 6-week diabetic rats with insulin for a period of 2 weeks. These data suggest that the reduction of PLD-derived PtdOH may lead to an impairment in this phospholipid signal transduction pathway and subsequent cardiac dysfunction in chronic diabetes.
Collapse
Affiliation(s)
- S A Williams
- St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Swanton EM, Saggerson ED. Glycerolipid metabolizing enzymes in rat ventricle and in cardiac myocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1346:93-102. [PMID: 9187307 DOI: 10.1016/s0005-2760(97)00024-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. The properties and subcellular distribution of phosphatidate phosphohydrolase (PAP) were studied in rat heart. A Mg2(+)-activated activity (PAP1) which was inhibited by N-ethylmaleimide was found mainly in a 105,000 x g soluble fraction. Isolation of the membranes in a medium containing KCl increased the proportion of PAP1 that was associated. Translocation of PAP1 from these membranes occurred on subsequent incubation in a low-ionic strength medium from which KCI was omitted. Incubation of cardiac myocytes with palmitate promoted translocation of PAP activity to cellular membranes. A second activity which was insensitive to N-ethylmaleimide (PAP2) was found in the 105,000 x g membrane fraction. PAP2 was inhibited by concentrations of Mg2+ known to occur in ischaemia. Specific activities of PAP1 and PAP2 in ventricle muscle homogenates were similar. The specific activity of PAP2 in homogenates of cardiac myocytes was only 42% of that in homogenates of ventricle muscle. 2. A glycerolphosphate acyltransferase (GPAT) activity with properties similar to the GPAT found in microsomes from liver or adipose tissue was enriched in the sarcoplasmic reticulum fraction from ventricle muscle. This GPAT had a significantly higher K(m) for glycerol 3-phosphate than the GPAT found in adipose tissue microsomes. The possible physiological significance of this 'high K(m)' GPAT in heart, particularly in ischaemia, is discussed. 3. Comparisons were made of the specific activities of fatty acyl-CoA synthetase, monoacylglycerolphosphate acyltransferase, diacylglycerol acyltransferase and the mitochondrial and microsomal forms of GPAT in homogenates from cardiac myocytes and ventricle muscle.
Collapse
Affiliation(s)
- E M Swanton
- Department of Biochemistry and Molecular Biology, University College London, UK
| | | |
Collapse
|
19
|
Xu YJ, Yau L, Yu LP, Elimban V, Zahradka P, Dhalla NS. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes. Biochem Pharmacol 1996; 52:1735-40. [PMID: 8986136 DOI: 10.1016/s0006-2952(96)00594-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Y J Xu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Eskildsen-Helmond YE, Gho BC, Bezstarosti K, Dekkers DH, Soei LK, Van Heugten HA, Verdouw PD, Lamers JM. Exploration of the possible roles of phospholipase D and protein kinase C in the mechanism of ischemic preconditioning in the myocardium. Ann N Y Acad Sci 1996; 793:210-25. [PMID: 8906167 DOI: 10.1111/j.1749-6632.1996.tb33516.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Y E Eskildsen-Helmond
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Generated during the initial phases of cell signalling, phosphatidic acid has been implicated as a messenger involved in the activation of cellular kinases and phospholipases as well as certain proto-oncogene products and low-molecular-weight G-proteins. Although many of the reported effects of phosphatidic acid can be attributed to metabolites generated by cellular hydrolases, the parent compound clearly possesses important biological activities. However, instead of acting as a ubiquitous second messenger mediating signalling events shared by a wide variety of cells, in many systems the phospholipid seems to function specifically, regulating unique functions confined to specialized groupings of cells. One such function is neutrophil superoxide generation, which is induced when phosphatidic acid, generated by activated phospholipase D (PLD), facilitates the interaction of a cytoplasmic low-molecular-weight G-protein with dormant, membrane-bound reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Positioned on the outer surface of the plasma membrane of triggering cells, phosphatidic acid potentially mediates the "juxtacrine" stimulation of cells in direct contact. This review critically evaluates the known biological effects of phosphatidic acid as opposed to functions induced by its metabolites and addresses the mechanisms by which these effects are specifically induced by this phospholipid.
Collapse
Affiliation(s)
- D English
- Bone Marrow Transplantation Laboratory, Methodist Hospital of Indiana, Indianapolis, USA
| |
Collapse
|
22
|
Abstract
Under physiological conditions, phosphatidic acid (PA) is an anionic phospholipid with moderate biological reactivity. Some of its biological effects can be attributed to lyso-PA and diacylglycerol generated by the action of cellular hydrolases. However, it is clear that the parent compound exhibits biological activities of its own. Early studies implicated PA in the transport of Ca++ across plasma membranes as well as in the mobilization of intracellular stored calcium. Both responses may be induced as a consequence of other cellular processes activated by PA, as opposed to being directly mediated by the lipid. PA may be involved in the activation of certain functions confined to specialized groupings of cells, such as the neutrophil superoxide-generating enzyme or actin polymerization. Recent studies implicate PA as an activator of intracellular protein kinases, and a PA-dependent superfamily of kinases involved in cellular signalling has been hypothesized. Deployed on the outer surface of the plasma membrane, PA potentially provides a method of communication between cells in direct contact. This review will explore the known functions of PA as an intracellular mediator and extracellular messenger of biological activities and address ways in which these functions are potentially regulated by cellular enzymes which hydrolyse the phospholipid.
Collapse
Affiliation(s)
- D English
- Bone Marrow Transplantation Laboratory, Methodist Hospital of Indiana, Indianapolis 46202, USA
| | | | | |
Collapse
|
23
|
Flores NA. Platelet activation during myocardial ischaemia: a contributory arrhythmogenic mechanism. Pharmacol Ther 1996; 72:83-108. [PMID: 8981572 DOI: 10.1016/s0163-7258(96)00100-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Experimental and clinical observations of the involvement of platelets in the pathophysiology of myocardial ischaemia indicate the importance of interactions between these formed elements and the heart. The aim of this review is to outline evidence linking platelet activation, myocardial ischaemia and infarction, and to present evidence for a link between platelet activation, arrhythmogenesis and sudden death. A brief review of platelet physiology and pharmacology is provided, with a review of the cardiac electrophysiological effects of ischaemia and the electrophysiological effects of platelet-derived substances. The concept that platelet activation during myocardial ischaemia is a contributory arrhythmogenic mechanism is discussed.
Collapse
Affiliation(s)
- N A Flores
- Academic Cardiology Unit, Imperial College School of Medicine at St. Mary's, London, UK
| |
Collapse
|
24
|
Henry RA, Boyce SY, Kurz T, Wolf RA. Stimulation and binding of myocardial phospholipase C by phosphatidic acid. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C349-58. [PMID: 7653517 DOI: 10.1152/ajpcell.1995.269.2.c349] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure of adult ventricular myocytes to exogenous natural phosphatidic acid results in the production of inositol phosphates by unknown mechanism(s). We characterized stimulation of myocytic phosphoinositide-specific phospholipase C (PLC) by synthetic dioleoyl phosphatidic acid (PA) as a potential mechanism for modulation of inositol phosphate production. Our data demonstrate that exogenous PA, at 10(-8)-10(-5) M, caused a concentration-dependent increase in inositol 1,4,5-trisphosphate in adult rabbit ventricular myocytes. PA also caused a concentration-dependent increase in in vitro activity of myocytic PLC in the presence or absence of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLC-delta 1, the predominant isozyme of PLC expressed in adult rabbit ventricular myocytes, bound to liposomes of PA with high affinity in the presence of EGTA. The phosphomonoester group of PA was critical to in vitro stimulation of myocytic PLC activity and high-affinity binding of PLC-delta 1. We propose that binding of PLC-delta 1 to phosphatidic acid may be a novel mechanism for dynamic membrane association and modulation of PLC in adult ventricular myocytes.
Collapse
Affiliation(s)
- R A Henry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
25
|
Dai J, Williams SA, Ziegelhöffer A, Panagia V. Structure-activity relationship of the effect of cis-unsaturated fatty acids on heart sarcolemmal phospholipase D activity. Prostaglandins Leukot Essent Fatty Acids 1995; 52:167-71. [PMID: 7784454 DOI: 10.1016/0952-3278(95)90017-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study examined the role of fatty acids on the phosphatidylcholine-specific phospholipase D (PLD) function of purified sarcolemmal (SL) membranes isolated from rat hearts. The enzyme's hydrolytic activity was determined by measuring [14C] phosphatidic acid formation from exogenous [14C] phosphatidylcholine (PtdCho) in the absence or presence of the sodium salts of various saturated or unsaturated long-chain fatty acids (FA). In certain experiments the enzyme was also assayed in the transphosphatidylation mode. Cis-unsaturation and free carboxyl groups were structural prerequisites for the stimulatory effect exerted by FA on SL PLD. The most effective compounds were arachidonate and oleate, which maximally activated PLD at 4 and 5 mM concentration, respectively. To verify if a detergent-like mechanism was involved in PLD activation, anionic, zwitterionic and non-ionic detergents were used. Only anionic taurodeoxycholate had a slight effect, which was about 7% of that achieved by arachidonate or oleate. These results suggest that cis-unsaturated FA activate cardiac sarcolemmal PLD by a mechanism(s) which seems to be unrelated to non-specific perturbation of the membrane.
Collapse
Affiliation(s)
- J Dai
- Division of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Canada
| | | | | | | |
Collapse
|
26
|
|
27
|
Annotated References. Expert Opin Investig Drugs 1994. [DOI: 10.1517/13543784.3.6.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Ryder NS, Talwar HS, Reynolds NJ, Voorhees JJ, Fisher GJ. Phosphatidic acid and phospholipase D both stimulate phosphoinositide turnover in cultured human keratinocytes. Cell Signal 1993; 5:787-94. [PMID: 8130081 DOI: 10.1016/0898-6568(93)90039-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phosphatidic acid (PA) induced a rapid dose-dependent increase in production of inositol phosphates in cultured adult human keratinocytes, peaking at 30 s. Natural and dioleoyl PA were equally effective, while other phospholipid classes had no effect. Lipid A was also active. Lyso-PA also induced inositol phosphate production, but contamination of the PA preparation by lyso-PA could not account for the effect of PA. The effect of PA could not be reproduced by treatment of cells with calcium ionophore. PA-induced inositol phosphate production could be inhibited (> 50%) by pre-treatment of cells with either pertussis toxin or 12-O-tetradecanoylphorbol 13-acetate, suggesting the involvement of a GTP-binding protein and a protein kinase C-mediated negative feedback mechanism. PA also stimulated release of arachidonic acid from keratinocytes. Treatment of cells with exogenous phospholipase D similarly induced inositol phosphate production in the keratinocytes. Since PA may be formed by receptor-mediated activation of phospholipase D, or by phosphorylation of diacylglycerol, the results suggest that PA may play a significant role in signalling mechanisms of human keratinocytes.
Collapse
Affiliation(s)
- N S Ryder
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor 48109
| | | | | | | | | |
Collapse
|