1
|
Ge J, Zhou Y, Li H, Zeng R, Xie K, Leng J, Chen X, Yu G, Shi X, Xu Y, He D, Guo P, Zhou Y, Luo H, Luo W, Liu B. Prostacyclin Synthase Deficiency Leads to Exacerbation or Occurrence of Endothelium-Dependent Contraction and Causes Cardiovascular Disorders Mainly via the Non-TxA 2 Prostanoids/TP Axis. Circ Res 2024; 135:e133-e149. [PMID: 39082135 DOI: 10.1161/circresaha.124.324924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Prostaglandin I2 synthesized by endothelial COX (cyclooxygenase) evokes potent vasodilation in some blood vessels but is paradoxically responsible for endothelium-dependent constriction (EDC) in others. Prostaglandin I2 production and EDC may be enhanced in diseases such as hypertension. However, how PGIS (prostaglandin I2 synthase) deficiency affects EDC and how this is implicated in the consequent cardiovascular pathologies remain largely unknown. METHODS Experiments were performed with wild-type, Pgis knockout (Pgis-/-) and Pgis/thromboxane-prostanoid receptor gene (Tp) double knockout (Pgis-/-Tp-/-) mice and Pgis-/- mice transplanted with unfractionated wild-type or Cox-1-/- bone marrow cells, as well as human umbilical arteries. COX-derived prostanoids were measured by high-performance liquid chromatography-mass spectrometry. Vasomotor responses of distinct types of arteries were assessed by isometric force measurement. Parameters of hypertension, vascular remodeling, and cardiac hypertrophy in mice at different ages were monitored. RESULTS PGF2α, PGE2, and a trace amount of PGD2, but not thromboxane A2 (TxA2), were produced in response to acetylcholine in Pgis-/- or PGIS-inhibited arteries. PGIS deficiency resulted in exacerbation or occurrence of EDC ex vivo and in vivo. Endothelium-dependent hyperpolarization was unchanged, but phosphorylation levels of eNOS (endothelial nitric oxide synthase) at Ser1177 and Thr495 were altered and NO production and the NO-dependent relaxation evoked by acetylcholine were remarkably reduced in Pgis-/- aortas. Pgis-/- mice developed high blood pressure and vascular remodeling at 16 to 17 weeks and subsequently cardiac hypertrophy at 24 to 26 weeks. Meanwhile, blood pressure and cardiac parameters remained normal at 8 to 10 weeks. Additional ablation of TP (TxA2 receptor) not only restrained EDC and the downregulation of NO signaling in Pgis-/- mice but also ameliorated the cardiovascular abnormalities. Stimulation of Pgis-/- vessels with acetylcholine in the presence of platelets led to increased TxA2 generation. COX-1 disruption in bone marrow-derived cells failed to affect the development of high blood pressure and vascular remodeling in Pgis-/- mice though it largely suppressed the increase of plasma TxB2 (TxA2 metabolite) level. CONCLUSIONS Our study demonstrates that the non-TxA2 prostanoids/TP axis plays an essential role in mediating the augmentation of EDC and cardiovascular disorders when PGIS is deficient, suggesting TP as a promising therapeutic target in diseases associated with PGIS insufficiency.
Collapse
Affiliation(s)
- Jiahui Ge
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Yingbi Zhou
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Hui Li
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Ruhui Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, China (R.Z.)
| | - Kaiqi Xie
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Jing Leng
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Xijian Chen
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Gang Yu
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Xinya Shi
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Yineng Xu
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Dong He
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Pi Guo
- Department of Preventive Medicine (P.G.), Shantou University Medical College, China
| | - Yongyin Zhou
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Hongjun Luo
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Wenhong Luo
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Bin Liu
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| |
Collapse
|
2
|
Jaimes L, Vinet R, Knox M, Morales B, Benites J, Laurido C, Martínez JL. A Review of the Actions of Endogenous and Exogenous Vasoactive Substances during the Estrous Cycle and Pregnancy in Rats. Animals (Basel) 2019; 9:E288. [PMID: 31146394 PMCID: PMC6617363 DOI: 10.3390/ani9060288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/04/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelium plays a key role in regulating cardiovascular homeostasis by controlling the vascular tone. Variations in sex hormones during the reproductive cycle of females affect the homeostasis of the cardiovascular system. Also, the evidence shows that estrogens show a cardioprotective effect. On this basis, this study describes some vascular responses induced by vasoactive substances during the estrous cycle in rats. We obtained the information available on this topic from the online databases that included scientific articles published in the Web of Science, PubMed, and Scielo. Many investigations have evaluated the vasoactive response of substances such as acetylcholine and norepinephrine during the estrous cycle. In this review, we specifically described the vascular response to vasoactive substances in rats during the estrous cycle, pregnancy, and in ovariectomized rats. In addition, we discussed the existence of different signaling pathways that modulate vascular function. The knowledge of these effects is relevant for the optimization and development of new treatments for some vascular pathologies.
Collapse
Affiliation(s)
- Luisauris Jaimes
- Faculty of Chemistry and Biology, University de Santiago de Chile, Estación Central 9160020, Chile; (L.J.); (B.M.)
| | - Raúl Vinet
- CMBi, Faculty of Pharmacy, Universidad de Valparaíso, Valparaíso 2360102, Chile; (R.V.); (M.K.)
- Regional Centre for Studies in Food and Health (CREAS, Grant R17A10001), Valparaíso 2362696, Chile
| | - Marcela Knox
- CMBi, Faculty of Pharmacy, Universidad de Valparaíso, Valparaíso 2360102, Chile; (R.V.); (M.K.)
| | - Bernardo Morales
- Faculty of Chemistry and Biology, University de Santiago de Chile, Estación Central 9160020, Chile; (L.J.); (B.M.)
| | - Julio Benites
- Faculty of Health Science, Universidad Arturo Prat, Iquique 1100000, Chile;
| | - Claudio Laurido
- Faculty of Chemistry and Biology, University de Santiago de Chile, Estación Central 9160020, Chile; (L.J.); (B.M.)
| | - José L. Martínez
- Vice Chancellor of Investigation, Development and Innovation, Universidad de Santiago de Chile, Estación Central 9160020, Chile
| |
Collapse
|
3
|
Kandhi S, Zhang B, Froogh G, Qin J, Alruwaili N, Le Y, Yang YM, Hwang SH, Hammock BD, Wolin MS, Huang A, Sun D. EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. Am J Physiol Lung Cell Mol Physiol 2017; 313:L350-L359. [PMID: 28450284 DOI: 10.1152/ajplung.00038.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor (t-TUCB; 1 mg·kg-1·day-1) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and t-TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H2 (PGH2)/thromboxane A2 (TXA2) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH2 and TXA2 potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Bin Zhang
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of GI Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China; and
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of GI Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China; and
| | - Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Yicong Le
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Yang-Ming Yang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, and University of California Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
4
|
Al-Naamani N, Sagliani KD, Dolnikowski GG, Warburton RR, Toksoz D, Kayyali U, Hill NS, Fanburg BL, Roberts KE, Preston IR. Plasma 12- and 15-hydroxyeicosanoids are predictors of survival in pulmonary arterial hypertension. Pulm Circ 2016; 6:224-33. [PMID: 27252849 DOI: 10.1086/686311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aimed to characterize alterations in select eicosanoids in experimental and human pulmonary arterial hypertension (PAH) and to assess their potential utility as predictors of outcome. Using liquid chromatography-mass spectrometry, we performed targeted lipidomic analyses of the lungs and right ventricles (RVs) of chronically hypoxic rats and plasma of consecutive PAH patients and healthy controls. In rat lungs, chronic hypoxia was associated with significantly decreased lung prostacyclin (PGI2)/thromboxane B2 (TXB2) ratio and elevated lung 8-hydroxyeicosanoid (HETE) acid concentrations. RV eicosanoids did not exhibit any changes with chronic hypoxia. PAH treatment-naïve patients had significantly increased plasma concentrations of TXB2 and 5-, 8-, 12-, and 15-HETE. The PGI2/TXB2 ratio was lower in PAH patients than in controls, especially in the treatment-naïve cohort (median: 2.1, 0.3, and 1.3 in controls, treatment-naïve, and treated patients, respectively, P = 0.001). Survival was significantly worse in PAH patients with 12-HETEhigh (≥57 pg/mL) and 15-HETEhigh (≥256 pg/mL) in unadjusted and adjusted analyses (hazard ratio [HR]: 2.8 [95% confidence interval (CI): 1.1-7.3], P = 0.04 and HR: 4.3 [95% CI: 1.6-11.8], P = 0.004, respectively; adjustment was performed with the REVEAL [Registry to Evaluate Early and Long-Term PAH Disease Management] risk score). We demonstrate significant alterations in eicosanoid pathways in experimental and human PAH. We found that 12- and 15-HETE were independent predictors of survival in human PAH, even after adjusting for the REVEAL score, suggesting their potential role as novel biomarkers.
Collapse
Affiliation(s)
- Nadine Al-Naamani
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Kristen D Sagliani
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Gregory G Dolnikowski
- Mass Spectrometry Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Rod R Warburton
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Deniz Toksoz
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Usamah Kayyali
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicholas S Hill
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Barry L Fanburg
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Kari E Roberts
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ioana R Preston
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kandhi S, Qin J, Froogh G, Jiang H, Luo M, Wolin MS, Huang A, Sun D. EET-dependent potentiation of pulmonary arterial pressure: sex-different regulation of soluble epoxide hydrolase. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1478-86. [PMID: 26498250 DOI: 10.1152/ajplung.00208.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/17/2015] [Indexed: 01/24/2023] Open
Abstract
We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.
Collapse
Affiliation(s)
- Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Department of Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China; and Shanghai 9th Hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
6
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
7
|
Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis. Oncogene 2012; 32:160-70. [PMID: 22349822 DOI: 10.1038/onc.2012.47] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is upregulated in the pathogenesis of many cancers. Arachidonic acid (AA) and its metabolites play critical role in the development of breast cancer, but the mechanisms through which AA promotes mammary tumorigenesis and progression are poorly understood. We found that the levels of AA and cytosolic phospholipase A2 (cPLA2) strongly correlated with the signaling activity of mTORC1 and mTORC2 as well as the expression levels of vascular epithelial growth factor (VEGF) in human breast tumor tissues. In cultured breast cancer cells, AA effectively activated both mTOR complex 1 (mTORC1) and mTORC2. Interestingly, AA-stimulated mTORC1 activation was independent of amino acids, phosphatidylinositol 3-kinase (PI3-K) and tuberous sclerosis complex 2 (TSC2), which suggests a novel mechanism for mTORC1 activation. Further studies revealed that AA stimulated mTORC1 activity through destabilization of mTOR-raptor association in ras homolog enriched in brain (Rheb)-dependent mechanism. Moreover, we showed that AA-stimulated cell proliferation and angiogenesis required mTOR activity and that the effect of AA was mediated by lipoxygenase (LOX) but not cyclooxygenase-2 (COX-2). In animal models, AA-enhanced incidences of rat mammary tumorigenesis, tumor weights and angiogenesis were inhibited by rapamycin. Our findings suggest that AA is an effective intracellular stimulus of mTOR and that AA-activated mTOR plays critical roles in angiogenesis and tumorigenesis of breast cancer.
Collapse
|
8
|
Aging-shifted prostaglandin profile in endothelium as a factor in cardiovascular disorders. J Aging Res 2012; 2012:121390. [PMID: 22500225 PMCID: PMC3303603 DOI: 10.1155/2012/121390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/10/2011] [Accepted: 10/28/2011] [Indexed: 12/31/2022] Open
Abstract
Age-associated endothelium dysfunction is a major risk factor for the development of cardiovascular diseases. Endothelium-synthesized prostaglandins and thromboxane are local hormones, which mediate vasodilation and vasoconstriction and critically maintain vascular homeostasis. Accumulating evidence indicates that the age-related changes in endothelial eicosanoids contribute to decline in endothelium function and are associated with pathological dysfunction. In this review we summarize currently available information on aging-shifted prostaglandin profiles in endothelium and how these shifts are associated with cardiovascular disorders, providing one molecular mechanism of age-associated endothelium dysfunction and cardiovascular diseases.
Collapse
|
9
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
|
11
|
Pfister SL, Nithipatikom K, Campbell WB. Role of superoxide and thromboxane receptors in acute angiotensin II-induced vasoconstriction of rabbit vessels. Am J Physiol Heart Circ Physiol 2011; 300:H2064-71. [PMID: 21460202 DOI: 10.1152/ajpheart.01135.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study explored the hypothesis that a portion of angiotensin II-induced contractions is dependent on superoxide generation and release of a previously unidentified arachidonic acid metabolite that activates vascular smooth muscle thromboxane receptors. Treatment of rabbit aorta or mesentery artery with the thromboxane receptor antagonist SQ29548 (10 μM) reduced angiotensin II-induced contractions (maximal contraction in aorta; control vs. SQ29548: 134 ± 16 vs. 93 ± 10%). A subset of rabbits deficient in vascular thromboxane receptors also displayed decreased contractions to angiotensin II. The superoxide dismutase mimetic Tiron (30 mM) attenuated angiotensin II-induced contractions only in rabbits with functional vascular thromboxane receptors (maximal contraction in aorta; control vs. Tiron: 105 ± 5 vs. 69 ± 11%). Removal of the endothelium or treatment with a nitric oxide synthase inhibitor, nitro-l-arginine (30 μM) did not alter angiotensin II-induced contractions. Tiron and SQ29548 decreased angiotensin II-induced contractions in the denuded aortas by a similar percentage as that observed in intact vessels. The cyclooxygenase inhibitor indomethacin (10 μM) or thromboxane synthase inhibitor dazoxiben (10 μM) had no effect on angiotensin II-induced contractions indicating that the vasoconstrictor was not thromboxane. Angiotensin II increased the formation of a 15-series isoprostane. Isoprostanes are free radical-derived products of arachidonic acid. The unidentified isoprostane increased when vessels were incubated with the superoxide-generating system xanthine/xanthine oxidase. Pretreatment of rabbit aorta with the isoprostane isolated from aortic incubations enhanced angiotensin II-induced contractions. Results suggest the factor activating thromboxane receptors and contributing to angiotensin II vasoconstriction involves the superoxide-mediated generation of a 15-series isoprostane.
Collapse
Affiliation(s)
- Sandra L Pfister
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
12
|
Pfister SL. Role of lipoxygenase metabolites of arachidonic acid in enhanced pulmonary artery contractions of female rabbits. Hypertension 2011; 57:825-32. [PMID: 21300669 DOI: 10.1161/hypertensionaha.110.168716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary arterial hypertension is characterized by elevated pulmonary artery pressure and vascular resistance. In women the incidence is 4-fold greater than that in men. Studies suggest that sustained vasoconstriction is a factor in increased vascular resistance. Possible vasoconstrictor mediators include arachidonic acid-derived lipoxygenase (LO) metabolites. Our studies in rabbits showed enhanced endothelium-dependent contractions to arachidonic acid in pulmonary arteries from females compared with males. Because treatment with a nonspecific LO inhibitor reduced contractions in females but not males, the present study identified which LO isoform contributes to sex-specific pulmonary artery vasoconstriction. The 15- and 5- but not 12-LO protein expressions were greater in females. Basal and A23187-stimulated release of 15-, 5-, and 12-hydroxyeicosatetraenoic acids (HETEs) from females and males were measured by liquid chromatography/mass spectrometry. Only 15-HETE synthesis was greater in females compared with males under both basal and stimulated conditions. Vascular contractions to 15-HETE were enhanced in females compared with males (maximal contraction: 44±6%versus 25±3%). The specific 15-LO inhibitor PD146176 (12 μmol/L) decreased arachidonic acid-induced contractions in females (maximal contraction: 93±4% versus 57±10%). If male pulmonary arteries were incubated with estrogen (1 μmol/L, 18 hours), protein expression of 15-LO and 15-HETE production increased. Mechanisms to explain the increased incidence of pulmonary hypertension in women are not known. Results suggest that the 15-LO pathway is different between females and males and is regulated by estrogen. Understanding this novel sex-specific mechanism may provide insight into the increased incidence of pulmonary hypertension in females.
Collapse
Affiliation(s)
- Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
Abstract
The stimulation of thromboxane/endoperoxide receptors (TP) elicits diverse physiological/pathophysiological reactions, including platelet aggregation and contraction of vascular smooth muscle. Furthermore, the activation of endothelial TP promotes the expression of adhesion molecules and favors adhesion and infiltration of monocytes/macrophages. In various cardiovascular diseases, endothelial dysfunction is predominantly the result of the release of endothelium-derived contracting factors that counteract the vasodilator effect of nitric oxide produced by the endothelial nitric oxide synthase. Endothelium-dependent contractions involve the activation of cyclooxygenases, the production of reactive oxygen species along with that of endothelium-derived contracting factors, which diffuse toward the vascular smooth muscle cells and activate their TP. TP antagonists curtail the endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and reduce vascular inflammation. Therefore, TP antagonists, because of this triple activity, may have a unique potential for the treatment of cardiovascular disorders.
Collapse
|
14
|
Tabrizchi R, Ford CA. Alteration in hemodynamic effects of interleukin 2 after treatment with indomethacin in anesthetized rats. Vascul Pharmacol 2010; 52:230-5. [PMID: 20045082 DOI: 10.1016/j.vph.2009.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/16/2009] [Accepted: 12/20/2009] [Indexed: 10/20/2022]
Abstract
The cardiovascular effects of interleukin 2 (IL2), were investigated in animals pretreated with indomethacin. Bolus intravenous administration of IL2 alone caused a significant reduction in cardiac output over time. Pretreatment with indomethacin significantly accentuated the reduction in cardiac output produced by IL2. The administration of IL2 or indomethacin alone or combined had no significant effects on dP/dt, heart rate or plasma troponin levels. As well, administration of either compound alone or combined had limited effects on mean circulatory filling pressure and arterial blood pressure. Injection of IL2 alone significantly increased resistance to venous return and arterial resistance at 3h post injections. Pretreatment with indomethacin caused IL2 to produce a significantly greater increase in arterial resistance and resistance to venous return. Administration of IL2 and indomethacin combined also produced significant reduction in stroke volume than IL2 or indomethacin alone. The injection of IL2 or indomethacin alone or combined had no significant impact on blood volume. Acute administration of IL2 appears to have no negative inotropic or chronotropic effects and its impact in reducing cardiac output is the result of an increase in vascular resistance. It seems that activation of prostanoids, possibly prostacyclin, has an acute beneficial effect in attenuating the initial negative effects of IL2 on cardiac output.
Collapse
Affiliation(s)
- Reza Tabrizchi
- Memorial University of Newfoundland, St. John's, NL, Canada.
| | | |
Collapse
|
15
|
Abstract
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO). The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDHF-mediated responses). Endothelium-dependent relaxations involve both pertussis toxin-sensitive G(i) (e.g. responses to serotonin and thrombin) and pertussis toxin-insensitive G(q) (e.g. adenosine diphosphate and bradykinin) coupling proteins. The release of NO by the endothelial cell can be up-regulated (e.g. by oestrogens, exercise and dietary factors) and down-regulated (e.g. oxidative stress, smoking and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively loose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and causing endothelium-dependent hyperpolarizations), endothelial cells also can evoke contraction (constriction) of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factor (EDCF). Most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells. EDCF-mediated responses are exacerbated when the production of NO is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients.
Collapse
Affiliation(s)
- P M Vanhoutte
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | | | |
Collapse
|
16
|
Cairrão E, Santos-Silva AJ, Alvarez E, Correia I, Verde I. Isolation and culture of human umbilical artery smooth muscle cells expressing functional calcium channels. In Vitro Cell Dev Biol Anim 2009; 45:175-84. [PMID: 19118440 DOI: 10.1007/s11626-008-9161-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/12/2008] [Indexed: 11/25/2022]
Abstract
The human umbilical cord is a biological sample that can be easily obtained just after birth. A methodology was developed to perform cultures of human umbilical artery smooth muscle cells (HUASMC) expressing contractile proteins and functional ionic channels. To avoid fibroblast and endothelial cell contamination, we mechanically separated the tunica media, which only contains HUASMC and matrix proteins. To isolate the cells, collagenase V and elastase were used as hydrolyzing enzymes. The isolated cells were plated in collagen-coated dishes to obtain cultures of HUASMC. The cells obtained after different passages (1 to 6) exhibit the characteristic vascular smooth cell morphology and express smooth muscle alpha-2 actin, myosin heavy chain SM1, and alpha subunits of L- and T-type calcium channels (Cav 1.2, Cav 1.2, and Cav 3.2). Electrophysiology recordings for L- and T-type calcium channels were made, indicating that these channels are functional in the cultured cells. In conclusion, the procedure developed allows obtaining cultures of HUASMC expressing contractile proteins and also functional ionic channels. These cells could be used to study cellular and molecular aspects about the regulation of the vascular function.
Collapse
Affiliation(s)
- E Cairrão
- CICS - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
17
|
Li M, Kuo L, Stallone JN. Estrogen potentiates constrictor prostanoid function in female rat aorta by upregulation of cyclooxygenase-2 and thromboxane pathway expression. Am J Physiol Heart Circ Physiol 2008; 294:H2444-55. [PMID: 18310519 DOI: 10.1152/ajpheart.01121.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17beta-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 +/- 1.9 and 1,723 +/- 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 +/- 4.2 and 1,488 +/- 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups (P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher (P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.
Collapse
Affiliation(s)
- Min Li
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
18
|
Sellers MM, Stallone JN. Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure. Am J Physiol Heart Circ Physiol 2008; 294:H1978-86. [PMID: 18310512 DOI: 10.1152/ajpheart.01318.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, the vasodilatory prostanoids, especially prostacyclin and prostaglandin E(2), are believed to contribute significantly to the regulation of normal vascular tone and blood pressure (BP), primarily by counteracting the prevailing effects of the systemic vasoconstrictor systems, including angiotensin II, the catecholamines, and vasopressin. In contrast, the primary vasoconstrictor prostanoid thromboxane A(2) (TxA(2)) is produced in far smaller quantities in the normal state. While TxA(2) is believed to play a significant role in a variety of cardiovascular diseases, such as myocardial infarction, cerebral vasospasm, hypertension, preeclampsia, and various thrombotic disorders, its role in the regulation of vascular tone and BP in the normal physiological state is, at best, uncertain. Numerous studies have firmly established the dogma that TxA(2), while important in pathophysiological states in males, plays little or no role in the regulation of vascular tone or BP in females, except in the pulmonary vasculature. However, this concept is largely based on the predominant and preferential use of males in animal and human studies. Recent studies from our laboratory and others challenge this dogma and reveal that the TxA(2) pathway in the systemic vascular wall is an estrogen-dependent mechanism that appears to play an important role in the regulation of vascular tone and BP in females, in both normal and pathophysiological states. It is proposed that the potent vasoconstrictor action of TxA(2) is beneficial in the female in the normal state by acting as a local counterregulatory mechanism to increase vascular tone and BP and defend against hypotension that could result from the multiple estrogen-sensitive local vasodilator mechanisms present in the female vascular wall. Validation of this proposal must await further studies at the systemic, tissue, and molecular levels.
Collapse
Affiliation(s)
- Minga M Sellers
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA
| | | |
Collapse
|
19
|
Toth E, Racz A, Toth J, Kaminski PM, Wolin MS, Bagi Z, Koller A. Contribution of polyol pathway to arteriolar dysfunction in hyperglycemia. Role of oxidative stress, reduced NO, and enhanced PGH(2)/TXA(2) mediation. Am J Physiol Heart Circ Physiol 2007; 293:H3096-104. [PMID: 17873009 DOI: 10.1152/ajpheart.01335.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia increases glucose metabolism via the polyol pathway, which results in elevations of intracellular sorbitol concentration. Thus we hypothesized that elevated level of sorbitol contributes to the development of hyperglycemia-induced dysfunction of microvessels. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles (approximately 150 microm), high glucose treatment (25 mM) induced reduction in flow-dependent dilation (from maximum of 39 +/- 2% to 15 +/- 1%), which was significantly mitigated by an aldose reductase inhibitor, zopolrestat (maximum 27 +/- 2%). Increasing doses of sorbitol (10(-10)-10(-4) M) elicited dose-dependent constrictions (maximum 22 +/- 3%), which were abolished by endothelium removal, a prostaglandin H(2)/thromboxane A(2) (PGH(2)/TXA(2)) receptor (TP) antagonist SQ-29548, or superoxide dismutase (SOD) plus catalase (CAT). Incubation of arterioles with sorbitol (10(-7) M) reduced flow-dependent dilations (from maximum of 39 +/- 2% to 20 +/- 1.5%), which was not further affected by inhibition of nitric oxide synthase by N(omega)-nitro-l-arginine methyl ester but was prevented by SOD plus CAT and mitigated by SQ-29548. Nitric oxide donor sodium nitroprusside-induced (10(-9)-10(-6) M) dilations were also decreased in a SQ-29548 and SOD plus CAT-reversible manner, whereas adenosine dilations were not affected by sorbitol exposure. Sorbitol significantly increased arterial superoxide production detected by lucigenin-enhanced chemiluminescence, which was inhibited by SOD plus CAT. Sorbitol treatment also increased arterial formation of 3-nitrotyrosine. We suggest that hyperglycemia by elevating intracellular sorbitol induces oxidative stress, which interferes with nitric oxide bioavailability and promotes PGH(2)/TXA(2) release, both of which affect regulation of vasomotor responses of arterioles. Thus increased activity of the polyol pathway may contribute to the development of microvascular dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Erika Toth
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Nakayama K. [Mechanotransduction and cellular response--a challenge toward development of mechano-pharmacology]. YAKUGAKU ZASSHI 2006; 126:565-77. [PMID: 16880716 DOI: 10.1248/yakushi.126.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanoreception and subsequent cellular/molecular mechanisms of signal transduction pathways in response to mechanical stresses, including hemodynamic factors, passive stretching, and exercise, are ubiquitous in living organisms. Of these, the cardiovascular system involving the heart and blood vessels is known to be particularly sensitive to mechanical stimuli, for example, stretching and intraluminal pressurization, which might mimic an acute and/or chronic change in blood pressure and flow, induce a variety of responses including contraction, activation of various kinases and ionic channels, production of vasoactive substances, gene expression, and phenotype changes. We have started to clarify the mechanisms underlying this basic principle in the cardiovascular system as it is now generally considered that obesity and a lack of exercise are serious risk factors for cardiovascular diseases such as hypertension, atherosclerosis, and type 2 diabetes. We further extended our research field of mechanotransduction into adipocytes, skeletal muscle cells, and pancreatic beta cells, all of which are related to the core concerns in cardiovascular disease, including the so-called metabolic syndrome. In the present article, we discuss briefly the prologue to our study of mechanotransduction and several topics in the recent progress in this interesting area. We also emphasize that it is important to recognize biomechanical factors and control them not only for improvement in our knowledge of health and disease but also for the development of new drugs.
Collapse
Affiliation(s)
- Koichi Nakayama
- Department of Cellular and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| |
Collapse
|
21
|
Blanco-Rivero J, Balfagón G, Ferrer M. Orchidectomy modulates alpha2-adrenoceptor reactivity in rat mesenteric artery through increased thromboxane A2 formation. J Vasc Res 2005; 43:101-8. [PMID: 16293968 DOI: 10.1159/000089791] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/23/2005] [Indexed: 11/19/2022] Open
Abstract
The present study evaluates the effect of endogenous male sex hormones on the reactivity to alpha2-adrenoceptor activation, and to analyze the role of the endothelium in this response in intact and endothelially denuded superior mesenteric arteries from control and orchidectomized male Sprague-Dawley rats. The concentration-dependent constriction induced by clonidine was analyzed in the absence and presence of the nitric oxide synthase (NOS) inhibitor, Nomega-nitro-L-arginine (L-NAME), cyclooxygenase (COX-1 and COX-2) inhibitors, indomethacin, the specific COX-2 inhibitor NS-398, the thromboxane-prostanoid receptor antagonist SQ29,548 and the thromboxane A2 (TXA2) synthase inhibitor, furegrelate. Endothelial NOS (eNOS), COX-2 and TXA2 synthase protein expression was studied by Western blot analysis. In addition, the basal and clonidine-stimulated production of TXB2, the stable TXA2 metabolite, was also measured. In intact vessels from control male rats, the concentration-dependent constriction induced by clonidine was increased by both L-NAME or endothelial removal, unaltered by indomethacin and decreased by NS-398; in denuded vessels, the clonidine response was decreased by NS-398 and unaltered by L-NAME, indomethacin, SQ29,548 or furegrelate. In intact vessels from orchidectomized rats, the constriction induced by clonidine was increased by L-NAME but practically abolished by indomethacin or NS-398; in endothelially denuded segments the clonidine response was unaltered by L-NAME, but was decreased by indomethacin, NS-398, SQ29,548 or furegrelate. Orchidectomy failed to modify eNOS,COX-2 and TXA2 synthase expression, and increased basal and clonidine-stimulated TXB2 release. These results show that TXA2 produced in smooth muscle cells is increased in mesenteric arteries from orchidectomized rats compared to their controls, and that this prostanoid is functionally involved in the vasoconstrictor response to clonidine only in arteries from the orchidectomized rats.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
22
|
Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN. Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2005; 289:H578-85. [PMID: 15764681 DOI: 10.1152/ajpheart.00958.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that testosterone, administered in vivo, increases the tone of cerebral arteries. A possible underlying mechanism is increased vasoconstriction through the thromboxane A2 (TxA2) pathway. Therefore, we investigated the effect of chronic testosterone treatment (4 wk) on TxA2 synthase levels and the contribution of TxA2 to vascular tone in rat middle cerebral arteries (MCAs). Using immunofluorescence and confocal microscopy, we demonstrated that TxA2 synthase is present in MCA segments in both smooth muscle and endothelial layers. Using Western blot analysis, we found that TxA2 synthase protein levels are higher in cerebral vessel homogenates from testosterone-treated orchiectomized (ORX+T) rats compared with orchiectomized (ORX) control animals. Functional consequences of changes in cerebrovascular TxA2 synthase were determined using cannulated, pressurized MCA segments in vitro. Constrictor responses to the TxA2 mimetic U-46619 were not different between the ORX+T and ORX groups. However, dilator responses to either the selective TxA2 synthase inhibitor furegrelate or the TxA2-endoperoxide receptor (TP) antagonist SQ-29548 were greater in the ORX+T compared with ORX group. In endothelium-denuded arteries, the dilation to furegrelate was attenuated in both the ORX and ORX+T groups, and the difference between the groups was abolished. These data suggest that chronic testosterone treatment enhances TxA2-mediated tone in rat cerebral arteries by increasing endothelial TxA2 synthesis without altering the TP receptors mediating constriction. The effect of in vivo testosterone on cerebrovascular TxA2 synthase, observed here after chronic hormone administration, may contribute to the risk of vasospasm and thrombosis related to cerebrovascular disease.
Collapse
Affiliation(s)
- Rayna J Gonzales
- Department of Pharmacology, College of Medicine, Univ. of California, Irvine, CA 92697-4625, USA
| | | | | | | |
Collapse
|
23
|
Li M, Stallone JN. Estrogen potentiates vasopressin-induced contraction of female rat aorta by enhancing cyclooxygenase-2 and thromboxane function. Am J Physiol Heart Circ Physiol 2005; 289:H1542-50. [PMID: 15937092 DOI: 10.1152/ajpheart.01024.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the roles of estrogen and constrictor prostanoids in vasopressin (VP)-induced contraction of female rat aorta, vascular reactivity to VP was determined in thoracic aortas of intact, ovariectomized, and ovariectomized + estrogen-replaced female rats in the presence of indomethacin (Indo), NS-398, SQ-29,548, or vehicle control. The effects of estrogen on vascular reactivity to the thromboxane A(2) analog U-46619 were also examined. Maximal contractile response to VP in intact female rats (5,567 +/- 276 mg/mg of aortic ring wt) was markedly attenuated by ovariectomy (2,485 +/- 394 mg; P < 0.001) and restored by estrogen replacement with 17beta-estradiol (5,059 +/- 194 mg; P > 0.1). Indo and NS-398 significantly attenuated maximal responses to VP in intact female rats to a similar extent [3,176 +/- 179 (P < 0.0001) and 3,258 +/- 152 mg (P < 0.0001), respectively]. Ovariectomy abolished and estrogen replacement restored the inhibitory effects of Indo, NS-398, and SQ-29,548. Contractile responses of rat aorta to U-46619 were significantly greater (P < 0.0001) in females (5,040 +/- 238 mg) than in males (3,679 +/- 96 mg). Ovariectomy markedly attenuated (3,923 +/- 84 mg; P < 0.01) and estrogen replacement restored (5,024 +/- 155 mg; P > 0.1) responses to U-46619 in female aortas. These data reveal that estrogen is an important regulator of the contractile responses of female rat aorta to VP, which appears to potentiate both cyclooxygenase-2 and constrictor prostanoid function in the vascular wall.
Collapse
Affiliation(s)
- Min Li
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A and M University, College Station, Texas 77843, USA
| | | |
Collapse
|
24
|
Fike CD, Zhang Y, Kaplowitz MR. Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets. J Appl Physiol (1985) 2005; 99:670-6. [PMID: 15802364 DOI: 10.1152/japplphysiol.01337.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine whether a combined thromboxane synthase inhibitor-receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days of hypoxia. Piglets were maintained in room air (control) or 11% O(2) (hypoxic) for 3 days. Some hypoxic piglets received terbogrel (10 mg/kg po bid). Pulmonary arterial pressure, pulmonary wedge pressure, and cardiac output were measured in anesthetized animals. A cannulated artery technique was used to measure responses to acetylcholine. Pulmonary vascular resistance for terbogrel-treated hypoxic piglets was almost one-half the value of untreated hypoxic piglets but remained greater than values for control piglets. Dilation to acetylcholine in preconstricted pulmonary arteries was greater for terbogrel-treated hypoxic than for untreated hypoxic piglets, but it was less for pulmonary arteries from both groups of hypoxic piglets than for control piglets. Terbogrel may ameliorate pulmonary artery dysfunction and attenuate the development of chronic hypoxia-induced pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- Candice D Fike
- Dept. of Pediatrics, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
25
|
Zhang DX, Gauthier KM, Chawengsub Y, Holmes BB, Campbell WB. Cyclooxygenase- and lipoxygenase-dependent relaxation to arachidonic acid in rabbit small mesenteric arteries. Am J Physiol Heart Circ Physiol 2005; 288:H302-9. [PMID: 15388505 DOI: 10.1152/ajpheart.00661.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10−9–10−4 M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 ± 0.5% and EC50 of 50 nM. The cyclooxygenase (COX) inhibitors indomethacin (10 μM), NS-398 (10 μM, selective for COX-2), and SC-560 (100 nM, selective for COX-1) caused a marked rightward shift of concentration responses to AA. With the use of immunohistochemical analysis, both COX-1 and COX-2 were detected in endothelium and smooth muscle of small mesenteric arteries. Indomethacin-resistant relaxations were further reduced by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC; 1 μM), nordihydroguaiaretic acid (NDGA; 1 μM), and ebselen (1 μM). HPLC analysis showed that [14C]AA was metabolized by mesenteric arteries to PGI2, PGE2, THETAs, hydroxyepoxyeicosatrienoic acids (HEETAs), and 15-hydroxyeicosatetraenoic acid (15-HETE). The production of PGI2 and PGE2 was blocked by indomethacin, and the production of THETAs, HEETAs, and 15-HETE was inhibited by CDC and NDGA. Column fractions corresponding to THETAs were further purified, analyzed by gas chromatography/mass spectrometry, and identified as 11,12,15- and 11,14,15-THETA. PGI2, PGE2, and purified THETA fractions relaxed mesenteric arteries precontracted with phenylephrine. The AA- and THETA-induced relaxations were blocked by high K+ (60 mM). These findings provide functional and biochemical evidence that AA-induced relaxation in rabbit small mesenteric arteries is mediated through both COX and lipoxygenase pathways.
Collapse
Affiliation(s)
- David X Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
26
|
Pfister SL, Pratt PE, Kurian J, Campbell WB. Glibenclamide inhibits thromboxane-mediated vasoconstriction by thromboxane receptor blockade. Vascul Pharmacol 2004; 40:285-92. [PMID: 15063832 DOI: 10.1016/j.vph.2004.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 07/15/2003] [Accepted: 02/23/2004] [Indexed: 11/30/2022]
Abstract
Because sulfonylureas, such as glibenclamide, are used to treat Type 2 diabetes and because this disease is associated with various cardiovascular complications that may be mediated by thromboxane (TX), this study was designed to characterize the role of glibenclamide on TX-mediated contractions in isolated ring segments of bovine coronary arteries and rabbit aortas. A series of TXA(2) analogs [9,11 Dideoxy-9alpha, 11alpha-methanoepoxy prostaglandin F(2alpha) (U46619), [1S-(1alpha, 2beta(5Z),3alpha(1E, 3R*),4alpha)]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxabicyclo [2.2.1]heptan-2-yl]-5-heptenoic acid (I-BOP), carbocyclic TXA(2) (CTA(2)) and 9,11-dideoxy-9alpha,11alpha-epoxymethano prostaglandin F(2alpha) (U44069)], endothelin and phenylephrine contracted both types of blood vessels. Glibenclamide (10 microM) inhibited the contraction to each of the TX agonists but had no effect on endothelin- or phenylephrine-induced contractions. We hypothesized that this effect was due to a direct effect to block the vascular smooth muscle cell TX receptor. Receptor binding studies were performed in rabbit vascular smooth muscle cells and indicated that glibenclamide (10 microM) inhibited (125)I-BOP binding by more than 80%. The inhibition constants or K(i) for glibenclamide was 0.53 microM. These studies provide the first evidence that the ability of glibenclamide to inhibit TX-mediated contractions occurs independent of the vascular K(ATP) channel and is, instead, mediated by the blockade of the vascular TX receptor.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenosine Triphosphate/physiology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cattle
- Coronary Vessels/drug effects
- Coronary Vessels/physiology
- Fatty Acids, Unsaturated/pharmacology
- Glyburide/pharmacology
- In Vitro Techniques
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Prostaglandin Endoperoxides, Synthetic/pharmacology
- Rabbits
- Radioligand Assay
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Thromboxane A2/analogs & derivatives
- Thromboxane A2/pharmacology
- Thromboxane A2/physiology
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
27
|
Bäck M, Qiu H, Haeggström JZ, Sakata K. Leukotriene B4 is an indirectly acting vasoconstrictor in guinea pig aorta via an inducible type of BLT receptor. Am J Physiol Heart Circ Physiol 2004; 287:H419-24. [PMID: 15016629 DOI: 10.1152/ajpheart.00699.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leukotriene B(4) (LTB(4)) is a potent leukocyte chemoattractant recently implicated in the pathogenesis of atherosclerosis. The aim of this study was to assess the effects of LTB(4) on isolated aortic preparations. Rings of guinea pig aorta were challenged with LTB(4) for recording mechanical responses and measurements of mediator release, and LTB(4) receptor (BLT(1)) expression was assessed by RT-PCR. Single concentrations of LTB(4) induced concentration-dependent contractions that were inhibited by treatment with antihistamines, indomethacin, or the thromboxane receptor antagonist BAYu3405 as well as by denudation of endothelium. In addition, LTB(4) increased the release of histamine and thromboxane in the bath. The contractions induced by LTB(4) were inhibited by either the unselective BLT receptor antagonist ONO-4057 or the selective BLT(1) receptor antagonist U-75302. Pretreatment with all-trans-retinoic acid enhanced the contractions and the release of histamine induced by LTB(4), without affecting either the contractions induced by histamine or the histamine release evoked by calcium ionophore A23187. Analysis by RT-PCR indicated the expression of a BLT(1) receptor in the guinea pig aorta and that BLT(1) receptor mRNA was upregulated after treatment with retinoic acid. These results suggest that LTB(4) contracts the guinea pig aorta via an indirect mechanism involving the release of histamine and thromboxane and that this BLT(1) receptor-mediated response can be upregulated by all-trans-retinoic acid.
Collapse
Affiliation(s)
- Magnus Bäck
- Division of Physiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Matsumoto T, Oda SI, Kobayashi T, Kamata K. Flow-induced endothelium-dependent vasoreactivity in rat mesenteric arterial bed. J Smooth Muscle Res 2004; 40:1-14. [PMID: 15170073 DOI: 10.1540/jsmr.40.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied rat mesenteric arterial beds to determine the relationship between the effects of flow-induced shear stress and agonists on mesenteric vasoreactivity. When beds were perfused at gradually increasing flow rates, perfusion pressure was flow rate-dependently increased. The flow rate-mediated increase in perfusion pressure was significantly enhanced by N(G)-nitro-L-arginine (L-NOARG) plus methylene blue (MB) and slightly enhanced by treatment with tetraethylammonium (TEA). In the presence of L-NOARG, MB, TEA, and indomethacin, the flow rate-induced increase in perfusion pressure was significantly enhanced, but this enhancement was significantly inhibited by combined treatment with BQ-123 plus BQ-788 (ET(A)- and ET(B)- receptor antagonists, respectively). The ET-1 content of the perfusate was significantly increased following combined pretreatment with L-NOARG, MB, TEA, and indomethacin at a high flow rate. The methoxamine-induced contraction was significantly enhanced by NOS inhibition in both high- and low- flow-treated groups. The released nitrite level was significantly greater in high-flow-loaded than in the low-flow-loaded beds. We conclude that in this model, the response of vascular tone to flow stimulation is subtly regulated by endothelium-derived factors (especially, NO, endothelium-derived hyperpolarizing factor, and ET-1), and that these factors interact with each other.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Saito M, Tanabe Y, Kudo I, Nakayama K. Endothelium-derived prostaglandin H2 evokes the stretch-induced contraction of rabbit pulmonary artery. Eur J Pharmacol 2003; 467:151-61. [PMID: 12706469 DOI: 10.1016/s0014-2999(03)01569-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stretch-induced contraction of rabbit pulmonary artery depends on endothelium-derived vasoactive prostanoids. We investigated which prostanoid(s) was responsible for the stretch-induced contraction of the artery, and whether integrin was involved in this mechanotransduction process. Stretch increased productions of untransformed prostaglandin H(2), prostaglandin E(2), prostaglandin F(2alpha), and thromboxane A(2) in the pulmonary artery with intact endothelium. A blocking peptide for integrins (RGD peptide) significantly inhibited productions of thromboxane A(2) and prostaglandin F(2alpha), but the peptide did not affect productions of untransformed prostaglandin H(2) and prostaglandin E(2), as well as contraction in response to stretch. SQ29,548, a prostaglandin H(2)/thromboxane A(2) receptor antagonist, inhibited the contractile response to not only stretch but also exogenous prostaglandin H(2). Acetylcholine (up to 30 microM) also contracted the artery in an endothelium-dependent manner. Ozagrel (10 nM-1 microM), an inhibitor of thromboxane synthase, abolished the production of thromboxane A(2), in response to both stretch and acetylcholine, whereas the inhibitor mostly inhibited acetylcholine-induced contraction, but it did not suppress stretch-induced contraction. The results suggested that prostaglandin H(2) and thromboxane A(2), either released from endothelium by mechanical stretch or by acetylcholine, produced contraction of rabbit pulmonary artery in a RGD-independent manner.
Collapse
Affiliation(s)
- Maki Saito
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-city, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
30
|
Fulton CT, Stallone JN. Sexual dimorphism in prostanoid-potentiated vascular contraction: roles of endothelium and ovarian steroids. Am J Physiol Heart Circ Physiol 2002; 283:H2062-73. [PMID: 12384486 DOI: 10.1152/ajpheart.00099.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of constrictor prostanoid (CP) pathway inhibitors on vascular reactivity to vasopressin (VP) and phenylephrine (PE) were examined in thoracic aortas of male, female, and ovariectomized (OVX) female Sprague-Dawley rats. Maximal contractile response of control (Cont) aortas to VP was markedly higher in females (3,885 +/- 332 mg/mg ring wt) than in males (810 +/- 148 mg). Indomethacin (Indo; 10 microM) attenuated maximal response to VP in females (3,043 +/- 277 mg) but not in males. SQ-29,548 (SQ; 1 microM) attenuated maximal response to VP in females (3,042 +/- 290 mg) to a similar extent as Indo. Dazoxiben (Daz; 10 microM) alone had no effect, but Daz + SQ attenuated maximal contractile response to VP to a similar extent as SQ alone. Removal of the endothelium in female aortas attenuated contractile responses to VP in Cont aortas. OVX attenuated maximal contractile response to VP in Cont aortas (2,093 +/- 329 mg) and abolished the attenuating effects of Indo. Indo, SQ, and Daz exerted identical effects on contractile responses of male, female, and OVX female aortas to PE. These findings establish the following in the rat aorta: 1) CP, probably thromboxane and/or endoperoxide, is responsible for approximately 25-30% of contractile responses of females, but not males, to VP and PE; 2) CP production by the female aorta is primarily endothelial in origin; and 3) ovarian steroids modulate production and/or actions of CP in female aortas.
Collapse
Affiliation(s)
- Clifford T Fulton
- Department of Physiology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272-0095, USA
| | | |
Collapse
|
31
|
Pfister SL, Hughes MJ, Rosolowsky M, Campbell WB. Role of contaminating platelets in thromboxane synthesis in primary cultures of human umbilical vein endothelial cells. Prostaglandins Other Lipid Mediat 2002; 70:39-49. [PMID: 12428677 DOI: 10.1016/s0090-6980(02)00009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies suggested that cultured human endothelial cells metabolize arachidonic acid to thromboxane A2. When primary cultures of human umbilical vein endothelial cells were incubated with 14C-arachidonic acid and the 14C-metabolites resolved by reverse phase high pressure liquid chromatography, radioactive products were observed that comigrated with 6-keto-prostaglandin F1alpha and thromboxane B2, the degradation products of prostacyclin and thromboxane A2, respectively. Since platelets synthesize thromboxane A2, the present study examined the hypothesis that adherent platelets may contaminate the primary cultures of human umbilical vein endothelial cells and be responsible for thromboxane B2 production. Confluent primary cultures or passaged cells were stimulated with histamine (10(-5) M). Incubation buffer was analyzed by specific radioimmunoassays for 6-keto-prostaglandin F1alpha and thromboxane B2. The production of thromboxane B2 decreased in the passaged cells (207 +/- 44 pg/ml versus 65 +/- 12 pg/ml; primary versus passaged cells). A moderate decrease in the yield of 6-keto-prostaglandin F1alpha was measured in the passaged cells compared to the primary cultures (3159 +/- 356 pg/ml versus 1678 +/- 224 pg/ml, primary versus passaged cells). If the primary cultures were incubated with human platelet-rich plasma for 30 min prior to stimulation with histamine, the amount of thromboxane B2 increased approximately 10-fold. In an additional experiment, sub-confluent primary cells were incubated with platelet-rich plasma for 30 min, washed to remove non-adherent platelets, and allowed to reach confluency. Confluent cells were then passaged and stimulated with histamine. The amount of thromboxane B2 was not significantly different from that obtained with passaged cells that had not been incubated with platelet-rich plasma during the primary culture (83 +/- 15 pg/ml versus 65 +/- 12 pg/ml, respectively). If the cyclooxygenase inhibitor indomethacin was included in the incubations, the amounts of both thromboxane B2 and 6-keto-prostaglandin F1alpha decreased. In contrast, the thromboxane A2 synthase inhibitor dazoxiben blocked thromboxane production and had no effect on the amount of 6-keto-prostaglandin F1alpha. Light microscopy revealed the presence of adherent platelets in primary cultures with and without platelet-rich plasma but no platelets were observed in any group of passaged cells. Histofluorescence for platelet serotonin indicated the presence of platelets only in primary cultures of human umbilical vein endothelial cells or in cultures pre-incubated with platelet-rich plasma. These studies suggest that primary cultures of human umbilical vein endothelial cells contain adherent platelets that contribute to thromboxane synthesis.
Collapse
Affiliation(s)
- Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | |
Collapse
|
32
|
Venuto R, Brown G, Schoenl M, Losonczy G. Enhanced vascular effects of the Ca(2+) channel agonist Bay K 8644 in pregnant rabbits. Am J Physiol Regul Integr Comp Physiol 2002; 282:R952-9. [PMID: 11893597 DOI: 10.1152/ajpregu.00472.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic studies were performed to determine if blunting of vascular pressor responsiveness to vasoconstrictors during pregnancy may be due to impaired L-type voltage-dependent calcium channels (L-VDCC). Bay K 8644 (BAY), an L-VDCC agonist, was infused in pregnant and nonpregnant anesthetized rabbits (10, 20, 40, and 60 microg/kg) and pregnant and nonpregnant conscious, chronically instrumented (conscious) rabbits (10, 25, and 50 microg/kg). BAY infusions resulted in greater elevation of mean arterial pressure in both anesthetized pregnant (n = 6) vs. nonpregnant (n = 6) (P < 0.05) and conscious pregnant (n = 10) vs. nonpregnant (n = 10) rabbits (P < 0.05). Fractional increase over baseline of total peripheral resistance index was greater in pregnant (36 +/- 5 to 78 +/- 14%) vs. nonpregnant rabbits (14 +/- 4 to 52 +/- 6%) (P < 0.02). Cardiac output index did not differ. There was a single high-affinity L-VDCC antagonist aortic binding site with similar number and affinity in pregnant (n = 7) and nonpregnant (n = 7) rabbits. In conclusion, stimulation of L-VDCC induces greater pressor responses in pregnant rabbits with heightened peripheral vasoconstriction. This does not appear to be due to a change in L-VDCC receptor parameters.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- 6-Ketoprostaglandin F1 alpha/biosynthesis
- Anesthesia
- Animals
- Aorta/metabolism
- Blood Pressure/drug effects
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cardiac Output/drug effects
- Consciousness
- Dihydropyridines/pharmacology
- Female
- Heart Rate/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nifedipine/pharmacology
- Pregnancy
- Pregnancy, Animal/drug effects
- Rabbits
- Thromboxane B2/biosynthesis
- Tritium
Collapse
Affiliation(s)
- Rocco Venuto
- Schools of Medicine and Biomedical Science, University at Buffalo, State University of New York, Buffalo, New York 14215, USA.
| | | | | | | |
Collapse
|
33
|
Fike CD, Pfister SL, Kaplowitz MR, Madden JA. Cyclooxygenase contracting factors and altered pulmonary vascular responses in chronically hypoxic newborn pigs. J Appl Physiol (1985) 2002; 92:67-74. [PMID: 11744644 DOI: 10.1152/jappl.2002.92.1.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary hypertension and blunted pulmonary vascular responses to ACh develop when newborn pigs are exposed to chronic hypoxia for 3 days. To determine whether a cyclooxygenase (COX)-dependent contracting factor, such as thromboxane, is involved with altered pulmonary vascular responses to ACh, newborn piglets were raised in 11% O(2) (hypoxic) or room air (control) for 3 days. Small pulmonary arteries (100-400 microm diameter) were cannulated and pressurized, and their responses to ACh were measured before and after either the COX inhibitor indomethacin; a thromboxane synthesis inhibitor, dazoxiben or feregrelate; or the thromboxane-PGH(2)-receptor antagonist SQ-29548. In control arteries, indomethacin reversed ACh responses from dilation to constriction. In contrast, hypoxic arteries constricted to ACh before indomethacin and dilated to ACh after indomethacin. Furthermore, ACh constriction in hypoxic arteries was nearly abolished by either dazoxiben, feregrelate, or SQ-29548. These findings suggest that thromboxane is the COX-dependent contracting factor that underlies the constrictor response to ACh that develops in small pulmonary arteries of piglets exposed to 3 days of hypoxia. The early development of thromboxane-mediated constriction may contribute to the pathogenesis of chronic hypoxia-induced pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
34
|
Pratt PF, Li P, Hillard CJ, Kurian J, Campbell WB. Endothelium-independent, ouabain-sensitive relaxation of bovine coronary arteries by EETs. Am J Physiol Heart Circ Physiol 2001; 280:H1113-21. [PMID: 11179054 DOI: 10.1152/ajpheart.2001.280.3.h1113] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) is released in response to agonists such as ACh and bradykinin and regulates vascular smooth muscle tone. Several studies have indicated that ouabain blocks agonist-induced, endothelium-dependent hyperpolarization of smooth muscle. We have demonstrated that epoxyeicosatrienoic acids (EETs), cytochrome P-450 metabolites of arachidonic acid, function as EDHFs. To further test the hypothesis that EETs represent EDHFs, we have examined the effects of ouabain on the electrical and mechanical effects of 14,15- and 11,12-EET in bovine coronary arteries. These arteries are relaxed in a concentration-dependent manner to 14,15- and 11,12-EET (EC(50) = 6 x 10(-7) M), bradykinin (EC(50) = 1 x 10(-9) M), sodium nitroprusside (SNP; EC(50) = 2 x 10(-7) M), and bimakalim (BMK; EC(50) = 1 x 10(-7) M). 11,12-EET-induced relaxations were identical in vessels with and without an endothelium. Potassium chloride (1-15 x 10(-3) M) inhibited [(3)H]ouabain binding to smooth muscle cells but failed to relax the arteries. Ouabain (10(-5) to 10(-4) M) increased basal tone and inhibited the relaxations to bradykinin, 11,12-EET, and 14,15-EET, but not to SNP or BMK. Barium (3 x 10(-5) M) did not alter EET-induced relaxations and ouabain plus barium was similar to ouabain alone. Resting membrane potential (E(m)) of isolated smooth muscle cells was -50.2 +/- 0.5 mV. Ouabain (3 x 10(-5) and 1 x 10(-4) M) decreased E(m) (-48.4 +/- 0.2 mV), whereas 11,12-EET (10(-7) M) increased E(m) (-59.2 +/- 2.2 mV). Ouabain inhibited the 11,12-EET-induced increase in E(m). In cell-attached patch clamp studies, 11,12-EET significantly increased the open-state probability (NP(o)) of a calcium-activated potassium channel compared with control cells (0.26 +/- 0.06 vs. 0.02 +/- 0.01). Ouabain did not change NP(o) but blocked the 14,15-EET-induced increase in NP(o). These results indicate that: 1) EETs relax coronary arteries in an endothelium-independent manner, 2) unlike EETs, potassium chloride does not relax the coronary artery, and 3) ouabain inhibits bradykinin- and EET-induced relaxations as has been reported for EDHF. These findings provide further evidence that EETs are EDHFs.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Benzopyrans/pharmacology
- Biological Factors/metabolism
- Bradykinin/metabolism
- Cardiotonic Agents/metabolism
- Cardiotonic Agents/pharmacology
- Cattle
- Coronary Vessels/cytology
- Dihydropyridines/pharmacology
- Electrophysiology
- Endothelium, Vascular/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitroprusside/pharmacology
- Ouabain/metabolism
- Ouabain/pharmacology
- Peptides/pharmacology
- Potassium/pharmacokinetics
- Potassium Channels/metabolism
- Tritium
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- P F Pratt
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Portal hypertension (PHT) is a common clinical syndrome associated with chronic liver diseases; it is characterized by a pathological increase in portal pressure. Pharmacotherapy for PHT is aimed at reducing both intrahepatic vascular tone and elevated splanchnic blood flow. Due to the altered hemodynamic profile in PHT, dramatic changes in mechanical forces, both pressure and flow, may play a pivotal role in controlling endothelial and vascular smooth muscle cell signaling, structure, and function in cirrhotics. Nitric oxide, prostacyclin, endothelial-derived contracting factors, and endothelial-derived hyperpolarizing factor are powerful vasoactive substances released from the endothelium in response to both humoral and mechanical stimuli that can profoundly affect both the function and structure of the underlying vascular smooth muscle. This review will examine the contributory role of hormonal- and mechanical force-induced changes in endothelial function and signaling and the consequence of these changes on the structural and functional response of the underlying vascular smooth muscle. It will focus on the pivotal role of hormonal and mechanical force-induced endothelial release of vasoactive substances in dictating the reactivity of the underlying vascular smooth muscle, i.e., whether hyporeactive or hyperreactive, and will examine the extent to which these substances may exert a protective and/or detrimental influence on the structure of the underlying vascular smooth muscle in both a normal hemodynamic environment and following hemodynamic perturbations typical of PHT and cirrhosis. Finally, it will discuss the intracellular processes that regulate the release/expression of these vasoactive substances and that control the transformation of this normally protective cell to one that may promote the development of vasculopathy in PHT.
Collapse
Affiliation(s)
- P A Cahill
- School of Biotechnology, Dublin City University, Glasnevin Dublin 9, Ireland.
| | | | | |
Collapse
|
36
|
Derkach DN, Ihara E, Hirano K, Nishimura J, Takahashi S, Kanaide H. Thrombin causes endothelium-dependent biphasic regulation of vascular tone in the porcine renal interlobar artery. Br J Pharmacol 2000; 131:1635-42. [PMID: 11139441 PMCID: PMC1572496 DOI: 10.1038/sj.bjp.0703737] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Using a method employing front-surface fura-2 fluorometry to measure the cytosolic Ca(2+) concentration, [Ca(2+)](i), the mechanism of endothelium-dependent regulation of vascular tone by thrombin was studied in porcine renal interlobar arterial strips. At concentrations lower than 3 u ml(-1), thrombin evoked only early transient relaxation, while at 3 u ml(-1) and higher concentrations, thrombin caused an early relaxation and a subsequent transient contraction. Both thrombin-induced relaxation and contraction were abolished by removing the endothelium. Similar biphasic responses were observed with a protease-activated receptor-1-activating peptide. Early relaxation was associated with a decrease in [Ca(2+)](i), while the transient contraction was not associated with a change in [Ca(2+)](i) of smooth muscle cells. A thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist (10(-5) M ONO-3708) completely inhibited the thrombin-induced contraction, whereas a thromboxane A(2) synthase inhibitor (10(-5) M OKY-046) only partly inhibited it. When the thrombin-induced contraction was inhibited by ONO-3708, either pretreatment with N(omega)-nitro-L-arginine methylester (L-NAME) or an increase in the amount of external K(+) to 40 mM did not abolish thrombin-induced relaxation during phenylephrine-induced sustained contraction. However, the combination of pretreatment with L-NAME and an elevation of external K(+) to 40 mM completely abolished the relaxation. There was no significant difference in the concentration-dependent effects of thrombin on the initial early relaxation between conditions in which the contractile components either were or were not inhibited. Thrombin is thus considered to mainly activate protease-activated receptor-1 and cause a biphasic response, early relaxation and a transient contraction, in the porcine renal interlobar artery in an endothelium-dependent manner. The thrombin-induced endothelium-dependent relaxation was mediated by nitric oxide and hyperpolarizing factors, while the contraction was mediated by TXA(2) and PGH(2).
Collapse
Affiliation(s)
- D N Derkach
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | | | | | | | | | | |
Collapse
|
37
|
Walch L, Gascard JP, Dulmet E, Brink C, Norel X. Evidence for a M(1) muscarinic receptor on the endothelium of human pulmonary veins. Br J Pharmacol 2000; 130:73-8. [PMID: 10781000 PMCID: PMC1572048 DOI: 10.1038/sj.bjp.0703301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. To characterize the muscarinic receptors on human pulmonary veins associated with the acetylcholine (ACh)-induced relaxation, isolated venous and arterial preparations were pre-contracted with noradrenaline (10 microM) and were subsequently challenged with ACh in the absence or presence of selective muscarinic antagonists. 2. ACh relaxed venous preparations derived from human lung with a pD(2) value of 5.82+/-0.09 (n=16). In venous preparations where the endothelium had been removed, the ACh relaxations were abolished (n=4). ACh relaxed arterial preparations with a pD(2) value of 7. 06+/-0.14 (n=5). 3. Atropine (1 microM), the non selective antagonist for muscarinic receptors, inhibited ACh-induced relaxations in human pulmonary veins. The affinity value (pK(B) value) for atropine was: 8.64+/-0.10 (n=5). The selective muscarinic antagonists (darifenacin (M(3)), himbacine (M(2),M(4)), methoctramine (M(2)) and pFHHSiD (M(1),M(3))) also inhibited ACh-induced relaxations in venous preparations. The pK(B) values obtained for these antagonists were not those predicted for the involvement of M(2 - 5) receptors in the ACh-induced relaxation in human pulmonary veins. 4. The pK(B) value for darifenacin (1 microM) was significantly greater in human pulmonary arterial (8.63+/-0.14) than in venous (7.41+/-0.20) preparations derived from three lung samples. 5. In human pulmonary veins, the pK(B) values for pirenzepine (0.5 and 1 microM), a selective antagonist for M(1) receptors, were: 7.89+/-0.24 (n=7) and 8.18+/-0.22 (n=5), respectively. In the venous preparations, the pK(B) values derived from the functional studies with all the different muscarinic antagonists used were correlated (r=0.89; P=0.04; slope=0.78) with the affinity values (pK(i) values) previously published for human cloned m1 receptors in CHO cells. 6. These results suggest that the relaxations induced by ACh are due to the activation of M(1) receptors on endothelial cells in isolated human pulmonary veins.
Collapse
Affiliation(s)
- Laurence Walch
- CNRS ESA8078, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France
| | - Jean-Pierre Gascard
- CNRS ESA8078, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France
| | - Elisabeth Dulmet
- Laboratoire d'Anatomopathologie, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France
| | - Charles Brink
- CNRS ESA8078, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France
| | - Xavier Norel
- CNRS ESA8078, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis-Robinson, France
- Author for correspondence:
| |
Collapse
|
38
|
Ihara E, Hirano K, Derkach DN, Nishimura J, Nawata H, Kanaide H. The mechanism of bradykinin-induced endothelium-dependent contraction and relaxation in the porcine interlobar renal artery. Br J Pharmacol 2000; 129:943-52. [PMID: 10696094 PMCID: PMC1571924 DOI: 10.1038/sj.bjp.0703141] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanism of endothelium-dependent regulation of vascular tone of bradykinin was investigated by simultaneously monitoring the changes in the cytosolic Ca(2+) concentration and the force of smooth muscle in fura-2-loaded strips of the porcine renal artery with endothelium. During phenylephrine-induced sustained contraction, bradykinin (>3x10(-9) M) caused endothelium-dependent triphasic changes in the force of the strips, composed of an initial relaxation, a subsequent transient contraction and a late sustained relaxation. At low concentrations (10(-10) - 10(-9) M), bradykinin caused an endothelium-dependent biphasic relaxation with no contraction. A thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist (10(-5) M ONO-3708) completely inhibited, while a TXA(2) synthase inhibitor (10(-5) M OKY-046) only partially inhibited, the transient contraction induced by bradykinin. Under conditions where the bradykinin-induced contraction was inhibited by ONO-3708 during the phenylephrine-induced contraction, bradykinin induced only a transient relaxation in the presence of N(Omega)-nitro-L-arginine methyl ester (L-NAME). This transient relaxation was inhibited when the precontraction was initiated by phenylephrine plus 40 mM extracellular K(+). The removal of L-NAME from this condition caused a partial reappearance of the initial relaxation and a complete reappearance of the sustained relaxation. In conclusion, bradykinin caused the endothelium-dependent triphasic regulation of vascular tone in the porcine renal artery. The concentrations of bradykinin required to induce a contraction was higher than that required to induce relaxation. Both TXA(2) and PGH(2) were involved in the bradykinin-induced contraction. The initial relaxation was mediated by nitric oxide and hyperpolarizing factors while the sustained relaxation depended on nitric oxide.
Collapse
Affiliation(s)
- Eikichi Ihara
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuya Hirano
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Dmitry N Derkach
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Junji Nishimura
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hajime Nawata
- 3rd Department of Internal Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hideo Kanaide
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Author for correspondence:
| |
Collapse
|
39
|
Ihara E, Hirano K, Nishimura J, Nawata H, Kanaide H. Thapsigargin-induced endothelium-dependent triphasic regulation of vascular tone in the porcine renal artery. Br J Pharmacol 1999; 128:689-99. [PMID: 10516650 PMCID: PMC1571664 DOI: 10.1038/sj.bjp.0702821] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. To elucidate the role of thapsigargin-induced Ca2+ entry in endothelial cells in the regulation of vascular tone, changes in Ca2+ and force of smooth muscle were simultaneously monitored in fura-2-loaded strips of porcine renal artery. 2. During phenylephrine-induced sustained contraction, thapsigargin caused an endothelium-dependent triphasic response; an initial relaxation, a subsequent transient contraction, and a sustained relaxation. The initial relaxation and the contraction were associated with a decrease and an increase in [Ca2+]i, respectively. There was no apparent [Ca2+]i decrease during the sustained relaxation. Thapsigargin-induced responses were observed at 10-8 M and higher concentrations, with the maximum response observed at 10-6 M. 3. The transient contraction was inhibited by a cyclo-oxygenase inhibitor (10-5 M indomethacin), a thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor antagonist (10-5 M ONO-3708), and a TXA2 synthase inhibitor (10-5 M OKY-046). 4. During the phenylephrine-induced contraction in the presence of indomethacin, thapsigargin caused an initial, but not a sustained relaxation, in the presence of Nomega-nitro-L-arginine methylester (L-NAME). During the contraction induced by phenylephrine plus 40 mM K+-depolarization in the presence of indomethacin, thapsigargin induced both a transient and a sustained relaxation. However, these relaxations were completely abolished in the presence of L-NAME. 5. Thapsigargin caused a large Ca2+ elevation in cultured endothelial cells of the renal artery. The concentration-response relation was thus similar to that for force development in the arterial strips. 6. In conclusion, thapsigargin-induced Ca2+ entry in endothelial cells led to triphasic changes in the tone of the porcine renal artery. The endothelium-dependent contraction was mediated mainly by TXA2. Nitric oxide and hyperpolarizing factor are both involved in the initial relaxation. However, a sustained relaxation was observed which mainly depended on nitric oxide.
Collapse
Affiliation(s)
- E Ihara
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | | | | | | | | |
Collapse
|
40
|
Miyamoto A, Ishiguro S, Nishio A. Stimulation of bradykinin B2-receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro. Br J Pharmacol 1999; 128:241-7. [PMID: 10498858 PMCID: PMC1571616 DOI: 10.1038/sj.bjp.0702783] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The aim of the present study was to characterize the subtypes of bradykinin (BK) receptors that evoke the relaxation and contraction induced by BK and to identify the main contracting and relaxing factors in isolated porcine basilar artery by measuring changes in isometric tension and a thromboxane (TX) metabolite. 2. Endothelial denudation completely abolished both responses. [Thi5,8, D-Phe7]-BK (a B2-receptor antagonist) inhibited the BK-induced relaxation and contraction, whereas des-Arg9, [Leu8]-BK (a B1-receptor antagonist) had no effect. 3. L-nitro-arginine (L-NA, a nitric oxide synthase inhibitor) completely inhibited BK-induced relaxation. Indomethacin (a cyclo-oxygenase inhibitor) completely and ONO-3708 (a TXA2/prostaglandin H2 receptor antagonist) partially inhibited BK-induced contraction, whereas OKY-046 (a TXA2 synthase inhibitor) and nordihydroguaiaretic acid (a lipoxygenase inhibitor) did not. 4. In the presence of L-NA, the contractile response to BK was inhibited by indomethacin or ONO-3708 and was competitively antagonized by [Thi5,8, D-Phe7]-BK (pA2=7.50). In the presence of indomethacin, the relaxant response to BK was inhibited by L-NA and was competitively antagonized by [Thi5,8, D-Phe7]-BK (pA2=7.59). 5. TXA2 release was not induced by BK-stimulation. 6. These results suggest that the endothelium-dependent relaxation and contraction to BK in the porcine basilar artery is mediated via activation of endothelial B2-receptors. The main relaxing factor may be NO and the main contracting factor may be prostaglandin H2.
Collapse
Affiliation(s)
- A Miyamoto
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto Kagoshima, 890-0065, Japan
| | | | | |
Collapse
|
41
|
Lawrence RN, Clelland C, Beggs D, Salama FD, Dunn WR, Wilson VG. Differential role of vasoactive prostanoids in porcine and human isolated pulmonary arteries in response to endothelium-dependent relaxants. Br J Pharmacol 1998; 125:1128-37. [PMID: 9863638 PMCID: PMC1565684 DOI: 10.1038/sj.bjp.0702168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pig is increasingly being used in medical research, both as a model of the human cardiovascular system, and as a possible source of organs for xenotransplantation. However, little is known about the comparative functions of the vascular endothelium between porcine and human arteries. We have therefore compared the effects of two endothelium-dependent vasorelaxants, acetylcholine (ACh) and the Ca2+-ATPase inhibitor, cyclopiazonic acid (CPA) on the porcine and human isolated pulmonary artery using isometric tension recording. ACh and CPA produced endothelium-dependent relaxations of both the human and porcine pulmonary arteries. In the porcine pulmonary artery, the cyclo-oxygenase inhibitor, flurbiprofen had no effect on relaxations to ACh (Emax: control 67.8+/-8.8% versus 72.4+/-9.5% (n=11)) or CPA (Emax: control 79.6+/-5.0% versus 94.0+/-10.6% (n=7)). The nitric oxide synthase inhibitor, L-NAME converted relaxations to both ACh and CPA into contractile responses (maximum response: ACh 30.0+/-11.1% (n = 10); CPA 80.4+/-26.2% (n = 8) of U46619-induced tone). These contractile responses in the presence of L-NAME were abolished by flurbiprofen. In the human pulmonary artery, L-NAME and flurbiprofen partly attenuated relaxations to ACh (Emax: control: 45.1+/-12.1%; flurbiprofen: 33.4+/-13.5%; L-NAME: 10.1+/-7.2%) and CPA (Emax: control: 78.1+/-5.5%; flurbiprofen: 69.6+/-7.2%; L-NAME 37.9+/-10.7% of U46619-induced tone). These responses were abolished by the combination of both inhibitors. We have demonstrated that while the release of nitric oxide is important in responses to endothelium-dependent vasorelaxants in both human and porcine pulmonary arteries, in the human arteries, there is an important role for vasorelaxant prostanoids whilst in the porcine arteries, vasoconstrictor prostanoids are released.
Collapse
Affiliation(s)
- R N Lawrence
- School of Biomedical Sciences, Nottingham University Medical School, Queens Medical Centre
| | | | | | | | | | | |
Collapse
|
42
|
Li PL, Zou AP, Campbell WB. Regulation of KCa-channel activity by cyclic ADP-ribose and ADP-ribose in coronary arterial smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1002-10. [PMID: 9724306 DOI: 10.1152/ajpheart.1998.275.3.h1002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzymatic pathway responsible for the production and metabolism of cyclic ADP-ribose (cADP-R) in small bovine coronary arteries was characterized, and the role of cADP-R and ADP-ribose (ADP-R) in the regulation of the activity of large-conductance Ca2+-activated K+ (KCa) channels was determined in vascular smooth muscle cells (SMC) prepared from these vessels. We found that cADP-R and ADP-R were produced when the coronary arterial homogenates were incubated with 1 mM beta-NAD. The time course of the enzyme reactions showed that the maximal conversion rate (1.37 +/- 0.03 nmol . min-1 . mg protein-1) of beta-NAD to cADP-R was reached after 3 min of incubation. As incubation time was prolonged, the production of ADP-R was increased to a maximal rate of 3.66 +/- 0.03 nmol . min-1 . mg protein-1, whereas cADP-R production decreased. Incubation of the homogenate with cADP-R produced a time-dependent increase in the synthesis of ADP-R. Comparison of coronary arterial microsomes with cytosols shows that the production of both cADP-R and ADP-R in microsomes was significantly greater. In excised inside-out membrane patches of single coronary SMC, the KCa channels were activated when beta-NAD, the precursor for both cADP-R and ADP-R, was applied to the internal surface. This effect of beta-NAD may be associated with the production of ADP-R, because the KCa-channel activity was increased by ADP-R in a concentration-dependent manner. The open-state probability of the KCa channels increased from a control level of 0.08 +/- 0.03 to 0.17 +/- 0.05 even at the lowest ADP-R concentration (0.1 microM) studied. However, cADP-R reduced the KCa-channel activity, and the threshold concentration of cADP-R that decreased the average channel activity of the KCa channels was 1 microM. These results provide evidence that cADP-R is produced and metabolized in the coronary arterial smooth muscle and that a cADP-R/ADP-R pathway participates in the control of the KCa-channel activity in vascular SMC.
Collapse
Affiliation(s)
- P L Li
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
43
|
Fabi F, Argiolas L, Ruvolo G, del Basso P. Neuropeptide Y-induced potentiation of noradrenergic vasoconstriction in the human saphenous vein: involvement of endothelium generated thromboxane. Br J Pharmacol 1998; 124:101-10. [PMID: 9630349 PMCID: PMC1565367 DOI: 10.1038/sj.bjp.0701808] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. We investigated the potentiating effect of low concentrations of neuropeptide Y (NPY) on the vasoconstriction induced by transmural nerve stimulation (TNS) and noradrenaline (NA) in human saphenous veins. The effects of (i) endothelium removal; (ii) the addition of the NO pathway precursor L-arginine; (iii) the ET(A)/ET(B) endothelin receptor antagonist Ro 47-0203; (iv) the cyclo-oxygenase inhibitor, indomethacin; (v) the selective thromboxane A2 (TxA2) receptor antagonists Bay u3405 and ifetroban, and (vi) the TxA2 synthase inhibitor, UK 38485, were studied in order to gain information about the mechanisms of NPY-induced potentiation. 2. Contractile response curves for TNS (0.5-8 Hz) and for exogenously administered NA (0.1-3 microM) were obtained in superfused saphenous vein rings. The contractions induced by both TNS and NA at all tested frequencies and concentrations, respectively, were significantly potentiated by 50 nM NPY in endothelium intact veins. Conversely, in endothelium-denuded vessel rings the contractile-response curves to TNS and NA overlapped both in the absence and presence of NPY, thus suggesting that a release of vasoactive substances from endothelial cells could account for the noradrenergic NPY-induced potentiation. 3. In vessels with intact endothelium, the potentiating action of NPY on TNS and NA was unaffected by the presence of high concentrations of the NO precursor L-arginine (3-10 mM) or the non-selective ET(A)/ET(B) endothelin receptor antagonist, Ro 47-0203 (10 microM). These data indicate that the NPY-induced effect does not involve either the endothelium-derived vasodilator nitric oxide or the vasoconstrictor endothelin. Conversely, in the presence of the cyclo-oxygenase inhibitor, indomethacin (30 microM), NPY failed to potentiate the vasoconstrictions produced by either nerve stimulation or by exogenous NA, thus providing evidence that arachidonic acid metabolites through the cyclo-oxygenase pathway are mainly responsible for the potentiation evoked by NPY. 4. When the TxA2 receptor antagonists, Bay u 3405 (1 microM) and ifetroban (1 microM) were added to the superfusing medium, NPY did not alter either the frequency- or the concentration-response curves for either TNS or NA. Accordingly, both TNS- and NA-induced contractions were not potentiated by NPY in the presence of the TxA2 synthase inhibitor, UK 38485 (10 microM). This clearly demonstrates the pivotal role of TxA2 in NPY-induced potentiation. 5. In superfused vein rings with endothelium, a subthreshold concentration (0.2 nM) of the TxA2 mimetic U 46619 potentiated both TNS- and NA-induced vasoconstrictions. This potentiation was higher at low stimulation frequencies and low NA concentrations, and resembled that produced by NPY. 6. Our results indicate that in the human saphenous vein NPY potentiates the contractions produced by sympathetic nerve stimulation acting at the postjunctional level, primarily on endothelial cells. In particular, the NPY-induced release of a cyclo-oxygenase metabolite, namely TxA2, may have a synergistic effect on the vasoconstriction induced by the noradrenergic mediator. Thus, such a mechanism may play a key role in the maintenance of the sympathetic tone of large human capacitance vessels.
Collapse
Affiliation(s)
- F Fabi
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
44
|
Goff CD, Corbin RS, Theiss SD, Frierson HF, Cephas GA, Tribble CG, Kron IL, Young JS. Postinjury thromboxane receptor blockade ameliorates acute lung injury. Ann Thorac Surg 1997; 64:826-9. [PMID: 9307481 DOI: 10.1016/s0003-4975(97)00490-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute lung injury is associated with pulmonary hypertension, intrapulmonary shunting, and increased microvascular permeability, leading to altered oxygenation capacity. Thromboxane A2 has been found to be a central mediator in the development of septic and oleic acid (OA)-induced acute lung injury. Our previous study demonstrated a beneficial effect of preinjury thromboxane A2 receptor blockade. The current study examines the efficacy of postinjury receptor blockade on oxygenation capacity and pulmonary hemodynamics in an isolated lung model of OA-induced acute lung injury. METHODS Four groups of rabbit heart-lung preparations were studied for 60 minutes in an ex vivo perfusion-ventilation system. Saline control lungs received saline solution during the first 20 minutes of study. Injury control lungs received an OA-ethanol solution during the first 20 minutes. Two treatment groups were used: T10, in which the thromboxane receptor antagonist, SQ30741, was infused 10 minutes after the initiation of OA infusion; and T30, in which the thromboxane receptor antagonist was infused 30 minutes after OA infusion. RESULTS Significant differences were found in oxygenation (oxygen tension in T10 = 62.6 +/- 11.7 mm Hg, T30 = 68.2 +/- 21.2 mm Hg; injury control = 40.2 +/- 9.0 mm Hg, saline control = 123.5 +/- 16.01 mm Hg; p < 0.001) and percentile change in pulmonary artery pressure (T10 = 1.1% +/- 19.4% increase, T30 = 11.2% +/- 7.3% increase; injury control = 47.6% +/- 20.5%, saline control = 4.2% +/- 6.81%; p < 0.001). CONCLUSIONS This study demonstrates that blockade of the thromboxane A2 receptor, even after the initiation of acute lung injury, eliminates pulmonary hypertension and improves oxygenation.
Collapse
Affiliation(s)
- C D Goff
- Department of Surgery, University of Virginia Health Sciences Center, Charlottesville 22906-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakayama K, Ueta K, Tanaka Y, Tanabe Y, Ishii K. Stretch-induced contraction of rabbit isolated pulmonary artery and the involvement of endothelium-derived thromboxane A2. Br J Pharmacol 1997; 122:199-208. [PMID: 9313926 PMCID: PMC1564919 DOI: 10.1038/sj.bjp.0701362] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The mechanism of stretch-induced contraction of the intrapulmonary artery of rabbit was studied with special regard to the endothelium-dependence and production of prostanoids. 2. Isolated intrapulmonary artery of rabbits in ring form produced contraction when stretched slowly up to 180% of its initial muscle length (= 100%) at a rate of 0.44 mm s-1, with a stimulus period of 5 min. 3. The stretch-induced contraction was attenuated by the mechanical removal of the endothelium, inhibitors of cyclo-oxygenase such as aspirin and indomethacin, [1S-[1 alpha,2 alpha (Z),3 alpha,4 alpha]]-7-[3-[[2-[(phenylamino)carbonyl] hydrazino]methyl]-7-oxabicyclo[2.2.1]hept-2-y1]-5-heptenoic acid (SQ 29,548), which is a thromboxane A2/prostaglandin H2 receptor antagonist, or by ozagrel, an inhibitor of thromboxane A2 synthase. 4. Biochemical assay indicated that the production of thromboxane B2, a stable metabolite of thromboxane A2, was increased 17 times in response to stretch only when the endothelium was intact. The production of thromboxane B2 was also inhibited by aspirin or ozagrel. 5. The production of 6-keto prostaglandin F1 alpha, a stable metabolite of prostacyclin, was also increased in response to stretch in the preparation with intact endothelium. However, ozagrel showed no apparent effect on the production of 6-keto prostaglandin F1 alpha. 6. These results suggest that a mechanical stimulus like stretch can act on endothelial cells of rabbit pulmonary artery to cause contraction by activation of arachidonic acid metabolism via the cyclooxygenase pathway and subsequent release of thromboxane A2 and/or an increase in the ratio of thromboxane A2/prostacyclin.
Collapse
Affiliation(s)
- K Nakayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | |
Collapse
|
46
|
De Moraes S, Carvalho JC, Cavalcante MT, Mathias RS. Hypoxia and response of human umbilical artery strips to 5-hydroxytryptamine: role of prostaglandin F2 alpha. GENERAL PHARMACOLOGY 1997; 28:77-83. [PMID: 9112081 DOI: 10.1016/s0306-3623(96)00160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. This article examines the effects of hypoxia on the contractile response of isolated human umbilical artery strips to 5-hydroxytryptamine (5-HT). 2. Hypoxic conditions produce a large increase in the contractile response to 5-HT without a significant alteration of the sensitivity evaluated at the level of the pD2 value. Indomethacin (10 microM) reduced hypoxia-induced potentiation of the response to 5-HT and decreased the response to the monoamine under oxygenated conditions. 1-NAME (100 microM) did not further increase the effect of hypoxia on the vessel response to 5-HT and increased the response to 5-HT under oxygenated conditions. 3. Taken together, these results suggest that, at least partially, the response of human umbilical artery strips to 5-HT depends on 5-HT release of a contracting prostanoid which is a product of the cyclooxygenase pathway. Furthermore, during hypoxia in human umbilical artery strips, there appears to be impairment of the basal production and/or release of EDRF/NO. 4. A subthreshold concentration of prostaglandin F2 alpha (1 nM) potentiates the response to 5-HT in indomethacin-pretreated umbilical artery strips. The data raise the possibility that prostaglandin F2 alpha might be the prostanoid released during hypoxia, which in turn potentiates the response of the human umbilical artery to 5-HT.
Collapse
Affiliation(s)
- S De Moraes
- Department of Pharmacology, University of São Paulo, Butantan, Brazil.
| | | | | | | |
Collapse
|
47
|
Pfister SL, Campbell WB. Contribution of arachidonic acid metabolites to reduced norepinephrine-induced contractions in hypercholesterolemic rabbit aortas. J Cardiovasc Pharmacol 1996; 28:784-91. [PMID: 8961076 DOI: 10.1097/00005344-199612000-00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Because alterations in the aortic metabolism of arachidonic acid and in vascular responsiveness occur in hypercholesterolemic rabbits, we hypothesized that an arachidonic acid metabolite may contribute to the regulation of vascular tone. Aortic contractions to norepinephrine were investigated in rabbits fed either standard chow or chow containing 2% cholesterol. In normal rabbits, norepinephrine (10(-6) M) elicited a 126 +/- 2% contraction compared with a 95 +/- 2% contraction in cholesterol-fed rabbits. The factor mediating the depressed response was endothelium-dependent because removal of the endothelium blocked the decrease in norepinephrine-induced contractions observed in the cholesterol-fed rabbits. The endothelium-derived factor was not nitric oxide, because blockade of nitric oxide synthase with nitro-L-arginine did not abolish the decreased response in the cholesterol-fed rabbits. Pretreatment of aortas with a cyclooxygenase inhibitor, indomethacin (10(-5) M) caused a slight decrease in the norepinephrine-induced contractions, suggesting that the factor could be a vasoconstrictor cyclooxygenase metabolite or a vasodilatory lipoxygenase or cytochrome P450 epoxygenase metabolite. Pretreatment with the thromboxane A2/prostaglandin H2-receptor antagonist, SQ 29458, had no effect on norepinephrine-induced contractions. Whereas the lipoxygenase inhibitor, nordihydroguaiaretic acid (5 x 10(-5) M), caused a slight increase in the contractions to norepinephrine in cholesterol-fed rabbits compared with normal rabbits, the cytochrome P450 epoxygenase inhibitor, metyrapone (10(-4) M), produced a greater enhancement of norepinephrine-induced contractions in cholesterol-fed rabbits but had no effect on responses in the normal rabbits. Characterization of [3H]arachidonic acid metabolism in cholesterol-fed aortic tissue indicated that norepinephrine stimulated the synthesis of both lipoxygenase and epoxygenase metabolites in an endothelium-dependent manner. This study demonstrated that (a) an endothelium-derived metabolite of arachidonic acid regulates vascular tone, (b) this metabolite appears to be a lipoxygenase or cytochrome P450 product or both, and (c) the activity or synthesis of the factor is enhanced by hypercholesterolemia.
Collapse
Affiliation(s)
- S L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
48
|
Thies SD, Corbin RS, Goff CD, Binns OA, Buchanan SA, Shockey KS, Frierson HF, Young JS, Tribble CG, Kron IL. Thromboxane receptor blockade improves oxygenation in an experimental model of acute lung injury. Ann Thorac Surg 1996; 61:1453-7. [PMID: 8633958 DOI: 10.1016/0003-4975(96)00077-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Adult respiratory distress syndrome remains a major cause of morbidity and mortality. We investigated the role of thromboxane receptor antagonism in an experimental model of acute lung injury that mimics adult respiratory distress syndrome. METHODS Three groups of rabbit heart-lung preparations were studied for 30 minutes in an ex vivo blood perfusion/ventilation system. Saline control (SC) lungs received saline solution during the first 20 minutes of study. Injury control (IC) lungs received an oleic acid-ethanol solution during the first 20 minutes. Thromboxane receptor blockade (TRB) lungs received the same injury as IC lungs, but a thromboxane receptor antagonist (SQ30741) was added to the blood perfusate just prior to study. Blood gases were obtained at 10-minute intervals, and tidal volume, pulmonary artery pressure, and lung weight were continuously recorded. Oxygenation was assessed by measuring the percent change in oxygen tension over the 30-minute study period. Tissue samples were collected from all lungs for histologic evaluation. RESULTS Significant differences were found between SC and IC lungs as well as TRB and IC lungs when comparing pulmonary artery pressure (SC = 33.1 +/- 2.2 mm Hg, TRB = 35.4 +/- 2.1 mm Hg, IC = 60.4 +/- 11.1 mm Hg; p < 0.02) and percent change in oxygenation (SC = -20.6% +/- 10.3%, TRB = -24.2% +/- 9.5%, IC = -57.1% +/- 6.2%; p < 0.03). None of the other variables demonstrated significant differences. CONCLUSIONS Thromboxane receptor blockade prevents the pulmonary hypertension and the decline in oxygenation seen in an experimental model of acute lung injury that mimics adult respiratory distress syndrome.
Collapse
Affiliation(s)
- S D Thies
- Department of Surgery, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Prieto D, Simonsen U, Nyborg NC. Regional involvement of an endothelium-derived contractile factor in the vasoactive actions of neuropeptide Y in bovine isolated retinal arteries. Br J Pharmacol 1995; 116:2729-37. [PMID: 8590997 PMCID: PMC1909144 DOI: 10.1111/j.1476-5381.1995.tb17234.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. In vitro experiments in a microvascular myograph were designed in order to investigate the effects of human neuropeptide Y (NPY), its receptor subtype and the mechanisms underlying NPY actions in bovine isolated retinal proximal (PRA) and distal (DRA) arteries. 2. A single concentration of NPY (10 nM) induced a prompt and reproducible contraction which reached a plateau within 1-4 min, after which the response returned to baseline over the next 2-10 min. Cumulative addition of NPY induced concentration-dependent contractions of bovine retinal arteries, with an EC50[M] of 1.7 nM and a maximal response equal to 54 +/- 8% of Emax (absolute maximal contractile levels of vessels) and not different from that obtained by a single addition of the peptide. There were no significant differences in either sensitivity or maximal response to NPY between PRA and DRA. 3. Porcine NPY and the selective Y1-receptor agonist, [Pro34]NPY, also induced concentration-dependent contractions of the retinal arteries with a potency and maximal response not significantly different from those of human NPY; in contrast, the selective Y2-receptor agonist, NPY(13-36), caused only a 5% contraction at the highest concentration used. 4. Removal of extracellular Ca2+ or pretreatment with the 1,4-dihydropyridine Ca(2+)-channel blocker, nifedipine (1 microM), reduced the contractile response of 10 nM NPY to 18.4 +/- 3.3% (n = 6) and 18.6 +/- 3.9% (n = 6); respectively, of the controls. 5. Mechanical removal of the endothelium depressed the maximal contraction elicited by NPY in PRA but did not affect either sensitivity or maximal response to the peptide in DRA. In endothelium-intact arteries, blockade of the cyclo-oxygenase pathway with 3 microM indomethacin increased resting tension in both PRA and DRA and significantly inhibited sensitivity and maximal contraction to NPY of PRA and DRA, respectively. The thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor antagonist, SQ30741, reduced both sensitivity and maximal contraction to NPY in PRA but not in DRA. 6. In endothelium-denuded PRA, indomethacin but not SQ30741 significantly reduced NPY maximal response and induced a marked increase in resting tension suggesting a basal release of a vasodilator prostanoid from smooth muscle cells. 7. Superoxide dismutase (SOD) (150 u ml-1) reduced the maximal contraction to NPY in PRA. Inhibition of the nitric oxide (NO) synthase with NG-nitro-L-arginine (L-NOARG) (30 microM), enhanced sensitivity and maximal contraction to NPY in both PRA and DRA. In the presence of L-NOARG, SOD did not further inhibit NPY responses in PRA. 8. NPY (10 nM) induced a 2.9 fold leftwards shift of the noradrenaline concentration-response curves in PRA and increased maximal response by 50 +/- 16%. Neither 1 nor 10 nM NPY affected noradrenaline responses in DRA. [Pro34]NPY (10 nM), but not NPY(13-36), mimicked the potentiating effect of NPY on noradrenaline responses in PRA. 9. TXA2 analogue, U46619, at 10 nM elicited 3.6 fold leftwards shift of the noradrenaline concentration-responses curves in PRA and increased the maximal contraction by 32 +/- 3%, whereas in the presence of 1 microM SQ30741, 10 nM NPY did not potentiate noradrenaline responses. 10. The present results indicate that NPY may play a role in the regulation of retinal blood flow through both a direct contractile action, independent of the vessel size and a potentiation of the responses induced by noradrenaline in the proximal part of the retinal circulation, both effects being mediated by Y1 receptors. NPY promotes Ca2+ influx through voltage-dependent Ca2+ channels and stimulates the synthesis of contractile prostanoids in PRA and DRA, although only in PRA does the peptide trigger the release of an endothelium-derived contractile factor which facilitates the contraction and also seems to account for the potentiating effect of NPY.
Collapse
Affiliation(s)
- D Prieto
- Departamento de Fisiología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
50
|
Anzai M, Suzuki Y, Takayasu M, Kajita Y, Mori Y, Seki Y, Saito K, Shibuya M. Vasorelaxant effect of PACAP-27 on canine cerebral arteries and rat intracerebral arterioles. Eur J Pharmacol 1995; 285:173-9. [PMID: 8566136 DOI: 10.1016/0014-2999(95)00404-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vasorelaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP)-27 were examined and compared with those of PACAP-38 and vasoactive intestinal polypeptide (VIP) on isolated canine cerebral arteries and rat intracerebral arterioles in vitro. The addition of PACAP-27, PACAP-38 or VIP resulted in similar concentration-dependent relaxations in both canine basilar arteries and rat intracerebral arterioles. There were regional differences in the PACAP-27-induced relaxations measured in canine cerebral arteries. The maximum relaxation induced by PACAP-27 was significantly lower in the basilar arteries (23.0 +/- 5.6%) than in the rostrally located arteries (proximal middle cerebral arteries: 45.4 +/- 5.7%, anterior cerebral arteries: 55.2 +/- 5.8%). The maximum relaxation induced by PACAP-27 in the basilar arteries was significantly enhanced by mechanical removal of the endothelium (16.4 +/- 4.5% vs. 32.7 +/- 5.8%) as well as by pretreatment with indomethacin or aspirin (12.9 +/- 4.1% vs. 48.7 +/- 6.1% and 46.5 +/- 9.2%, respectively). Incubation of canine cerebral arteries with PACAP-27 in vitro resulted in an increased release of prostaglandin F2 alpha in the buffer from 14.5 +/- 2.1 pg/min/1 mg vessel to 31.1 +/- 4.2 pg/min/1 mg vessel, while other cyclooxygenase cascade metabolites such as prostaglandin E2, thromboxane B2 and 6-keto prostaglandin F1 alpha did not change. These data suggest that the PACAP-27-induced relaxation of canine basilar arteries may be associated with prostaglandin F2 alpha or its precursor, prostaglandin H2.
Collapse
Affiliation(s)
- M Anzai
- Department of Neurosurgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|