1
|
Gimenez LG, Gili JA, Elias DE, Sagula R, Comas B, Santos MR, Campaña H, Poletta FA, Heisecke SL, Ratowiecki J, Cosentino VR, Uranga R, Saleme C, Negri M, Rittler M, Zapata Barrios J, Krupitzki HB, López Camelo JS. Genetic susceptibility for retinopathy of prematurity and its associated comorbidities. Pediatr Res 2024; 96:1325-1331. [PMID: 38347174 DOI: 10.1038/s41390-024-03068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is one of the leading cause of child blindness. Preterm newborns of very low gestational age (GA) and very low birth weight are at the greatest risk. Our objective was to evaluate the role of genetic variants associated with ROP risk and its comorbidities in an Argentinian sample of premature infants. METHODS A sample of 437 preterm infants <33 weeks GA, born at a maternity hospital in Tucumán, Argentina, 2005-2010, was analyzed. Environmental factors, perinatal outcomes, and fourteen single nucleotide polymorphisms associated with ROP were evaluated, comparing ROP with non-ROP newborns. A lasso logistic regression was performed to select variables; then, a conditional logistic regression was used to identify ROP maternal and perinatal risk factors adjusting by maternal and gestational ages, respectively. RESULTS ROP maternal risk factors were alcohol intake, periodontal infections, and severe stress. Respiratory distress, sepsis, and intracranial hemorrhage were the ROP perinatal risk factors. Markers rs186085 of EPAS1 and rs427832 of AGTR1 were significantly associated with ROP newborns. CONCLUSION We identified three maternal and three perinatal risk factors associated with ROP. Genes EPAS1 and AGTR1, involved in angiogenesis and vascularization, were identified to be of risk for ROP. IMPACT Genetic and environmental risk factors associated with ROP and its comorbidities are evaluated in a Latin American population. Genes EPAS1 and AGTR1, involved in angiogenesis and vascularization, were identified to be of risk for ROP. Three maternal and three perinatal risk factors associated with ROP were also identified. A matrix of significant relationships among genetic markers and comorbidities is presented. Reported data may help develop more effective preventive measures for ROP in the Latin American region.
Collapse
Affiliation(s)
- Lucas G Gimenez
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
- Instituto Nacional de Genética Médica Populacional (INAGEMP), CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Juan A Gili
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Darío E Elias
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rubén Sagula
- Dirección de Investigación, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Belén Comas
- Dirección de Investigación, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María R Santos
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Multidisciplinario de Biología Celular, Buenos Aires, Argentina
| | - Hebe Campaña
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Comisión de Investigaciones Científicas, Buenos Aires, Argentina
| | - Fernando A Poletta
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Genética Médica Populacional (INAGEMP), CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina L Heisecke
- Dirección de Investigación, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Ratowiecki
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana R Cosentino
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Hospital Interzonal General de Agudos Luisa C. de Gandulfo, Buenos Aires, Argentina
| | - Rocío Uranga
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Hospital San Juan de Dios, Buenos Aires, Argentina
| | - César Saleme
- Instituto de Maternidad y Ginecología Nuestra Señora de las Mercedes, Tucumán, Argentina
| | - Mercedes Negri
- Dirección de Investigación, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Rittler
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Hospital Materno Infantil Ramón Sardá, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Zapata Barrios
- Hospital Materno Infantil Ramón Sardá, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Neonatología, Clínica y Maternidad Suizo Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hugo B Krupitzki
- Dirección de Investigación, CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Universitario, Centro de Educación Médica e Investigaciones Clínicas (CEMIC-IUC), Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge S López Camelo
- Estudio Colaborativo Latino Americano de Malformaciones Congénitas (ECLAMC), Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Genética Médica Populacional (INAGEMP), CEMIC-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Li SY, Zhao N, Wei D, Pu N, Hao XN, Huang JM, Peng GH, Tao Y. Ferroptosis in the ageing retina: A malevolent fire of diabetic retinopathy. Ageing Res Rev 2024; 93:102142. [PMID: 38030091 DOI: 10.1016/j.arr.2023.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Ageing retina is prone to ferroptosis due to the iron accumulation and impaired efficiency of intracellular antioxidant defense system. Ferroptosis acts as a cell death modality that is characterized by the iron-dependent accumulation of lipid peroxidation. Ferroptosis is distinctively different from other types of regulated cell death (RCD) at the morphological, biochemical, and genetic levels. Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Its prevalence and severity increase progressively with age. Recent reports have shown that ferroptosis is implicated in the pathophysiology of DR. Under hyperglycemia condition, the endothelial cell and retinal pigment epithelium (RPE) cell will undergo ferroptosis, which contributes to the increased vascular permeability and the disrupted blood retinal barrier (BRB). The underlying etiology of DR can be attributed to the impaired BRB integrity and subsequent damages of the neurovascular units. In the absence of timely intervention, the compromised BRB can ultimately cause profound visual impairments. In particular, the ageing retina is vulnerable to ferroptosis, and hyperglycemia will accelerate the progression of this pathological process. In this article, we discuss the contributory role of ferroptosis in DR pathogenesis, and summarize recent therapeutic trials that targeting the ferroptosis. Further study on the ferroptosis mediated damage would enrich our knowledge of DR pathology, and promote the development of clinical treatment for this degenerative retinopathy.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Na Zhao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Dong Wei
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ning Pu
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xiao-Na Hao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jie-Min Huang
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Guang-Hua Peng
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Ye Tao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Ahmad S, Wright KN, VonCannon JL, Ferrario CM, Ola MS, Choudhary M, Malek G, Gustafson JR, Sappington RM. Internalization of Angiotensin-(1-12) in Adult Retinal Pigment Epithelial-19 Cells. J Ocul Pharmacol Ther 2023; 39:290-299. [PMID: 36944130 PMCID: PMC10178934 DOI: 10.1089/jop.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
Purpose: Angiotensin-(1-12) [Ang-(1-12)] serves as a primary substrate to generate angiotensin II (Ang II) by angiotensin-converting enzyme and/or chymase suggests it may be an unrecognized source of Ang II-mediated microvascular complication in hypertension-mediated retinopathy. We investigated Ang-(1-12) expression and internalization in adult retinal pigment epithelial-19 (ARPE-19) cultured cells. We performed the internalization of Ang-(1-12) in ARPE-19 cells in the presence of a highly specific monoclonal antibody (mAb) developed against the C-terminal end of the Ang-(1-12) sequence. Methods: All experiments were performed in confluent ARPE-19 cells (passage 28-35). We employed high-performance liquid chromatography to purify radiolabeled, 125I-Ang-(1-12) and immuno-neutralization with Ang-(1-12) mAb to demonstrate Ang-(1-12)'s internalization in ARPE-19 cells. Internalization was also demonstrated by immunofluorescence (IF) method. Results: These procedures revealed internalization of an intact 125I-Ang-(1-12) in ARPE-19 cells. A significant reduction (∼53%, P < 0.0001) in 125I-Ang-(1-12) internalization was detected in APRE-19 cells in the presence of the mAb. IF staining experiments further confirms internalization of Ang-(1-12) into the cells from the extracellular culture medium. No endogenous expression was detected in the ARPE-19 cells. An increased intensity of IF staining was detected in cells exposed to 1.0 μM Ang-(1-12) compared with 0.1 μM. Furthermore, we found hydrolysis of Ang-(1-12) into Ang II by ARPE-19 cells' plasma membranes. Conclusions: Intact Ang-(1-12) peptide is internalized from the extracellular spaces in ARPE-19 cells and metabolized into Ang II. The finding that a selective mAb blocks cellular internalization of Ang-(1-12) suggests alternate therapeutic approaches to prevent/reduce the RPE cells Ang II burden.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kendra N. Wright
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jessica L. VonCannon
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohammad S. Ola
- Department of Biochemistry, King Saud University, Riyadh, Saudi Arabia
| | - Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenna R. Gustafson
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rebecca M. Sappington
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
5
|
Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Toward structural-omics of the bovine retinal pigment epithelium. Cell Rep 2022; 41:111876. [PMID: 36577381 PMCID: PMC9875382 DOI: 10.1016/j.celrep.2022.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
The use of an integrated systems biology approach to investigate tissues and organs has been thought to be impracticable in the field of structural biology, where the techniques mainly focus on determining the structure of a particular biomacromolecule of interest. Here, we report the use of cryoelectron microscopy (cryo-EM) to define the composition of a raw bovine retinal pigment epithelium (RPE) lysate. From this sample, we simultaneously identify and solve cryo-EM structures of seven different RPE enzymes whose functions affect neurotransmitter recycling, iron metabolism, gluconeogenesis, glycolysis, axonal development, and energy homeostasis. Interestingly, dysfunction of these important proteins has been directly linked to several neurodegenerative disorders, including Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease, and schizophrenia. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Department of Chemistry, Thiel College, Greenville, PA 16125, USA,These authors contributed equally
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,These authors contributed equally
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Lead contact,Correspondence:
| |
Collapse
|
6
|
Joshi B, Wagh G, Kaur H, Patra C. Zebrafish Model to Study Angiotensin II-Mediated Pathophysiology. BIOLOGY 2021; 10:1177. [PMID: 34827169 PMCID: PMC8614710 DOI: 10.3390/biology10111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Hypertension, a common chronic condition, may damage multiple organs, including the kidney, heart, and brain. Thus, it is essential to understand the pathology upon ectopic activation of the molecular pathways involved in mammalian hypertension to develop strategies to manage hypertension. Animal models play a crucial role in unraveling the disease pathophysiology by allowing incisive experimental procedures impossible in humans. Zebrafish, a small freshwater fish, have emerged as an important model system to study human diseases. The primary effector, Angiotensin II of the RAS pathway, regulates hemodynamic pressure overload mediated cardiovascular pathogenesis in mammals. There are various established mammalian models available to study pathophysiology in Angiotensin II-induced hypertension. Here, we have developed a zebrafish model to study pathogenesis by Angiotensin II. We find that intradermal Angiotensin II injection every 12 h can induce cardiac remodeling in seven days. We show that Angiotensin II injection in adult zebrafish causes cardiomyocyte hypertrophy and enhances cardiac cell proliferation. In addition, Angiotensin II induces ECM protein-coding gene expression and fibrosis in the cardiac ventricles. Thus, this study can conclude that Angiotensin II injection in zebrafish has similar implications as mammals, and zebrafish can be a model to study pathophysiology associated with AngII-RAS signaling.
Collapse
Affiliation(s)
- Bhagyashri Joshi
- Developmental Biology, Agharkar Research Institute, Pune 411004, India; (B.J.); (G.W.)
- Science and Technology, SP Pune University, Pune 411007, India
| | - Ganesh Wagh
- Developmental Biology, Agharkar Research Institute, Pune 411004, India; (B.J.); (G.W.)
- Science and Technology, SP Pune University, Pune 411007, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada;
| | - Chinmoy Patra
- Developmental Biology, Agharkar Research Institute, Pune 411004, India; (B.J.); (G.W.)
- Science and Technology, SP Pune University, Pune 411007, India
| |
Collapse
|
7
|
Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, Helmstädter J, Steven S, Kuntic M, Daiber A, Gericke A. Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants (Basel) 2021; 10:antiox10081238. [PMID: 34439486 PMCID: PMC8389243 DOI: 10.3390/antiox10081238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) has been implicated in the pathophysiology of various age-dependent ocular diseases. The purpose of this study was to test the hypothesis that Ang II induces endothelial dysfunction in mouse ophthalmic arteries and to identify the underlying mechanisms. Ophthalmic arteries were exposed to Ang II in vivo and in vitro to determine vascular function by video microscopy. Moreover, the formation of reactive oxygen species (ROS) was quantified and the expression of prooxidant redox genes and proteins was determined. The endothelium-dependent artery responses were blunted after both in vivo and in vitro exposure to Ang II. The Ang II type 1 receptor (AT1R) blocker, candesartan, and the ROS scavenger, Tiron, prevented Ang II-induced endothelial dysfunction. ROS levels and NOX2 expression were increased following Ang II incubation. Remarkably, Ang II failed to induce endothelial dysfunction in ophthalmic arteries from NOX2-deficient mice. Following Ang II incubation, endothelium-dependent vasodilation was mainly mediated by cytochrome P450 oxygenase (CYP450) metabolites, while the contribution of nitric oxide synthase (NOS) and 12/15-lipoxygenase (12/15-LOX) pathways became negligible. These findings provide evidence that Ang II induces endothelial dysfunction in mouse ophthalmic arteries via AT1R activation and NOX2-dependent ROS formation. From a clinical point of view, the blockade of AT1R signaling and/or NOX2 may be helpful to retain or restore endothelial function in ocular blood vessels in certain ocular diseases.
Collapse
Affiliation(s)
- Michael Birk
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Department of Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Ewa Baum
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Department of Social Sciences and the Humanities, Poznan University of Medical Sciences, ul. Rokietnicka 7, 60-806 Poznań, Poland
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Correspondence: ; Tel.: +49-613-117-8276
| |
Collapse
|
8
|
Fletcher EL, Phipps JA, Wilkinson-Berka JL. Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom 2021; 88:132-45. [PMID: 15926876 DOI: 10.1111/j.1444-0938.2005.tb06686.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 04/15/2005] [Accepted: 04/23/2005] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness in those of working age. It is well known that the retinal vasculature is altered during diabetes. More recently, it has emerged that neuronal and glial dysfunction occurs in those with diabetes. Current research is directed at understanding these neuronal and glial changes because they may be an early manifestation of disease processes that ultimately lead to vascular abnormality. This review will highlight the recent advances in our understanding of the neuronal and glial changes that occur during diabetes.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | | | | |
Collapse
|
9
|
Walid AHD, Al-Bdour MD, El-Khateeb M. Lack of relationship between Alu repetitive elements in angiotensin converting enzyme and the severity of diabetic retinopathy. J Med Biochem 2021; 40:302-309. [PMID: 34177375 PMCID: PMC8199535 DOI: 10.5937/jomb0-27885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Background Angiotensin-converting enzyme (ACE) stimulates angiogenesis that leads to the development of diabetic retinopathy (DR). Alu repetitive elements in ACE gene increase the expression of this enzyme. We investigated the frequency of Alu repetitive elements, insertion/deletion (I/D) polymorphism, in angiotensin-converting enzyme among diabetic retinopathy patients and whether this polymorphism is associated with the severity of retinopathy in Jordanians with type 2 diabetes. Methods A total of 277 subjects participated in this case/ control study (100 diabetic patients without DR, 82 diabetic patients with DR, and 95 healthy control). Blood samples were withdrawn, followed by DNA extraction. Alu repetitive elements were examined by polymerase chain reaction followed by gel electrophoresis. Results The genotype and allele frequencies among diabetic patients, were close to healthy controls (genotypes, II 44.4 vs. 44.7%, ID 44.4 vs. 42.6%, DD 12.2 vs. 12.8%, P = 0.402 and 0.677 respectively, alleles, I 65.6 vs. 66%, D 34.4 vs. 34%, P=0.863). Complicated diabetics with retinopathy showed similar genotype and allele frequency to those without complications. The severity of diabetic retinopathy in affected individuals was not correlated with I/D polymorphism (P=0.862). Conclusions We conclude that the presence of Alu repetitive elements did not increase the development or progression risk to retinopathy in Jordanian type 2 diabetic patients. No association between I or D alleles with the severity of DR was detected.
Collapse
Affiliation(s)
- Abu-Hassan Diala Walid
- University of Jordan, School of Medicine, Department of Physiology and Biochemistry, Amman, Jordan
| | - Muawyah D Al-Bdour
- University of Jordan, School of Medicine, Department of Ophthalmology, Amman, Jordan
| | | |
Collapse
|
10
|
Ji C, Yue S, Gu J, Kong Y, Chen H, Yu C, Sun Z, Zhao M. 2,7-Dibromocarbazole interferes with tube formation in HUVECs by altering Ang2 promoter DNA methylation status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134156. [PMID: 32380619 DOI: 10.1016/j.scitotenv.2019.134156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 06/11/2023]
Abstract
2,7-Dibromocarbazole (2,7-DBCZ) is one of the most frequently detected polyhalogenated carbazoles (PHCZs) in the environmental media. 2,7-DBCZ has attracted public attention for its potential for dioxin-like toxicity and cardiovascular toxicity. However, researches on the potential mechanism of angiogenesis inhibition by 2,7-DBCZ is still insufficient. Herein, human umbilical vein endothelial cells (HUVECs) were applied to explore the angiogenic effect of 2,7-DBCZ and the potential underlying mechanisms. 2,7-DBCZ significantly inhibited tube formation in HUVECs in the non-toxic concentration range. PCR array showed that 2,7-DBCZ reduced the expression proportion between VEGFs and Ang2, thereby inhibiting tube formation in HUVECs. Then, small RNA interference and DNA methylation assays were adopted to explore the potential mechanisms. It has been found that angiopoietin2 (Ang2)-silencing recovered the tube formation inhibited by 2,7-DBCZ. The DNA methylation status of Ang2 promoter also showed a demethylation tendency after exposure. In conclusion, 2,7-DBCZ could demethylate the Ang2 promoter to potentiate Ang2 expression, thus altering angiogenic phenotype of HUVECs by reducing the proportion between Ang2 and VEGFs. The data presented here can help to guide safety measures on the use of dioxin-like PHCZs for their potential adverse effects and provide a method for identifying the relevant biomarkers to assess their cardiovascular toxicity.
Collapse
Affiliation(s)
- Chenyang Ji
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqing Yue
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuan Kong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haofeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chang Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Li J, Yang B, Lin Y, Wang Q, Yang H. ShenSu III Decoction Ameliorates Angiotensin-induced Injury by Regulating Expression of Ang2, Tie2 and VEGFR2. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.809.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Senanayake PD, Bonilha VL, W Peterson J, Yamada Y, Karnik SS, Daneshgari F, Brosnihan KB, Hollyfield JG. Retinal angiotensin II and angiotensin-(1-7) response to hyperglycemia and an intervention with captopril. J Renin Angiotensin Aldosterone Syst 2019; 19:1470320318789323. [PMID: 30126320 PMCID: PMC6104213 DOI: 10.1177/1470320318789323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hypothesis: Hyperglycemia decreases angiotensin-(1-7), the endogenous counter-regulator of angiotensin II in the retina. Materials and methods: The distribution and levels of retinal angiotensin II (Ang II) and angiotensin-(1-7) (Ang-(1-7)) were evaluated by confocal imaging and quantitative immunohistochemistry during the development of streptozotocin-induced diabetes in rats. Results: In the nondiabetic eye, Ang II was localized to the endfeet of Müller cells, extending into the cellular processes of the inner plexiform layer and inner nuclear layer; Ang-(1-7) showed a wider distribution, extending from the foot plates of the Müller cells to the photoreceptor layer. Eyes from diabetic animals showed a higher intensity and extent of Ang II staining compared with nondiabetic eyes, but lower intensity with a reduced distribution of Ang-(1-7) immunoreactivity. Treatment of the diabetic animals with the angiotensin-converting enzyme inhibitor (ACEI) captopril showed a reduced intensity of Ang II staining, whereas increased intensity and distribution were evident with Ang-(1-7) staining. Conclusions: These studies reveal that pharmacological inhibition with ACEIs may provide a specific intervention for the management of the diabetes-induced decline in retinal function, reversing the profile of the endogenous angiotensin peptides closer to the normal condition.
Collapse
Affiliation(s)
- Preenie deS Senanayake
- 1 Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, USA.,2 Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, USA
| | - Vera L Bonilha
- 1 Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, USA.,2 Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, USA
| | - John W Peterson
- 3 Reseach Core Services (Imaging) Cleveland Clinic, Cleveland, USA
| | - Yoshiro Yamada
- 4 Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sadashiva S Karnik
- 5 Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Firouz Daneshgari
- 6 Department of Urology (FD), Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, USA
| | - K Bridget Brosnihan
- 7 Department of Surgery, Hypertension & Vascular Research, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, USA
| | - Joe G Hollyfield
- 1 Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, USA.,2 Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, USA
| |
Collapse
|
13
|
Chaudhary K, Promsote W, Ananth S, Veeranan-Karmegam R, Tawfik A, Arjunan P, Martin P, Smith SB, Thangaraju M, Kisselev O, Ganapathy V, Gnana-Prakasam JP. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression. Sci Rep 2018; 8:3025. [PMID: 29445185 PMCID: PMC5813018 DOI: 10.1038/s41598-018-21276-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.
Collapse
Affiliation(s)
- Kapil Chaudhary
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | | | - Sudha Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rajalakshmi Veeranan-Karmegam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Amany Tawfik
- Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Pamela Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Oleg Kisselev
- Department of Ophthalmology and Department of Biochemistry & Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Jaya P Gnana-Prakasam
- Department of Ophthalmology and Department of Biochemistry & Molecular Biology, Saint Louis University, St. Louis, Missouri, USA.
| |
Collapse
|
14
|
Ola MS, Alhomida AS, Ferrario CM, Ahmad S. Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-( 1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem 2017; 24:3104-3114. [PMID: 28403787 DOI: 10.2174/0929867324666170407141955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Abstract
Diabetic retinopathy (DR) is a major diabetes complication and the leading cause for vision loss and blindness in the adult human population. Diabetes, being an endocrinological disorder dysregulates a number of hormonal systems including the renin angiotensin system (RAS), which thereby may damage both vascular and neuronal cells in the retina. Angiotensin II (Ang II), an active component of the RAS is increased in diabetic retina, and may play a significant role in neurovascular damage leading to the progression of DR. In this review article, we highlight the role of Ang II in the pathogenesis of retinal damage in diabetes and discuss a newly identified mechanism involving tissue chymase and angiotensin-(1-12) [Ang-(1-12)] pathways. We also discuss the therapeutic effects of potential RAS inhibitors targeting blockade of cellular Ang II formation to prevent/ protect the retinal damage. Thus, a better understanding of Ang II formation pathways in the diabetic retina will elucidate early molecular mechanism of vision loss. These concepts may provide a novel strategy for preventing and/or treating diabetic retinopathy, a leading cause of blindness worldwide.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud, University, Riyadh 11451. Saudi Arabia
| | - Abdullah S Alhomida
- Department of Biochemistry, College of Science, King Saud, University, Riyadh 11451. Saudi Arabia
| | - Carlos M Ferrario
- Department of General Surgery, Wake Forest University Health Science, Winston-Salem, NC 27157. United States
| | - Sarfaraz Ahmad
- Department of General Surgery, Wake Forest University Health Science, Winston-Salem, NC 27157. United States
| |
Collapse
|
15
|
Deng G, Moran EP, Cheng R, Matlock G, Zhou K, Moran D, Chen D, Yu Q, Ma JX. Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58:5030-5042. [PMID: 28979999 PMCID: PMC5633008 DOI: 10.1167/iovs.16-21402] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose Clinical studies have shown that peroxisome proliferator-activated receptor alpha (PPARα) agonist fenofibrate has therapeutic effects on diabetic retinopathy (DR). The purpose of this study was to identify a novel PPARα agonist and to evaluate its beneficial effects on DR. Methods The transcriptional activity of PPARα was measured by a luciferase-based promoter assay. TUNEL was used to evaluate apoptosis in retinal precursor cells (R28). Diabetes was induced in rats by injection of streptozotocin. Retinal inflammation was examined using leukostasis assay, and retinal vascular leakage was measured using permeability assay. Retinal function was measured using electroretinogram (ERG) recording, and retinal apoptosis was quantified using the cell death ELISA. The anti-angiogenic effect was evaluated in the oxygen-induced retinopathy (OIR) model. Results A compound, 7-chloro-8-methyl-2-phenylquinoline-4-carboxylic acid (Y-0452), with a chemical structure distinct from existing PPARα agonists, activated PPARα transcriptional activity and upregulated PPARα expression. Y-0452 significantly inhibited human retinal capillary endothelial cell migration and tube formation. The compound also protected R28 cells against apoptosis and inhibited NF-κB signaling in R28 cells exposed to palmitate. In diabetic rats, Y-0452 ameliorated leukostasis and vascular leakage in the retina. In addition, Y-0452 preserved the retinal function and reduced retinal cell death in diabetic rats. Y-0452 also alleviated retinal neovascularization in the OIR model. Conclusions Y-0452 is a novel PPARα agonist and has therapeutic potential for DR.
Collapse
Affiliation(s)
- Guotao Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Elizabeth P Moran
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - David Moran
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Danyang Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
16
|
Byon IS, Lee DH, Jun ES, Shin MK, Park SW, Lee JE. Effect of angiotensin II type 1 receptor blocker and angiotensin converting enzyme inhibitor on the intraocular growth factors and their receptors in streptozotocin-induced diabetic rats. Int J Ophthalmol 2017; 10:896-901. [PMID: 28730079 DOI: 10.18240/ijo.2017.06.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/24/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the effect of angiotensin II type 1 receptor blocker (ARB) and angiotensin converting enzyme inhibitor (ACEI) on intraocular growth factors and their receptors in streptozotocin-induced diabetic rats. METHODS Forty Sprague-Dawley rats were divided into 4 groups: control, diabetes mellitus (DM), candesartan-treated DM, and enalapril-treated DM (each group, n=10). After the induction of DM by streptozotocin, candesartan [ARB, 5 mg/(kg·d)] and enalapril [ACEI, 10 mg/(kg·d)] were administered to rats orally for 4wk. Vascular endothelial growth factor (VEGF) and angiotensin II (Ang II) concentrations in the vitreous were measured using enzyme-linked immunosorbent assays, and VEGF receptor 2 and angiotensin II type 1 receptor (AT1R) levels were assessed at week 4 by Western blotting. RESULTS Vitreous Ang II levels were significantly higher in the DM group and candesartan-treated DM group than in the control (P=0.04 and 0.005, respectively). Vitreous AT1R increased significantly in DM compared to the other three groups (P<0.007). Candesartan-treated DM rats showed higher vitreal AT1R concentration than the enalapril-treated DM group and control (P<0.001 and P=0.005, respectively). No difference in vitreous Ang II and AT1R concentration was found between the enalapril-treated DM group and control. VEGF and its receptor were below the minimum detection limit in all 4 groups. CONCLUSION Increased Ang II and AT1R in the hyperglycemic state indicate activated the intraocular renin-angiotensin system, which is inhibited more effectively by systemic ACEI than systemic ARB.
Collapse
Affiliation(s)
- Ik Soo Byon
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.,College of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong Hyun Lee
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Eun Sook Jun
- Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | | | - Sung Who Park
- College of Medicine, Pusan National University, Yangsan 50612, Korea.,Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Ji Eun Lee
- College of Medicine, Pusan National University, Yangsan 50612, Korea.,Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| |
Collapse
|
17
|
Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System - Focus on Eye. Open Ophthalmol J 2017; 11:122-142. [PMID: 28761566 PMCID: PMC5510558 DOI: 10.2174/1874364101711010122] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
The renin-angiotensin system (RAS), that is known for its role in the regulation of blood pressure as well as in fluid and electrolyte homeostasis, comprises dozens of angiotensin peptides and peptidases and at least six receptors. Six central components constitute the two main axes of the RAS cascade. Angiotensin (1-7), an angiotensin converting enzyme 2 and Mas receptor axis (ACE2-Ang(1-7)-MasR) counterbalances the harmful effects of the angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor axis (ACE1-AngII-AT1R) Whereas systemic RAS is an important factor in blood pressure regulation, tissue-specific regulatory system, responsible for long term regional changes, that has been found in various organs. In other words, RAS is not only endocrine but also complicated autocrine system. The human eye has its own intraocular RAS that is present e.g. in the structures involved in aqueous humor dynamics. Local RAS may thus be a target in the development of new anti-glaucomatous drugs. In this review, we first describe the systemic RAS cascade and then the local ocular RAS especially in the anterior part of the eye.
Collapse
Affiliation(s)
- Mervi Holappa
- BioMediTech, University of Tampere, Tampere, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland.,SILK, Department of Ophthalmology, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
18
|
Yue Z, Yun-Shan Z, Feng-Xia X. miR-205 mediates the inhibition of cervical cancer cell proliferation using olmesartan. J Renin Angiotensin Aldosterone Syst 2017; 17:1470320316663327. [PMID: 28304186 PMCID: PMC5843885 DOI: 10.1177/1470320316663327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The renin-angiotensin-aldosterone system has become known as a prerequisite for tumor angiogenesis that is now recognized as a crucial step in the development of tumors, including cervical cancer. The Ang II-AT1R pathway is known to play an important role in tumor angiogenesis. MicroRNAs (miRNAs) are a class of small, regulating RNAs that participate in tumor genesis, differentiation and proliferation. The current study focused on the anti-tumor mechanism of olmesartan, a novel angiotensin II antagonist, on cervical cancer cells. MATERIALS AND METHODS qRT-PCR and Western blot were used to demonstrate the effect of olmesartan on miR-205 and VEGF-A expression. miR-205 mimics and VEGF-A shRNA plasmid were separately transfected into HeLa and Siha cells to further validate the function of miR-205 and VEGF-A in cervical cancer cell proliferation. RESULTS It was found that olmesartan could upregulate miR-205 and inhibit VEGF-A expression in HeLa and Siha cells. In addition, VEGF-A was proven to be a target gene of miR-205. CONCLUSION This result provides a new idea on the anti-tumor mechanism of olmesartan, which may be used as a novel therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Zhang Yue
- 1 Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Zhang Yun-Shan
- 2 Departments of Gynecology and Obstetrics,Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Feng-Xia
- 1 Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| |
Collapse
|
19
|
Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of renin-angiotensin system in ocular disorders. J Curr Ophthalmol 2016; 29:7-16. [PMID: 28367520 PMCID: PMC5362395 DOI: 10.1016/j.joco.2016.09.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
Purpose To review current literature on the renin-angiotensin system (RAS)-mediated pathogenic mechanisms and therapeutic targets in ocular diseases. Methods A comprehensive literature survey was performed on PubMed, Scopus, and Google Scholar databases published from 1977 to 2016. The search terms were a RAS, angiotensin, angiotensin receptor, prorenin, pro (renin) receptor, angiotensin converting enzyme inhibitor, angiotensin receptor blocker associated with ocular disorders like cataract, glaucoma, diabetic retinopathy (DR), macular degeneration, and uveitis. Articles were reviewed on the basis of the association between ocular disorders and RAS and relevant articles were discussed. Results The literature revealed that the individual RAS components including renin, angiotensins, angiotensin converting enzymes, and RAS receptors have been expressed in the specific ocular tissues like retina, choroid, and ciliary body. The activation of both circulatory and local RAS potentiate the various inflammatory and angiogenic signaling molecules, including vascular endothelial growth factor (VEGF), extracellular signal-regulated kinase, and advanced glycation end products (AGE) in the ocular tissues and leads to several blinding disorders like DR, glaucoma, and macular degeneration. The classical and newer RAS inhibitors have illustrated protective effects on blinding disorders, including DR, glaucoma, macular degeneration, uveitis, and cataract. Conclusions The RAS components are present in the extrarenal tissues including ocular tissue and have an imperative role in the ocular pathophysiology. The clinical studies are needed to show the role of therapeutic modalities targeting RAS in the treatment of different ocular disorders.
Collapse
|
20
|
A mouse retinal explant model for use in studying neuroprotection in glaucoma. Exp Eye Res 2016; 151:38-44. [DOI: 10.1016/j.exer.2016.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 11/17/2022]
|
21
|
Role of agonistic autoantibodies against type-1 angiotensin II receptor in the pathogenesis of retinopathy in preeclampsia. Sci Rep 2016; 6:29036. [PMID: 27381670 PMCID: PMC4933922 DOI: 10.1038/srep29036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
To investigate the mechanism underlying AT1-AA-induced retinopathy in severe preeclampsia by measuring the positive rate and titer of AT1-AA in plasma from women with severe preeclampsia and normal pregnant women to see whether AT1-AA titer was correlated with the grade of retinopathy. A preeclampsia rat model was also established by intravenous injection of AT1-AA extracted from the plasma of patient suffering from severe preeclampsia. The results showed that the plasma titer and positive rate of AT1-AA were significantly higher in women with severe preeclampsia than normal pregnant women. The antibody titer in cases of severe preeclampsia was associated with the grade of retinopathy, and positively correlated with the level of TNF-α and VEGF. The animal experiment results showed that the modeled rats presented symptoms very similar to symptoms of human preeclampsia, including retinopathy. Ocular fundus examination showed retinal microvascular abnormalities, hemorrhaging and leakage in the severe preeclampsia. Morphological changes included edema, thickening of the INL and ONL, and pigment atrophy. TNF-α and VEGF levels were increased in the vitreous humor and retina of the model rats. Our studies results suggest that abnormal expression of AT1-AA could induce damage to retinal capillary endothelial cells and increase vascular permeability, resulting in retinopathy.
Collapse
|
22
|
Katsi VK, Marketou ME, Vrachatis DA, Manolis AJ, Nihoyannopoulos P, Tousoulis D, Vardas PE, Kallikazaros I. Essential hypertension in the pathogenesis of age-related macular degeneration: a review of the current evidence. J Hypertens 2016; 33:2382-8. [PMID: 26536087 DOI: 10.1097/hjh.0000000000000766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age-related macular degeneration (AMD) is one of the main causes of vision loss, especially in the elderly. The involvement of essential hypertension in its pathogenesis has been well covered in the literature since it was first recognized. Hemodynamic abnormalities appear to contribute to AMD, with the renin-angiotensin system playing a significant role. Many studies have demonstrated that high blood pressure is associated with lower choroidal blood flow and disturbed vascular homeostasis in these patients. In addition, AMD is characterized by abnormal neovascularization, to which angiotensin II and growth factors make a large contribution. Most epidemiological studies have found essential hypertension to be a risk factor for AMD. However, although all agree that the strongest predisposing factors are age and smoking, overall there is some inconsistency regarding the exact role of hypertension in its pathogenesis. In particular, there are no data in the literature to support the view that antihypertensive medication and the successful management of hypertension have a positive effect on the clinical outcome of AMD. This reinforces the data indicating that the cause of AMD is multifactorial and suggests that, although essential hypertension probably plays a role, in itself it is unlikely to be a major contributor to the future occurrence of AMD.
Collapse
Affiliation(s)
- Vasiliki K Katsi
- aDepartment of Cardiology, Hippokration Hospital, Athens bDepartment of Cardiology, Heraklion University Hospital, Crete cFirst Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens dDepartment of Cardiology, Asklepieion General Hospital, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu T, Miller AG, Deliyanti D, Berka DR, Agrotis A, Campbell DJ, Wilkinson-Berka JL. Prorenin stimulates a pro-angiogenic and pro-inflammatory response in retinal endothelial cells and an M1 phenotype in retinal microglia. Clin Exp Pharmacol Physiol 2016; 42:537-48. [PMID: 25707593 DOI: 10.1111/1440-1681.12376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 01/25/2023]
Abstract
Angiogenesis and inflammation are causative factors in the development of neovascular retinopathies. These processes involve the retinal endothelium and the retinal immune cells, microglia. The renin-angiotensin system contributes to retinal injury via the actions of the type 1 angiotensin receptor (AT1R). However, it has been suggested that prorenin, the initiator of the renin-angiotensin system cascade, influences retinal injury independently from the AT1R. We evaluated whether prorenin induced a pro-angiogenic and pro-inflammatory response in retinal endothelial cells and a pro-inflammatory phenotype in retinal microglia. Primary cultures of retinal endothelial cells and microglia were studied. Rat recombinant prorenin (2 nmol/L) stimulated the proliferation and tubulogenesis of retinal endothelial cells; it increased the levels of pro-angiogenic factors, vascular endothelial growth factor, angiopoietin-1, and tyrosine kinase with immunoglobulin and epidermal growth factor homology domains, and pro-inflammatory factors, intercellular adhesion molecule-1 and monocyte chemoattractant protein-1, relative to the controls. The messenger RNA levels of the (pro)renin receptor were also increased. These effects occurred in the presence of the AT1R blocker candesartan (10 μmol/L) and the renin inhibitor aliskiren (10 μmol/L). Microglia, which express the (pro)renin receptor, elicited an activated phenotype when exposed to prorenin, which was characterized by increased levels of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumour necrosis factor-α, interleukin-6, and interleukin-1β and by decreased levels of interleukin-10 and arginase-1 relative to controls. Candesartan did not influence the effects of prorenin on retinal microglia. In conclusion, prorenin has distinct pro-angiogenic and pro-inflammatory effects on retinal cells that are independent of the AT1R, indicating the potential importance of prorenin in retinopathy.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Flora R, Zulkarnain M, Sorena E, Deva IDGS, Widowati W. Correlation Between Hypoxia Inducible Factor-1α and Vesicular Endothelial Growth Factor in Male Wistar Rat Brain Tissue After Anaerobic Exercise. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/tmr.2016.35.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Saleem S, Azam A, Maqsood SI, Muslim I, Bashir S, Fazal N, Riaz M, Ali SHB, Niazi MK, Ishaq M, Waheed NK, Qamar R, Azam M. Role of ACE and PAI-1 Polymorphisms in the Development and Progression of Diabetic Retinopathy. PLoS One 2015; 10:e0144557. [PMID: 26658948 PMCID: PMC4679138 DOI: 10.1371/journal.pone.0144557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022] Open
Abstract
In the present study we determined the association of angiotensin converting enzyme (ACE) and plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms with diabetic retinopathy (DR) and its sub-clinical classes in Pakistani type 2 diabetic patients. A total of 353 diabetic subjects including 160 DR and 193 diabetic non retinopathy (DNR) as well as 198 healthy controls were genotyped by allele specific polymerase chain reaction (PCR) for ACE Insertion/Deletion (ID) polymorphism, rs4646994 in intron 16 and PAI-1 4G/5G (deletion/insertion) polymorphism, rs1799768 in promoter region of the gene. To statistically assess the genotype-phenotype association, multivariate logistic regression analysis was applied to the genotype data of DR, DNR and control individuals as well as the subtypes of DR. The ACE genotype ID was found to be significantly associated with DR (p = 0.009, odds ratio (OR) 1.870 [95% confidence interval (CI) = 1.04-3.36]) and its sub-clinical class non-proliferative DR (NPDR) (p = 0.006, OR 2.250 [95% CI = 1.098-4.620]), while PAI polymorphism did not show any association with DR in the current cohort. In conclusion in Pakistani population the ACE ID polymorphism was observed to be significantly associated with DR and NPDR, but not with the severe form of the disease i.e. proliferative DR (PDR).
Collapse
Affiliation(s)
- Saba Saleem
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Aisha Azam
- Institute of Ophthalmology, Mayo Hospital, Lahore, Pakistan
| | | | - Irfan Muslim
- Institute of Ophthalmology, Mayo Hospital, Lahore, Pakistan
| | - Shaheena Bashir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nosheen Fazal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Moeen Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | | | - Muhammad Khizar Niazi
- Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan
- Army Medical College, Rawalpindi, Pakistan
| | - Mazhar Ishaq
- Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan
- Army Medical College, Rawalpindi, Pakistan
| | - Nadia Khalida Waheed
- Tufts University Medical School, Boston, Massachusetts, United States of America
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Al-Nafees Medical College and Hospital, Isra University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Maleeha Azam
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
26
|
Meng YC, Ding ZY, Wang HQ, Ning LP, Wang C. Effect of microRNA-155 on angiogenesis after cerebral infarction of rats through AT1R/VEGFR2 pathway. ASIAN PAC J TROP MED 2015; 8:829-35. [DOI: 10.1016/j.apjtm.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022] Open
|
27
|
Murakami T. Kallikrein-Kinin System: An Emerging Competitor or Collaborator for VEGF in Diabetic Macular Edema? Diabetes 2015; 64:3350-2. [PMID: 26405275 DOI: 10.2337/db15-0746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Holappa M, Vapaatalo H, Vaajanen A. Ocular renin-angiotensin system with special reference in the anterior part of the eye. World J Ophthalmol 2015; 5:110-124. [DOI: 10.5318/wjo.v5.i3.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates blood pressure (BP) homeostasis, systemic fluid volume and electrolyte balance. The RAS cascade includes over twenty peptidases, close to twenty angiotensin peptides and at least six receptors. Out of these, angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (AngII-ACE1-AT1R) together with angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (Ang(1-7)-ACE2-MasR) are regarded as the main components of RAS. In addition to circulating RAS, local RA-system exists in various organs. Local RA-systems are regarded as tissue-specific regulatory systems accounting for local effects and long term changes in different organs. Many of the central components such as the two main axes of RAS: AngII-ACE1-AT1R and Ang(1-7)-ACE2-MasR, have been identified in the human eye. Furthermore, it has been shown that systemic antihypertensive RAS- inhibiting medications lower intraocular pressure (IOP). These findings suggest the crucial role of RAS not only in the regulation of BP but also in the regulation of IOP, and RAS potentially plays a role in the development of glaucoma and antiglaucomatous drugs.
Collapse
|
29
|
Ye G, Qin Y, Lu X, Xu X, Xu S, Wu C, Wang X, Wang S, Pan D. The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 459:18-23. [PMID: 25701390 DOI: 10.1016/j.bbrc.2015.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Angiogenesis is reported to play a pivotal role in the occurrence, development and metastasis of HCC. The renin-angiotensin system (RAS) is involved in the regulation of angiogenesis. Here, based on the analysis of HCC datasets from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), we found that there was a negative correlation between the mRNA levels of angiotensin converting enzyme 2 (ACE2) and CD34. To explore the association of RAS with the progression from fibrosis to cirrhosis to HCC, liver specimens and serum samples were collected from patients with hepatic fibrosis, cirrhosis and HCC. Relative hepatic mRNA levels of CD34 and ACE2 were determined by real-time PCR, and the serum concentrations of Angiotensin II (Ang II), Ang (1-7) and vascular endothelial growth factor (VEGF) were detected by ELISA. We found that ACE2 mRNA was gradually decreased, while CD34 mRNA was progressively increased with the increasing grade of disease severity. Concentrations of Ang II, Ang (1-7) and VEGF were higher in the sera of patients than in that of healthy volunteers. These proteins' concentrations were also progressively increased with the increasing grade of disease severity. Moreover, a positive correlation was found between VEGF and Ang II or Ang (1-7), while negative correlation was observed between mRNA levels of CD34 and ACE2. More importantly, patients with higher level of ACE2 expression had longer survival time than those with lower level of ACE2 expression. Taken together, our data suggests that the low expression of ACE2 may be a useful indicator of poor prognosis in HCC. The RAS may have a role in the progression of HCC.
Collapse
Affiliation(s)
- Guanxiong Ye
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Yong Qin
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China.
| | - Xianghong Lu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Xiangdong Xu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Shengqian Xu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Chengjun Wu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Xinmei Wang
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Shi Wang
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Debiao Pan
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| |
Collapse
|
30
|
White AJR, Cheruvu SC, Sarris M, Liyanage SS, Lumbers E, Chui J, Wakefield D, McCluskey PJ. Expression of classical components of the renin-angiotensin system in the human eye. J Renin Angiotensin Aldosterone Syst 2014; 16:59-66. [PMID: 25287897 DOI: 10.1177/1470320314549791] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The purpose of this study was to determine the relative expression of clinically-relevant components of the renin-angiotensin system (RAS) in the adult human eye. METHODS We obtained 14 post-mortem enucleated human eyes from patients whom had no history of inflammatory ocular disease nor pre-mortem ocular infection. We determined the gene expression for prorenin, renin, prorenin receptor, angiotensin-converting enzyme, angiotensinogen and angiotensin II Type 1 receptor, on tissue sections and in cultured human primary retinal pigment epithelial and iris pigment epithelial (RPE/IPE) cell lines, using both qualitative and quantitative reverse transcription polymerase chain reaction (RT-PCR). Protein expression was studied using indirect immunofluorescence (IF). RESULTS Almost all components of the classical RAS were found at high levels, at both the transcript and protein level, in the eyes' uvea and retina; and at lower levels in the cornea, conjunctiva and sclera. There was a much lower level of expression in the reference cultured RPE/IPE cells lines. CONCLUSION This study describes the distribution of RAS in the normal adult human eye and demonstrates the existence of an independent ocular RAS, with uveal and retinal tissues showing the highest expression of RAS components. These preliminary findings provide scope for examination of additional components of this system in the human eye, as well as possible differential expression under pathological conditions.
Collapse
Affiliation(s)
- Andrew J R White
- Save Sight Institute, University of Sydney, Sydney, Australia Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Sarat C Cheruvu
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Maria Sarris
- Department of Physiology, University of New South Wales, Sydney, Australia
| | - Surabhi S Liyanage
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eugenie Lumbers
- Department of Physiology, University of New South Wales, Sydney, Australia
| | - Jeanie Chui
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Denis Wakefield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Peter J McCluskey
- Save Sight Institute, University of Sydney, Sydney, Australia School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
31
|
Castro EC, Parks WT, Galambos C. The ontogeny of human pulmonary angiotensin-converting enzyme and its aberrant expression may contribute to the pathobiology of bronchopulmonary dysplasia (BPD). Pediatr Pulmonol 2014; 49:985-90. [PMID: 24574430 DOI: 10.1002/ppul.22911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/04/2013] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The mammalian lung possesses the highest level of angiotensin converting enzyme (ACE) amongst all the organs. ACE is known to generate angiotensin (AT)-II from AT-I and to regulate serum bradykinin level, thereby controlling blood pressure. Recent data, however, indicate a role for ACE derived AT-II in angiogenesis, pulmonary hypertension, and neonatal lung disease. The ontogeny of ACE in humans has not been investigated. We studied pulmonary ACE expression during human lung development and in human bronchopulmonary dysplasia (BPD). MATERIAL AND METHODS Human fetal autopsy lung tissue representing all three trimesters (12, 13, 16, 18, 24, 34, 39, and 40 weeks of gestational age (WGA)), as well as from 1 to 10 years of age with no significant lung pathology were used. In addition lung sections of patients with BPD (n = 5) were selected. The slides were immunostained using an anti-ACE monoclonal antibody. The temporal and spatial pattern of ACE expression was contrasted to that of the pan-endothelial marker CD31. Staining intensity was graded. RESULTS Mildly diffuse and strong microvascular endothelial immunreactivity for ACE was seen in the human fetus as early as 12 WGA. ACE expression peaked at mid gestation and remained high throughout gestation and postnatally. In BPD lungs ACE endothelial staining was largely absent, and when focal staining was observed the intensity was weak. CONCLUSION We established that ACE expression is present in the human fetal lung as early as 12 WGA, remains active pre- and postnatally, and ACE expression was downregulated in BPD lungs. We speculate that ACE may be involved in the process of lung development.
Collapse
Affiliation(s)
- E C Castro
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
32
|
Tenkumo K, Hirooka K, Sherajee SJ, Nakamura T, Itano T, Nitta E, Fujita T, Nishiyama A, Shiraga F. Effect of the renin inhibitor aliskiren against retinal ischemia-reperfusion injury. Exp Eye Res 2014; 122:110-8. [DOI: 10.1016/j.exer.2014.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/09/2014] [Accepted: 03/25/2014] [Indexed: 02/01/2023]
|
33
|
Park JM, Park YM, Jung W, Lee JE, Lee JS. Microarray analysis for genes associated with angiogenesis in diabetic OLETF keratocytes. J Korean Med Sci 2014; 29:265-71. [PMID: 24550656 PMCID: PMC3924008 DOI: 10.3346/jkms.2014.29.2.265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to identify the differences in angiogenesis gene expression between normal and diabetic keratocytes stimulated with interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α). Primarily cultured normal and diabetic keratocytes were treated with 20 ng/mL of IL-1a and TNF-α for 6 hr. cDNA was hybridized to an oligonucleotide microarray. Microarray analysis was used to identify differentially expressed genes that were further evaluated by real-time polymerase chain reaction (RT-PCR). Diabetes keratocytes overexpressed vital components of angiogenesis including Agtr1, and under-expressed components related to the blood vessel maturation, including Dcn. Cytokine-treated diabetic keratocytes differentially expressed components of angiogenesis. OLETF keratocytes after treatment with IL-1α and TNF-α showed the newly expressed 15 and 14 genes, respectively. Newly and commonly under-expressed five genes followed by treatment with both IL-1α and TNF-α were also evident. RT-PCR showed results similar to the microarray results. Agtr1 and Itga1 showed an increased expression in diabetic keratocytes compared with normal corneal keratocytes, especially after TNF-α treatment. Il6 appeared strong expression after interleukin-1α treatment, but showed down expression after TNF-α treatment. Further studies to analyze and confirm the significance of the identified angiogenetic genes of diabetes are needed.
Collapse
Affiliation(s)
- Jun-Mo Park
- Department of Ophthalmology, Busan St. Mary's Hospital, Busan, Korea
| | - Young Min Park
- Department of Ophthalmology, School of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Wook Jung
- Department of Ophthalmology, School of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Ji-Eun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jong-Soo Lee
- Department of Ophthalmology, School of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
34
|
Gorman JL, Liu STK, Slopack D, Shariati K, Hasanee A, Olenich S, Olfert IM, Haas TL. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS One 2014; 9:e85537. [PMID: 24416421 PMCID: PMC3887063 DOI: 10.1371/journal.pone.0085537] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensinogen/metabolism
- Animals
- Cell Line
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Losartan/pharmacology
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Knockout
- Microvessels/cytology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Neovascularization, Physiologic/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Jennifer L. Gorman
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sammy T. K. Liu
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Dara Slopack
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Khashayar Shariati
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Adam Hasanee
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sara Olenich
- West Virginia University School of Medicine, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, Morgantown, West Virginia, United States of America
| | - I. Mark Olfert
- West Virginia University School of Medicine, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, Morgantown, West Virginia, United States of America
| | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Zhou L, Luo Y, Sato S, Tanabe E, Kitayoshi M, Fujiwara R, Sasaki T, Fujii K, Ohmori H, Kuniyasu H. Role of Two Types of Angiotensin II Receptors in Colorectal Carcinoma Progression. Pathobiology 2014; 81:169-75. [DOI: 10.1159/000362092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
Angiotensin II (Ang-II) is a bioactive peptide associated closely with the progression and metastasis of colorectal cancer (CRC). We examined the expression and role of 2 Ang-II receptor types in 20 cases of CRC. Ang-II type 1 receptor (AT1R) protein was localized to the plasma membrane, whereas Ang-II type 2 receptor (AT2R) protein was localized to the nuclei. AT1R expression showed a direct correlation with tumor stage and liver metastasis, whereas AT2R expression showed an inverse correlation. A knockdown study of the AT1R or AT2R with Ang-II treatment was performed to reveal their individual roles in a mouse rectal cell line CMT93, which expresses both Ang-II receptor types. AT2R knockdown showed that the AT1R was associated with tumor growth, survival, invasion and VEGF-A secretion in CMT93 cells in a dose-dependent manner. In contrast, AT1R knockdown showed that the AT2R was associated with increased VEGF-A secretion at low Ang-II concentrations, whereas high concentrations of Ang-II inhibited tumor growth, survival, invasion and VEGF-A secretion. Thus, the AT1R showed a monophasic protumoral effect, while the AT2R showed a biphasic amphitumoral effect. Our findings suggest that a high angiotensinogen condition in the liver might evoke the antitumoral role of the AT2R in CRC cells.
Collapse
|
36
|
Giese MJ, Speth RC. The ocular renin-angiotensin system: a therapeutic target for the treatment of ocular disease. Pharmacol Ther 2013; 142:11-32. [PMID: 24287313 DOI: 10.1016/j.pharmthera.2013.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is most well-known for its role in regulation and dysregulation of blood pressure as well as fluid and electrolyte homeostasis. Due to its ability to cause cardiovascular disease, the RAS is the target of a multitude of drugs that antagonize its pathophysiological effects. While the "classical" RAS is a systemic hormonal system, there is an increasing awareness of the existence and functional significance of local RASs in a number of organs, e.g., liver, kidney, heart, lungs, reproductive organs, adipose tissue and adrenal. The eye is one of these organs where a compelling body of evidence has demonstrated the presence of a local RAS. Individual components of the RAS have been shown to be present in many structures of the eye and their potential functional significance in ocular disease states is described. Because the eye is one of the most important and complex organs in the body, this review also discusses the implications of dysregulation of the systemic RAS on the pathogenesis of ocular diseases and how pharmacological manipulation of the RAS might lead to novel or adjunctive therapies for ocular disease states.
Collapse
Affiliation(s)
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
37
|
Karcher JR, Greene AS. Bone marrow mononuclear cell angiogenic competency is suppressed by a high-salt diet. Am J Physiol Cell Physiol 2013; 306:C123-31. [PMID: 24259418 DOI: 10.1152/ajpcell.00164.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autologous bone marrow-derived mononuclear cell (BM-MNC) transplantation is a potential therapy for inducing revascularization in ischemic tissues providing the underlying disease process had not negatively affected BM-MNC function. Previously, we have shown that skeletal muscle angiogenesis induced by electrical stimulation is impaired by a high-salt diet (HSD; 4% NaCl) in Sprague-Dawley (SD) rats. In this study we tested the hypothesis that BM-MNC angiogenic function is impaired by an elevated dietary sodium intake. Following 1 wk on HSD, either vehicle or BM-MNCs derived from SD donor rats on HSD or normal salt diet (NSD; 0.4% NaCl) were injected into male SD rats undergoing hindlimb stimulation. Administration of BM-MNCs (intramuscular or intravenous) from NSD donors, but not HSD donors, restored the angiogenic response in HSD recipients. Angiotensin II (3 ng · kg(-1) · min(-1)) infusion of HSD donor rats restored angiogenic capacity of BM-MNCs, and treatment of NSD donor rats with losartan, an angiotensin II receptor-1 antagonist, inhibited BM-MNC angiogenic competency. HSD BM-MNCs and NSD losartan BM-MNCs exhibited increased apoptosis in vitro following an acute 6-h hypoxic stimulus. HSD BM-MNCs also had increased apoptosis following injection into skeletal muscle. This study suggests that BM-MNC transplantation can restore skeletal muscle angiogenesis and that HSD impairs the angiogenic competency of BM-MNCs due to suppression of the renin-angiotensin system causing increased apoptosis.
Collapse
Affiliation(s)
- Jamie R Karcher
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | |
Collapse
|
38
|
Exposure to ACEI/ARB and β-Blockers Is Associated with Improved Survival and Decreased Tumor Progression and Hospitalizations in Patients with Advanced Colon Cancer. Transl Oncol 2013; 6:539-45. [PMID: 24151534 DOI: 10.1593/tlo.13346] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/20/2013] [Accepted: 06/28/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Advanced colon cancer is associated with weight loss and decreased survival. Studies suggest that angiotensin and β-adrenergic blockade decrease colon cancer progression and ameliorate weight loss. This study aims to determine whether exposure to β-adrenoceptor blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) is associated with decreased mortality, tumor progression, number of hospitalizations, or weight loss in colorectal cancer. METHODS Retrospective chart review included patients with advanced colorectal cancer. Survival, stage, hospitalization, cancer progression, cancer treatment, and body weight history were collected. RESULTS Two hundred sixty-two of 425 new stage III to IV colorectal cancer cases reviewed met the study criteria. Those exposed to ACEI/ARB, BB, or both were more likely to have diabetes, hypertension, and stage III colorectal cancer. Adjusting for age, presence of hypertension and diabetes, and stage, ACEI/ARB + BB exposure was associated with decreased mortality compared to unexposed individuals [hazard ratio (HR) = 0.5, confidence interval (CI) = 0.29-0.85; Cox regression, P = .01]. Fewer total and cancer-related hospitalizations and decreased cancer progression in the ACEI/ARB + BB group versus the unexposed group (HR = 0.59, CI = 0.36-0.99, P = .047) were seen. Exposure did not affect weight changes; furthermore, body weight changes from both prediagnosis and at diagnosis to 6, 12, 18, and 24 months postdiagnosis predicted survival. CONCLUSIONS We have observed an association between exposure to a combination of ACEI/ARB + BB and increased survival, decreased hospitalizations, and decreased tumor progression in advanced colorectal cancer. Future studies will be needed to replicate these results and generalize them to broader populations. Determination of causality will require a randomized controlled trial.
Collapse
|
39
|
Byon IS, Jeon HS, Kim HW, Lee SJ, Lee JE, Oum BS. The Effect of a Systemic Angiotensin Receptor Blocker on Vascular Endothelial Growth Factor in the Vitreous of Patients with Proliferative Diabetic Retinopathy. Curr Eye Res 2013; 38:774-80. [DOI: 10.3109/02713683.2013.772206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophysiology of diabetic retinopathy. ISRN OPHTHALMOLOGY 2013; 2013:343560. [PMID: 24563789 PMCID: PMC3914226 DOI: 10.1155/2013/343560] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022]
Abstract
Diabetes is now regarded as an epidemic, with the population of patients expected to rise to 380 million by 2025. Tragically, this will lead to approximately 4 million people around the world losing their sight from diabetic retinopathy, the leading cause of blindness in patients aged 20 to 74 years. The risk of development and progression of diabetic retinopathy is closely associated with the type and duration of diabetes, blood glucose, blood pressure, and possibly lipids. Although landmark cross-sectional studies have confirmed the strong relationship between chronic hyperglycaemia and the development and progression of diabetic retinopathy, the underlying mechanism of how hyperglycaemia causes retinal microvascular damage remains unclear. Continued research worldwide has focussed on understanding the pathogenic mechanisms with the ultimate goal to prevent DR. The aim of this paper is to introduce the multiple interconnecting biochemical pathways that have been proposed and tested as key contributors in the development of DR, namely, increased polyol pathway, activation of protein kinase C (PKC), increased expression of growth factors such as vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), haemodynamic changes, accelerated formation of advanced glycation endproducts (AGEs), oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and subclinical inflammation and capillary occlusion. New pharmacological therapies based on some of these underlying pathogenic mechanisms are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh Chibber
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| |
Collapse
|
41
|
Alhusban A, Kozak A, Ergul A, Fagan SC. AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol Exp Ther 2012; 344:348-59. [PMID: 23211364 DOI: 10.1124/jpet.112.197483] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Candesartan is an angiotensin II type 1 receptor blocker (ARB) that has been to shown to limit ischemic stroke and improve stroke outcome. In experimental stroke, candesartan induces a proangiogenic effect that is partly attributable to vascular endothelial growth factor. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that has been reported to have angiogenic effects and play an important role in recovery after stroke. The purpose of this investigation was to determine the role of BDNF in the proangiogenic effect of candesartan in the brain under hypertensive conditions. Accordingly, spontaneously hypertensive rats were treated with candesartan, and brain tissue samples were collected for quantification of BDNF expression. In addition, human cerebromicrovascular endothelial cells were treated with either low-dose (1 ƒM) or high-dose (1 µM) angiotensin II alone or in combination with candesartan (0.16 µM) to assess the effect of candesartan treatment and BDNF involvement in the behavior of endothelial cells. Candesartan significantly increased the expression of BDNF in the SHR (P < 0.05). In addition, candesartan reversed the antiangiogenic effect of the 1-µM dose of AngII (P = 0.0001). The observed effects of candesartan were ablated by neutralizing the effects of BDNF. Treatment with the AT2 antagonist PD-123319 significantly reduced tube-like formation in endothelial cells. AT2 stimulation induced the BDNF expression and migration (P < 0.05). In conclusion, candesartan exerts a proangiogenic effect on brain microvascular endothelial cells treated with angiotensin II. This response is attributable to increased BDNF expression and is mediated through stimulation of the AT2 receptor.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | | | | | | |
Collapse
|
42
|
Phipps JA, Jobling AI, Greferath U, Fletcher EL, Vessey KA. Alternative pathways in the development of diabetic retinopathy: the renin-angiotensin and kallikrein-kinin systems. Clin Exp Optom 2012; 95:282-9. [PMID: 22594546 DOI: 10.1111/j.1444-0938.2012.00747.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy is a common complication of both type 1 and type 2 diabetes and is the leading cause of blindness in people of working age. Current treatment strategies are mostly limited to laser photocoagulation, which restricts proliferative retinopathic changes but also causes irreversible damage to the retina. This review examines two important pathways involved in regulating vascular function and their role in the development of diabetic retinopathy. One, the renin-angiotensin system, is well known and has established angiogenic effects on the retina that increase in diabetic retinopathy. The other, the kallikrein-kinin system, has recently been found to be important in the development of diabetic retinal complications. This review describes the components of the two signalling networks, examines the current animal model studies investigating the role of these pathways in diabetic retinopathy and reviews the clinical studies that have been undertaken examining systemic inhibition of different points in these pathways. These systems are promising targets for therapies aimed at inhibiting the development of diabetic retinopathy and in the future, combination therapies that take advantage of both pathways might result in new treatment options for this debilitating complication of diabetes.
Collapse
Affiliation(s)
- Joanna A Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
43
|
Wilkinson-Berka JL, Agrotis A, Deliyanti D. The retinal renin-angiotensin system: roles of angiotensin II and aldosterone. Peptides 2012; 36:142-50. [PMID: 22537944 DOI: 10.1016/j.peptides.2012.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/29/2023]
Abstract
In the present review we examine the experimental and clinical evidence for the presence of a local renin-angiotensin system within the retina. Interest in a pathogenic role for the renin-angiotensin system in retinal disease originally stemmed from observations that components of the pathway were elevated in retina during the development of certain retinal pathologies. Since then, our knowledge about the contribution of the RAS to retinal disease has greatly expanded. We discuss the known functions of the renin-angiotensin system in retinopathy of prematurity and diabetic retinopathy. This includes the promotion of retinal neovascularization, inflammation, oxidative stress and neuronal and glial dysfunction. The contribution of specific components of the renin-angiotensin system is evaluated with a particular focus on angiotensin II and aldosterone and their cognate receptors. The therapeutic utility of inhibiting key components of the renin-angiotensin system is complex, but may hold promise for the prevention and improvement of vision threatening diseases.
Collapse
|
44
|
A new chiral 2-(ethylthio)-thiazolone analogue shows strong antitumor activities by inducing cancer cell apoptosis and inhibiting angiogenesis. Anticancer Drugs 2012; 23:914-22. [PMID: 22614105 DOI: 10.1097/cad.0b013e328354dc85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our initial study showed the potent cytotoxic effects of a series of new chiral 2-(ethylthio)-thiazolone analogues we synthesized. In the present study, we used computer prediction and found that nitro functionality and the modification of substituents R could further improve their activities in the presence of the nitro group. Compound 1s with nitro, naphthyl, ethyl groups, and a chiral center was predicted to be the most effective. We showed that compound 1s could inhibit the growth of five different cancer cell lines in a time-dependent and dose-dependent manner. 1s could induce Hela cell apoptosis by activating the mitochondria apoptotic pathway. In addition, 1s could inhibit the proliferation, migration, tuber formation, and adhesion of human umbilical vein endothelial cells, suggesting its antiangiogenesis effects. Furthermore, we confirmed the in-vivo antitumor effects of 1s on sarcoma S-180-bearing mice. Taken together, chiral 2-(ethylthio)-thiazolone analogue 1s is a promising compound for further anticancer drug development.
Collapse
|
45
|
Song H, Yin W, Zeng Q, Jia H, Lin L, Liu X, Mu L, Wang R. Hemokinins modulate endothelium function and promote angiogenesis through neurokinin-1 receptor. Int J Biochem Cell Biol 2012; 44:1410-21. [PMID: 22554585 DOI: 10.1016/j.biocel.2012.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/29/2012] [Accepted: 04/18/2012] [Indexed: 01/26/2023]
Abstract
Substance P as a member of tachykinin family plays an important role in angiogenesis. Hemokinins (HKs) have been identified as new members of substance P-like peptides of tachykinin family. However, the effects of HKs on endothelial cells and angiogenesis have not been studied. For the first time, here we demonstrated that r/mHK-1, hHK-1 and hHK(4-11) dose-dependently stimulated the proliferation, migration, adhesion and tube formation of freshly isolated human umbilical vein endothelial cells (HUVECs), and further exhibited in vivo angiogenic effects in chick embryo chorioallantoic membrane model. The angiogenic effects of HKs were inhibited by the selective antagonist of neurokinin-1 rather than neurokinin-2 receptor. Mechanistically, HKs activated ERK1/2 phosphorylation, stimulated nitric oxide production, and upregulated the expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in HUVECs. Taken together, our data suggest that HKs emerge as pivotal endogenous regulators of angiogenesis and represent potential targets for the intervention of angiogenesis in different pathological conditions given their specific peripheral distribution.
Collapse
Affiliation(s)
- Hongjin Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Renin-Angiotensin system hyperactivation can induce inflammation and retinal neural dysfunction. Int J Inflam 2012; 2012:581695. [PMID: 22536545 PMCID: PMC3321303 DOI: 10.1155/2012/581695] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/09/2011] [Accepted: 01/04/2012] [Indexed: 12/21/2022] Open
Abstract
The renin-angiotensin system (RAS) is a hormone system that has been classically known as a blood pressure regulator but is becoming well recognized as a proinflammatory mediator. In many diverse tissues, RAS pathway elements are also produced intrinsically, making it possible for tissues to respond more dynamically to systemic or local cues. While RAS is important for controlling normal inflammatory responses, hyperactivation of the pathway can cause neural dysfunction by inducing accelerated degradation of some neuronal proteins such as synaptophysin and by activating pathological glial responses. Chronic inflammation and oxidative stress are risk factors for high incidence vision-threatening diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. In fact, increasing evidence suggests that RAS inhibition may actually prevent progression of various ocular diseases including uveitis, DR, AMD, and glaucoma. Therefore, RAS inhibition may be a promising therapeutic approach to fine-tune inflammatory responses and to prevent or treat certain ocular and neurodegenerative diseases.
Collapse
|
47
|
Liu Y, Hirooka K, Nishiyama A, Lei B, Nakamura T, Itano T, Fujita T, Zhang J, Shiraga F. Activation of the aldosterone/mineralocorticoid receptor system and protective effects of mineralocorticoid receptor antagonism in retinal ischemia-reperfusion injury. Exp Eye Res 2012; 96:116-23. [DOI: 10.1016/j.exer.2011.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/25/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
48
|
Chen Y, Farquhar ER, Chance MR, Palczewski K, Kiser PD. Insights into substrate specificity and metal activation of mammalian tetrahedral aspartyl aminopeptidase. J Biol Chem 2012; 287:13356-70. [PMID: 22356908 DOI: 10.1074/jbc.m112.347518] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | |
Collapse
|
49
|
Carbajo-Lozoya J, Lutz S, Feng Y, Kroll J, Hammes HP, Wieland T. Angiotensin II modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. Cell Signal 2012; 24:1261-9. [PMID: 22374305 DOI: 10.1016/j.cellsig.2012.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a main stimulator of pathological vessel formation. Nevertheless, increasing evidence suggests that Angiotensin II (Ang II) can play an augmentory role in this process. We thus analyzed the contribution of the two Ang II receptor types, AT(1)R and AT(2)R, in a mouse model of VEGF-driven angiogenesis, i.e. oxygen-induced proliferative retinopathy. Application of the AT(1)R antagonist telmisartan but not the AT(2)R antagonist PD123,319 largely attenuated the pathological response. A direct effect of Ang II on endothelial cells (EC) was analyzed by assessing angiogenic responses in primary bovine retinal and immortalized rat microvascular EC. Selective stimulation of the AT(1)R by Ang II in the presence of PD123,319 revealed a pro-angiogenic activity which further increased VEGF-driven EC sprouting and migration. In contrast, selective stimulation of the AT(2)R by either CGP42112A or Ang II in the presence of telmisartan inhibited the VEGF-driven angiogenic response. Using specific inhibitors (pertussis toxin, RGS proteins, kinase inhibitors) we identified G(12/13) and G(i) dependent signaling pathways as the mediators of the AT(1)R-induced angiogenesis and the AT(2)R-induced inhibition, respectively. As AT(1)R and AT(2)R stimulation displays opposing effects on the activity of the monomeric GTPase RhoA and pro-angiogenic responses to Ang II and VEGF requires activation of Rho-dependent kinase (ROCK), we conclude that the opposing effects of the Ang II receptors on VEGF-driven angiogenesis converge on the regulation of activity of RhoA-ROCK-dependent EC migration.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists/pharmacology
- Animals
- Cattle
- Cell Movement
- Cells, Cultured
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- Mice
- Mice, Inbred C57BL
- Microvessels/cytology
- Microvessels/growth & development
- Microvessels/metabolism
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Retina/pathology
- Retina/ultrastructure
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Javier Carbajo-Lozoya
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Mehlsen J, Jeppesen P, Erlandsen M, Poulsen PL, Bek T. Lack of effect of short-term treatment with amlodipine and lisinopril on retinal autoregulation in normotensive patients with type 1 diabetes and mild diabetic retinopathy. Acta Ophthalmol 2011; 89:764-8. [PMID: 20346089 DOI: 10.1111/j.1755-3768.2009.01847.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Diabetic retinopathy is characterized by morphological changes in the retina secondary to disturbances in retinal blood flow. It has been shown that antihypertensive treatment has a protective effect on the development of diabetic retinopathy, and evidence suggests that inhibitors of the renin-angiotensin system have a protective effect beyond the antihypertensive effect. The background for this additional effect is unknown but might be related to an effect on retinal autoregulation. METHODS In a double-blinded, two-way cross-over study, 25 normotensive patients with type 1 diabetes (T1D) aged 20.6-33.9 (mean 27.9) with mild retinopathy were randomized to receive either 5 mg of the calcium channel blocker (CCB) amlodipine for 14 days followed by a washout period and treatment with 10 mg of the angiotensin converting enzyme (ACE) inhibitor lisinopril for another 14 days or the two treatments in the reverse order. Using a Dynamic Vessel Analyzer (DVA), the diameter response of retinal arterioles during an acute increase in the blood pressure induced by isometric exercise, during flicker stimulation and during both stimulus conditions simultaneously was studied before and during the two treatments periods. RESULTS Amlodipine and lisinopril induced a similar non-significant decrease in the arterial blood pressure. At baseline, the arterial diameter decreased by 2.4 ± 0.9% (p = 0.004) during isometric exercise, increased by 2.2 ± 0.9% (p = 0.019) during flicker stimulation and increased by 1.8 ± 0.9% (p = 0.03) during the combined stimulus conditions. Neither of the antihypertensive drugs amlodipine (p = 0.76) or lisinopril (p = 0.11) changed the diameter response of retinal vessels significantly; however, the two treatments induced a different response in the veins during combined exercise and flicker (p = 0.021). CONCLUSIONS Short-term treatment with amlodipine and lisinopril had no significant effect on retinal autoregulation in young normotensive patients with T1D and mild retinopathy, and this lack of effect was similar for the two drugs. A possible normalizing effect of antihypertensive treatment on retinal autoregulation was not observed; however, it might take longer time to improve autoregulation than to reduce the arterial blood pressure.
Collapse
Affiliation(s)
- Jesper Mehlsen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|