1
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
2
|
Takanari H, Bourgonje VJA, Fontes MSC, Raaijmakers AJA, Driessen H, Jansen JA, van der Nagel R, Kok B, van Stuijvenberg L, Boulaksil M, Takemoto Y, Yamazaki M, Tsuji Y, Honjo H, Kamiya K, Kodama I, Anderson ME, van der Heyden MAG, van Rijen HVM, van Veen TAB, Vos MA. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent. Cardiovasc Res 2016; 111:410-21. [PMID: 27357638 PMCID: PMC4996261 DOI: 10.1093/cvr/cvw173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 11/14/2022] Open
Abstract
AIM In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II (CaM/CaMKII) signalling increases. It is unclear if CaM/CaMKII affects Cx43 expression/localization or impulse propagation. We analysed different models to assess this. METHODS AND RESULTS AC3-I mice with CaMKII genetically inhibited were subjected to pressure overload (16 weeks, TAC vs. sham). Optical and epicardial mapping was performed on Langendorff-perfused rabbit and AC3-I hearts, respectively. Cx43 subcellular distribution from rabbit/mouse ventricles was evaluated by immunoblot after Triton X-100-based fractionation. In mice with constitutively reduced CaMKII activity (AC3-I), conduction velocity (CV) was augmented (n = 11, P < 0.01 vs. WT); in AC3-I, CV was preserved after TAC, in contrast to a reduction seen in TAC-WT mice (-20%). Cx43 expression was preserved after TAC in AC3-I mice, though arrhythmias and fibrosis were still present. In rabbits, W7 (CaM inhibitor, 10 µM) increased CV (6-13%, n= 6, P< 0.05), while susceptibility to arrhythmias decreased. Immunoconfocal microscopy revealed enlarged Cx43 cluster sizes at intercalated discs of those hearts. Total Cx43 did not change by W7 (n= 4), whereas Triton X-100 insoluble Cx43 increased (+21%, n= 4, P< 0.01). Similar findings were obtained in AC3-I mouse hearts when compared with control, and in cultured dog cardiomyocytes. Functional implication was shown through increased intercellular coupling in cultured neonatal rat cardiomyocytes. CONCLUSION Both acute and chronic CaM/CaMKII inhibition improves conduction characteristics and enhances localization of Cx43 in the intercalated disc. In the absence of fibrosis, this reduced the susceptibility for arrhythmias.
Collapse
Affiliation(s)
- Hiroki Takanari
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan Department of Pathophysiology, Oita University School of Medicine, Yufu, Japan
| | - Vincent J A Bourgonje
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magda S C Fontes
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonia J A Raaijmakers
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Helen Driessen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John A Jansen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel van der Nagel
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Kok
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie van Stuijvenberg
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mohamed Boulaksil
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yoshio Takemoto
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Masatoshi Yamazaki
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yukiomi Tsuji
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Haruo Honjo
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kaichiro Kamiya
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | - Mark E Anderson
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harold V M van Rijen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Ruzsics I, Nagy L, Keki S, Sarosi V, Illes B, Illes Z, Horvath I, Bogar L, Molnar T. L-Arginine Pathway in COPD Patients with Acute Exacerbation: A New Potential Biomarker. COPD 2015; 13:139-45. [DOI: 10.3109/15412555.2015.1045973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Hien TT, Ki SH, Yang JW, Oh WK, Kang KW. Nectandrin B suppresses the expression of adhesion molecules in endothelial cells: Role of AMP-activated protein kinase activation. Food Chem Toxicol 2014; 66:286-94. [PMID: 24518543 DOI: 10.1016/j.fct.2014.01.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 01/21/2023]
Abstract
We have previously shown that nectandrin B, a potent natural activator of AMP-activated protein kinase (AMPK) results in endothelium-dependent relaxation via endothelial nitric oxide synthase phosphorylation. This study examined the effects of nectandrin B on monocyte adhesion and on the expression of adhesion molecules in endothelial cells, an initial event in atherogenesis. Nectandrin B inhibited tumor necrosis factor-α (TNFα)-induced monocytoid THP-1 cell adhesion to ECV 304 human endothelial cells. This lignan also suppressed TNFα-induced protein and mRNA expression of two cell adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1). In addition, expression of cyclooxygenase-2 and inducible nitric oxide synthase were diminished by nectandrin B treatment. Reporter gene and immunoblot analyses revealed that transcription factor activities of nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and cyclic AMP response element binding protein (CREB) were inhibited by nectandrin B. Moreover, nectandrin B activated AMP-activated protein kinase (AMPK) in ECV 304 cells. Transfection of a dominant-negative mutant form of AMPK (DN-AMPK) partially reversed inhibitory effects of nectandrin B on the expression of VCAM-1 and ICAM-1, and on the transcriptional activity of CREB.
Collapse
Affiliation(s)
- Tran Thi Hien
- College of Pharmacy, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 501-759, Republic of Korea
| | - Jin Won Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won Keun Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
5
|
CCAAT-enhancer binding protein-β expression and elevation in Alzheimer's disease and microglial cell cultures. PLoS One 2014; 9:e86617. [PMID: 24466171 PMCID: PMC3899300 DOI: 10.1371/journal.pone.0086617] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023] Open
Abstract
CCAAT-enhancer binding proteins are transcription factors that help to regulate a wide range of inflammatory mediators, as well as several key elements of energy metabolism. Because C/EBPs are expressed by rodent astrocytes and microglia, and because they are induced by pro-inflammatory cytokines that are chronically upregulated in the Alzheimer’s disease (AD) cortex, we have investigated whether C/EBPs are expressed and upregulated in the AD cortex. Here, we demonstrate for the first time that C/EBPβ can be detected by Western blots in AD and nondemented elderly (ND) cortex, and that it is significantly increased in AD cortical samples. In situ, C/EBPβ localizes immunohistochemically to microglia. In microglia cultured from rapid autopsies of elderly patient’s brains and in the BV-2 murine microglia cell line, we have shown that C/EBPβ can be upregulated by C/EBP-inducing cytokines or lipopolysaccharide and exhibits nuclear translocation possibly indicating functional activity. Given the known co-regulatory role of C/EBPs in pivotal inflammatory mechanisms, many of which are present in AD, we propose that upregulation of C/EBPs in the AD brain could be an important orchestrator of pathogenic changes.
Collapse
|
6
|
A subanesthetic dose of isoflurane during postconditioning ameliorates zymosan-induced neutrophil inflammation lung injury and mortality in mice. Mediators Inflamm 2013; 2013:479628. [PMID: 24369446 PMCID: PMC3863458 DOI: 10.1155/2013/479628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/03/2013] [Accepted: 11/03/2013] [Indexed: 11/17/2022] Open
Abstract
Anesthetic isoflurane (ISO) has immunomodulatory effects. In the present study, we investigated whether a subanesthetic dose of ISO (0.7%) protected against zymosan (ZY) induced inflammatory responses in the murine lung and isolated neutrophils. At 1 and 6 hrs after ZY administration intraperitoneally, ISO was inhaled for 1 hr, and 24 hrs later, lung inflammation and injury were assessed. We found that ISO improved the survival rate of mice and mitigated lung injury as characterized by the histopathology, wet-to-dry weight ratio, protein leakage, and lung function index. ISO significantly attenuated ZY-induced lung neutrophil recruitment and inflammation. This was suggested by the downregulation of (a) endothelial adhesion molecule expression and myeloperoxidase (MPO) activity in lung tissue and polymorphonuclear neutrophils (b) chemokines, and (c) proinflammatory cytokines in BALF. Furthermore, ZY-induced nuclear translocation and DNA-binding activity of NF- κ B p65 were also reduced by ISO. ISO treatment inhibited iNOS expression and activity, as well as subsequent nitric oxide generation. Consistent with these in vivo observations, in vitro studies confirmed that ISO blocked NF- κ B and iNOS activation in primary mouse neutrophils challenged by ZY. These results provide evidence that 0.7% ISO ameliorates inflammatory responses in ZY-treated mouse lung and primary neutrophils.
Collapse
|
7
|
Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 2013; 1:e00078. [PMID: 24303162 PMCID: PMC3841024 DOI: 10.1002/phy2.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/17/2022] Open
Abstract
Engineered cardiac tissues (ECTs) are platforms to investigate cardiomyocyte maturation and functional integration, the feasibility of generating tissues for cardiac repair, and as models for pharmacology and toxicology bioassays. ECTs rapidly mature in vitro to acquire the features of functional cardiac muscle and respond to mechanical load with increased proliferation and maturation. ECTs are now being investigated as platforms for in vitro models for human diseases and for pharmacologic screening for drug toxicities. We tested the hypothesis that global ECT gene expression patterns are complex and sensitive to mechanical loading and tyrosine kinase inhibitors similar to the maturing myocardium. We generated ECTs from day 14.5 rat embryo ventricular cells, as previously published, and then conditioned constructs after 5 days in culture for 48 h with mechanical stretch (5%, 0.5 Hz) and/or the p38 MAPK (p38 mitogen-activated protein kinase) inhibitor BIRB796. RNA was isolated from individual ECTs and assayed using a standard Agilent rat 4 × 44k V3 microarray and Pathway Analysis software for transcript expression fold changes and changes in regulatory molecules and networks. Changes in expression were confirmed by quantitative-polymerase chain reaction (q-PCR) for selected regulatory molecules. At the threshold of a 1.5-fold change in expression, stretch altered 1559 transcripts, versus 1411 for BIRB796, and 1846 for stretch plus BIRB796. As anticipated, top pathways altered in response to these stimuli include cellular development, cellular growth and proliferation; tissue development; cell death, cell signaling, and small molecule biochemistry as well as numerous other pathways. Thus, ECTs display a broad spectrum of altered gene expression in response to mechanical load and/or tyrosine kinase inhibition, reflecting a complex regulation of proliferation, differentiation, and architectural alignment of cardiomyocytes and noncardiomyocytes within ECT.
Collapse
Affiliation(s)
- Fei Ye
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville Louisville, Kentucky ; Affiliated Hospital of Guiyang Medical College Guiyang, China
| | | | | | | | | | | |
Collapse
|
8
|
Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M, Okano T. In vitro engineering of vascularized tissue surrogates. Sci Rep 2013; 3:1316. [PMID: 23419835 PMCID: PMC3575583 DOI: 10.1038/srep01316] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/25/2013] [Indexed: 01/25/2023] Open
Abstract
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models.
Collapse
Affiliation(s)
- Katsuhisa Sakaguchi
- School of Creative Science and Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Dong X, Hu R, Sun Y, Li Q, Jiang H. Isoflurane post-treatment improves pulmonary vascular permeability via upregulation of heme oxygenase-1. Exp Lung Res 2013; 39:295-303. [DOI: 10.3109/01902148.2013.817627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Arsenault RJ, Kogut MH, He H. Combined CpG and poly I:C stimulation of monocytes results in unique signaling activation not observed with the individual ligands. Cell Signal 2013; 25:2246-54. [PMID: 23876795 DOI: 10.1016/j.cellsig.2013.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 11/17/2022]
Abstract
Toll-like receptors (TLRs) bind to components of microbes, activate cellular signal transduction pathways and stimulate innate immune responses. Previously, we have shown in chicken monocytes that the combination of CpG, the ligand for TLR21 (the chicken equivalent of TLR9), and poly I:C, the ligand for TLR3, results in a synergistic immune response. In order to further characterize this synergy, kinome analysis was performed on chicken monocytes stimulated with either unmethylated CpG oligodeoxynucleotides (CpG) and polyinosinic-polycytidylic acid (poly I:C) individually or in combination for either 1h or 4h. The analysis was carried out using chicken species-specific peptide arrays to study the kinase activity induced by the two ligands. The arrays are comprised of kinase target sequences immobilized on an array surface. Active kinases phosphorylate their respective target sequences, and these phosphorylated peptides are then visualized and quantified. A significant number of peptides exhibited altered phosphorylation when CpG and poly I:C were given together, that was not observed when either CpG or poly I:C was given separately. The unique, synergistic TLR agonist affected peptides represent protein members of signaling pathways including calcium signaling pathway, cytokine-cytokine receptor interaction and Endocytosis at the 1h time point. At the 4h time point, TLR agonist synergy influenced pathways included Adipocytokine signaling pathway, cell cycle, calcium signaling pathway, NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway. Using nitric oxide (NO) production as the readout, TLR ligand synergy was also investigated using signaling protein inhibitors. A number of inhibitors were able to inhibit NO response in cells given CpG alone but not in cells given both CpG and poly I:C, as poly I:C alone does not elicit a significant NO response. The unique peptide phosphorylation induced by the combination of CpG and poly I:C and the unique signaling protein requirements for synergy determined by inhibitor assays both show that synergistic signaling is not a simple addition of TLR pathways. A set of secondary pathways activated by the ligand combination are proposed, leading to the activation of cAMP response element-binding protein (CREB), nuclear factor κB (NFκB) and ultimately of inducible nitric oxide synthase (iNOS). Since many microbes can stimulate more than one TLR, this synergistic influence on cellular signaling may be an important consideration for the study of immune response and what we consider to be the canonical TLR signaling pathways.
Collapse
Affiliation(s)
- Ryan J Arsenault
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F&B Road, College Station, TX 77845, USA.
| | | | | |
Collapse
|
11
|
Shioyama T, Haraguchi Y, Muragaki Y, Shimizu T, Okano T. New isolation system for collecting living cells from tissue. J Biosci Bioeng 2013; 115:100-3. [DOI: 10.1016/j.jbiosc.2012.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
|
12
|
Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16:49-69. [PMID: 20571888 DOI: 10.1007/s10741-010-9180-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TNFα is crucially involved in the pathogenesis and progression of myocardial ischemia/reperfusion injury and heart failure. The formation and release of TNFα and its downstream signal transduction cascade following activation of its two receptor subtypes are characterized. Myocardial TNFα and TNF receptor activation have an ambivalent role in myocardial ischemia/reperfusion injury and protection from it. Excessive TNFα expression and subsequent cardiomyocyte TNF receptor type 1 stimulation induce contractile dysfunction, hypertrophy, fibrosis and cell death, while a lower TNFα concentration and subsequent cardiomyocyte TNF receptor type 2 stimulation are protective. Apart from its concentration and receptor subtype, the myocardial action of TNFα depends on the duration of its exposure and its localization. While detrimental during sustained ischemia, TNFα contributes to ischemic preconditioning protection, no matter whether it is the first, second or third window of protection, and both TNF receptors are involved in the protective signal transduction cascade. Finally, the available clinical attempts to antagonize TNFα in cardiovascular disease, notably heart failure, are critically discussed.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | |
Collapse
|
13
|
TANAKA Y, AKAIKE H, SUGII Y, KITAMORI T. Establishment of a Confluent Cardiomyocyte Culture in a Cylindrical Microchannel. ANAL SCI 2011; 27:957-60. [DOI: 10.2116/analsci.27.957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yo TANAKA
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Quantitative Biology Center (QBiC), RIKEN
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Hiroto AKAIKE
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
| | - Yasuhiko SUGII
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Takehiko KITAMORI
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| |
Collapse
|
14
|
Tiangco DA, Halcomb S, Lattanzio FA, Hargrave BY. 3,4-Methylenedioxymethamphetamine alters left ventricular function and activates nuclear factor-Kappa B (NF-κB) in a time and dose dependent manner. Int J Mol Sci 2010; 11:4843-63. [PMID: 21614177 PMCID: PMC3100831 DOI: 10.3390/ijms11124743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/16/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is an illicit psychoactive drug with cardiovascular effects that have not been fully described. In the current study, we observed the effects of acute MDMA on rabbit left ventricular function. We also observed the effects of MDMA on nuclear factor-kappa B (NF-κB) activity in cultured rat ventricular myocytes (H9c2). In the rabbit, MDMA (2 mg/kg) alone caused a significant increase in heart rate and a significant decrease in the duration of the cardiac cycle. Inhibition of nitric oxide synthase (NOS) by pretreatment with L-NAME (10 mg/kg) alone caused significant dysfunction in heart rate, systolic pressure, diastolic pressure, duration of relaxation, duration of cardiac cycle, and mean left ventricular pressure. Pretreatment with L-NAME followed by treatment with MDMA caused significant dysfunction in additional parameters that were not abnormal upon exposure to either compound in isolation: duration of contraction, inotropy, and pulse pressure. Exposure to 1.0 mM MDMA for 6 h or 2.0 μM MDMA for 12 h caused increased nuclear localization of NF-κB in cultured H9c2 cells. The current results suggest that MDMA is acutely detrimental to heart function and that an intact cardiovascular NOS system is important to help mitigate early sequelae in some functional parameters. The delayed timing of NF-κB activation suggests that this factor may be relevant to MDMA induced cardiomyopathy of later onset.
Collapse
Affiliation(s)
- David A. Tiangco
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Sapna Halcomb
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, 23510, USA
| | - Barbara Y. Hargrave
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
15
|
Luker KE, Luker GD. Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antiviral Res 2010; 86:93-100. [PMID: 20417377 DOI: 10.1016/j.antiviral.2010.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 01/02/2023]
Abstract
In vivo bioluminescence imaging offers the opportunity to study biological processes in living animals, and the study of viral infections and host immune responses can be enhanced substantially through this imaging modality. For most studies of viral pathogenesis and effects of anti-viral therapies, investigators have used recombinant viruses engineered to express a luciferase enzyme. This strategy requires stable insertion of an imaging reporter gene into the viral genome, which is not feasible for many RNA viruses, and provides data on the viral component of pathogenesis but not on the host. Genetically engineered mice with luciferase reporters for specific viral or host genes provide opportunities to overcome these limitations and expand applications of bioluminescence imaging in viral infection and therapy. We review several different types of reporter mice for bioluminescence imaging, including animals that permit in vivo detection of viral replication, trafficking of immune cells, activation of key genes in host immunity to viral infection, and response to tissue damage. By utilizing luciferase enzymes with different emission spectra and/or substrates, it is possible to monitor two different biologic processes in the same animal, such as pathogen replication and sites of tissue injury. Combining imaging reporter viruses with genetically engineered reporter mice is expected to substantially enhance the power of bioluminescence imaging for quantitative studies of viral and host factors that control disease outcome and effects of established and new therapeutic agents.
Collapse
Affiliation(s)
- Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48019-2200, USA.
| | | |
Collapse
|
16
|
|
17
|
Jeong HG, Pokharel YR, Lim SC, Hwang YP, Han EH, Yoon JH, Ahn SG, Lee KY, Kang KW. Novel role of Pin1 induction in type II collagen-mediated rheumatoid arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6689-97. [PMID: 19846884 DOI: 10.4049/jimmunol.0901431] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints and subsequent destruction of cartilage and bone. Inflammatory mediators such as PGs and proinflammatory cytokines contribute to RA progress. Pin1, a peptidyl prolyl isomerase, plays important pathophysiological roles in several diseases, including cancer and neurodegeneration. We found that both Pin1 and cyclooxygenase-2 (COX-2) were highly expressed in ankle tissues of type II collagen-induced RA mice. HTB-94 cells overexpressing Pin1 and primary cultured human chondrocytes showed increased basal expression of proinflammatory proteins (COX-2, inducible NO synthase, TNF-alpha, and IL-1beta). Site-directed mutagenesis revealed that Pin1-mediated transcriptional activation of COX-2 was coordinately regulated by NF-kappaB, CREB, and C/EBP. Gel shift, reporter gene, and Western blot analyses confirmed that NF-kappaB, CREB, and C/EBP were consistently activated in chondrocytes overexpressing Pin1. Treatment of RA mice with juglone, a chemical inhibitor of Pin1, significantly reduced RA progress and COX-2 expression in the ankle tissues. Moreover, juglone dose dependently decreased the basal COX-2 expression in primary cultured chondrocytes from RA patients. These results demonstrate that Pin1 induction during RA progress stimulates proinflammatory protein expression by activating NF-kappaB, CREB, and C/EBP, and suggest that Pin1 is a potential therapeutic target of RA.
Collapse
Affiliation(s)
- Hye Gwang Jeong
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li QF, Zhu YS, Jiang H, Xu H, Sun Y. Isoflurane Preconditioning Ameliorates Endotoxin-Induced Acute Lung Injury and Mortality in Rats. Anesth Analg 2009; 109:1591-7. [PMID: 19843795 DOI: 10.1213/ane.0b013e3181baf506] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Jin Y, Choi IY, Kim C, Hong S, Kim WK. Excretory-secretory products from Paragonimus westermani increase nitric oxide production in microglia in PKC-dependent and -independent manners. Neurosci Res 2009; 65:141-7. [PMID: 19539668 DOI: 10.1016/j.neures.2009.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 06/01/2009] [Accepted: 06/06/2009] [Indexed: 01/13/2023]
Abstract
Excretory-secretory products (ESP) from helminthic parasites may play pivotal roles in the immune regulation in hosts. Previously, we reported that ESP produced from Paragonimus westermani induced morphological activation of microglial cells and markedly stimulated nitric oxide (NO) production via activation of mitogen-activated protein kinases (MAPKs). In the present study, we investigated the role of protein kinase C and protein kinase A in MAPKs-dependent NO production by ESP. We found that treatment with protein kinase C inhibitor Go6976 strongly inhibited the phosphorylation of p38 and JNK, but not ERK, of MAPKs and decreased the production of NO in ESP-stimulated microglial cells. Inhibition of ERK, p38 or PKC decreased the ESP-induced activation of NF-kappaB, an important transcription factor for iNOS expression. Furthermore, ESP increased the level of p-CREB in microglial cells. However, adenylyl cyclase activator (forskolin), adenylyl cyclase inhibitor (SQ22536), cAMP analogue (db-cAMP) or protein kinase A inhibitor (H89) was not able to change iNOS expression and NO production in ESP-treated microglial cells. It implies that the cAMP-PKA-CREB pathway is not implicated in the ESP-evoked NO production in microglial cells. Thus, our results indicate that ESP stimulates microglial expression of iNOS via both PKC-dependent and -independent MAPKs phosphorylation and NF-kappaB activation.
Collapse
Affiliation(s)
- Youngnam Jin
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
20
|
Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, Reilly CM. Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol 2009; 156:542-51. [PMID: 19438609 DOI: 10.1111/j.1365-2249.2009.03924.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent reports show that 5-amino-4-imidazole carboxamide riboside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), inhibits the lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. MRL/MPJ-Fas(lpr) (MRL/lpr) mice show an intrinsic decreased threshold for the production of inflammatory mediators when stimulated. In our current studies, we sought to determine if AMPK activation would inhibit inflammatory mediator production in stimulated kidney mesangial cells. Cultured mesangial cells from MRL/lpr mice were treated with AICAR and stimulated with LPS/interferon (IFN)-gamma. AICAR decreased dose-dependently inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and interleukin-6 production in LPS/IFN-gamma-stimulated mesangial cells. Mechanistically, AICAR inhibited the LPS/IFN-gamma-stimulated PI3K/Akt signalling inflammatory cascade but did not affect LPS/IFN-gamma-mediated inhibitory kappa B phosphorylation or nuclear factor (NF)-kappaB (p65) nuclear translocation. Treatment with the adenosine kinase inhibitor 5'-iodotubercidin blocked the ability of AICAR to activate AMPK and prevented AICAR from inhibiting the LPS/IFN-gamma-stimulated PI3K/Akt pathway and attenuating iNOS expression. Taken together, these observations suggest that AICAR inhibits LPS/IFN-gamma-induced Akt phosphorylation through AMPK activation and may serve as a potential therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- A Peairs
- Virginia College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor. Recent studies have shown that the VEGF levels increase in several cell types, for example, macrophages and smooth muscle cells after LPS stimulation, suggesting that it is important in the initiation and development of sepsis. In particular, LPS-regulated contractility in lung pericytes may play an important role in mediating pulmonary microvascular fluid hemodynamics during sepsis. This study investigated the production of VEGF by rat lung pericytes in response to LPS. LPS was found to enhance VEGF mRNA expression in a concentration-dependent manner peaking 2 h after stimulation in pericytes. Vascular endothelial growth factor protein levels in conditioned medium and in cell lysate also increased on increasing LPS and peaked after 24 to 48 h. LPS also significantly augmented iNOS expression in lung pericytes within 6 h. However, iNOS mRNA induction occurred later than LPS-induced VEGF mRNA increases. Interestingly, attempted inhibition with nuclear factor-kappaB or tyrosine kinase did not suppress LPS-induced augmented VEGF mRNA expression in lung pericytes, although both inhibitors markedly inhibited LPS-induced iNOS mRNA expression. SB203580, a p38 MAP kinase inhibitor, repressed LPS-induced VEGF mRNA expression. Furthermore, LPS stimulated a rapid and sustained phosphorylation of p38 MAP kinase. These results show that pericytes produce VEGF in response to LPS stimulation, and that this may be partly mediated by the p38 MAP kinase pathway. More research should be done to establish the regulation of capillary hemodynamics and identify mechanisms of their regulation.
Collapse
|
22
|
Huang H, Liu T, Rose JL, Stevens RL, Hoyt DG. Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet. JOURNAL OF INFLAMMATION-LONDON 2007; 4:22. [PMID: 17997851 PMCID: PMC2186306 DOI: 10.1186/1476-9255-4-22] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/12/2007] [Indexed: 11/16/2022]
Abstract
Background It was hypothesized that a pro-atherogenic, high saturated fat and cholesterol diet (HCD) would increase the inflammatory response to E. coli endotoxin (LPS) and increase its concentration in plasma after administration to mice. Methods C57Bl/6 mice were fed a HCD or a control diet (CD) for 4 weeks, and then treated with saline, 0.5, 1 or 2 mg LPS/kg, ip. Liver injury (alanine:2-oxoglutarate aminotransferase and aspartate aminotransferase, collagen staining), circulating cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), factors that can bind LPS (serum amyloid A, apolipoprotein A1, LPS binding protein, and CD14), and plasma levels of LPS were measured. The hepatic response was assessed by measuring vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase (iNOS) and signal transducer and activator of transcription-1 proteins, and VCAM-1 and iNOS mRNAs. Hepatic mRNA encoding the LPS receptor, Toll like receptor 4, was also determined. Results Two mg LPS/kg killed 100% of mice fed HCD within 5 d, while no mice fed CD died. All mice treated with 0 to 1 mg LPS/kg survived 24 h. HCD increased plasma alanine:2-oxoglutarate aminotransferase and aspartate aminotransferase, and the enzymes were increased more by LPS in HCD than CD mice. Induction of plasma tumor necrosis factor-α, interleukin-6, and interferon-γ by LPS was greater with HCD than CD. Hepatic VCAM-1 and iNOS protein and mRNA were induced by LPS more in mice fed HCD than CD. Tyrosine phosphorylation of signal transducer and activator of transcription-1 caused by LPS was prolonged in HCD compared with CD mice. Despite the hepatic effects of HCD, diet had no effect on the LPS plasma concentration-time profile. HCD alone did not affect circulating levels of plasma apolipoprotein A1 or LPS binding protein. However, plasma concentrations of serum amyloid A and CD14, and hepatic toll-like receptor-4 mRNA were increased in mice fed HCD. Conclusion HCD increased the sensitivity of mice to LPS without affecting its plasma level. Although increased serum amyloid A and CD14 in the circulation may inhibit LPS actions, their overexpression, along with hepatic toll-like receptor-4 or other factors, may contribute to the heightened sensitivity to LPS.
Collapse
Affiliation(s)
- Hong Huang
- Division of Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA.
| | | | | | | | | |
Collapse
|
23
|
Cuenca J, Goren N, Prieto P, Martín-Sanz P, Boscá L. Selective impairment of nuclear factor-kappaB-dependent gene transcription in adult cardiomyocytes: relevance for the regulation of the inflammatory response in the heart. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:820-8. [PMID: 17675583 PMCID: PMC1959507 DOI: 10.2353/ajpath.2007.061076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability of neonatal and adult cardiomyocytes to activate the nuclear factor (NF)-kappaB pathway in response to lipopolysaccharide and interleukin-1beta challenge has been investigated and compared with that of peritoneal macrophages. The activation of the IkappaB kinase and the phosphorylation and degradation of IkappaBalpha and IkappaBbeta was much lower in adult cardiomyocytes than in the neonatal counterparts and macrophages. This restricted activation of the NF-kappaB pathway resulted in a significant reduction in the time of nuclear activation of NF-kappaB, as deduced by electrophoretic mobility shift assays and in the transcription of target genes, such as IkappaBalpha, cyclooxygenase-2 (COX-2) and nitric-oxide synthase-2 (NOS-2). Studies on chromatin immunoprecipitation showed binding of NF-kappaB proteins to the regulatory kappaB sites identified in the promoters of the IkappaBalpha, COX-2, and NOS-2 genes in macrophages and, to a lower extent, in neonatal cardiomyocytes. The binding to these kappaB sites in adult cardiomyocytes was observed only in the IkappaBalpha promoter and was minimal or absent in the COX-2 and NOS-2 promoters, respectively, suggesting a restricted activation of NF-kappaB-regulated genes in these cells. These data indicate that the function of the NF-kappaB pathway in adult cardiomyocytes is limited in time, which results in the expression of a reduced number of genes and provides a functional explanation for the absence of NOS-2 inducibility in these cells under proinflammatory conditions.
Collapse
Affiliation(s)
- Jimena Cuenca
- Instituto de Investigaciones Biomédicas Alberto Sols (Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Shao L, Guo Z, Geller DA. Transcriptional suppression of cytokine-induced iNOS gene expression by IL-13 through IRF-1/ISRE signaling. Biochem Biophys Res Commun 2007; 362:582-6. [PMID: 17723228 PMCID: PMC2025693 DOI: 10.1016/j.bbrc.2007.07.203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
IL-13 has been reported as one of the major down-regulators of iNOS expression in various tissues and cells. The molecular mechanism of iNOS suppression by IL-13 remains unclear, especially at the transcriptional stage. In this study, we found that IL-13 inhibited the expression of iNOS mRNA, protein, and NO product in a concentration-dependent manner for cytokine-stimulated rat hepatocytes. The most effective dose for IL-13 inhibitory effect is approximately 5 ng/ml. IL-13 also decreased the rat iNOS transcriptional activity by promoter analysis, but had no effect on iNOS mRNA stability. By using TranSignal Protein/DNA Combo Array, we identified cytokine-stimulated IRF-1/ISRE binding that was decreased by the addition of IL-13. Gel shift assay confirmed that IL-13 reduced the IRF-1/ISRE binding at nucleotides -913 to -923 of the rat iNOS promoter. Western blot revealed that IL-13 diminished the relative amount of IRF-1 protein translocated to the nucleus. Our data demonstrate that IL-13 down-regulates the cytokine-induced iNOS transcription by decreasing iNOS specific IRF-1/ISRE binding activity.
Collapse
Affiliation(s)
- Lifang Shao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
25
|
Chen S, Khan ZA, Karmazyn M, Chakrabarti S. Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab Res Rev 2007; 23:356-67. [PMID: 17024690 DOI: 10.1002/dmrr.689] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cardiac hypertrophy is a key structural feature of diabetic cardiomyopathy. Previous studies have shown that diabetes-induced endothelin-1 (ET-1) and sodium hydrogen exchanger-1 (NHE-1) mediate structural and functional deficits in the heart. In order to gain a mechanistic understanding of the role of ET-1 and NHE-1 in cardiomyocyte hypertrophy, we have utilized an in vitro endothelial-myocyte co-culture system to reveal cellular interactions that may arbitrate cardiomyocyte deficits in diabetes. METHODS AND RESULTS Rat ventricular cardiomyocytes were cultured in high glucose levels, which caused cellular hypertrophy. Hypertrophic markers, atrial natruritic peptide (ANP) and angiotensinogen (Agt), as well as inducible nitric oxide synthase (iNOS) were upregulated by high glucose. Treatment of cells with ET antagonist bosentan and NHE-1 inhibitor cariporide prevented glucose-induced cardiomyocyte hypertrophy and expression of ANP, Agt, and iNOS. Bosentan and cariporide treatment of cardiomyocytes co-cultured with endothelial cells produced a more pronounced normalization of glucose-induced changes as compared to cardiomyocyte cultured alone. To further explore the signaling mechanisms involved, we investigated the mitogen activated protein kinase (MAPK) pathway and its cross-interaction with signaling proteins known to be altered in diabetes. Our results indicate that MAPK activation is associated with cardiomyocyte hypertrophy and is inhibited by bosentan, cariporide, as well as protein kinase C inhibiton. Furthermore, MAPK activation was found to be upstream of the transcription factors, nuclear factor-kappaB and activating protein-1. CONCLUSION These results demonstrate that ET-1 and NHE-1 may mediate cardiomyocyte hypertrophy via MAPK activation and provide an insight into the pathogenesis of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, University of Western Ontario, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Cardiac nitric oxide synthases are elevated in dietary copper deficiency. J Nutr Biochem 2007; 18:443-8. [DOI: 10.1016/j.jnutbio.2006.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/27/2006] [Accepted: 07/21/2006] [Indexed: 01/17/2023]
|
27
|
De Stefano D, Maiuri MC, Simeon V, Grassia G, Soscia A, Cinelli MP, Carnuccio R. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol 2007; 566:192-9. [PMID: 17477920 DOI: 10.1016/j.ejphar.2007.03.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in inflammatory process of celiac disease. We have studied the effect of the lycopene, quercetin and tyrosol natural antioxidants on the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression in RAW 264.7 macrophages stimulated by gliadin in association with IFN-gamma. The IFN-gamma plus gliadin combination treatment was capable of enhancing iNOS and COX-2 gene expression and nuclear factor-kappaB (NF-kappaB), interferon regulatory factor-1 (IRF-1) and signal transducer and activator of transcription-1alpha (STAT-1alpha) activation induced by reactive oxygen species generation at 24 h. Lycopene, quercetin and tyrosol inhibited all these effects. The results here reported suggest that these compounds may represent non toxic agents for the control of pro-inflammatory genes involved in celiac disease.
Collapse
Affiliation(s)
- Daniela De Stefano
- Dipartimento di Farmacologia Sperimentale, Via D. Montesano, 49, Università degli Studi di Napoli Federico II, 80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T. A micro-spherical heart pump powered by cultured cardiomyocytes. LAB ON A CHIP 2007; 7:207-12. [PMID: 17268623 DOI: 10.1039/b612082b] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Miniaturization of chemical or biochemical systems creates extremely efficient devices exploiting the advantages of microspaces. Although they are often targeted for implanted tissue engineered organs or drug-delivery devices because of their highly integrated systems, microfluidic devices are usually powered by external energy sources and therefore difficult to be used in vivo. A microfluidic device powered without the need for external energy sources or stimuli is needed. Previously, we demonstrated the concept of a cardiomyocyte pump using only chemical energy input to cells as a driver (Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano and Takehiko Kitamori, Lab Chip, 6(3), pp. 362-368). However, the structure of this prototype pump described there included complicated mechanical components and fabricated compartments. Here, we have created a micro-spherical heart-like pump powered by spontaneously contracting cardiomyocyte sheets driven without a need for external energy sources or coupled stimuli. This device was fabricated by wrapping a beating cardiomyocyte sheet exhibiting large contractile forces around a fabricated hollow elastomeric sphere (5 mm diameter, 250 microm polymer thickness) fixed with inlet and outlet ports. Fluid oscillations in a capillary connected to the hollow sphere induced by the synchronously pulsating cardiomyocyte sheet were confirmed, and the device continually worked for at least 5 days in this system. This bio/artificial hybrid fluidic pump device is innovative not only because it is driven by cells using only chemical energy input, but also because the design is an optimum structure (sphere). We anticipate that this device might be applied for various purposes including a bio-actuator for medical implant devices that relies on biochemical energy, not electrical interfacing.
Collapse
Affiliation(s)
- Yo Tanaka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gröne HJ, Nelson PJ, Schlöndorff D, Cohen CD, Kretzler M. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006; 55:2993-3003. [PMID: 17065335 DOI: 10.2337/db06-0477] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal failure and a major risk factor for cardiovascular mortality in diabetic patients. To evaluate the multiple pathogenetic factors implicated in DN, unbiased mRNA expression screening of tubulointerstitial compartments of human renal biopsies was combined with hypothesis-driven pathway analysis. Expression fingerprints obtained from biopsies with histological diagnosis of DN (n = 13) and from control subjects (pretransplant kidney donors [n = 7] and minimal change disease [n = 4]) allowed us to segregate the biopsies by disease state and stage by the specific expression signatures. Functional categorization showed regulation of genes linked to inflammation in progressive DN. Pathway mapping of nuclear factor-kappaB (NF-kappaB), a master transcriptional switch in inflammation, segregated progressive from mild DN and control subjects by showing upregulation of 54 of 138 known NF-kappaB targets. The promoter regions of regulated NF-kappaB targets were analyzed using ModelInspector, and the NF-kappaB module NFKB_IRFF_01 was found to be specifically enriched in progressive disease. Using this module, the induction of eight NFKB_IRFF_01-dependant genes was correctly predicted in progressive DN (B2M, CCL5/RANTES, CXCL10/IP10, EDN1, HLA-A, HLA-B, IFNB1, and VCAM1). The identification of a specific NF-kappaB promoter module activated in the inflammatory stress response of progressive DN has helped to characterize upstream pathways as potential targets for the treatment of progressive renal diseases such as DN.
Collapse
Affiliation(s)
- Holger Schmid
- Division of Nephrology, Medizinische Poliklinik, University of Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang G, Kawakami K, Gick G. Divergent signaling pathways mediate induction of Na,K-ATPase α1 and β1 subunit gene transcription by low potassium. Mol Cell Biochem 2006; 294:73-85. [PMID: 16909306 DOI: 10.1007/s11010-006-9247-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 05/16/2006] [Indexed: 11/25/2022]
Abstract
Prolonged inhibition of Na,K-ATPase enzymatic activity by exposure of a variety of mammalian cells to low external K+ yields a subsequent adaptive up-regulation of Na,K-ATPase expression. The aim of this study was to examine the intracellular signal transduction system that is responsible for mediating increased Na,K-ATPase subunit gene expression in primary cultures of neonatal rat cardiac myocytes. In this work, we show long-term inhibition of Na,K-ATPase function with 0.6 mM K+ resulted in hypertrophy of cardiac myocytes and augmentation of Na,K-ATPase alpha1 and beta1 subunit gene expression. Transient transfection experiments in neonatal rat cardiac myocytes demonstrated that low K+ induction of alpha1 and beta1 gene transcription was dependent on intracellular Ca2+ and activation of calcineurin. Based on effects of pharmacological inhibitors, protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2) and histone deacetylase were found to be unique downstream components in the low K+ signal transduction pathway leading to increased alpha1 subunit promoter activity. Similarly, low K+-induced beta1 subunit gene transcription was dependent on activation of protein kinase C (PKC), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These findings indicate that persistent inhibition of Na,K-ATPase activity with low external K+ activates overlapping and Na,K-ATPase subunit gene-specific signaling pathways in cardiac myocytes.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biochemistry and Center for Cardiovascular and Muscle Research, State University of New York Health Science Center at Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
31
|
Buchwalow IB, Minin EA, Müller FU, Lewin G, Samoilova VE, Schmitz W, Wellner M, Hasselblatt M, Punkt K, Müller-Werdan U, Demus U, Slezak J, Koehler G, Boecker W. Nitric oxide synthase in muscular dystrophies: a re-evaluation. Acta Neuropathol 2006; 111:579-88. [PMID: 16718354 DOI: 10.1007/s00401-006-0069-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/13/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are associated with decreased total nitric oxide (NO). However, mechanisms leading to NO deficiency with consequent muscle-cell degeneration remain unknown. To address this issue, we examined skeletal muscles of DMD and BMD patients for co-expression of NO synthase (NOS) with nitrotyrosine and transcription factor CREB, as well as with enzymes engaged in NO signaling. Employing immunocytochemical labeling, Western blotting and RT-PCR, we found that, in contrast to the most commonly accepted view, neuronal NOS was not restricted to the sarcolemma and that muscles of DMD and BMD patients retained all three NOS isoforms with an up-regulation of the inducible NOS isoform, CREB and nitrotyrosine. We suggest that enhanced nitrotyrosine immunostaining in muscle fibers as well as in the vasculature of DMD and BMD specimens reflects massive oxidative stress, resulting in withdrawal of NO from its regular physiological course via the scavenging actions of superoxides.
Collapse
Affiliation(s)
- Igor B Buchwalow
- Gerhard Domagk Institute of Pathology, University of Muenster, Domagkstr. 17, 48149, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tiwari MM, Messer KJ, Mayeux PR. Inducible nitric oxide synthase and apoptosis in murine proximal tubule epithelial cells. Toxicol Sci 2006; 91:493-500. [PMID: 16551643 DOI: 10.1093/toxsci/kfj168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Since inducible nitric oxide synthase (iNOS) and proximal tubule injury are known to be critical determinants of lipopolysaccharide (LPS)-induced renal failure, the role of nitric oxide (NO) in proximal tubule cell apoptosis was examined. An 18-h treatment with a combination of LPS (5 microg/ml) and interferon-gamma (IFN-gamma, 100 units/ml) synergistically induced iNOS and produced a 20-fold increase in NO generation in the TKPTS murine proximal tubule cell line. NO generation by LPS + IFN-gamma was blocked by a specific iNOS blocker, L-N6-(1-iminoethyl)-lysine (L-NIL, 1 mM). To assess the role of iNOS-derived NO in proximal tubule cell apoptosis, annexin V- and propidium iodide-labeled cells were analyzed by flow cytometry. Neither the induction of iNOS nor its inhibition produced significant apoptotic cell death in TKPTS cells. Two exogenous NO donors were used to examine the role of NO more directly in proximal tubule apoptosis. Although both sodium nitroprusside (SNP), an iron-containing, nitrosonium cation donor, and S-nitroso-N-acetylpenicillamine (SNAP), a noniron-containing, NO generator, produced a concentration-dependent increase in NO generation, only SNP increased apoptotic cell death in TKPTS cells (5.9 +/- 0.7% in control cells vs. 21.6 +/- 3.8% in SNP [500 microM]-treated cells; n = 4-9; p < 0.01). SNP-mediated tubule cell apoptosis was not dependent on the activation of caspases or p53 but was possibly related to the generation of reactive oxygen species by SNP. Thus, in TKPTS cells induction of iNOS and generation of NO by LPS does not lead to tubular epithelial cell death.
Collapse
Affiliation(s)
- Manish M Tiwari
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
33
|
Tanaka Y, Morishima K, Shimizu T, Kikuchi A, Yamato M, Okano T, Kitamori T. An actuated pump on-chip powered by cultured cardiomyocytes. LAB ON A CHIP 2006; 6:362-8. [PMID: 16511618 DOI: 10.1039/b515149j] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cellular functions are frequently exploited as processing components for integrated chemical systems such as biochemical reactors and bioassay systems. Here, we have created a new cell-based microsystem exploiting the intrinsic pulsatile mechanical functions of cardiomyocytes to build a cellular micropump on-chip using cardiomyocyte sheets as prototype bio-microactuators. We first demonstrate cell-based control of fluid motion in a model microchannel without check valves and evaluate the potential performance of the bio-actuation. For this purpose, a poly(dimethylsiloxane) (PDMS) microchip with a microchannel equipped with a diaphragm and a push-bar structure capable of harnessing collective cell fluid mechanical forces was coupled to a cultured pulsating cardiomyocyte sheet, activating cell-based fluid movement in the microchannel by actuating the diaphragm. Cell oscillation frequency and correlated fluid displacement in this system depended on temperature. When culture temperature was increased, collective cell contraction frequency remained cooperative and synchronous but increased, while displacement was slightly reduced. We then demonstrated directional fluid pumping within microchannels using cantilever-type micro-check valves made of polyimide. A directional flow rate of nL min(-1) was produced. This cell micropump system could be further developed as a self-actuated and efficient mechanochemical transducer requiring no external energy sources for various purposes in the future.
Collapse
Affiliation(s)
- Yo Tanaka
- Department of Applied Chemistry, School of Engineering, The University of okyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Park JE, Kang YJ, Park MK, Lee YS, Kim HJ, Seo HG, Lee JH, Hye Sook YC, Shin JS, Lee HW, Ahn SK, Chang KC. Enantiomers of higenamine inhibit LPS-induced iNOS in a macrophage cell line and improve the survival of mice with experimental endotoxemia. Int Immunopharmacol 2006; 6:226-33. [PMID: 16399627 DOI: 10.1016/j.intimp.2005.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/25/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The importance of development of single enantiomers (optically pure isomers) of chiral molecules has been recognized and manifested in countless pharmaceutical and biological advancement. (RS)-(+/-)-Higenamine (racemic mixture), an active ingredient of Aconite tuber, has been shown to have antioxidant activity along with inhibitory action of iNOS expression in various cells. In the present study, the effects of each enantiomer of higenamine [(S)-(-)-higenamine and (R)-(+)-higenamine] were investigated in comparison with the effects of racemic mixture [(RS)-(+/-)-higenamine] on iNOS expression and NO production in RAW 264.7 cells activated with LPS. In addition, the effects of higenamine enantiomers on the survival rates were also investigated using mice, in which each test compound was injected (i.p.) 90 min prior to LPS. All three forms of higenamine inhibited iNOS expression and reduced NO production with IC50 of 26.2, 86.3, and 53.4 microM, for (S)-, (R)-, and (RS)-higenamine, respectively. (S)-higenamine also significantly reduced serum NOx level and increased survival rates in LPS-treated mice. In contrast, (R)-isomer only showed tendency to increase the survival rates which was not statistically significant when compared to LPS-treated controls. Taken together, it was concluded that (S)-higenamine may be more beneficial than (R)-enantiomer in diseases associated with iNOS over-expression, such as septic shock.
Collapse
Affiliation(s)
- Jee Eun Park
- Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tanaka Y, Morishima K, Shimizu T, Kikuchi A, Yamato M, Okano T, Kitamori T. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. LAB ON A CHIP 2006; 6:230-5. [PMID: 16450032 DOI: 10.1039/b512099c] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Natural cellular functions are increasingly exploited for integrated chemical systems such as biochemical reactors and biosensors. We propose to utilize the intrinsic mechanical function of cardiomyocytes, converting chemical energy into mechanical energy. In this report, we demonstrate the working principle of our proposed poly(dimethylsiloxane) (PDMS) based cardiomyocyte bio-microactuator using fabricated PDMS micropillars driven to repetitive motion by attached pulsating cardiomyocytes. Sheets of PDMS embedded with an array of micropillars were fabricated and modified for cardiomyocyte attachment in culture. Primary neonatal rat cardiomyocytes were cultured on the array, attaching to the micropillars and substratum successfully, and exhibiting their typical spontaneous, pulsatile phenotype. Micropillars beat with the coupled cells spontaneously without any triggers. The beat frequency was 1.4 Hz at 37 degrees C and the displacement of the top of the pillar that beat most strongly in our observation was 2.8+/-0.2 microm. From this result, contractile forces of cultured cardiomyocytes were estimated to exceed 3.5 microN. The estimated force is far greater than that of a previously described hydrogel-based cardiomyocyte bio-microactuator (K. Morishima et al., in Micro Total Analysis Systems 2003, ed. M. A. Northrup et al., The Transducers Research Foundation, San Diego, CA, vol. 2, pp. 1125-1128). PDMS compatibility as a base material for bio-microactuator design using cultured cardiomyocytes was verified. This PDMS-based cell microactuator worked for about one week without exchange of the culture medium, and this system could be developed for various purposes in the future as self-actuated and efficient mechanochemical transducers without external energy source requirements.
Collapse
Affiliation(s)
- Yo Tanaka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Hsiao HY, Mak OT, Yang CS, Liu YP, Fang KM, Tzeng SF. TNF-α/IFN-γ-induced iNOS expression increased by prostaglandin E2 in rat primary astrocytes via EP2-evoked cAMP/PKA and intracellular calcium signaling. Glia 2006; 55:214-23. [PMID: 17091492 DOI: 10.1002/glia.20453] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes, the most abundant glia in the central nervous system (CNS), produce a large amount of prostaglandin E(2) (PGE(2)) in response to proinflammatory mediators after CNS injury. However, it is unclear whether PGE(2) has a regulatory role in astrocytic activity under the inflamed condition. In the present work, we showed that PGE(2) increased inducible nitric oxide synthase (iNOS) production by tumor necrosis factor-alpha and interferon-gamma (T/I) in astrocytes. Pharmacological and RNA interference approaches further indicated the involvement of the receptor EP2 in PGE(2)-induced iNOS upregulation in T/I-treated astrocytes. Quantitative real-time polymerase chain reaction and gel mobility shift assays also demonstrated that PGE(2) increased iNOS transcription through EP2-induced cAMP/protein kinase A (PKA)-dependent pathway. Consistently, the effect of EP2 was significantly attenuated by the PKA inhibitor KT-5720 and partially suppressed by the inhibitor (SB203580) of p38 mitogen-activated protein kinase (p38MAPK), which serves as one of the downstream components of the PKA-dependent pathway. Interestingly, EP2-mediated PKA signaling appeared to increase intracellular Ca(2+) release through inositol triphosphate (IP3) receptor activation, which might in turn stimulate protein kinase C (PKC) activation to promote iNOS production in T/I-primed astrocytes. By analyzing the expression of astrocytic glial fibrillary acidic protein (GFAP), we found that PGE(2) alone only triggered the EP2-induced cAMP/PKA/p38MAPK signaling pathway in astrocytes. Collectively, PGE(2) may enhance T/I-induced astrocytic activation by augmenting iNOS/NO production through EP2-mediated cross-talk between cAMP/PKA and IP3/Ca(2+) signaling pathways.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/immunology
- Astrocytes/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/immunology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinase Type II
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Dinoprostone/immunology
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Encephalitis/immunology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Enzyme Inhibitors/pharmacology
- Gliosis/immunology
- Gliosis/metabolism
- Gliosis/physiopathology
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Intracellular Fluid/drug effects
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Nitric Oxide Synthase Type II/immunology
- Nitric Oxide Synthase Type II/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/immunology
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Han-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005; 108:225-56. [PMID: 15949847 DOI: 10.1016/j.pharmthera.2005.04.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 02/04/2023]
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. To date, 3 distinct NOS isoforms have been identified: neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3). Biochemically, NOS consists of a flavin-containing reductase domain, a heme-containing oxygenase domain, and regulatory sites. NOS catalyse an overall 5-electron oxidation of one Nomega-atom of the guanidino group of L-arginine to form NO and L-citrulline. NO exerts a plethora of biological effects in the cardiovascular system. The basal formation of NO in mitochondria by a mitochondrial NOS seems to be one of the main regulators of cellular respiration, mitochondrial transmembrane potential, and transmembrane proton gradient. This review focuses on recent advances in the understanding of the role of enzyme and enzyme-independent NO formation, regulation of NO bioactivity, new aspects of NO on cardiac function and morphology, and the clinical impact and perspectives of these recent advances in our knowledge on NO-related pathways.
Collapse
Affiliation(s)
- R Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin des Universitätsklinikums Essen, Germany.
| | | | | | | | | |
Collapse
|
38
|
De Stefano D, Maiuri MC, Iovine B, Ialenti A, Bevilacqua MA, Carnuccio R. The role of NF-κB, IRF-1, and STAT-1α transcription factors in the iNOS gene induction by gliadin and IFN-γ in RAW 264.7 macrophages. J Mol Med (Berl) 2005; 84:65-74. [PMID: 16284791 DOI: 10.1007/s00109-005-0713-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 08/05/2005] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) plays an important role in the pathogenesis of celiac disease. We have examined the involvement of nuclear factor-kappaB (NF-kappaB), interferon regulatory factor-1 (IRF-1), and signal transducer and activator of transcription-1alpha (STAT-1alpha) on the synergistic induction of inducible nitric oxide synthase (iNOS) gene expression by gliadin (G) in association with interferon-gamma (IFN-gamma) in RAW 264.7 macrophages. We found that IFN-gamma was efficient in enhancing the basal transcription of the iNOS promoter at 1, 6, and 24 h, whereas G had no effect. The G plus IFN-gamma association caused an increase in iNOS promoter activity which was inhibited by pyrrolidine dithiocarbammate (PDTC) at 6 and 24 h as well as by genistein (Gen) and tyrphostine B42 (TB42) at 1 h, inhibitors of NF-kappaB, IRF-1, and STAT-1alpha activation, respectively. Similarly, the IFN-gamma and G combination treatment led to a higher increase in iNOS mRNA levels at 1, 6, and 24 h compared with IFN-gamma alone. Gen and TB42 inhibited iNOS mRNA levels at 1 h, whereas PDTC inhibited iNOS mRNA levels at 6 and 24 h. In addition, the synergistic induction of iNOS gene expression by G plus IFN-gamma correlated with the induction of NF-kappaB, IRF-1, and STAT-1alpha/DNA binding activity and mRNA expression. In conclusion, our study, which provides evidence that the effect of G on iNOS gene transcription in IFN-gamma-stimulated RAW 264.7 cells can be ascribed to all three transcription factors, may contribute to lead to new insights into the molecular mechanisms governing the inflammatory process in celiac disease.
Collapse
Affiliation(s)
- Daniela De Stefano
- Dipartimento di Farmacologia Sperimentale, Via D. Montesano 49, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Maiuri MC, De Stefano D, Di Meglio P, Irace C, Savarese M, Sacchi R, Cinelli MP, Carnuccio R. Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:457-65. [PMID: 16025269 DOI: 10.1007/s00210-005-1078-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/09/2005] [Indexed: 01/04/2023]
Abstract
We investigated the effect of hydroxytyrosol (HT), a phenolic compound from virgin olive oil, on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in J774 murine macrophages stimulated with lipopolysaccharide (LPS). Incubation of cells with LPS caused an increase in iNOS and COX-2 mRNA and protein level as well as ROS generation, which was prevented by HT. In addition, HT blocked the activation of nuclear factor-kappaB (NF-kappaB), signal transducer and activator of transcription-1alpha (STAT-1alpha) and interferon regulatory factor-1 (IRF-1). These results, showing that HT down-regulates iNOS and COX-2 gene expression by preventing NF-kappaB, STAT-1alpha and IRF-1 activation mediated through LPS-induced ROS generation, suggest that it may represent a non-toxic agent for the control of pro-inflammatory genes.
Collapse
Affiliation(s)
- Maria Chiara Maiuri
- Dipartimento di Farmacologia Sperimentale, Università degli Studi di Napoli Federico II, Via D. Montesano n. 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Tsang MYC, Cowie SE, Rabkin SW. Palmitate increases nitric oxide synthase activity that is involved in palmitate-induced cell death in cardiomyocytes. Nitric Oxide 2005; 10:11-9. [PMID: 15050530 DOI: 10.1016/j.niox.2004.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 12/15/2003] [Indexed: 11/28/2022]
Abstract
The objective of this study was to test the hypothesis that nitric oxide synthase (NOS) is subjected to regulatory control by palmitate, and that nitric oxide (NO) is operative in palmitate-induced cell death. Palmitate induced a significant ( p<0.05 ) concentration-dependent increase in NOS activity measured by the conversion of [(3)H]arginine to [3H]citrulline in embryonic chick cardiomyocytes. Cellular eNOS and iNOS, determined by immunocytochemistry, were increased by palmitate. Western blotting also showed that palmitate, 500 microM for 4h, significantly increased the amount of cellular of eNOS and iNOS by 36.2+/-6.5% ( p<0.001 ) and 38.4+/-14.4% ( p<0.05 ), respectively. The NOS inhibitor L-NAME significantly ( p<0.05 ) accentuated palmitate-induced cell death These data suggest that palmitate has a bifunctional effect on cell viability--in addition to loss of cell viability, palmitate stimulates NOS activity by inducing an increase in cellular eNOS and iNOS with the resultant NO production serving to protect cardiomyocytes from palmitate-induced cell death.
Collapse
Affiliation(s)
- Michael Y C Tsang
- Department of Medicine, University of British Columbia, 2733 Heather St., Vancouver, BC, Canada V5Z 3J5
| | | | | |
Collapse
|
42
|
Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, Tan W, Bolli R. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 2004; 64:61-71. [PMID: 15364614 PMCID: PMC3691700 DOI: 10.1016/j.cardiores.2004.05.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 05/17/2004] [Accepted: 05/18/2004] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE We sought to determine whether interleukin (IL)-6 modulates myocardial infarction or the late phase of preconditioning (PC). METHODS Wild-type and IL-6(-/-) mice underwent a 30-min coronary occlusion followed by 24 h of reperfusion with or without six cycles of coronary occlusion/reperfusion 24 h earlier. Myocardial IL-6 protein expression, activation of Janus kinase (JAK) 1 and JAK2, and signal transducers and activators of transcription (STAT) 1 and STAT3 after ischemic PC protocol were examined. The expression of the inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 was determined 24 h after the PC ischemia. RESULTS In preconditioned wild-type mice, infarct size was reduced from 60.5+/-2.6% of the risk region to 33.5+/-3.6%, indicating a late PC effect. In nonpreconditioned IL-6(-/-) mice, infarct size was similar to that observed in wild-type mice (59.9+/-3.8%), indicating that the deletion of IL-6 has no effect on infarct size. However, in preconditioned IL-6(-/-) mice, infarct size was not reduced (65.1+/-3.1%), indicating that the infarct-sparing effect was completely abrogated. Ischemic PC increased the expression of IL-6 in the cytoplasm of cardiomyocytes in the ischemic/reperfused zone. In IL-6(-/-) mice, the ischemic PC-induced activation of JAK1 and JAK2 and STAT1 and STAT3 was significantly reduced, and the increase in iNOS and COX-2 protein expression 24 h after the PC ischemia was markedly attenuated. CONCLUSION IL-6 does not modulate myocardial infarct size in naïve myocardium. However, following a PC stimulus, IL-6 is obligatorily required for the activation of the JAK-STAT pathway, the ensuing upregulation of iNOS and COX-2 (co-mediators of late PC), and the development of a cardioprotective phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Roberto Bolli
- Corresponding author. Institute of Molecular Cardiology, Division of Cardiology, University of Louisville, Louisville, KY 40292, USA. Tel.: +1-502-852-1837; fax: +1-502-852-6474. (R. Bolli)
| |
Collapse
|
43
|
Li R, Strohmeyer R, Liang Z, Lue LF, Rogers J. CCAAT/enhancer binding protein delta (C/EBPdelta) expression and elevation in Alzheimer's disease. Neurobiol Aging 2004; 25:991-9. [PMID: 15212823 DOI: 10.1016/j.neurobiolaging.2003.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Revised: 09/26/2003] [Accepted: 10/28/2003] [Indexed: 12/23/2022]
Abstract
The CCAAT-enhancer binding protein (C/EBP) family of transcription factors, particularly C/EBPdelta, is well known to regulate or co-regulate a wide range of inflammatory mediators and mechanisms in the periphery, including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). These cytokines, in turn, can induce C/EBPdelta expression and translocation to the nucleus as an active transcription factor. Because IL-1, IL-6, and TNF-alpha are increased in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, we sought to determine if C/EBPdelta might be expressed in AD cortex. Immunohistochemistry of AD tissue sections revealed profuse C/EBPdelta staining of astrocytes, particularly reactive astrocytes surrounding amyloid beta peptide deposits. Substantially less immunoreactivity was observed in comparable sections from nondemented elderly control (ND) patients. These qualitative findings were consistent with quantitative Western blot densitometry results showing significant increases in C/EBPdelta in AD compared to ND cortex samples. Additional in vitro studies were pursued in order to characterize functional activity of C/EBPdelta in human elderly astrocytes. Consistent with a functionally active transcription factor, C/EBPdelta immunoreactivity predominated in the nucleus of cultured AD and ND astrocytes, and exhibited increases and nuclear localization, as determined by Western blots and electrophoretic mobility shifts after exposure to C/EBPdelta-inducing cytokines.
Collapse
Affiliation(s)
- Rena Li
- Roberts Center for Alzheimer's Research, Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372, USA
| | | | | | | | | |
Collapse
|
44
|
Min KJ, Jou I, Joe E. Plasminogen-induced IL-1beta and TNF-alpha production in microglia is regulated by reactive oxygen species. Biochem Biophys Res Commun 2004; 312:969-74. [PMID: 14651966 DOI: 10.1016/j.bbrc.2003.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microglia, major immune effector cells in the central nervous system, become activated during brain injury. In this study we showed that the blood component plasminogen/plasmin activates microglia. Plasminogen-induced IL-1beta, TNF-alpha, and iNOS mRNA expression in primary cultured rat microglia and BV2 murine microglial cells. Plasmin caused a similar response. Serine protease inhibitors suppressed both plasminogen- and plasmin-induced IL-1beta and TNF-alpha expression, indicating the importance of serine protease activity in plasminogen/plasmin activation of microglia. Reactive oxygen species (ROS) appeared to play an important role in plasminogen-induced microglial activation, with ROS being generated within 15min of plasminogen treatment, and antioxidants (100 microM trolox and 10mM NAC) reducing IL-1beta and TNF-alpha expression in plasminogen-treated cells. Furthermore, plasminogen stimulated CREB and NF-kappaB DNA binding activity, and this activation was also reduced by trolox and NAC. These results suggest that plasminogen activates microglia via stimulation of ROS production.
Collapse
Affiliation(s)
- Kyoung-jin Min
- Neuroscience Graduate Program, Ajou University School of Medicine, 442-721, Suwon, South Korea
| | | | | |
Collapse
|
45
|
Zhang N, Weber A, Li B, Lyons R, Contag PR, Purchio AF, West DB. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6307-19. [PMID: 12794164 DOI: 10.4049/jimmunol.170.12.6307] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inducible NO synthase gene (iNOS) plays a role in a number of chronic and acute conditions, including septic shock and contact hypersensitivity autoimmune diseases, such as rheumatoid arthritis, gastrointestinal disorders, and myocardial ischemia. The iNOS gene is primarily under transcriptional control and is induced in a variety of conditions. The ability to monitor and quantify iNOS expression in vivo may facilitate a better understanding of the role of iNOS in different diseases. In this study, we describe a transgenic mouse (iNos-luc) in which the luciferase reporter is under control of the murine iNOS promoter. In an acute sepsis model produced by injection of IFN-gamma and LPS, we observed an induction of iNOS-driven luciferase activity in the mouse liver. This transgene induction is dose and time dependent and correlated with an increase of liver iNOS protein and iNOS mRNA levels. With this model, we tested 11 compounds previously shown to inhibit iNOS induction in vitro or in vivo. Administration of dexamethasone, epigallocatechin gallate, alpha-phenyl-N-tert-butyl nitrone, and ebselen significantly suppressed iNOS transgene induction by IFN-gamma and LPS. We further evaluated the use of the iNos-luc transgenic mice in a zymosan-induced arthritis model. Intra-articular injection of zymosan induced iNos-luc expression in the knee joint. The establishment of the iNos-luc transgenic model provides a valuable tool for studying processes in which the iNOS gene is induced and for screening anti-inflammatory compounds in vivo.
Collapse
MESH Headings
- Acute Disease
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/genetics
- Catechin/administration & dosage
- Catechin/analogs & derivatives
- Cell Line
- Dexamethasone/administration & dosage
- Dose-Response Relationship, Immunologic
- Enzyme Induction/drug effects
- Enzyme Induction/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, Reporter/drug effects
- Injections, Intra-Articular
- Injections, Intraperitoneal
- Injections, Intravenous
- Interferon-gamma/pharmacology
- Kupffer Cells/metabolism
- Lipopolysaccharides/pharmacology
- Luciferases/antagonists & inhibitors
- Luciferases/biosynthesis
- Luciferases/genetics
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/genetics
- Promoter Regions, Genetic
- Signal Transduction/genetics
- Transfection
- Transgenes/drug effects
- Transgenes/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ning Zhang
- Xenogen Corporation, Alameda, CA 94501, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kupatt C, Hinkel R, Vachenauer R, Horstkotte J, Raake P, Sandner T, Kreuzpointner R, Müller F, Dimmeler S, Feron O, Boekstegers P. VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J 2003; 17:705-7. [PMID: 12586740 DOI: 10.1096/fj.02-0673fje] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) phosphorylation increases nitric oxide formation, for example, after VEGF stimulation. We investigated whether nitric oxide formed after overexpression of VEGF or of phosphomimetic eNOS (S1177D) affects PMN-induced myocardial detriment after ischemia and reperfusion. Pigs (n=8 per group) were subjected to percutaneous liposome-based gene transfer by retroinfusion of the anterior interventricular vein 48 h before LAD occlusion (60 min) and reperfusion (24 h). Thereafter, regional myocardial function was assessed as subendocardial segment shortening (SES), and infarct size was determined. Tissue from the infarct region, the noninfarcted area at risk, and a control region was analyzed for NF-kappaB activation (EMSA), tumor necrosis factor (TNF)-alpha, and E-selectin mRNA and infiltration of polymorphonuclear neutrophils (PMN). L-NAME was applied in one group of VEGF-transfected animals. NF-kappaB activition, PMN infiltration in the infarct region, and AAR were reduced after transfection of VEGF or eNOS S1177D, but not after VEGF+L-NAME coapplication. Infarct size decreased, whereas SES improved after either VEGF or eNOS S1177D transfection, an effect inhibited by L-NAME coapplication. Retroinfusion of liposomal VEGF cDNA reduces NF-kappaB-dependent postischemic inflammation and subsequent myocardial reperfusion injury, an effect mediated at least in part by enhanced eNOS phosphorylation.
Collapse
Affiliation(s)
- Christian Kupatt
- Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kleinert H, Schwarz PM, Förstermann U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol Chem 2003; 384:1343-64. [PMID: 14669979 DOI: 10.1515/bc.2003.152] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), generated by the inducible isoform of nitric oxide synthase (iNOS), has been described to have beneficial microbicidal, antiviral, antiparasital, immunomodulatory, and antitumoral effects. However, aberrant iNOS induction at the wrong place or at the wrong time has detrimental consequences and seems to be involved in the pathophysiology of several human diseases. iNOS is primarily regulated at the expression level by transcriptional and post-transcriptional mechanisms. iNOS expression can be induced in many cell types with suitable agents such as bacterial lipopolysaccharides (LPS), cytokines, and other compounds. Pathways resulting in the induction of iNOS expression may vary in different cells or different species. Activation of the transcription factors NF-kappaB and STAT-1alpha, and thereby activation of the iNOS promoter, seems to be an essential step for iNOS induction in most cells. However, at least in the human system, also post-transcriptional mechanism are critically involved in the regulation of iNOS expression. The induction of iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | |
Collapse
|
48
|
Abstract
Reovirus-induced murine myocarditis provides an excellent model for the human disease. Cardiac tissue damage varies between reovirus strains, and is caused by a direct viral cytopathogenic effect. One determinant of virus-induced cardiac tissue damage is the cardiac interferon-beta (IFN-beta) response to viral infection. Nonmyocarditic reoviruses induce more IFN-beta and/or are more sensitive to the antiviral effects of IFN-beta in cardiac cells than myocarditis reoviruses. The roles of interferon regulatory factors (IRFs) in the cardiac response to viral infection are reviewed, and results suggest possible cardiac-specific variations in IRF-3 and IRF-1 function. In addition, data are presented indicating that the role of IRF-2 in regulation of IFN-beta expression is cell type-specific and differs between skeletal and cardiac muscle cells. Together, results suggest that the heart may provide a unique environment for IRF function, critical for protection against virus-induced cardiac damage.
Collapse
Affiliation(s)
- Barbara Sherry
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| |
Collapse
|
49
|
Law A, O'Donnell J, Gauthier S, Quirion R. Neuronal and inducible nitric oxide synthase expressions and activities in the hippocampi and cortices of young adult, aged cognitively unimpaired, and impaired Long-Evans rats. Neuroscience 2002; 112:267-75. [PMID: 12044445 DOI: 10.1016/s0306-4522(02)00082-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) is a neurosignaling molecule that appears to play a significant role in learning and memory. This molecule has also been implicated in neurotoxicity due to its oxidative properties. Previous experiments from our laboratories have demonstrated elevated hippocampal and cortical neuronal nitric oxide synthase (NOS) mRNA levels in aged cognitively unimpaired and impaired Long-Evans rats, which could represent either increased neuronal NOS activity thereby leading to NO-mediated neurotoxicity, or a compensatory response by aged neurones to maintain physiological nitric oxide output. The current study measured the protein expression and activity levels of neuronal and inducible NOS in young adult (6 months) and aged (24-26 months) Long-Evans rats by means of western blotting and NOS activity assay. Aged animals were assigned as either cognitively unimpaired or aged with moderate cognitive impairments based on their performances in the Morris water maze behavioural task. Our results showed that hippocampal and cortical neuronal NOS expressions were significantly decreased in aged animals. These aged animals also exhibited increased hippocampal and cortical inducible NOS expressions. Between the two aged animal groups, cognitively impaired rats showed significantly lower hippocampal and cortical neuronal but higher hippocampal inducible NOS expressions. Young adult rats exhibited significantly higher hippocampal and cortical NOS activities than the aged animals. Aged animals with cognitive deficits showed significantly lower hippocampal NOS activity than cognitively unimpaired aged rats. Our data indicate that aging is associated with a decline in neuronal but elevated inducible NOS functioning in brain areas involved in learning and memory. These phenomena could contribute to the cognitive deficits observed in a sub-population of aged animals.
Collapse
Affiliation(s)
- A Law
- Douglas Hospital Research Centre, Verdun, QC, Canada
| | | | | | | |
Collapse
|
50
|
Bhat NR, Feinstein DL, Shen Q, Bhat AN. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem 2002; 277:29584-92. [PMID: 12048217 DOI: 10.1074/jbc.m204994200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have shown that mitogen-activated protein kinase (MAPK) cascades signal the induction of inducible nitric-oxide synthase (iNOS) in glial cells (Bhat, N. R., Zhang, P., Lee, J. C., and Hogan E. L. (1998) J. Neurosci. 18, 1633-1641; Bhat, N. R., Zhang, P., and Bhat, A. N. (1999) J. Neurochem. 72, 472-478). This study further investigates the role of p38 MAPK in the transcriptional activation of the iNOS gene by transient transfection with constitutively active upstream kinases in the pathway (i.e. MAPK kinase 3 (MKK3b(E)) and MAPK kinase 6 (MKK6b(E)). Expression in C-6 glial cells of either MKK3b(E) or MKK6b(E) resulted in an induction of the activity of a cotransfected rat iNOS promoter-reporter (iNOS-luciferase (Luc)) gene and an enhancement of cytokine-induced expression of iNOS mRNA, both of which were inhibitable by the p38 MAPK inhibitor SB203580. The MKK constructs also induced cAMP response element-mediated (CRE-Luc) and nuclear factor kappa B-dependent (nuclear factor kappa B-Luc) transcriptional activities. Transfection with dominant negative (dn) forms of CRE-binding protein (CREB) and CCAAT/enhancer-binding protein (C/EBP), the two CRE-binding transcription factors targeted by the p38 MAPK pathway, resulted in opposite effects; dnCREB enhanced and dnC/EBP inhibited iNOS-Luc parallel to their effects on CRE-Luc. In addition, the induction, by MKK3b(E) and MKK6b(E), of iNOS promoter activity was enhanced by a wild-type activating transcription factor (ATF-2), whereas a phosphorylation-defective form of ATF-2 had a suppressive effect. The results of these molecular studies provide evidence for an important role for the p38 MAPK pathway in the transcriptional activation of the iNOS gene in rat glial cells involving the transcription factors nuclear factor kappa B, C/EBP, and ATF-2.
Collapse
Affiliation(s)
- Narayan R Bhat
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|