1
|
Panigrahi M, Rajawat D, Nayak SS, Jain K, Vaidhya A, Prakash R, Sharma A, Parida S, Bhushan B, Dutt T. Genomic insights into key genes and QTLs involved in cattle reproduction. Gene 2024; 917:148465. [PMID: 38621496 DOI: 10.1016/j.gene.2024.148465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
From an economic standpoint, reproductive characteristics are fundamental for sustainable production, particularly for monotocous livestock like cattle. A longer inter-calving interval is indicative of low reproductive capacity. This issue changes the dynamics of current and future lactations since it necessitates more inseminations, veterinary care, and hormone interventions. Various reproductive phenotypes, including ovulation, mating, fertility, pregnancy, embryonic growth, and calving-related traits, are observed in dairy cattle, and these traits have been associated with several QTLs. Calving ease, age at puberty, scrotal circumference, and inseminations per conception have been associated with 4437, 10623, 10498, and 2476 Quantitative Trait Loci (QTLs), respectively. This data offers valuable insights into enhancing and comprehending reproductive traits in livestock breeding. Studying QTLs associated with reproductive traits has far-reaching implications across various fields, from agriculture and animal husbandry to human health, evolutionary biology, and conservation. It provides the foundation for informed breeding practices, advances in biotechnology, and a deeper understanding of the genetic underpinnings of reproduction.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ravi Prakash
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
2
|
Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM. Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biol 2024; 22:164. [PMID: 39075558 PMCID: PMC11288129 DOI: 10.1186/s12915-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Ehsan Alirahimi
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Steve Peigneur
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - Pelin Erkoc
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), Ohlebergsweg 14, 35394, Giessen, Germany
| | - Tobias Sennoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Ivan Koludarov
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Benjamin-Florian Hempel
- Freie Unveristät Berlin, Veterinary Centre for Resistance Research (TZR), Robert-Von-Ostertag Str. 8, 14163, Berlin, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Björn M von Reumont
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Goethe, Frankfurt, Max-Von-Laue-Str 13, 60438, Frankfurt, Germany.
| |
Collapse
|
3
|
Teles D, Fine BM. Using induced pluripotent stem cells for drug discovery in arrhythmias. Expert Opin Drug Discov 2024; 19:827-840. [PMID: 38825838 PMCID: PMC11227103 DOI: 10.1080/17460441.2024.2360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new in vitro models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery. AREAS COVERED The authors describe the latest two-dimensional in vitro models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies. EXPERT OPINION Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.
Collapse
Affiliation(s)
- Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Barry M. Fine
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Wang D, Herzig V, Dekan Z, Rosengren KJ, Payne CD, Hasan MM, Zhuang J, Bourinet E, Ragnarsson L, Alewood PF, Lewis RJ. Novel Scorpion Toxin ω-Buthitoxin-Hf1a Selectively Inhibits Calcium Influx via Ca V3.3 and Ca V3.2 and Alleviates Allodynia in a Mouse Model of Acute Postsurgical Pain. Int J Mol Sci 2024; 25:4745. [PMID: 38731963 PMCID: PMC11084959 DOI: 10.3390/ijms25094745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 μM) and CaV3.3 (IC50 = 0.49 μM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Zoltan Dekan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (K.J.R.); (C.D.P.)
| | - Colton D. Payne
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (K.J.R.); (C.D.P.)
| | - Md. Mahadhi Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh;
| | - Jiajie Zhuang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, 34090 Montpellier, France;
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Paul F. Alewood
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Richard J. Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| |
Collapse
|
5
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Shemarova I. The Dysfunction of Ca 2+ Channels in Hereditary and Chronic Human Heart Diseases and Experimental Animal Models. Int J Mol Sci 2023; 24:15682. [PMID: 37958665 PMCID: PMC10650855 DOI: 10.3390/ijms242115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.
Collapse
Affiliation(s)
- Irina Shemarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Wardas B, Schneider JG, Klugbauer N, Flockerzi V, Beck A. Englerin A Inhibits T-Type Voltage-Gated Calcium Channels at Low Micromolar Concentrations. Mol Pharmacol 2023; 104:144-153. [PMID: 37399325 DOI: 10.1124/molpharm.122.000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Englerin A (EA) is a potent agonist of tetrameric transient receptor potential canonical (TRPC) ion channels containing TRPC4 and TRPC5 subunits. TRPC proteins form cation channels that are activated by plasma membrane receptors. They convert extracellular signals such as angiotensin II into cellular responses, whereupon Na+ and Ca2+ influx and depolarization of the plasma membrane occur. Via depolarization, voltage-gated Ca2+ (CaV) channels can be activated, further increasing Ca2+ influx. We investigated the extent to which EA also affects the functions of CaV channels using the high-voltage-activated L-type Ca2+ channel CaV1.2 and the low-voltage-activated T-type Ca2+ channels CaV3.1, CaV3.2, and CaV3.3. After expression of cDNAs in human embryonic kidney (HEK293) cells, EA inhibited currents through all T-type channels at half-maximal inhibitory concentrations (IC50) of 7.5 to 10.3 μM. In zona glomerulosa cells of the adrenal gland, angiotensin II-induced elevation of cytoplasmic Ca2+ concentration leads to aldosterone release. We identified transcripts of low- and high-voltage-activated CaV channels and of TRPC1 and TRPC5 in the human adrenocortical (HAC15) zona glomerulosa cell line. Although no EA-induced TRPC activity was measurable, Ca2+ channel blockers distinguished T- and L-type Ca2+ currents. EA blocked 60% of the CaV current in HAC15 cells and T- and L-type channels analyzed at -30 mV and 10 mV were inhibited with IC50 values of 2.3 and 2.6 μM, respectively. Although the T-type blocker Z944 reduced basal and angiotensin II-induced 24-hour aldosterone release, EA was not effective. In summary, we show here that EA blocks CaV1.2 and T-type CaV channels at low-micromolar concentrations. SIGNIFICANCE STATEMENT: In this study we showed that englerin A (EA), a potent agonist of tetrameric transient receptor potential canonical (TRPC)4- or TRPC5-containing channels and currently under investigation to treat certain types of cancer, also inhibits the L-type voltage-gated Ca2+ (CaV) channel CaV1.2 and the T-type CaV channels CaV3.1, CaV3.2, and CaV3.3 channels at low micromolar concentrations.
Collapse
Affiliation(s)
- Barbara Wardas
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Germany (B.W., V.F., A.B.); Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany (J.G.S.); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg (J.G.S.); and Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany (N.K.)
| | - Jochen G Schneider
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Germany (B.W., V.F., A.B.); Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany (J.G.S.); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg (J.G.S.); and Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany (N.K.)
| | - Norbert Klugbauer
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Germany (B.W., V.F., A.B.); Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany (J.G.S.); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg (J.G.S.); and Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany (N.K.)
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Germany (B.W., V.F., A.B.); Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany (J.G.S.); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg (J.G.S.); and Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany (N.K.)
| | - Andreas Beck
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Germany (B.W., V.F., A.B.); Department of Internal Medicine II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany (J.G.S.); Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg (J.G.S.); and Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany (N.K.)
| |
Collapse
|
8
|
Rangel-Galván M, Rangel-Galván V, Rangel-Huerta A. T-type calcium channel modulation by hydrogen sulfide in neuropathic pain conditions. Front Pharmacol 2023; 14:1212800. [PMID: 37529702 PMCID: PMC10387653 DOI: 10.3389/fphar.2023.1212800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Neuropathic pain can appear as a direct or indirect nerve damage lesion or disease that affects the somatosensory nervous system. If the neurons are damaged or indirectly stimulated, immune cells contribute significantly to inflammatory and neuropathic pain. After nerve injury, peripheral macrophages/spinal microglia accumulate around damaged neurons, producing endogenous hydrogen sulfide (H2S) through the cystathionine-γ-lyase (CSE) enzyme. H2S has a pronociceptive modulation on the Cav3.2 subtype, the predominant Cav3 isoform involved in pain processes. The present review provides relevant information about H2S modulation on the Cav3.2 T-type channels in neuropathic pain conditions. We have discussed that the dual effect of H2S on T-type channels is concentration-dependent, that is, an inhibitory effect is seen at low concentrations of 10 µM and an augmentation effect on T-current at 100 µM. The modulation mechanism of the Cav3.2 channel by H2S involves the direct participation of the redox/Zn2+ affinity site located in the His191 in the extracellular loop of domain I of the channel, involving a group of extracellular cysteines, comprising C114, C123, C128, and C1333, that can modify the local redox environment. The indirect interaction pathways involve the regulation of the Cav3.2 channel through cytokines, kinases, and post-translational regulators of channel expression. The findings conclude that the CSE/H2S/Cav3.2 pathway could be a promising therapeutic target for neuropathic pain disorders.
Collapse
Affiliation(s)
- Maricruz Rangel-Galván
- Biothecnology Department, Metropolitan Polytechnic University of Puebla, Puebla, Puebla, Mexico
| | - Violeta Rangel-Galván
- Nursing and Physiotherapy Department, University of Professional Development, Tijuana, Baja California, Mexico
| | - Alejandro Rangel-Huerta
- Faculty of Computer Science, Meritorious Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
9
|
Dinh HA, Stölting G, Scholl UI. Ca V3.2 (CACNA1H) in Primary Aldosteronism. Handb Exp Pharmacol 2023. [PMID: 37311830 DOI: 10.1007/164_2023_660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.
Collapse
Affiliation(s)
- Hoang An Dinh
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Gabriel Stölting
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Ute I Scholl
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Matthews LG, Puryear CB, Correia SS, Srinivasan S, Belfort GM, Pan MK, Kuo SH. T-type calcium channels as therapeutic targets in essential tremor and Parkinson's disease. Ann Clin Transl Neurol 2023; 10:462-483. [PMID: 36738196 PMCID: PMC10109288 DOI: 10.1002/acn3.51735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Neuronal action potential firing patterns are key components of healthy brain function. Importantly, restoring dysregulated neuronal firing patterns has the potential to be a promising strategy in the development of novel therapeutics for disorders of the central nervous system. Here, we review the pathophysiology of essential tremor and Parkinson's disease, the two most common movement disorders, with a focus on mechanisms underlying the genesis of abnormal firing patterns in the implicated neural circuits. Aberrant burst firing of neurons in the cerebello-thalamo-cortical and basal ganglia-thalamo-cortical circuits contribute to the clinical symptoms of essential tremor and Parkinson's disease, respectively, and T-type calcium channels play a key role in regulating this activity in both the disorders. Accordingly, modulating T-type calcium channel activity has received attention as a potentially promising therapeutic approach to normalize abnormal burst firing in these diseases. In this review, we explore the evidence supporting the theory that T-type calcium channel blockers can ameliorate the pathophysiologic mechanisms underlying essential tremor and Parkinson's disease, furthering the case for clinical investigation of these compounds. We conclude with key considerations for future investigational efforts, providing a critical framework for the development of much needed agents capable of targeting the dysfunctional circuitry underlying movement disorders such as essential tremor, Parkinson's disease, and beyond.
Collapse
Affiliation(s)
| | - Corey B Puryear
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA
| | | | - Sharan Srinivasan
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.,Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, 10032, USA
| |
Collapse
|
11
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
12
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
13
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
14
|
Udoh M, Bladen C, Heblinski M, Luo JL, Janve VS, Anderson LL, McGregor IS, Arnold JC. The anticonvulsant phytocannabinoids CBGVA and CBDVA inhibit recombinant T-type channels. Front Pharmacol 2022; 13:1048259. [PMID: 36386164 PMCID: PMC9664070 DOI: 10.3389/fphar.2022.1048259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 02/21/2023] Open
Abstract
Introduction: Cannabidiol (CBD) has been clinically approved for intractable epilepsies, offering hope that novel anticonvulsants in the phytocannabinoid class might be developed. Looking beyond CBD, we have recently reported that a series of biosynthetic precursor molecules found in cannabis display anticonvulsant properties. However, information on the pharmacological activities of these compounds on CNS drug targets is limited. The current study aimed to fill this knowledge gap by investigating whether anticonvulsant phytocannabinoids affect T-type calcium channels, which are known to modulate neuronal excitability, and may be relevant to the anti-seizure effects of this class of compounds. Materials and methods: A fluorescence-based assay was used to screen the ability of the phytocannabinoids to inhibit human T-type calcium channels overexpressed in HEK-293 cells. A subset of compounds was further examined using patch-clamp electrophysiology. Alphascreen technology was used to characterise selected compounds against G-protein coupled-receptor 55 (GPR55) overexpressed in HEK-293 cells, as GPR55 is another target of the phytocannabinoids. Results: A single 10 µM concentration screen in the fluorescence-based assay showed that phytocannabinoids inhibited T-type channels with substantial effects on Cav3.1 and Cav3.2 channels compared to the Cav3.3 channel. The anticonvulsant phytocannabinoids cannabigerovarinic acid (CBGVA) and cannabidivarinic acid (CBDVA) had the greatest magnitudes of effect (≥80% inhibition against Cav3.1 and Cav3.2), so were fully characterized in concentration-response studies. CBGVA and CBDVA had IC50 values of 6 μM and 2 µM on Cav3.1 channels; 2 μM and 11 µM on Cav3.2 channels, respectively. Biophysical studies at Cav3.1 showed that CBGVA caused a hyperpolarisation shift of steady-state inhibition. Both CBGVA and CBDVA had a use-dependent effect and preferentially inhibited Cav3.1 current in a slow inactivated state. CBGVA and CBDVA were also shown to antagonise GPR55. Conclusion and implications: These findings show that CBGVA and CBDVA inhibit T-type calcium channels and GPR55. These compounds should be further investigated to develop novel therapeutics for treating diseases associated with dysfunctional T-type channel activity.
Collapse
Affiliation(s)
- Michael Udoh
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Chris Bladen
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia,*Correspondence: Chris Bladen, ; Jonathon C. Arnold,
| | - Marika Heblinski
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jia Lin Luo
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Vaishali S. Janve
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Lyndsey L. Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia,*Correspondence: Chris Bladen, ; Jonathon C. Arnold,
| |
Collapse
|
15
|
T-Type Calcium Channels: A Mixed Blessing. Int J Mol Sci 2022; 23:ijms23179894. [PMID: 36077291 PMCID: PMC9456242 DOI: 10.3390/ijms23179894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.
Collapse
|
16
|
McArthur JR, Wen J, Hung A, Finol-Urdaneta RK, Adams DJ. µ-Theraphotoxin Pn3a inhibition of Ca V3.3 channels reveals a novel isoform-selective drug binding site. eLife 2022; 11:e74040. [PMID: 35858123 PMCID: PMC9342953 DOI: 10.7554/elife.74040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low voltage-activated calcium currents are mediated by T-type calcium channels CaV3.1, CaV3.2, and CaV3.3, which modulate a variety of physiological processes including sleep, cardiac pace-making, pain, and epilepsy. CaV3 isoforms' biophysical properties, overlapping expression, and lack of subtype-selective pharmacology hinder the determination of their specific physiological roles in health and disease. We have identified μ-theraphotoxin Pn3a as the first subtype-selective spider venom peptide inhibitor of CaV3.3, with >100-fold lower potency against the other T-type isoforms. Pn3a modifies CaV3.3 gating through a depolarizing shift in the voltage dependence of activation thus decreasing CaV3.3-mediated currents in the normal range of activation potentials. Paddle chimeras of KV1.7 channels bearing voltage sensor sequences from all four CaV3.3 domains revealed preferential binding of Pn3a to the S3-S4 region of domain II (CaV3.3DII). This novel T-type channel pharmacological site was explored through computational docking simulations of Pn3a, site-directed mutagenesis, and full domain II swaps between CaV3 channels highlighting it as a subtype-specific pharmacophore. This research expands our understanding of T-type calcium channel pharmacology and supports the suitability of Pn3a as a molecular tool in the study of the physiological roles of CaV3.3 channels.
Collapse
Affiliation(s)
- Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| | - Jierong Wen
- School of Science, RMIT UniversityMelbourneAustralia
| | - Andrew Hung
- School of Science, RMIT UniversityMelbourneAustralia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| |
Collapse
|
17
|
Wang Y, Morishima M, Ono K. Protein Kinase C Regulates Expression and Function of the Cav3.2 T-Type Ca2+ Channel during Maturation of Neonatal Rat Cardiomyocyte. MEMBRANES 2022; 12:membranes12070686. [PMID: 35877889 PMCID: PMC9321535 DOI: 10.3390/membranes12070686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022]
Abstract
Two distinct isoforms of the T-type Ca2+ channel, Cav3.1 and Cav3.2, play a pivotal role in the generation of pacemaker potentials in nodal cells in the heart, although the isoform switches from Cav3.2 to Cav3.1 during the early neonatal period with an unknown mechanism. The present study was designed to investigate the molecular system of the parts that are responsible for the changes of T-type Ca2+ channel isoforms in neonatal cardiomyocytes using the whole-cell patch-clamp technique and mRNA quantification. The present study demonstrates that PKC activation accelerates the Ni2+-sensitive beating rate and upregulates the Ni2+-sensitive T-type Ca2+ channel current in neonatal cardiomyocytes as a long-term effect, whereas PKC inhibition delays the Ni2+-sensitive beating rate and downregulates the Ni2+-sensitive T-type Ca2+ channel current. Because the Ni2+-sensitive T-type Ca2+ channel current is largely composed of the Cav3.2-T-type Ca2+ channel, it is accordingly assumed that PKC activity plays a crucial role in the maintenance of the Cav3.2 channel. The expression of Cav3.2 mRNA was highly positively correlated with PKC activity. The expression of a transcription factor Nkx2.5 mRNA, possibly corresponding to the Cav3.2 channel gene, was decreased by an inhibition of PKCβII. These results suggest that PKC activation, presumably by PKCβII, is responsible for the upregulation of CaV3.2 T-type Ca2+ channel expression that interacts with a cardiac-specific transcription factor, Nkx2.5, in neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathophysiology, Oita University School of Medicine, Oita 879-5593, Japan; (Y.W.); (M.M.)
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Oita 870-1192, Japan
| | - Masaki Morishima
- Department of Pathophysiology, Oita University School of Medicine, Oita 879-5593, Japan; (Y.W.); (M.M.)
- Department of Food Science and Nutrition, Kindai University Faculty of Agriculture, Nara 631-8505, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Oita 879-5593, Japan; (Y.W.); (M.M.)
- Correspondence: ; Tel.: +81-97-586-5650
| |
Collapse
|
18
|
Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int J Mol Sci 2022; 23:ijms23116158. [PMID: 35682837 PMCID: PMC9181413 DOI: 10.3390/ijms23116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF’s history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.
Collapse
Affiliation(s)
- Alvaro R. Ruiz-Fernández
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| | - Leonardo Campos
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Gonzalo Núñez
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
| | - Felipe Villanelo
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| |
Collapse
|
19
|
Wiesehöfer C, Wiesehöfer M, Dankert JT, Chung JJ, von Ostau NE, Singer BB, Wennemuth G. CatSper and its CaM-like Ca 2+ sensor EFCAB9 are necessary for the path chirality of sperm. FASEB J 2022; 36:e22288. [PMID: 35438819 PMCID: PMC9835897 DOI: 10.1096/fj.202101656rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023]
Abstract
Successful fertilization depends on sperm motility adaptation. Ejaculated and activated sperm beat symmetrically in high frequency, move linearly, and swim with clockwise chirality. After capacitation, sperm beat asymmetrically with lower amplitude and a high lateral head excursion. This motility change called hyperactivation requires CatSper activation and an increase in intracellular Ca2+ . However, whether CatSper-mediated Ca2+ influx participates in controlling the swim path chirality is unknown. In this study, we show that the clockwise path chirality is preserved in mouse sperm regardless of capacitation state but is lost in the sperm either lacking the entire CatSper channel or its Ca2+ sensor EFCAB9. Pharmacological inhibition of CatSper with either mibefradil or NNC 55-0396 leads to the same loss in swim path chirality. Exposure of sperm to the recombinant N-terminal part of the zona pellucida protein 2 randomizes chirality in capacitated cells, but not in non-capacitated ones. We conclude that Ca2+ sensitive regulation of CatSper activity orchestrates clockwise swim path chirality of sperm and any substantial change, such as the physiological stimulus of zona pellucida glycoproteins, results in a loss of chirality.
Collapse
Affiliation(s)
| | - Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany
| | | | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicola Edith von Ostau
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Department of Urology, University Hospital Essen, D-45147 Essen, Germany
| | | | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany,Correspondence to
| |
Collapse
|
20
|
He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, Zhao Y. Structure, gating, and pharmacology of human Ca V3.3 channel. Nat Commun 2022; 13:2084. [PMID: 35440630 PMCID: PMC9019099 DOI: 10.1038/s41467-022-29728-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
The low-voltage activated T-type calcium channels regulate cellular excitability and oscillatory behavior of resting membrane potential which trigger many physiological events and have been implicated with many diseases. Here, we determine structures of the human T-type CaV3.3 channel, in the absence and presence of antihypertensive drug mibefradil, antispasmodic drug otilonium bromide and antipsychotic drug pimozide. CaV3.3 contains a long bended S6 helix from domain III, with a positive charged region protruding into the cytosol, which is critical for T-type CaV channel activation at low voltage. The drug-bound structures clearly illustrate how these structurally different compounds bind to the same central cavity inside the CaV3.3 channel, but are mediated by significantly distinct interactions between drugs and their surrounding residues. Phospholipid molecules penetrate into the central cavity in various extent to shape the binding pocket and play important roles in stabilizing the inhibitor. These structures elucidate mechanisms of channel gating, drug recognition, and actions, thus pointing the way to developing potent and subtype-specific drug for therapeutic treatments of related disorders. T-type calcium channels are implicated in many diseases. Here, multiple structures of CaV3.3 channel elucidate molecular mechanisms of T-type CaV channels activation at low voltage and interaction with different clinically used channel blockers.
Collapse
Affiliation(s)
- Lingli He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoya Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Bo Huang
- StoneWise Ltd., 1708, Block B, No.19 Zhongguancun Street, Haidian District, Beijing, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
22
|
Mirlohi S, Bladen C, Santiago M, Connor M. Modulation of Recombinant Human T-Type Calcium Channels by Δ 9-Tetrahydrocannabinolic Acid In Vitro. Cannabis Cannabinoid Res 2022; 7:34-45. [PMID: 33998881 PMCID: PMC8864432 DOI: 10.1089/can.2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Low voltage-activated T-type calcium channels (T-type ICa), CaV3.1, CaV3.2, and CaV3.3, are opened by small depolarizations from the resting membrane potential in many cells and have been associated with neurological disorders, including absence epilepsy and pain. Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound in Cannabis and also directly modulates T-type ICa; however, there is no information about functional activity of most phytocannabinoids on T-type calcium channels, including Δ9-tetrahydrocannabinolic acid (THCA), the natural nonpsychoactive precursor of THC. The aim of this work was to characterize THCA effects on T-type calcium channels. Materials and Methods: We used HEK293 Flp-In-TREx cells stably expressing CaV3.1, 3.2, or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation of ICa. Results: THCA and THC inhibited the peak current amplitude CaV3.1 with pEC50s of 6.0±0.7 and 5.6±0.4, respectively. THC (1 μM) or THC produced a significant negative shift in half activation and inactivation of CaV3.1, and both drugs prolonged CaV3.1 deactivation kinetics. THCA (10 μM) inhibited CaV3.2 by 53%±4%, and both THCA and THC produced a substantial negative shift in the voltage for half inactivation and modest negative shift in half activation of CaV3.2. THC prolonged the deactivation time of CaV3.2, while THCA did not. THCA inhibited the peak current of CaV3.3 by 43%±2% (10 μM) but did not notably affect CaV3.3 channel activation or inactivation; however, THC caused significant hyperpolarizing shift in CaV3.3 steady-state inactivation. Discussion: THCA modulated T-type ICa currents in vitro, with significant modulation of kinetics and voltage dependence at low μM concentrations. This study suggests that THCA may have potential for therapeutic use in pain and epilepsy through T-type calcium channel modulation without the unwanted psychoactive effects associated with THC.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia.,*Address correspondence to: Mark Connor, PhD, Department of Biomedical Sciences, Macquarie University, Sydney 2109, Australia,
| |
Collapse
|
23
|
Voltage-dependent Ca V3.2 and Ca V2.2 channels in nociceptive pathways. Pflugers Arch 2022; 474:421-434. [PMID: 35043234 DOI: 10.1007/s00424-022-02666-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Noxious stimuli like cold, heat, pH change, tissue damage, and inflammation depolarize a membrane of peripheral endings of specialized nociceptive neurons which eventually results in the generation of an action potential. The electrical signal is carried along a long axon of nociceptive neurons from peripheral organs to soma located in dorsal root ganglions and further to the dorsal horn of the spinal cord where it is transmitted through a chemical synapse and is carried through the spinal thalamic tract into the brain. Two subtypes of voltage-activated calcium play a major role in signal transmission: a low voltage-activated CaV3.2 channel and a high voltage-activated CaV2.2 channel. The CaV3.2 channel contributes mainly to the signal conductance along nociceptive neurons while the principal role of the CaV2.2 channel is in the synaptic transmission at the dorsal horn. Both channels contribute to the signal initiation at peripheral nerve endings. This review summarizes current knowledge about the expression and distribution of these channels in a nociceptive pathway, the regulation of their expression and gating during pain pathology, and their suitability as targets for pharmacological therapy.
Collapse
|
24
|
Viggiano M, D'Andrea T, Cameli C, Posar A, Visconti P, Scaduto MC, Colucci R, Rochat MJ, Ceroni F, Milazzo G, Fucile S, Maestrini E, Bacchelli E. Contribution of CACNA1H Variants in Autism Spectrum Disorder Susceptibility. Front Psychiatry 2022; 13:858238. [PMID: 35350424 PMCID: PMC8957782 DOI: 10.3389/fpsyt.2022.858238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neuropsychiatric disorder with a strong genetic component. The genetic architecture is complex, consisting of a combination of common low-risk and more penetrant rare variants. Voltage-gated calcium channels (VGCCs or Cav) genes have been implicated as high-confidence susceptibility genes for ASD, in accordance with the relevant role of calcium signaling in neuronal function. In order to further investigate the involvement of VGCCs rare variants in ASD susceptibility, we performed whole genome sequencing analysis in a cohort of 105 families, composed of 124 ASD individuals, 210 parents and 58 unaffected siblings. We identified 53 rare inherited damaging variants in Cav genes, including genes coding for the principal subunit and genes coding for the auxiliary subunits, in 40 ASD families. Interestingly, biallelic rare damaging missense variants were detected in the CACNA1H gene, coding for the T-type Cav3.2 channel, in ASD probands from two different families. Thus, to clarify the role of these CACNA1H variants on calcium channel activity we performed electrophysiological analysis using whole-cell patch clamp technology. Three out of four tested variants were shown to mildly affect Cav3.2 channel current density and activation properties, possibly leading to a dysregulation of intracellular Ca2+ ions homeostasis, thus altering calcium-dependent neuronal processes and contributing to ASD etiology in these families. Our results provide further support for the role of CACNA1H in neurodevelopmental disorders and suggest that rare CACNA1H variants may be involved in ASD development, providing a high-risk genetic background.
Collapse
Affiliation(s)
- Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziano D'Andrea
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Annio Posar
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Visconti
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberta Colucci
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- Functional and Molecular Neuroimaging Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Targeting T-type channels in cancer: What is on and what is off? Drug Discov Today 2021; 27:743-758. [PMID: 34838727 DOI: 10.1016/j.drudis.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.
Collapse
|
26
|
Tjaden J, Eickhoff A, Stahlke S, Gehmeyr J, Vorgerd M, Theis V, Matschke V, Theiss C. Expression Pattern of T-Type Ca 2+ Channels in Cerebellar Purkinje Cells after VEGF Treatment. Cells 2021; 10:2277. [PMID: 34571926 PMCID: PMC8470219 DOI: 10.3390/cells10092277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/04/2022] Open
Abstract
T-type Ca2+ channels, generating low threshold calcium influx in neurons, play a crucial role in the function of neuronal networks and their plasticity. To further investigate their role in the complex field of research in plasticity of neurons on a molecular level, this study aimed to analyse the impact of the vascular endothelial growth factor (VEGF) on these channels. VEGF, known as a player in vasculogenesis, also shows potent influence in the central nervous system, where it elicits neuronal growth. To investigate the influence of VEGF on the three T-type Ca2+ channel isoforms, Cav3.1 (encoded by Cacna1g), Cav3.2 (encoded by Cacna1h), and Cav3.3 (encoded by Cacna1i), lasermicrodissection of in vivo-grown Purkinje cells (PCs) was performed, gene expression was analysed via qPCR and compared to in vitro-grown PCs. We investigated the VEGF receptor composition of in vivo- and in vitro-grown PCs and underlined the importance of VEGF receptor 2 for PCs. Furthermore, we performed immunostaining of T-type Ca2+ channels with in vivo- and in vitro-grown PCs and showed the distribution of T-type Ca2+ channel expression during PC development. Overall, our findings provide the first evidence that the mRNA expression of Cav3.1, Cav3.2, and Cav3.3 increases due to VEGF stimulation, which indicates an impact of VEGF on neuronal plasticity.
Collapse
Affiliation(s)
- Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Julian Gehmeyr
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany;
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| |
Collapse
|
27
|
Stroedecke K, Meinel S, Markwardt F, Kloeckner U, Straetz N, Quarch K, Schreier B, Kopf M, Gekle M, Grossmann C. The mineralocorticoid receptor leads to increased expression of EGFR and T-type calcium channels that support HL-1 cell hypertrophy. Sci Rep 2021; 11:13229. [PMID: 34168192 PMCID: PMC8225817 DOI: 10.1038/s41598-021-92284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2021] [Indexed: 11/12/2022] Open
Abstract
The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important effector of the renin-angiotensin-aldosterone-system and elicits pathophysiological effects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR-mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identified a SNP within the EGFR promoter that modulates MR-induced EGFR expression. In RNA-sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to differential expression of cardiac ion channels, especially of the T-type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone- and EGF-responsiveness of CACNA1H expression was confirmed in HL-1 cells by Western blot and by measuring peak current density of T-type calcium channels. Aldosterone-induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T-type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL-1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an effect on HL-1 cell diameter, and the extent of this regulation seems to depend on the SNP-216 (G/T) genotype. This suggests that the EGFR may be an intermediate for MR-mediated cardiovascular changes and that SNP analysis can help identify subgroups of patients that will benefit most from MR antagonists.
Collapse
Affiliation(s)
- Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Sandra Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Fritz Markwardt
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Udo Kloeckner
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Katja Quarch
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Kopf
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany.
| |
Collapse
|
28
|
Pulvirenti G, Caccamo M, Lo Bianco M, Mazzurco M, Praticò ER, Giallongo A, Gangi G, Zanghì A, Falsaperla R. Calcium Channels Genes and Their Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractCalcium (Ca2+) channel gene mutations play an important role in the pathogenesis of neurological episodic disorders like epilepsy. CACNA1A and CACNA1H genes are involved in the synthesis of calcium channels. Mutations in the α1A subunit of the P/Q type voltage-gated calcium channel gene (CACNA1A) located in 19p13.13, which encodes for the transmembrane pore-forming subunit of CAV2.1 voltage-dependent calcium channel, have been correlated to a large clinical spectrum of epilepsy such as idiopathic genetic epilepsy, early infantile epilepsy, and febrile seizures. Moreover, CACNA1A mutations have been demonstrated to be involved in spinocerebellar ataxia type 6, familiar hemiplegic migraine, episodic ataxia type 2, early-onset encephalopathy, and hemiconvulsion–hemiplegia epilepsy syndrome. This wide phenotype heterogeneity associated with CACNA1A mutations is correlated to different clinical and electrophysiological manifestations. CACNA1H gene, located in 16p13.3, encodes the α1H subunit of T-type calcium channel, expressing the transmembrane pore-forming subunit Cav3.2. Despite data still remain controversial, it has been identified as an important gene whose mutations seem strictly related to the pathogenesis of childhood absence epilepsy and other generalized epilepsies. The studied variants are mainly gain-of-function, hence responsible for an increase in neuronal susceptibility to seizures. CACNA1H mutations have also been associated with autism spectrum disorder and other behavior disorders. More recently, also amyotrophic lateral sclerosis has been related to CACNA1H alterations. The aim of this review, other than describe the CACNA1A and CACNA1H gene functions, is to identify mutations reported in literature and to analyze their possible correlations with specific epileptic disorders, purposing to guide an appropriate medical treatment recommendation.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | - Alessandro Giallongo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gloria Gangi
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
29
|
Segura E, Mehta A, Marsolais M, Quan XR, Zhao J, Sauvé R, Spafford JD, Parent L. An ancestral MAGUK protein supports the modulation of mammalian voltage-gated Ca 2+ channels through a conserved Ca Vβ-like interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183439. [PMID: 32814116 DOI: 10.1016/j.bbamem.2020.183439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
Eukaryote voltage-gated Ca2+ channels of the CaV2 channel family are hetero-oligomers formed by the pore-forming CaVα1 protein assembled with auxiliary CaVα2δ and CaVβ subunits. CaVβ subunits are formed by a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain connected through a HOOK domain. The GK domain binds a conserved cytoplasmic region of the pore-forming CaVα1 subunit referred as the "AID". Herein we explored the phylogenetic and functional relationship between CaV channel subunits in distant eukaryotic organisms by investigating the function of a MAGUK protein (XM_004990081) cloned from the choanoflagellate Salpingoeca rosetta (Sro). This MAGUK protein (Sroβ) features SH3 and GK structural domains with a 25% primary sequence identity to mammalian CaVβ. Recombinant expression of its cDNA with mammalian high-voltage activated Ca2+ channel CaV2.3 in mammalian HEK cells produced robust voltage-gated inward Ca2+ currents with typical activation and inactivation properties. Like CaVβ, Sroβ prevents fast degradation of total CaV2.3 proteins in cycloheximide assays. The three-dimensional homology model predicts an interaction between the GK domain of Sroβ and the AID motif of the pore-forming CaVα1 protein. Substitution of AID residues Trp (W386A) and Tyr (Y383A) significantly impaired co-immunoprecipitation of CaV2.3 with Sroβ and functional upregulation of CaV2.3 currents. Likewise, a 6-residue deletion within the GK domain of Sroβ, similar to the locus found in mammalian CaVβ, significantly reduced peak current density. Altogether our data demonstrate that an ancestor MAGUK protein reconstitutes the biophysical and molecular features responsible for channel upregulation by mammalian CaVβ through a minimally conserved molecular interface.
Collapse
Affiliation(s)
- Emilie Segura
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada; Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Mireille Marsolais
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Xin R Quan
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Juan Zhao
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Rémy Sauvé
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Lucie Parent
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada; Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada.
| |
Collapse
|
30
|
Gürtler F, Jordan K, Tegtmeier I, Herold J, Stindl J, Warth R, Bandulik S. Cellular Pathophysiology of Mutant Voltage-Dependent Ca2+ Channel CACNA1H in Primary Aldosteronism. Endocrinology 2020; 161:5891807. [PMID: 32785697 DOI: 10.1210/endocr/bqaa135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
The physiological stimulation of aldosterone production in adrenocortical glomerulosa cells by angiotensin II and high plasma K+ depends on the depolarization of the cell membrane potential and the subsequent Ca2+ influx via voltage-activated Ca2+ channels. Germline mutations of the low-voltage activated T-type Ca2+ channel CACNA1H (Cav3.2) have been found in patients with primary aldosteronism. Here, we investigated the electrophysiology and Ca2+ signaling of adrenal NCI-H295R cells overexpressing CACNA1H wildtype and mutant M1549V in order to understand how mutant CACNA1H alters adrenal cell function. Whole-cell patch-clamp measurements revealed a strong activation of mutant CACNA1H at the resting membrane potential of adrenal cells. Both the expression of wildtype and mutant CACNA1H led to a depolarized membrane potential. In addition, cells expressing mutant CACNA1H developed pronounced action potential-like membrane voltage oscillations. Ca2+ measurements showed an increased basal Ca2+ activity, an altered K+ sensitivity, and abnormal oscillating Ca2+ changes in cells with mutant CACNA1H. In addition, removal of extracellular Na+ reduced CACNA1H current, voltage oscillations, and Ca2+ levels in mutant cells, suggesting a role of the partial Na+ conductance of CACNA1H in cellular pathology. In conclusion, the pathogenesis of stimulus-independent aldosterone production in patients with CACNA1H mutations involves several factors: i) a loss of normal control of the membrane potential, ii) an increased Ca2+ influx at basal conditions, and iii) alterations in sensitivity to extracellular K+ and Na+. Finally, our findings underline the importance of CACNA1H in the control of aldosterone production and support the concept of the glomerulosa cell as an electrical oscillator.
Collapse
Affiliation(s)
- Florian Gürtler
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Katrin Jordan
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Janina Herold
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Julia Stindl
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD, Sanders KM. Na +/Ca 2 + Exchange and Pacemaker Activity of Interstitial Cells of Cajal. Front Physiol 2020; 11:230. [PMID: 32256387 PMCID: PMC7093646 DOI: 10.3389/fphys.2020.00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical slow waves in gastrointestinal (GI) smooth muscles. Slow waves organize basic motor patterns, such as peristalsis and segmentation in the GI tract. Slow waves depend upon activation of Ca2+-activated Cl– channels (CaCC) encoded by Ano1. Slow waves consist of an upstroke depolarization and a sustained plateau potential that is the main factor leading to excitation-contraction coupling. The plateau phase can last for seconds in some regions of the GI tract. How elevated Ca2+ is maintained throughout the duration of slow waves, which is necessary for sustained activation of CaCC, is unknown. Modeling has suggested a role for Na+/Ca2+ exchanger (NCX) in regulating CaCC currents in ICC, so we tested this idea on murine intestinal ICC. ICC of small and large intestine express NCX isoforms. NCX3 is closely associated with ANO1 in ICC, as shown by immunoprecipitation and proximity ligation assays (PLA). KB-R7943, an inhibitor of NCX, increased CaCC current in ICC, suggesting that NCX, acting in Ca2+ exit mode, helps to regulate basal [Ca2+]i in these cells. Shifting NCX into Ca2+ entry mode by replacing extracellular Na+ with Li+ increased spontaneous transient inward currents (STICs), due to activation of CaCC. Stepping ICC from −80 to −40 mV activated slow wave currents that were reduced in amplitude and duration by NCX inhibitors, KB-R7943 and SN-6, and enhanced by increasing the NCX driving force. SN-6 reduced the duration of clustered Ca2+ transients that underlie the activation of CaCC and the plateau phase of slow waves. Our results suggest that NCX participates in slow waves as modeling has predicted. Dynamic changes in membrane potential and ionic gradients during slow waves appear to flip the directionality of NCX, facilitating removal of Ca2+ during the inter-slow wave interval and providing Ca2+ for sustained activation of ANO1 during the slow wave plateau phase.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Mei Hong Zhu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kate E O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| |
Collapse
|
32
|
Martínez-Hernández E, Zeglin A, Almazan E, Perissinotti P, He Y, Koob M, Martin JL, Piedras-Rentería ES. KLHL1 Controls Ca V3.2 Expression in DRG Neurons and Mechanical Sensitivity to Pain. Front Mol Neurosci 2020; 12:315. [PMID: 31969803 PMCID: PMC6960199 DOI: 10.3389/fnmol.2019.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons process pain signaling through specialized nociceptors located in their peripheral endings. It has long been established low voltage-activated (LVA) CaV3.2 calcium channels control neuronal excitability during sensory perception in these neurons. Silencing CaV3.2 activity with antisense RNA or genetic ablation results in anti-nociceptive, anti-hyperalgesic and anti-allodynic effects. CaV3.2 channels are regulated by many proteins (Weiss and Zamponi, 2017), including KLHL1, a neuronal actin-binding protein that stabilizes channel activity by recycling it back to the plasma membrane through the recycling endosome. We explored whether manipulation of KLHL1 levels and thereby function as a CaV3.2 modifier can modulate DRG excitability and mechanical pain transmission or sensitivity to pain. We first assessed the mechanical sensitivity threshold and DRG properties in the KLHL1 KO mouse model. KO DRG neurons exhibited smaller T-type current density compared to WT without significant changes in voltage dependence, as expected in the absence of its modulator. Western blot analysis confirmed CaV3.2 but not CaV3.1, CaV3.3, CaV2.1, or CaV2.2 protein levels were significantly decreased; and reduced neuron excitability and decreased pain sensitivity were also found in the KLHL1 KO model. Analogously, transient down-regulation of KLHL1 levels in WT mice with viral delivery of anti-KLHL1 shRNA also resulted in decreased pain sensitivity. These two experimental approaches confirm KLHL1 as a physiological modulator of excitability and pain sensitivity, providing a novel target to control peripheral pain.
Collapse
Affiliation(s)
- Elizabeth Martínez-Hernández
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| | - Alissa Zeglin
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Erik Almazan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Paula Perissinotti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| | - Yungui He
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael Koob
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Jody L. Martin
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| | - Erika S. Piedras-Rentería
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Neuroscience Division of the Cardiovascular Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
33
|
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet 2020; 57:1-10. [PMID: 31217264 PMCID: PMC6929700 DOI: 10.1136/jmedgenet-2019-106163] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Mustafá ER, Cordisco Gonzalez S, Raingo J. Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels. Mol Neurobiol 2019; 57:722-735. [DOI: 10.1007/s12035-019-01738-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
|
35
|
Zhang M, Zou B, Gunaratna MJ, Weerasekara S, Tong Z, Nguyen TDT, Koldas S, Cao WS, Pascual C, Xie XS, Hua DH. SYNTHESIS OF 1,3,4-OXADIAZOLES AS SELECTIVE T-TYPE CALCIUM CHANNEL INHIBITORS. HETEROCYCLES 2019; 101:145-164. [PMID: 32773946 PMCID: PMC7413294 DOI: 10.3987/com-19-s(f)5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropathic pain, epilepsy, insomnia, and tremor disorder may arrive from an increase of intracellular Ca2+ concentration through a dysfunction of T-type Ca2+ channels. Thus, T-type calcium channels could be a target in drug discovery for the treatments of neuropathic pain and epilepsy. From rational drug design approach, a group of 2,5-disubstituted 1,3,4-oxadiazole molecules was synthesized and their selective T-type channel inhibitions were evaluated. The synthetic strategy consists of a short sequence of three reactions: (i) condensation of thiosemicarbazide with acid chlorides; (ii) ring closing by 1,3-dibromo-5,5- dimethylhydantoin; and (iii) coupling with various acid chlorides. 5-Chloro-N-(5- phenyl-1,3,4-oxadiazol-2-yl)thiophene-2-carboxamide (11) was found to selectively inhibit T-type Ca2+ channel over Na+ and K+ channels in mouse dorsal root ganglion neurons and/or human embryonic kidney (HEK)-293 cells and to suppress seizure-induced death in mouse model. Consequently, compound 11 is a useful probe for investigation of physiologic and pathophysiologic roles of the T-channel, and provides a basis to develop a novel therapeutic to treat chronic neuropathic and inflammatory pains.
Collapse
Affiliation(s)
- Man Zhang
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| | - Bende Zou
- AfaSci Research Laboratories, Redwood City, CA 94063, U. S. A
| | - Medha J Gunaratna
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| | - Sahani Weerasekara
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| | - Zongbo Tong
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| | - Thi D T Nguyen
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| | - Serkan Koldas
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| | - William S Cao
- AfaSci Research Laboratories, Redwood City, CA 94063, U. S. A
| | - Conrado Pascual
- AfaSci Research Laboratories, Redwood City, CA 94063, U. S. A
| | | | - Duy H Hua
- Department of Chemistry, Kansas State University, 1212 Mid Campus Drive, Manhattan, KS 66506, U. S. A
| |
Collapse
|
36
|
Papapetropoulos S, Lee MS, Boyer S, Newbold EJ. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial of CX-8998, a Selective Modulator of the T-Type Calcium Channel in Inadequately Treated Moderate to Severe Essential Tremor: T-CALM Study Design and Methodology for Efficacy Endpoint and Digital Biomarker Selection. Front Neurol 2019; 10:597. [PMID: 31244760 PMCID: PMC6579833 DOI: 10.3389/fneur.2019.00597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Essential tremor (ET) is a common, progressive neurological syndrome with bilateral upper-limb dysfunction of at least 3-year duration, with or without tremor in other body locations. This disorder has a negative impact on daily function and quality of life. A single oral therapy has been approved by FDA for ET. Off-label pharmacotherapies have inadequate efficacy and poor tolerability with high rates of patient dissatisfaction and discontinuation. Safe and efficacious pharmacotherapies are urgently needed to decrease tremor and improve daily living. T-CALM (Tremor-CAv3 modulation) protocol is designed to assess safety and efficacy of CX-8998, a selective modulator of the T-type calcium channel, for ET therapy. Methods/Design: T-CALM is a phase 2, proof of concept, randomized, double-blind, placebo-controlled trial. Titrated doses of CX-8998 to 10 mg BID or placebo will be administered for 28 days to moderate to severe ET patients who are inadequately treated with existing therapies. The primary endpoint will be change from baseline to day 28 of The Essential Tremor Rating Assessment Performance Subscale (TETRAS-PS). Secondary efficacy endpoints for clinician and patient perception of daily function will include TETRAS Activity of Daily Living (ADL), Quality of Life in Essential Tremor Questionnaire (QUEST), Clinical Global Impression-Improvement (CGI-I), Patient Global Impression of Change (PGIC), and Goal Attainment Scale (GAS). Kinesia One, Kinesia 360, and iMotor will biometrically evaluate motor function and tremor amplitude. Safety will be assessed by adverse events, physical and neurological exams and laboratory tests. Sample size of 43 patients per group is estimated to have 90% power to detect a 5.5-point difference between CX-8998 and placebo for TETRAS-PS. Efficacy analyses will be performed with covariance (ANCOVA) and 2-sided test at 0.05 significance level. Discussion: T-CALM has a unique design with physician rating scales, patient-focused questionnaires and scales and objective motor measurements to assess clinically meaningful and congruent efficacy. Patient perception of ET debilitation and therapy with CX-8998 will be key findings. Overall goal of T-CALM is generation of safety and efficacy data to support a go, no-go decision to further develop CX-8998 for ET. Design of T-CALM may guide future clinical studies of ET pharmacotherapies. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03101241
Collapse
|
37
|
McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic transient receptor potential vanilloid-1-active compounds inhibit native and recombinant T-type calcium channels. Br J Pharmacol 2019; 176:2264-2278. [PMID: 30927254 DOI: 10.1111/bph.14676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE T-type calcium (Cav 3) and transient receptor potential vanilloid-1 (TRPV1) channels play central roles in the control of excitability in the peripheral nervous system and are regarded as potential therapeutic pain targets. Modulators that either activate or inhibit TRPV1-mediated currents display analgesic properties in various pain models despite opposing effects on their connate target, TRPV1. We explored the effects of TRPV1-active compounds on Cav 3-mediated currents. EXPERIMENTAL APPROACH Whole-cell patch clamp recordings were used to examine the effects of TRPV1-active compounds on rat dorsal root ganglion low voltage-activated calcium currents and recombinant Cav 3 isoforms in expression systems. KEY RESULTS The classical TRPV1 agonist capsaicin as well as TRPV1 antagonists A-889425, BCTC, and capsazepine directly inhibited Cav 3 channels. These compounds altered the voltage-dependence of activation and inactivation of Cav 3 channels and delayed their recovery from inactivation, leading to a concomitant decrease in T-type current availability. The TRPV1 antagonist capsazepine potently inhibited Cav 3.1 and 3.2 channels (KD < 120 nM), as demonstrated by its slow off rate. In contrast, neither the TRPV1 agonists, Palvanil and resiniferatoxin, nor the TRPV1 antagonist AMG9810 modulated Cav 3-mediated currents. CONCLUSIONS AND IMPLICATIONS Analgesic TRPV1-active compounds inhibit Cav 3 currents in native and heterologous systems. Hence, their analgesic effects may not be exclusively attributed to their actions on TRPV1, which has important implications in the current understanding of nociceptive pathways. Importantly, our results highlight the need for attention in the experimental design used to address the analgesic properties of Cav 3 channel inhibitors.
Collapse
Affiliation(s)
- Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
38
|
Son WS, Jeong KS, Lim SM, Pae AN. Structural hybridization of pyrrolidine-based T-type calcium channel inhibitors and exploration of their analgesic effects in a neuropathic pain model. Bioorg Med Chem Lett 2019; 29:1168-1172. [PMID: 30928197 DOI: 10.1016/j.bmcl.2019.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Highly effective and safe drugs for the treatment of neuropathic pain are urgently required and it was shown that blocking T-type calcium channels can be a promising strategy for drug development for neuropathic pain. We have developed pyrrolidine-based T-type calcium channel inhibitors by structural hybridization and subsequent assessment of in vitro activities against Cav3.1 and Cav3.2 channels. Profiling of in vitro ADME properties of compounds was also carried out. The representative compound 17h showed comparable in vivo efficacy to gabapentin in the SNL model, which indicates T-type calcium channel inhibitors can be developed as effective therapeutics for neuropathic pain.
Collapse
Affiliation(s)
- Woo Seung Son
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Chemistry, Yonsei University, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang Min Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
39
|
Qu YS, Lazzerini PE, Capecchi PL, Laghi-Pasini F, El Sherif N, Boutjdir M. Autoimmune Calcium Channelopathies and Cardiac Electrical Abnormalities. Front Cardiovasc Med 2019; 6:54. [PMID: 31119135 PMCID: PMC6507622 DOI: 10.3389/fcvm.2019.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Patients with autoimmune diseases are at increased risk for developing cardiovascular diseases, and abnormal electrocardiographic findings are common. Voltage-gated calcium channels play a major role in the cardiovascular system and regulate cardiac excitability and contractility. Particularly, by virtue of their localization and expression in the heart, calcium channels modulate pace making at the sinus node, conduction at the atrioventricular node and cardiac repolarization in the working myocardium. Consequently, emerging evidence suggests that calcium channels are targets to autoantibodies in autoimmune diseases. Autoimmune-associated cardiac calcium channelopathies have been recognized in both sinus node dysfunction atrioventricular block in patients positive for anti-Ro/La antibodies, and ventricular arrhythmias in patients with dilated cardiomyopathy. In this review, we discuss mechanisms of autoimmune-associated calcium channelopathies and their relationship with the development of cardiac electrical abnormalities.
Collapse
Affiliation(s)
- Yongxia Sarah Qu
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, United States.,VA New York Harbor Healthcare System and State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nabil El Sherif
- VA New York Harbor Healthcare System and State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System and State University of New York Downstate Medical Center, Brooklyn, NY, United States.,NYU School of Medicine, New York, NY, United States
| |
Collapse
|
40
|
Jurkovicova-Tarabova B, Cmarko L, Rehak R, Zamponi GW, Lacinova L, Weiss N. Identification of a molecular gating determinant within the carboxy terminal region of Ca v3.3 T-type channels. Mol Brain 2019; 12:34. [PMID: 30961646 PMCID: PMC6454634 DOI: 10.1186/s13041-019-0457-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
The physiological functions controlled by T-type channels are intrinsically dependent on their gating properties, and alteration of T-type channel activity is linked to several human disorders. Therefore, it is essential to develop a clear understanding of the structural determinants responsible for the unique gating features of T-type channels. Here, we have investigated the specific role of the carboxy terminal region by creating a series a deletion constructs expressed in tsA-201 cells and analyzing them by patch clamp electrophysiology. Our data reveal that the proximal region of the carboxy terminus contains a structural determinant essential for shaping several gating aspects of Cav3.3 channels, including voltage-dependence of activation and inactivation, inactivation kinetics, and coupling between the voltage sensing and the pore opening of the channel. Altogether, our data are consistent with a model in which the carboxy terminus stabilizes the channel in a closed state.
Collapse
Affiliation(s)
| | - Leos Cmarko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Renata Rehak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lubica Lacinova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Academy of Sciences, Bratislava, Slovakia
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| |
Collapse
|
41
|
Schaub C, Uebachs M. Scaling of recovery rates influences T-type Ca 2+ channel availability following IPSPs. Heliyon 2019; 5:e01278. [PMID: 30886927 PMCID: PMC6395784 DOI: 10.1016/j.heliyon.2019.e01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 11/24/2022] Open
Abstract
The excitability of neuronal membranes is crucially modulated by T-type Ca2+ channels (ICaT) due to their low threshold of activation. ICaT inactivates steeply at potentials close to the resting membrane potential. Therefore, the availability of ICaT following changes in membrane potential depends on the time course of the onset of inactivation as well as on the time course of recovery from inactivation. It was previously shown that the time course of recovery from inactivation depends on the duration of the conditioning pulse in cloned T-type Ca2+ channel subunits (Cav3.1-Cav3.3(Uebachs et al., 2006)). This provides a potential mechanism for an intrinsic form of short term plasticity. Here, we address the question, whether this mechanism results in altered availability of ICaT following physiological changes in membrane potential. We found that the recovery of ICaT during an IPSP depends on the duration of a preceding depolarized period.
Collapse
Affiliation(s)
- Christina Schaub
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, Life & Brain Center, Sigmund Freud Str. 2, 53121, Bonn, Germany.,Department of Neurology, University of Bonn, Sigmund Freud Str. 2, 53121, Bonn, Germany
| | - Mischa Uebachs
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, Life & Brain Center, Sigmund Freud Str. 2, 53121, Bonn, Germany.,Department of Neurology, University of Bonn, Sigmund Freud Str. 2, 53121, Bonn, Germany
| |
Collapse
|
42
|
Liu Y, Iwano T, Ma F, Wang P, Wang Y, Zheng M, Liu G, Ono K. Short- and long-term roles of phosphatidylinositol 4,5-bisphosphate PIP 2 on Cav3.1- and Cav3.2-T-type calcium channel current. ACTA ACUST UNITED AC 2018; 26:31-38. [PMID: 30528337 DOI: 10.1016/j.pathophys.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/24/2022]
Abstract
T-type calcium (Ca2+) channels play important physiological functions in excitable cells including cardiomyocyte. Phosphatidylinositol-4,5-bisphosphate (PIP2) has recently been reported to modulate various ion channels' function. However the actions of PIP2 on the T-type Ca2+ channel remain unclear. To elucidate possible effects of PIP2 on the T-type Ca2+ channel, we applied patch clamp method to investigate recombinant CaV3.1- and CaV3.2-T-type Ca2+ channels expressed in mammalian cell lines with PIP2 in acute- and long-term potentiation. Short- and long-term potentiation of PIP2 shifted the activation and the steady-state inactivation curve toward the hyperpolarization direction of CaV3.1-ICa.T without affecting the maximum inward current density. Short- and long-term potentiation of PIP2 also shifted the activation curve toward the hyperpolarization direction of CaV3.2-ICa.T without affecting the maximum inward current density. Conversely, long-term but not short-term potentiation of PIP2 shifted the steady-state inactivation curve toward the hyperpolarization direction of CaV3.2-ICa.T. Long-term but not short-term potentiation of PIP2 blunted the voltage-dependency of current decay CaV3.1-ICa.T. PIP2 modulates CaV3.1- and CaV3.2-ICa.T not by their current density but by their channel gating properties possibly through its membrane-delimited actions.
Collapse
Affiliation(s)
- Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China; Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Tomohiro Iwano
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China; Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China; Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Yan Wang
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
43
|
Arteaga-Tlecuitl R, Sanchez-Sandoval AL, Ramirez-Cordero BE, Rosendo-Pineda MJ, Vaca L, Gomora JC. Increase of Ca V3 channel activity induced by HVA β1b-subunit is not mediated by a physical interaction. BMC Res Notes 2018; 11:810. [PMID: 30428904 PMCID: PMC6236959 DOI: 10.1186/s13104-018-3917-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023] Open
Abstract
Objective Low voltage-activated (LVA) calcium channels are crucial for regulating oscillatory behavior in several types of neurons and other excitable cells. LVA channels dysfunction has been implicated in epilepsy, neuropathic pain, cancer, among other diseases. Unlike for High Voltage-Activated (HVA) channels, voltage-dependence and kinetics of currents carried by recombinant LVA, i.e., CaV3 channels, are quite similar to those observed in native currents. Therefore, whether these channels are regulated by HVA auxiliary subunits, remain controversial. Here, we used the α1-subunits of CaV3.1, CaV3.2, and CaV3.3 channels, together with HVA auxiliary β-subunits to perform electrophysiological, confocal microscopy and immunoprecipitation experiments, in order to further explore this possibility. Results Functional expression of CaV3 channels is up-regulated by all four β-subunits, although most consistent effects were observed with the β1b-subunit. The biophysical properties of CaV3 channels were not modified by any β-subunit. Furthermore, although β1b-subunits increased colocalization of GFP-tagged CaV3 channels and the plasma membrane of HEK-293 cells, western blots analysis revealed the absence of physical interaction between CaV3.3 and β1b-subunits as no co-immunoprecipitation was observed. These results provide solid evidence that the up-regulation of LVA channels in the presence of HVA-β1b subunit is not mediated by a high affinity interaction between both proteins. Electronic supplementary material The online version of this article (10.1186/s13104-018-3917-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rogelio Arteaga-Tlecuitl
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Belen Ernestina Ramirez-Cordero
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
44
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
45
|
Abstract
This review will first describe the importance of Ca2+ entry for function of excitable cells, and the subsequent discovery of voltage-activated calcium conductances in these cells. This finding was rapidly followed by the identification of multiple subtypes of calcium conductance in different tissues. These were initially termed low- and high-voltage activated currents, but were then further subdivided into L-, N-, PQ-, R- and T-type calcium currents on the basis of differing pharmacology, voltage-dependent and kinetic properties, and single channel conductance. Purification of skeletal muscle calcium channels allowed the molecular identification of the pore-forming and auxiliary α2δ, β and ϒ subunits present in these calcium channel complexes. These advances then led to the cloning of the different subunits, which permitted molecular characterisation, to match the cloned channels with physiological function. Studies with knockout and other mutant mice then allowed further investigation of physiological and pathophysiological roles of calcium channels. In terms of pharmacology, cardiovascular L-type channels are targets for the widely used antihypertensive 1,4-dihydropyridines and other calcium channel blockers, N-type channels are a drug target in pain, and α2δ-1 is the therapeutic target of the gabapentinoid drugs, used in neuropathic pain. Recent structural advances have allowed a deeper understanding of Ca2+ permeation through the channel pore and the structure of both the pore-forming and auxiliary subunits. Voltage-gated calcium channels are subject to multiple pathways of modulation by G-protein and second messenger regulation. Furthermore, their trafficking pathways, subcellular localisation and functional specificity are the subjects of active investigation.
Collapse
|
46
|
Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:38-44. [DOI: 10.1016/j.pbiomolbio.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
47
|
Yang HK, Son WS, Lim KS, Kim GH, Lim EJ, Gadhe CG, Lee JY, Jeong KS, Lim SM, Pae AN. Synthesis and biological evaluation of pyrrolidine-based T-type calcium channel inhibitors for the treatment of neuropathic pain. J Enzyme Inhib Med Chem 2018; 33:1460-1471. [PMID: 30231778 PMCID: PMC6151954 DOI: 10.1080/14756366.2018.1513926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hak Kyun Yang
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Woo Seung Son
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea.,b Department of Chemistry , Yonsei University , Seoul , Republic of Korea
| | - Keon Seung Lim
- c 1ST Biotherapeutics Inc. , Seongnam , Gyeonggi-do , Republic of Korea
| | - Gun Hee Kim
- d Research Institute for Basic Sciences and Department of Chemistry, College of Sciences , Kyung Hee University , Seoul , Republic of Korea
| | - Eun Jeong Lim
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Changdev G Gadhe
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Jae Yeol Lee
- d Research Institute for Basic Sciences and Department of Chemistry, College of Sciences , Kyung Hee University , Seoul , Republic of Korea
| | - Kyu-Sung Jeong
- b Department of Chemistry , Yonsei University , Seoul , Republic of Korea
| | - Sang Min Lim
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea.,e Division of Bio-Medical Science and Technology , Korea University of Science and Technology , Daejon , Republic of Korea
| | - Ae Nim Pae
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea.,f Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul , Republic of Korea
| |
Collapse
|
48
|
Hazzaz Abouamal T, Choukairi Z, Taoufiq F. Functional Exploration Of T-Type Calcium Channels (Cav3.2 And Cav3.3) And Their Sensitivity To Zinc. Open Microbiol J 2018; 12:280-287. [PMID: 30197701 PMCID: PMC6110071 DOI: 10.2174/1874285801812010280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/22/2022] Open
Abstract
Introduction: T-type Ca2+ channels (TTCC) are low Voltage-gated calcium channels, expressed in various tissues such as the brain and heart, and contribute to a variety of physiological functions including neuronal excitability, hormone secretion, muscle contraction, and pacemaker activity. At high concentrations, Zinc (Zn2+) is naturally attached to cell membranes and is therefore considered a reversible inhibitor of calcium. Zinc is also involved in the kinetics of sodium and potassium currents. Zinc is essential for many functions. A low zinc tenor is associated with emotional instability, digestive disorders, slow-growing and alteration of protein synthesis. Material and Methods: For the Cell Culture we used HEK-293/tsA-201, and for transfection, the pCDNA3 plasmid constructs encoding human CaV3.2, and CaV3.3 subunits. Electrophysiological experiments were performed using the whole cell configuration of the patch-clamp technique. T-type currents were recorded using a test pulse from a holding potential at (-100mV) to (-30 mV), data Acquisition and Analysis for Current-voltage relationships (I-V curves) were recorded for the two cloned T-type Ca2+ channels (Cav3.2, Cav3.3). Results: Our studies describe the behavior of these channels Cav3.2 and Cav3.3 and also their current sensitivity to Zinc (Zn2+) in transfected HEK-293/tsA-201cells. Our results show that Zn2+ applies a modulatory effect on T-type calcium channels. We observe that Zn2+ differentially modulates the CaV3.2 and CaV3.3 channels. Zn2+ preferably inhibits Cav3.2. Conclusion: We have demonstrated that Zn2+ differentially modulates two CaV3 channels (Cav3.2 and Cav3.3): It is a preferential blocker of CaV3.2 channels and it alters the gating behaviour of CaV3.3 channels.
Collapse
Affiliation(s)
- Tahar Hazzaz Abouamal
- Department of Biology, Laboratory of Biosciences, Faculty of Sciences and Technology of Mohammedia, Casablanca, Morocco
| | - Zineb Choukairi
- Department of Biology, Laboratory of Biosciences, Faculty of Sciences and Technology of Mohammedia, Casablanca, Morocco
| | - Fechtali Taoufiq
- Department of Biology, Laboratory of Biosciences, Faculty of Sciences and Technology of Mohammedia, Casablanca, Morocco
| |
Collapse
|
49
|
Zheng H, Drumm BT, Earley S, Sung TS, Koh SD, Sanders KM. SOCE mediated by STIM and Orai is essential for pacemaker activity in the interstitial cells of Cajal in the gastrointestinal tract. Sci Signal 2018; 11:eaaq0918. [PMID: 29895614 PMCID: PMC6310020 DOI: 10.1126/scisignal.aaq0918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrical pacemaker activity generates phasic contractions and motility patterns such as segmentation and peristalsis in the gastrointestinal tract. Pacemaker currents are generated in interstitial cells of Cajal (ICC), which release Ca2+ from intracellular stores that stimulates Ca2+-activated Cl- channels (CaCCs) in the plasma membrane. Thus, Ca2+ stores must be maintained to sustain pacemaker activity. Store-operated Ca2+ entry (SOCE) facilitates the refilling of Ca2+ stores by a mechanism dependent upon interactions between STIM and Orai proteins. We investigated the role of SOCE in ICC pacemaker activity. Reintroduction of extracellular Ca2+ in store-depleted ICC resulted in CaCC activation. Blocking CaCCs revealed an inwardly rectifying current with properties of a Ca2+ release-activated current (ICRAC). An inhibitory peptide that interfered with the STIM-Orai interaction blocked ICRAC in HEK 293 cells expressing STIM1 and Orai1 and blocked spontaneous transient inward currents (STICs) and slow wave currents in ICC. STICs, which are fundamental pacemaker events in ICC, were blocked by an Orai antagonist. Imaging of Ca2+ transients linked to pacemaker activity in ICC in intact muscles showed that the Orai antagonist blocked Ca2+ transients in ICC. These data suggest that Ca2+ recovery through STIM-Orai interactions is necessary to maintain ICC pacemaker activity.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
50
|
Snutch TP, Zamponi GW. Recent advances in the development of T-type calcium channel blockers for pain intervention. Br J Pharmacol 2018; 175:2375-2383. [PMID: 28608534 PMCID: PMC5980537 DOI: 10.1111/bph.13906] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023] Open
Abstract
Cav 3.2 T-type calcium channels are important regulators of pain signals in the afferent pain pathway, and their activities are dysregulated during various chronic pain states. Therefore, it is reasonable to predict that inhibiting T-type calcium channels in dorsal root ganglion neurons and in the spinal dorsal horn can be targeted for pain relief. This is supported by early pharmacological studies with T-type channel blockers, such as ethosuximide, and by analgesic effects of siRNA depletion of Cav 3.2 channels. In the past 5 years, considerable effort has been applied towards identifying novel classes of T-type calcium channel blockers. Here, we review recent developments in the discovery of novel classes of T-type calcium channel blockers, and their analgesic effects in animal models of pain and in clinical trials. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| |
Collapse
|