1
|
Wang J, Xie B, Zhu Z, Xie G, Luo B. 3D-printed construct from hybrid suspension as spatially and temporally controlled protein delivery system. J Biomater Appl 2021; 36:264-275. [PMID: 34102913 DOI: 10.1177/08853282211023257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein delivery systems have been extensively applied in controlled releasing of protein or polypeptides for therapeutic treatment or tissue regeneration. While 3 D printing technology shows great promise in novel dosage form with tailoring dose size and drug release profile, 3 D printable protein delivery system has to face many difficult challenges. In this study, we developed a hybrid suspension combining Eudragit polyacrylate colloid as matrix material and Pluronic polyether hydrogel as diffusion channel for protein release. This hybrid suspension can be 3 D-printed into construct with complex shape and inner structures thanks to its pseudoplastic and thixotropic rheological properties. The protein can be incorporated in hybrid suspension either in its original or nanoparticle capsulated form. The experiment shows that the protein release from construct is a function of drying time, molecular weight (MW) of chitosan, as well as their own structural/diffusional properties. Also, the theoretical derivation suggests polyacrylate matrix tortuosity, chitosan erosion rate as well as hydrogel diffusion coefficient all contributed to the extended duration of release profile. In addition, cytotoxicity test through cell culture confirmed that the construct fabricated from hybrid suspension exhibit relative good bio-compatibility. Finally, heterogeneous constructs with zoned design were fabricated as protein delivery system, which demonstrated the capability of hybrid suspension technique for spatial and temporal release of macromolecular drugs to realize pharmaceutical effectiveness or guild cell organization.
Collapse
Affiliation(s)
- Jiangtao Wang
- College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing, China
| | - Baojun Xie
- College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing, China
| | - Zicai Zhu
- Shaanxi Key Lab of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guijun Xie
- Department of Ophthalmology, Baoji People's Hospital, Baoji, Shaanxi, China
| | - Bin Luo
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang Hunan, China
| |
Collapse
|
2
|
Kaur K, Yang J, Edwards JG, Eisenberg CA, Eisenberg LM. G9a histone methyltransferase inhibitor BIX01294 promotes expansion of adult cardiac progenitor cells without changing their phenotype or differentiation potential. Cell Prolif 2016; 49:373-85. [PMID: 27109896 DOI: 10.1111/cpr.12255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES As a follow-up to our previous reports showing that the G9a histone methyltransferase-specific inhibitor BIX01294 enhances bone marrow cell cardiac potential, this drug was examined for its effects on cardiomyocytes and mouse cardiac progenitor cells (CPCs). MATERIALS AND METHODS Cardiomyocytes and cardiac explants were cultured ± BIX01294, and examined for changes in cardiac function, protein and gene expression. Additionally, enriched populations of CPCs, contained in the 'phase bright cell' component of explants, were harvested from non-treated and BIX01294-treated cardiac tissue, and assayed for differences in cell phenotype and differentiation potential. Mouse CPCs were cultured with rat cardiomyocytes to allow differentiation of the progenitors to be assayed using species-specific PCR primers. RESULTS While BIX01294 had no discernible effect on myocyte function and sarcomeric organization, treatment with this drug significantly increased CPC proliferation, as indicated by enhanced MTT metabolization and BrdUrd incorporation (4.1- and 2.0-fold, respectively, P < 0.001) after 48 h labelling, and increased Ki67 expression (4.8-fold, P < 0.001) after 7 days culture. Heart explants exposed to BIX01294 generated 3.6-fold (P < 0.005) greater yields of CPCs by 2 weeks culture. Importantly, CPCs obtained from non-treated and BIX01294-treated cultures did not differ in phenotype or differentiation potential. CONCLUSIONS These data indicate that BIX01294 can expand CPCs without undermining their capacity as cardiac progenitors, and suggest that this drug may have utility for generating large numbers of CPCs for cardiac repair.
Collapse
Affiliation(s)
- K Kaur
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College, Valhalla, New York, 10595, USA
| | - J Yang
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College, Valhalla, New York, 10595, USA
- Department of Biology and Genomics, New York University, New York, New York, 10003, USA
| | - J G Edwards
- Department of Physiology and Medicine, New York Medical College, Valhalla, New York, 10595, USA
| | - C A Eisenberg
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College, Valhalla, New York, 10595, USA
| | - L M Eisenberg
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College, Valhalla, New York, 10595, USA
| |
Collapse
|
3
|
Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, Eisenberg LM. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cells Dev 2012; 22:654-67. [PMID: 22994322 DOI: 10.1089/scd.2012.0181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype.
Collapse
Affiliation(s)
- Nadejda V Mezentseva
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Eisenberg LM, Kubalak SW, Eisenberg CA. Stem cells and the formation of the myocardium in the vertebrate embryo. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2004; 276:2-12. [PMID: 14699629 PMCID: PMC3096003 DOI: 10.1002/ar.a.10130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A major goal in cardiovascular biology is to repair diseased or damaged hearts with newly generated myocardial tissue. Stem cells offer a potential source of replacement myocytes for restoring cardiac function. Yet little is known about the nature of the cells that are able to generate myocardium and the conditions they require to form heart tissue. A source of information that may be pertinent to addressing these issues is the study of how the myocardium arises from progenitor cells in the early vertebrate embryo. Accordingly, this review will examine the initial events of cardiac developmental biology for insights into the identity and characteristics of the stem cells that can be used to generate myocardial tissue for therapeutic purposes.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
5
|
Eisenberg LM, Burns L, Eisenberg CA. Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 274:870-82. [PMID: 12923898 DOI: 10.1002/ar.a.10106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies have indicated that hematopoietic progenitor cells (HPCs) have the capacity to form cardiomyocytes. In the present study, we further examined the cardiac competence of HPCs by asking whether these cells by themselves can be provoked to undergo cardiac differentiation. Our data indicate that in response to growth factor treatment, HPCs from avian bone marrow (BM) can undergo cardiac differentiation, as indicated by their expression of multiple cardiac transcription factors and sarcomeric proteins. Furthermore, coculture experiments with adult mouse BM cells and embryonic heart tissue confirmed that HPCs are able to both integrate into cardiac tissue and differentiate into cardiomyocytes. In an additional set of experiments, we investigated whether other hematopoietic populations might possess cardiac potential by examining whether blood cells that normally are recruited to damaged tissue might act as a source of newly generated cardiomyocytes. Remarkably, macrophages cocultured with cardiac explants also demonstrated an ability to integrate into contractile heart tissue and undergo cardiac differentiation. Thus, our data suggest that the capacity of blood cells to transdifferentiate into cardiomyocytes is not limited to classically defined hematopoietic progenitors.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
6
|
Rybkin II, Markham DW, Yan Z, Bassel-Duby R, Williams RS, Olson EN. Conditional expression of SV40 T-antigen in mouse cardiomyocytes facilitates an inducible switch from proliferation to differentiation. J Biol Chem 2003; 278:15927-34. [PMID: 12590133 DOI: 10.1074/jbc.m213102200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of cardiac muscle gene expression and signaling have been hampered by the lack of immortalized cardiomyocyte cell lines capable of proliferation and irreversible withdrawal from the cell cycle. With the goal of creating such cell lines, we generated transgenic mice using cardiac-specific cis-regulatory elements from the mouse Nkx2.5 gene to drive the expression of a simian virus 40 large T-antigen (TAg) gene flanked by sites for recombination by Cre recombinase. These transgenic mice developed tumors within the ventricular myocardium. Cells isolated from these tumors expressed cardiac markers and proliferated rapidly during serial passage in culture, without apparent senescence. However, they were unable to exit the cell cycle and failed to exhibit morphological features of terminal differentiation. Introduction of Cre recombinase to these cardiac cell lines by adenoviral delivery resulted in the elimination of TAg expression, accompanied by rapid cessation of cell division, and increase in cell size without an apparent induction of cellular differentiation. Incubation of cells lacking TAg in serum-deficient media with various pharmacological agents (norepinephrine, phenylephrine, or bone morphogenetic protein-2/4) or constitutively active calcium/calmodulin-dependent protein kinase I and/or calcineurin led to the formation of sarcomeres and up-regulation of cardiac genes involved in excitation-contraction coupling. The combination of TAg expression under the control of an early cardiac promoter and Cre-mediated recombination allowed us to derive an immortal cell line from the ventricular myocardium that could be controllably withdrawn from the cell cycle. The conditional expression of TAg in this manner permits propagation and regulated growth termination of cell types that are otherwise unable to be maintained in cell culture and may have applications for cardiac repair technologies.
Collapse
Affiliation(s)
- Igor I Rybkin
- Departments of Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
7
|
McAllister D, Merlo X, Lough J. Characterization and expression of the mouse tat interactive protein 60 kD (TIP60) gene. Gene 2002; 289:169-76. [PMID: 12036595 DOI: 10.1016/s0378-1119(02)00546-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tat interactive protein-60 (TIP60) is a novel histone acetyltransferase-containing protein that has been implicated in the regulation of transcription, DNA repair and apoptosis. In this report we describe the structure and expression of the mouse TIP60 gene, as well the localization of TIP60 protein at the cellular level. The gene contains 14 exons within a DNA sequence interval of 6611 bp. The assembled exons comprise a 1,539 bp DNA complementary to RNA (cDNA) having 91.7 and 78.7% homology with respective human and chick TIP60 cDNAs. Translation predicts a approximately 59 kD protein having 99.6 and 91.6% sequence homology with respective human and chick proteins. Alignment with mouse expressed sequence tag database entries indicates, similar to human and chick TIP60, the existence of an alternative splice created by removal of exon 5 that results in a 1383 bp cDNA with a predicted translation product of approximately 53 kD. Northern hybridization analysis reveals a peak of TIP60 expression during mouse embryogenesis at E11; in adult tissues TIP60 is expressed in the following order of intensity: testis>heart>brain>kidney>liver>lung, with little to no expression in spleen and skeletal muscle. Cellular localization using green fluorescent protein-TIP fusion constructs and immunohistochemistry reveal that TIP53 and TIP60 are nuclear proteins.
Collapse
Affiliation(s)
- Donna McAllister
- Department of Cell Biology, Neurobiology and Anatomy and Cardiovascular Research Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
8
|
Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, Turner D, Markwald RR. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001; 238:97-109. [PMID: 11783996 DOI: 10.1006/dbio.2001.0409] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As classically described, the precardiac mesoderm of the paired heart-forming fields migrate and fuse anteriomedially in the ventral midline to form the first segment of the straight heart tube. This segment ultimately forms the right trabeculated ventricle. Additional segments are added to the caudal end of the first in a sequential fashion from the posteriolateral heart-forming field mesoderm. In this study we report that the final major heart segment, which forms the cardiac outflow tract, does not follow this pattern of embryonic development. The cardiac outlet, consisting of the conus and truncus, does not derive from the paired heart-forming fields, but originates separately from a previously unrecognized source of mesoderm located anterior to the initial primitive heart tube segment. Fate-mapping results show that cells labeled in the mesoderm surrounding the aortic sac and anterior to the primitive right ventricle are incorporated into both the conus and the truncus. Conversely, if cells are labeled in the existing right ventricle no incorporation into the cardiac outlet is observed. Tissue explants microdissected from this anterior mesoderm region are capable of forming beating cardiac muscle in vitro when cocultured with explants of the primitive right ventricle. These findings establish the presence of another heart-forming field. This anterior heart-forming field (AHF) consists of mesoderm surrounding the aortic sac immediately anterior to the existing heart tube. This new concept of the heart outlet's embryonic origin provides a new basis for explaining a variety of gene-expression patterns and cardiac defects described in both transgenic animals and human congenital heart disease.
Collapse
Affiliation(s)
- C H Mjaatvedt
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 171 Ashley Avenue, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
WNT proteins compose a family of secreted signaling molecules that regulate cell fate and behavior. The possible influence of WNTs on hematopoietic cell fate was examined. Both hematopoietic progenitor cell (HPC)–enriched embryonic avian bone marrow cells and the quail mesodermal stem cell line QCE6 were used for these studies. Under optimized conditions, the bone marrow and QCE6 cells behaved identically and developed into red blood cells (RBCs), monocytes, macrophages, granulocytes, and thrombocytes. This broad range of blood cell phenotypes exhibited by QCE6 cells was dependent on their active expression of WNT11. However, when QCE6 cells were prevented from producing WNT11—by expression of a stably transfected WNT11 antisense transgene—the cultures were dominated by highly vacuolated macrophages. RBCs were absent from these cultures, and the presence of monocytes was greatly diminished. Exposure of these WNT11 antisense cells to soluble WNT11 or WNT5a restored the broad range of blood cell phenotypes exhibited by parental QCE6 cells. Overexpression of WNT protein in QCE6 cells further increased the prevalence of RBCs and monocytes and greatly diminished the appearance of macrophages. Accordingly, treatment of HPC-enriched bone marrow cultures with soluble WNT11 or WNT5a inhibited macrophage formation. Instead, monocytes and RBCs were the prevalent cells displayed by WNT-treated bone marrow cultures. Together, these data indicate that WNTs may play a major role in regulating hematopoietic cell fate.
Collapse
|
10
|
Abstract
Abstract
WNT proteins compose a family of secreted signaling molecules that regulate cell fate and behavior. The possible influence of WNTs on hematopoietic cell fate was examined. Both hematopoietic progenitor cell (HPC)–enriched embryonic avian bone marrow cells and the quail mesodermal stem cell line QCE6 were used for these studies. Under optimized conditions, the bone marrow and QCE6 cells behaved identically and developed into red blood cells (RBCs), monocytes, macrophages, granulocytes, and thrombocytes. This broad range of blood cell phenotypes exhibited by QCE6 cells was dependent on their active expression of WNT11. However, when QCE6 cells were prevented from producing WNT11—by expression of a stably transfected WNT11 antisense transgene—the cultures were dominated by highly vacuolated macrophages. RBCs were absent from these cultures, and the presence of monocytes was greatly diminished. Exposure of these WNT11 antisense cells to soluble WNT11 or WNT5a restored the broad range of blood cell phenotypes exhibited by parental QCE6 cells. Overexpression of WNT protein in QCE6 cells further increased the prevalence of RBCs and monocytes and greatly diminished the appearance of macrophages. Accordingly, treatment of HPC-enriched bone marrow cultures with soluble WNT11 or WNT5a inhibited macrophage formation. Instead, monocytes and RBCs were the prevalent cells displayed by WNT-treated bone marrow cultures. Together, these data indicate that WNTs may play a major role in regulating hematopoietic cell fate.
Collapse
|
11
|
Ménard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P. Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 1999; 274:29063-70. [PMID: 10506158 DOI: 10.1074/jbc.274.41.29063] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms underlying the developmental regulation of L-type voltage-dependent Ca(2+) channels (VDCCs) are still unknown. In this study, we have characterized the expression patterns of skeletal (alpha(1S)) and cardiac (alpha(1C)) L-type VDCCs during cardiogenic differentiation in H9C2 cells that derived from embryonic rat heart. We report that chronic treatment of H9C2 cells with 10 nM all-trans-retinoic acid (all-trans-RA) enhanced cardiac Ca(2+) channel expression, as demonstrated by reverse transcription-polymerase chain reaction, immunoblotting, and indirect immunofluorescence studies, as well as patch-clamp experiments. In addition, RA treatment prevented expression of functional skeletal L-type VDCCs, which were restricted to myotubes that spontaneously appear in control H9C2 cultures undergoing myogenic transdifferentiation. The use of specific skeletal and cardiac markers indicated that RA, by preventing myogenic transdifferentiation, preserves cardiac differentiation of this cell line. Altogether, we provide evidence that cardiac and skeletal subtype-specific L-type Ca(2+) channels are relevant functional markers of differentiated cardiac and skeletal myocytes, respectively. In conclusion, our data demonstrate that in vitro RA stimulates cardiac (alpha(1C)) L-type Ca(2+) channel expression, therefore supporting the hypothesis that the RA pathway might be involved in the tissue specific expression of Ca(2+) channels in mature cardiac cells.
Collapse
Affiliation(s)
- C Ménard
- IGH-CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier cedex 05, France
| | | | | | | | | | | |
Collapse
|
12
|
Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 1999; 61:219-42. [PMID: 10099688 DOI: 10.1146/annurev.physiol.61.1.219] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys a wide range of cellular and molecular approaches to strengthening the injured or weakened heart, focusing on strategies to replace dysfunctional, necrotic, or apoptotic cardiomyocytes with new cells of mesodermal origin. A variety of cell types, including myogenic cell lines, adult skeletal myoblasts, immoratalized atrial cells, embryonic and adult cardiomyocytes, embryonic stem cells, tetratoma cells, genetically altered fibroblasts, smooth muscle cells, and bone marrow-derived cells have all been proposed as useful cells in cardiac repair and may have the capacity to perform cardiac work. We focus on the implantation of mesodermally derived cells, the best developed of the options. We review the developmental and cell biology that have stimulated these studies, examine the limitations of current knowledge, and identify challenges for the future, which we believe are considerable.
Collapse
Affiliation(s)
- P D Kessler
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
13
|
Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 1998; 95:2979-84. [PMID: 9501201 PMCID: PMC19680 DOI: 10.1073/pnas.95.6.2979] [Citation(s) in RCA: 1206] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have derived a cardiac muscle cell line, designated HL-1, from the AT-1 mouse atrial cardiomyocyte tumor lineage. HL-1 cells can be serially passaged, yet they maintain the ability to contract and retain differentiated cardiac morphological, biochemical, and electrophysiological properties. Ultrastructural characteristics typical of embryonic atrial cardiac muscle cells were found consistently in the cultured HL-1 cells. Reverse transcriptase-PCR-based analyses confirmed a pattern of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac myosin heavy chain, alpha-cardiac actin, and connexin43. They also express the gene for atrial natriuretic factor. Immunohistochemical staining of the HL-1 cells indicated that the distribution of the cardiac-specific markers desmin, sarcomeric myosin, and atrial natriuretic factor was similar to that of cultured atrial cardiomyocytes. A delayed rectifier potassium current (IKr) was the most prominent outward current in HL-1 cells. The activating currents displayed inward rectification and deactivating current tails were voltage-dependent, saturated at >>+20 mV, and were highly sensitive to dofetilide (IC50 of 46.9 nM). Specific binding of [3H]dofetilide was saturable and fit a one-site binding isotherm with a Kd of 140 +/- 60 nM and a Bmax of 118 fmol per 10(5) cells. HL-1 cells represent a cardiac myocyte cell line that can be repeatedly passaged and yet maintain a cardiac-specific phenotype.
Collapse
Affiliation(s)
- W C Claycomb
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Eisenberg CA, Markwald RR. Mixed cultures of avian blastoderm cells and the quail mesoderm cell line QCE-6 provide evidence for the pluripotentiality of early mesoderm. Dev Biol 1997; 191:167-81. [PMID: 9398432 DOI: 10.1006/dbio.1997.8718] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the early stages of embryogenesis, the mesoderm gives rise to cells of the cardiovascular system which include cardiac myocytes and vascular endothelial and red blood cells. We have investigated the development of these cell phenotypes using aggregate cultures of avian blastoderm cells, which replicated mesodermal cell diversification. The cell phenotypes expressed by the blastoderm cells were dependent upon the age of the blastoderm cells, with Hamburger-Hamilton stage 3 or 4 cells giving rise to endothelial and red blood cells and stage 5 cells producing endothelial and myocardial cells. To begin to understand the stage dependency of the cellular diversification of these aggregate cultures, we treated the cultures with various signaling factors that have been shown to be present in the early avian embryo. These experiments showed that stem cell factor and TGF alpha altered cell phenotypes by stimulating red blood cell and myocardial differentiation, respectively. The ability of these growth factors to shift the differentiation profile of aggregate cultures demonstrated the plasticity of early embryonic cells. To explore the diversification of individual mesodermal cells, labeled QCE-6 cells were incorporated within these blastoderm aggregate cultures. Previous studies have shown that this quail mesodermal cell line possesses characteristics of early nondifferentiated mesodermal cells and can be induced to express either myocardial or endothelial cell phenotypes (C. A. Eisenberg and D. M. Bader, 1996, Circ. Res. 78, 205-216). In the present study, we show that when these cells were cultured as a component of blastoderm cell aggregates, they differentiated into fully contractile cardiomyocytes or endothelial or red blood cells. Moreover, QCE-6 cell differentiation was in accordance with that displayed by the blastoderm cells. Specifically, QCE-6 cells differentiated into red blood cells when cultured within stage 3 or stage 4, but not stage 5, blastoderm cell aggregates. Accordingly, the differentiation of QCE-6 cells into beating cardiomyocytes only occurred when these cells were incorporated into stage 5 blastoderm cell aggregates. The identical sorting and differentiation patterns that were exhibited by QCE-6 and blastoderm cells suggest that expression of differentiated cell types within the early mesoderm is directed by the surrounding environment without immediate cellular commitment. In addition, these results provide further evidence that QCE-6 cells are representative of a multipotential mesodermal stem cell and that they possess the potential to exhibit fully differentiated cell phenotypes.
Collapse
Affiliation(s)
- C A Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA.
| | | |
Collapse
|
15
|
|
16
|
Abstract
Heart formation provides an excellent model for studying the molecular basis of cell determination in vertebrate embryos. By combining molecular assays with the experimental approaches of classic embryology, a model for the cell signalling events that initiate cardiogenesis is emerging. Studies of chick, amphibian, and fish embryos demonstrate the inductive role of dorso-anterior endoderm in specifying the cardiac fate of adjacent mesoderm. A consequence of this signalling is the onset of cardiomyogenesis and several transcription factors--Nkx2-5-related, HAND, GATA and MEF-2 families--contribute to these events.
Collapse
Affiliation(s)
- T Mohun
- National Institute for Medical Research, Ridgeway, Mill Hill, London, UK.
| | | |
Collapse
|
17
|
Lilien J, Balsamo J, Hoffman S, Eisenberg C. beta-Catenin is a target for extracellular signals controlling cadherin function: the neurocan-GalNAcPTase connection. Curr Top Dev Biol 1997; 35:161-89. [PMID: 9292270 DOI: 10.1016/s0070-2153(08)60259-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Lilien
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48230, USA
| | | | | | | |
Collapse
|
18
|
Eisenberg CA, Gourdie RG, Eisenberg LM. Wnt-11 is expressed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE-6. Development 1997; 124:525-36. [PMID: 9053328 DOI: 10.1242/dev.124.2.525] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The beginning of mesodermal development involves the aggregation of newly gastrulated cells into epithelial fields, as a prelude to organ formation. To analyze the molecular regulation of this initial patterning, we have focused on the Wnt family of secreted signaling proteins, molecules which have been shown to promote embryonic patterning by regulating cell-cell associations. In this study, we show that the Wnt-11 gene is expressed by newly gastrulated mesoderm cells within avian embryos. The expression pattern of Wnt-11 also suggests that it may be involved in formation of the cardiogenic fields and somites. Subsequently, we utilized the quail mesoderm cell line QCE-6 as a culture model for examining the influence of Wnt-11 on early mesoderm cell differentiation. This cell line has been shown to be representative of early nondifferentiated mesoderm cells and has the potential to differentiate into cardiomyocytes, endothelial or red blood cells. Similar to early mesoderm cells, QCE-6 cells express Wnt-11. We have engineered stable transfectants of these cells that produce either diminished or enhanced levels of Wnt-11 protein. Our studies show that Wnt-11 regulates cellular interactions of QCE-6 cells, as demonstrated by alterations in contact-inhibited growth, tight and gap junction formation and plakoglobin expression. Both the morphology and growth factor-induced differentiation of QCE-6 cells are regulated in a cooperative fashion by Wnt-11 and fibronectin. These results, described in detail below, demonstrate the uniqueness of QCE-6 cells as a culture system for analyzing Wnt activity. In particular, QCE-6 cells are the first cell line that has demonstrated: (1) Wnt-dependent differentiation; (2) concentration-variable responses to Wnt protein; and (3) altered cell phenotypes as a direct response to Wnt-5a class proteins (e.g. Wnt-4 and Wnt-11).
Collapse
Affiliation(s)
- C A Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|