1
|
Pallod S, Aguilera Olvera R, Ghosh D, Rai L, Brimo S, DeCambra W, Sant HG, Ristich E, Singh V, Abedin MR, Chang N, Yarger JL, Lee JK, Kilbourne J, Yaron JR, Haydel SE, Rege K. Skin repair and infection control in diabetic, obese mice using bioactive laser-activated sealants. Biomaterials 2024; 311:122668. [PMID: 38908232 PMCID: PMC11562812 DOI: 10.1016/j.biomaterials.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Conventional wound approximation devices, including sutures, staples, and glues, are widely used but risk of wound dehiscence, local infection, and scarring can be exacerbated in these approaches, including in diabetic and obese individuals. This study reports the efficacy and quality of tissue repair upon photothermal sealing of full-thickness incisional skin wounds using silk fibroin-based laser-activated sealants (LASEs) containing copper chloride salt (Cu-LASE) or silver nanoprisms (AgNPr-LASE), which absorb and convert near-infrared (NIR) laser energy to heat. LASE application results in rapid and effective skin sealing in healthy, immunodeficient, as well as diabetic and obese mice. Although lower recovery of epidermal structure and function was seen with AgNPr-LASE sealing, likely because of the hyperthermia induced by laser and presence of this material in the wound space, this approach resulted in higher enhancement in recovery of skin biomechanical strength compared to sutures and Cu-LASEs in diabetic, obese mice. Histological and immunohistochemical analyses revealed that AgNPr-LASEs resulted in significantly lower neutrophil migration to the wound compared to Cu-LASEs and sutures, indicating a more muted inflammatory response. Cu-LASEs resulted in local tissue toxicity likely because of effects of copper ions as manifested in the form of a significant epidermal gap and a 'depletion zone', which was a region devoid of viable cells proximal to the wound. Compared to sutures, LASE-mediated sealing, in later stages of healing, resulted in increased angiogenesis and diminished myofibroblast activation, which can be indicative of lower scarring. AgNPr-LASE loaded with vancomycin, an antibiotic drug, significantly lowered methicillin-resistant Staphylococcus aureus (MRSA) load in a pathogen challenge model in diabetic and obese mice and also reduced post-infection inflammation of tissue compared to antibacterial sutures. Taken together, these attributes indicate that AgNPr-LASE demonstrated a more balanced quality of tissue sealing and repair in diabetic and obese mice and can be used for combating local infections, that can result in poor healing in these individuals.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Rodrigo Aguilera Olvera
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA
| | - Deepanjan Ghosh
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Lama Rai
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; College of Health Solutions, Arizona State University, USA
| | - Souzan Brimo
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Harsh Girish Sant
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Eron Ristich
- School of Molecular Sciences, Arizona State University, USA; School of Computing and Augmented Intelligence, Arizona State University, USA
| | - Vanshika Singh
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | - Muhammad Raisul Abedin
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Nicolas Chang
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Jung Keun Lee
- Departments of Pathology and Population Medicine, Midwestern University, College of Veterinary Medicine, 5725 West Utopia Rd., Glendale, AZ, 85308, USA
| | | | - Jordan R Yaron
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Shelley E Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA; School of Life Sciences, Arizona State University, 501 E. Tyler Mall ECG 303, Tempe, AZ, 85287-6106, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA.
| |
Collapse
|
2
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Fang Y, Fan C, Li Y, Xie H. The influence of Helicobacter pylori infection on acute coronary syndrome and lipid metabolism in the Chinese ethnicity. Front Cell Infect Microbiol 2024; 14:1437425. [PMID: 39290976 PMCID: PMC11405380 DOI: 10.3389/fcimb.2024.1437425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Acute coronary syndrome (ACS) patients frequently present a relatively high prevalence of Helicobacter pylori (H. pylori) infection. H. pylori was previously hypothesized to induce ACS through the regulation of lipid levels. However, the risk of H. pylori-induced ACS varies significantly among different ethnic groups, and the associations between H. pylori and lipid parameters remain unclear. This study aimed to systematically assess the risk of ACS in Chinese populations with H. pylori infection while also evaluating the effects of H. pylori on lipid parameters. Materials and methods A hospital-based case-control study involving 280 participants was conducted. Immunoblotting was used for the detection and genotyping of H. pylori. The associations between H. pylori and ACS, as well as lipid parameters, were analyzed via the chi-square test and a multiple logistic regression model. Results H. pylori infection significantly increased the risk of ACS among all participants (adjusted odds ratio (OR) = 4.04, 95% confidence interval (CI): 1.76-9.25, P < 0.05), with no associations with virulence factors (cytotoxin-associated gene A (CagA) or vacuole toxin geneA (VacA)). Subgroup analysis revealed a significant increase in the risk of ACS among the elderly population aged 56-64 years with H. pylori infection. Additionally, a substantial association was observed between H. pylori and acute myocardial infarction (AMI). No significant differences were found in lipid parameters, including low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and the LDL/HDL ratio, between individuals positive and negative for H. pylori infection. Similar results were observed between the ACS group and the control group. Conclusions Our study has demonstrated for the first time that H. pylori does not significantly impact lipid metabolism but increases the risk of ACS fourfold in the Chinese population (OR = 4.04, 95% CI: 1.76-9.25). Furthermore, the virulence factors of H. pylori (CagA and VacA) may not be involved in the mechanisms by which they promote the development of ACS. This finding provides additional evidence for the association between H. pylori and ACS among different ethnic groups and refutes the biological mechanism by which H. pylori affects ACS through lipid metabolism regulation. Regular screening for H. pylori and eradication treatment in elderly individuals and those at high risk for ACS may be effective measures for reducing the incidence of ACS. Future research should include multicenter randomized controlled trials and explore host genetics and the effects of H. pylori on the gut microbiota as potential biological pathways linking H. pylori and ACS.
Collapse
Affiliation(s)
- Yizhen Fang
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
| | - Chunming Fan
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
| | - Yun Li
- Blood Transfusion Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
| |
Collapse
|
5
|
Castellani S, Evangelista C, Lepore M, Portaccio M, Basiricò L, Bernabucci U, Delfino I. Insights on early response to acute heat shock of bovine mammary epithelial cells through a multimethod approach. Animal 2024; 18:101264. [PMID: 39116469 DOI: 10.1016/j.animal.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Heat stress is a significant challenge in dairy cattle herds, affecting milk production and quality, and generating important changes at the cellular level. Most in vitro research on heat shock (HS) effects on dairy cow mammary cells was focused on medium-long-term effects. In recent years, Fourier transform-infrared (FT-IR) micro-spectroscopy has been increasingly used to study the effects of several external stresses on different cell lines, down to the level of single cellular components, such as DNA/RNA, lipids, and proteins. In this study, the possible changes at the biochemical and molecular level induced by acute (30 min-2 h) HS in bovine mammary epithelial (BME-UV1) cells were investigated. The cells were exposed to different temperatures, thermoneutral (TN, 37 °C) and HS (42 °C), and FT-IR spectra were acquired to analyse the effects of HS on biochemical characteristics of BME-UV1 cellular components (proteins, lipids, and DNA/RNA). Moreover, cell viability assay, reactive oxygen species production, and mRNA expression of heat shock proteins (HSPA1A, HSP90AA1, GRP78, GRP94) and antioxidant genes (SOD1, SOD2) by RT-qPCR were also analysed. The FT-IR results showed a change already at 30 min of HS exposure, in the content of long-chain fatty acids, which probably acted as a response to a modification of membrane fluidity in HS cells compared with TN cells. After 2 h of HS exposure, modification of DNA/RNA activity and accumulation of aggregated proteins was highlighted in HS cells. The gene expression analyses showed the overexpression of HSPA1A and HSP90AA1 starting from 30 min up to 2 h in HS cells compared with TN cells. At 2 h of HS exposure, also the overexpression of GRP94 was observed in HS cells. Acute HS did not affect cell viability, reactive oxygen species level, and SOD1 and SOD2 gene expression of BME-UV1 cells. According to the results obtained, cells initiate early defence mechanisms in case of acute HS and probably this efficient response capacity may be decisive for tolerance to heat stress of dairy cattle.
Collapse
Affiliation(s)
- S Castellani
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, via San Camillo De Lellis, s.n.c, Viterbo, Italy
| | - C Evangelista
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, via San Camillo De Lellis, s.n.c, Viterbo, Italy
| | - M Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - M Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - L Basiricò
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, via San Camillo De Lellis, s.n.c, Viterbo, Italy.
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, via San Camillo De Lellis, s.n.c, Viterbo, Italy
| | - I Delfino
- Dipartimento di Scienze Ecologiche e Biologiche (DEB), Università della Tuscia, via San Camillo De Lellis, s.n.c, Viterbo, Italy; INAF- Osservatorio Astronomico di Capodimonte Napoli, Salita Moiariello 16, Napoli, Italy
| |
Collapse
|
6
|
Wang R, Wang S, Jiang H, Lan Y, Yu S. Prospects for the clinical application of exosomal circular RNA in squamous cell carcinoma. Front Oncol 2024; 14:1430684. [PMID: 38933443 PMCID: PMC11200112 DOI: 10.3389/fonc.2024.1430684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Squamous cell carcinoma (SCC) is a prevalent malignancy affecting multiple organs in the human body, including the oral cavity, esophagus, cervix, and skin. Given its significant incidence and mortality rates, researchers are actively seeking effective diagnostic and therapeutic strategies. In recent years, exosomes and their molecular cargo, particularly circular RNA (circRNA), have emerged as promising areas of investigation in SCC research. Exosomes are small vesicles released into the extracellular environment by cells that contain biomolecules that reflect the physiological state of the cell of origin. CircRNAs, known for their unique covalently closed loop structure and stability, have garnered special attention in oncology and are closely associated with tumorigenesis, progression, metastasis, and drug resistance. Interestingly, exosomal circRNAs have been identified as ideal biomarkers for noninvasive cancer diagnosis and prognosis assessment. This article reviews the progress in research on exosomal circRNAs, focusing on their expression patterns, functions, and potential applications as biomarkers in SCC, aiming to provide new insights and strategies for the diagnosis and treatment of SCC.
Collapse
Affiliation(s)
- Rongzhong Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingmei Lan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobin Yu
- Division of Nephrology, National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Jiang J, Zhang X, Wang H, Spanos M, Jiang F, Ni L, Li J, Li G, Lin Y, Xiao J. Closer to The Heart: Harnessing the Power of Targeted Extracellular Vesicle Therapies. Adv Biol (Weinh) 2024; 8:e2300141. [PMID: 37953665 DOI: 10.1002/adbi.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/08/2023] [Indexed: 11/14/2023]
Abstract
Extracellular vesicles (EVs) have emerged as novel diagnostic and therapeutic approaches for cardiovascular diseases. EVs derived from various origins exhibit distinct effects on the cardiovascular system. However, the application of native EVs is constrained due to their poor stabilities and limited targeting capabilities. Currently, targeted modification of EVs primarily involves genetic engineering, chemical modification (covalent, non-covalent), cell membrane modification, and biomaterial encapsulation. These techniques enhance the stability, biological activity, target-binding capacity, and controlled release of EVs at specific cells and tissues. The diverse origins of cardioprotective EVs are covered, and the applications of cardiac-targeting EV delivery systems in protecting against cardiovascular diseases are discussed. This review summarizes the current stage of research on the potential of EV-based targeted therapies for addressing cardiovascular disorders.
Collapse
Affiliation(s)
- Jizong Jiang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hongyun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Fei Jiang
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingyan Ni
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jin Li
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanjuan Lin
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
10
|
Heinrichs-Caldas W, Ikert H, Almeida-Val VMF, Craig PM. Sex matters: Gamete-specific contribution of microRNA following parental exposure to hypoxia in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101090. [PMID: 37267726 DOI: 10.1016/j.cbd.2023.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Oxygen availability varies among aquatic environments, and oxygen concentration has been demonstrated to drive behavioral, metabolic, and genetic adaptations in numerous aquatic species. MicroRNAs (miRNAs) are epigenetic modulators that act at the interface of the environment and the transcriptome and are known to drive plastic responses following environmental stressors. An area of miRNA that has remained underexplored is the sex specific action of miRNAs following hypoxia exposure and its effects as gene expression regulator in fishes. This study aimed to identify differences in mRNA and miRNA expression in the F1 generation of zebrafish (Danio rerio) at 1 hpf after either F0 parental male or female were exposed to 2 weeks of continuous (45 %) hypoxia. In general, F1 embryos at 1 hpf demonstrated differences in mRNA and miRNAs expression related to the stressor and to the specific sex of the F0 that was exposed to hypoxia. Bioinformatic pathway analysis of predicted miRNA:mRNA relationships indicated responses in known hypoxia signaling and mitochondrial bioenergetic pathways. This research demonstrates the importance of examining the specific male and female contributions to phenotypic variation in subsequent generations and provides evidence that there is both maternal and paternal contribution of miRNA through eggs and sperm.
Collapse
Affiliation(s)
- Waldir Heinrichs-Caldas
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil.
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Vera Maria Fonseca Almeida-Val
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
11
|
Uche N, Dai Q, Lai S, Kolander K, Thao M, Schibly E, Sendaydiego X, Zielonka J, Benjamin IJ. Carvedilol Phenocopies PGC-1α Overexpression to Alleviate Oxidative Stress, Mitochondrial Dysfunction and Prevent Doxorubicin-Induced Toxicity in Human iPSC-Derived Cardiomyocytes. Antioxidants (Basel) 2023; 12:1585. [PMID: 37627583 PMCID: PMC10451268 DOI: 10.3390/antiox12081585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Doxorubicin (DOX), one of the most effective and widely used anticancer drugs, has the major limitation of cancer treatment-related cardiotoxicity (CTRTOX) in the clinic. Reactive oxygen species (ROS) generation and mitochondrial dysfunction are well-known consequences of DOX-induced injury to cardiomyocytes. This study aimed to explore the mitochondrial functional consequences and associated mechanisms of pretreatment with carvedilol, a ß-blocking agent known to exert protection against DOX toxicity. When disease modeling was performed using cultured rat cardiac muscle cells (H9c2 cells) and human iPSC-derived cardiomyocytes (iPSC-CMs), we found that prophylactic carvedilol mitigated not only the DOX-induced suppression of mitochondrial function but that the mitochondrial functional readout of carvedilol-pretreated cells mimicked the readout of cells overexpressing the major regulator of mitochondrial biogenesis, PGC-1α. Carvedilol pretreatment reduces mitochondrial oxidants, decreases cell death in both H9c2 cells and human iPSC-CM and maintains the cellular 'redox poise' as determined by sustained expression of the redox sensor Keap1 and prevention of DOX-induced Nrf2 nuclear translocation. These results indicate that, in addition to the already known ROS-scavenging effects, carvedilol has a hitherto unrecognized pro-reducing property against the oxidizing conditions induced by DOX treatment, the sequalae of DOX-induced mitochondrial dysfunction and compromised cell viability. The novel findings of our preclinical studies suggest future trial design of carvedilol prophylaxis, such as prescreening for redox state, might be an alternative strategy for preventing oxidative stress writ large in lieu of the current lack of clinical evidence for ROS-scavenging agents.
Collapse
Affiliation(s)
- Nnamdi Uche
- Cardiovascular Center, Department of Physiology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Qiang Dai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Shuping Lai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Kurt Kolander
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Mai Thao
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Elizabeth Schibly
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Xavier Sendaydiego
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Jacek Zielonka
- Free Radical Laboratory, Department of Biophysics, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Ivor J. Benjamin
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| |
Collapse
|
12
|
Lee SH, Sun MH, Jiang WJ, Li XH, Heo G, Zhou D, Chen Z, Cui XS. Alpha-lipoic acid attenuates heat stress-induced apoptosis via upregulating the heat shock response in porcine parthenotes. Sci Rep 2023; 13:8427. [PMID: 37225872 PMCID: PMC10209172 DOI: 10.1038/s41598-023-35587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023] Open
Abstract
Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
13
|
Wang Y, Abazid A, Badendieck S, Mustea A, Stope MB. Impact of Non-Invasive Physical Plasma on Heat Shock Protein Functionality in Eukaryotic Cells. Biomedicines 2023; 11:biomedicines11051471. [PMID: 37239142 DOI: 10.3390/biomedicines11051471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, biomedical research has increasingly investigated physical plasma as an innovative therapeutic approach with a number of therapeutic biomedical effects. It is known from radiation and chemotherapy that these applications can lead to the induction and activation of primarily cytoprotective heat shock proteins (HSP). HSP protect cells and tissues from physical, (bio)chemical, and physiological stress and, ultimately, along with other mechanisms, govern resistance and treatment failure. These mechanisms are well known and comparatively well studied in drug therapy. For therapies in the field of physical plasma medicine, however, extremely little data are available to date. In this review article, we provide an overview of the current studies on the interaction of physical plasma with the cellular HSP system.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Steffen Badendieck
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
14
|
Kaushik R, Arya A, Kumar D, Goel A, Rout PK. Genetic studies of heat stress regulation in goat during hot climatic condition. J Therm Biol 2023; 113:103528. [PMID: 37055132 DOI: 10.1016/j.jtherbio.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 04/15/2023]
Abstract
Various direct and indirect environmental constraints have an impact on livestock performance. The physiological parameters, such as rectal temperature, heart rate, and respiratory rate, are the primary indicators of thermal stress. Under a stressed environment temperature humidity index (THI) had established as a vital measurement to identify the thermal stress in livestock. THI in association with climatic variations can define the environmental effect as stressful or comfortable for livestock. Goats are small ruminants that adapt to a wide range of ecological variations due to their anatomical and physiological characteristics. However, the productivity of animals declines at the individual level during thermal stress. Stress tolerance can be determined through genetic studies associated with at the cellular level using physiological as well as molecular approaches. Information on genetic association with thermal stress in goats is scanty, this severely affects their survival and hence productivity of livestock. The ever-increasing demand for food across the globe needs deciphering novel molecular markers as well as stress indicators that play a vital role in livestock improvement. This review represents an analysis of current knowledge of phenotypic differences during thermal stress and signifies the importance of physiological responses and their association at the cellular level in goats. The regulation of vital genes associated with thermal stress such as Aquaporins (AQP 0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, and 10) and super-aquaporins (AQP 11, 12); BAX inhibitors such as PERK (PKR like ER kinase), IRE 1(inositol-requiring-1); Redox regulating genes such as NOX; Transport of Na+ and K+ such as ATPase (ATP1A1) and several heat shock proteins have been implicated in heat-stress related adaptations have been elucidated. As these changes have a significant impact on production performance as well as on livestock productivity. Such efforts may help in the development of molecular markers and will assist the breeders to develop heat-tolerant goats with improved productivity.
Collapse
Affiliation(s)
- Rakesh Kaushik
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, U.P, India; Department of Biotechnology, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, 281406, U.P, India.
| | - Aditya Arya
- ICMR-National Institute for Malaria Research, Dwarka Sector- 8, New Delhi, 110077, India
| | - Devendra Kumar
- Department of Biotechnology, Keral Verma Subharti College of Science, Swami Vivekanand Subharti University, Meerut, 250005, U.P, India
| | - Anjana Goel
- Department of Biotechnology, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, 281406, U.P, India
| | - P K Rout
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, U.P, India.
| |
Collapse
|
15
|
Puzyrenko A, Jacobs ER, Padilla N, Devine A, Aljadah M, Gantner BN, Pan AY, Lai S, Dai Q, Rubenstein JC, North PE, Simpson PM, Willoughby RE, O'Meara CC, Flinn MA, Lough JW, Ibrahim EH, Zheng Z, Sun Y, Felix J, Hunt BC, Ross G, Rui H, Benjamin IJ. Collagen-Specific HSP47 + Myofibroblasts and CD163 + Macrophages Identify Profibrotic Phenotypes in Deceased Hearts With SARS-CoV-2 Infections. J Am Heart Assoc 2023; 12:e027990. [PMID: 36789856 PMCID: PMC10111490 DOI: 10.1161/jaha.122.027990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Cardiac fibrosis complicates SARS-CoV-2 infections and has been linked to arrhythmic complications in survivors. Accordingly, we sought evidence of increased HSP47 (heat shock protein 47), a stress-inducible chaperone protein that regulates biosynthesis and secretion of procollagen in heart tissue, with the goal of elucidating molecular mechanisms underlying cardiac fibrosis in subjects with this viral infection. Methods and Results Using human autopsy tissue, immunofluorescence, and immunohistochemistry, we quantified Hsp47+ cells and collagen α 1(l) in hearts from people with SARS-CoV-2 infections. Because macrophages are also linked to inflammation, we measured CD163+ cells in the same tissues. We observed irregular groups of spindle-shaped HSP47+ and CD163+ cells as well as increased collagen α 1(I) deposition, each proximate to one another in "hot spots" of ≈40% of hearts after SARS-CoV-2 infection (HSP47+ P<0.05 versus nonfibrotics and P<0.001 versus controls). Because HSP47+ cells are consistent with myofibroblasts, subjects with hot spots are termed "profibrotic." The remaining 60% of subjects dying with COVID-19 without hot spots are referred to as "nonfibrotic." No control subject exhibited hot spots. Conclusions Colocalization of myofibroblasts, M2(CD163+) macrophages, and collagen α 1(l) may be the first evidence of a COVID-19-related "profibrotic phenotype" in human hearts in situ. The potential public health and diagnostic implications of these observations require follow-up to further define mechanisms of viral-mediated cardiac fibrosis.
Collapse
|
16
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
17
|
Ding X, An Q, Zhao W, Song Y, Tang X, Wang J, Chang CC, Zhao G, Hsiai T, Fan G, Fan Y, Li S. Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury. JCI Insight 2022; 7:153769. [DOI: 10.1172/jci.insight.153769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
|
18
|
Gene expression and functional analysis of Aha1a and Aha1b in stress response in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110777. [PMID: 35830921 DOI: 10.1016/j.cbpb.2022.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Activator of heat shock protein 90 (hsp90) ATPase (Aha1) is a Hsp90 co-chaperone required for Hsp90 ATPase activation. Aha1 is essential for yeast survival and muscle development in C. elegans under elevated temperature and hsp90-deficeiency induced stress conditions. The roles of Aha1 in vertebrates are poorly understood. Here, we characterized the expression and function of Aha1 in zebrafish. We showed that zebrafish genome contains two aha1 genes, aha1a and aha1b, that show distinct patterns of expression during development. Under the normal physiological conditions, aha1a is primarily expressed in skeletal muscle cells of zebrafish embryos, while aha1b is strongly expressed in the head region. aha1a and aha1b expression increased dramatically in response to heat shock induced stress. In addition, Aha1a-GFP fusion protein exhibited a dynamic translocation in muscle cells in response to heat shock. Moreover, upregulation of aha1 expression was also observed in hsp90a1 knockdown embryos that showed a muscle defect. Genetic studies demonstrated that knockout of aha1a, aha1b or both had no detectable effect on embryonic development, survival, and growth in zebrafish. The aha1a and aha1b mutant embryos showed normal muscle development and stress response in response to heat shock. Single or double aha1a and aha1b mutants could grow into normal reproductive adults with normal skeletal muscle structure and morphology compared with wild type control. Together, data from these studies indicate that Aha1a and Aha1b are involved in stress response. However, they are dispensable in zebrafish embryonic development, growth, and survival.
Collapse
|
19
|
Lou J, Chen H, Huang S, Chen P, Yu Y, Chen F. Update on risk factors and biomarkers of sudden unexplained cardiac death. J Forensic Leg Med 2022; 87:102332. [DOI: 10.1016/j.jflm.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
|
20
|
Kim WK, Kim WH, Kweon OK, Kang BJ. Heat-Shock Proteins Can Potentiate the Therapeutic Ability of Cryopreserved Mesenchymal Stem Cells for the Treatment of Acute Spinal Cord Injury in Dogs. Stem Cell Rev Rep 2022; 18:1461-1477. [PMID: 35001344 DOI: 10.1007/s12015-021-10316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are applied in the treatment of spinal cord injury (SCI) because of their neural tissue restoring ability. In the clinical setting, intravenous injection of cryopreserved cells is essential for the immediate treatment of SCI, exhibiting the disadvantage of reduced cell properties. METHODS In this study, we potentiated the characteristics of cryopreserved MSCs by heat-shock (HS) treatment to induce the expression of HS protein (HSP) HSP70/HSP27 and further improved antioxidant capacity by overexpressing HSP32 (heme oxygenase-1 [HO-1]). We randomly assigned 12 beagle dogs with acute SCI into three groups and transplanted cells intravenously: (i) F-MSCs (MSCs in frozen/thawed conditions); (ii) F-HSP-MSCs (HS-treated MSCs in frozen/thawed conditions); and (iii) F-HSP-HO-MSCs (HO-1-overexpressing and HS-treated MSCs in frozen/thawed conditions). RESULTS The potentiated MSCs exhibited increased growth factor-, anti-inflammatory-, antioxidant-, homing- and stemness-related gene expression. In the animal experiments, the HSP-induced groups showed significant improvement in hind-limb locomotion, highly expressed neural markers, less intervened fibrotic changes, and improved myelination. In particular, the HO-1-overexpression group was more prominent, controlling the initial inflammatory response with high antioxidant capabilities, suggesting that antioxidation was important to prevent secondary injury. Accordingly, HSPs not only successfully increased the ability of frozen MSCs but also demonstrated excellent neural protection and regeneration capacity in the case of acute SCI. CONCLUSIONS The application of HSP-induced cryopreserved MSCs in first-aid treatment for acute SCI is considered to help early neural sparing and further hind-limb motor function restoration.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea. .,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
21
|
Kiuchi T, Watanabe K, Nakagun S, Miyahara K, Horiuchi N, Kobayashi Y. Chronic otitis externa with heat shock protein 70-positive intranuclear inclusion bodies in the ceruminous gland epithelium of a Chihuahua dog. J Toxicol Pathol 2022; 35:83-87. [PMID: 35221498 PMCID: PMC8828612 DOI: 10.1293/tox.2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
A Chihuahua dog showed persistent itching in the right ear canal. Anti-inflammatory
medicines and prednisolone were ineffective and total ear canal ablation was performed.
Histological diagnosis was chronic otitis externa. Eosinophilic intranuclear inclusion
bodies (Cowdry type A and full-type) were occasionally observed in the ceruminous gland
epithelium. The inclusion bodies were negative for nucleic acid and ultrastructurally
composed of fibrous structures (approximately 10 nm in width). Viral infection was
initially suspected, but polymelase chain reaction tests did not detect the expected viral
genes. Immunohistochemistry revealed that the inclusion bodies were positive for heat
shock protein 70 (HSP70), suggesting that these bodies could be protein aggregates
including HSP70. The etiology of this lesion has not been elucidated, but chronic
inflammation may influence the cytoplasm-to-nuclear transportation of HSP70. To the best
of our knowledge, this is the first report of canine chronic otitis externa with
HSP70-positive intranuclear inclusion bodies.
Collapse
Affiliation(s)
- Takeru Kiuchi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro-shi, Hokkaido 080-8555, Japan
| | - Kenichi Watanabe
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro-shi, Hokkaido 080-8555, Japan
| | - Shotaro Nakagun
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro-shi, Hokkaido 080-8555, Japan
| | - Kazurou Miyahara
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro-shi, Hokkaido 080-8555, Japan
| | - Noriyuki Horiuchi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro-shi, Hokkaido 080-8555, Japan
| | - Yoshiyasu Kobayashi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro-shi, Hokkaido 080-8555, Japan
| |
Collapse
|
22
|
Yoon S, Gergs U, McMullen JR, Eom GH. Overexpression of Heat Shock Protein 70 Improves Cardiac Remodeling and Survival in Protein Phosphatase 2A-Expressing Transgenic Mice with Chronic Heart Failure. Cells 2021; 10:cells10113180. [PMID: 34831402 PMCID: PMC8624068 DOI: 10.3390/cells10113180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Heat shock protein (HSP) 70 is a molecular chaperone that regulates protein structure in response to thermal stress. In addition, HSP70 is involved in post-translational modification and is related to the severity of some diseases. Here, we tested the functional relevance of long-lasting HSP70 expression in a model of nonischemic heart failure using protein phosphatase 2 catalytic subunit A (PP2CA)-expressing transgenic mice. These transgenic mice, with cardiac-specific overexpression of PP2CA, abruptly died after 12 weeks of postnatal life. Serial echocardiograms to assess cardiac function revealed that the ejection fraction (EF) was gradually decreased in transgenic PP2CA (TgPP2CA) mice. In addition, PP2CA expression exacerbated systolic dysfunction and LV dilatation, with free wall thinning, which are indicators of fatal dilated cardiomyopathy. Interestingly, simultaneous expression of HSP70 in double transgenic mice (dTg) significantly improved the dilated cardiomyopathy phenotype of TgPP2CA mice. We observed better survival, preserved EF, reduced chamber enlargement, and suppression of free wall thinning. In the proposed molecular mechanism, HSP70 preferentially regulates the phosphorylation of AKT. Phosphorylation of AKT was significantly reduced in TgPP2CA mice but was not significantly lower in dTg mice. Signal crosstalk between AKT and its substrates, in association with HSP70, might be a useful intervention for patients with nonischemic heart failure to suppress cardiac remodeling and improve survival.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea
- Correspondence: (S.Y.); (G.H.E.); Tel.: +82-61-379-2843 (S.Y.); +82-61-379-2837 (G.H.E.)
| | - Ulrich Gergs
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | | | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea
- Correspondence: (S.Y.); (G.H.E.); Tel.: +82-61-379-2843 (S.Y.); +82-61-379-2837 (G.H.E.)
| |
Collapse
|
23
|
Sitnikov DS, Pronkin AA, Ilina IV, Revkova VA, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Numerical modelling and experimental verification of thermal effects in living cells exposed to high-power pulses of THz radiation. Sci Rep 2021; 11:17916. [PMID: 34504144 PMCID: PMC8429778 DOI: 10.1038/s41598-021-96898-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Exposure of cells or biological tissues to high-power pulses of terahertz (THz) radiation leads to changes in a variety of intracellular processes. However, the role of heating effects due to strong absorption of THz radiation by water molecules still stays unclear. In this study, we performed numerical modelling in order to estimate the thermal impact on water of a single THz pulse as well as a series of THz pulses. A finite-element (FE) model that provides numerical solutions for the heat conduction equation is employed to compute the temperature increase. A simple expression for temperature estimation in the center of the spot of THz radiation is presented for given frequency and fluence of the THz pulse. It has been demonstrated that thermal effect is determined by either the average power of radiation or by the fluence of a single THz pulse depending on pulse repetition rate. Human dermal fibroblasts have been exposed to THz pulses (with an energy of [Formula: see text] and repetition rate of 100 Hz) to estimate the thermal effect. Analysis of heat shock proteins expression has demonstrated no statistically significant difference ([Formula: see text]) between control and experimental groups after 3 h of irradiation.
Collapse
Affiliation(s)
- D S Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow, Russia, 125412.
| | - A A Pronkin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow, Russia, 125412
| | - I V Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow, Russia, 125412
| | - V A Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Orekhovy Boulevard 28, Moscow, Russia, 115682
| | - M A Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Orekhovy Boulevard 28, Moscow, Russia, 115682
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russia
| | - V A Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Orekhovy Boulevard 28, Moscow, Russia, 115682
| | - V P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Orekhovy Boulevard 28, Moscow, Russia, 115682
| |
Collapse
|
24
|
Puzyrenko A, Jacobs ER, Sun Y, Felix JC, Sheinin Y, Ge L, Lai S, Dai Q, Gantner BN, Nanchal R, North PE, Simpson PM, Rui H, Benjamin IJ. Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies. Cell Stress Chaperones 2021; 26:859-868. [PMID: 34382151 PMCID: PMC8357488 DOI: 10.1007/s12192-021-01230-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Andrii Puzyrenko
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Yunguang Sun
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Juan C Felix
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yuri Sheinin
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Linna Ge
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shuping Lai
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Qiang Dai
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Rahul Nanchal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paula E North
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pippa M Simpson
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Milwaukee, WI, USA
| | - Hallgeir Rui
- MCW Cancer Center, Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Ivor J Benjamin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
25
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
26
|
Jin W, Tan E, Ghartey-Kwansah G, Jia Y, Xi G. Expression of 20-hydroxyecdysone-related genes during gonadal development of Teleogryllus emma (Orthoptera: Gryllidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21824. [PMID: 34272758 DOI: 10.1002/arch.21824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Insect gonads develop under endocrine signals. In this study, we assessed the characters of partial complementary DNAs encoding the Teleogryllus emma orthologs of 20-hydroxyecdysone (20E)-related genes (RXR, E75, HR3, Hsc70, and Hsp90) and analyzed their expression patterns in both nymph and adult crickets. 20E treatment suppressed expression of TeEcR, TeRXR, TeE75, TeHR3, TeHsc70, and TeHsp90. Temporal expression analysis demonstrated that TeERR and 20E-related genes were expressed in four stages of gonadal development from the fourth-instar nymph stage to the adult stage. The expression pattern of these genes differed in testicular and ovarian development. TeRXR, HR3, TeHsc70, and TeHsp90 were irregularly expressed in gonads of the same developmental stages, while mRNAs encoding TeERR, TeEcR, and TeE75 accumulated in higher levels in ovaries than in testes. RNA interference (RNAi) of TeEcR expression led to decrease of the expression levels of TeEcR, TeRXR, TeHR3, and TeHsc70, while it enhanced TeE75 and TeHsp90 expressions. These results demonstrate that the TeERR and 20E-related genes help regulate gonadal development, while TeEcR appears to inhibit TeE75 expression, TeE75 inhibits HR3 expression. Hsc70 indirectly regulated the expression of the primary and secondary response genes E74A, E75B, and HR3. Hsp90 regulated Usp expression with no direct regulatory relationship with EcR.
Collapse
Affiliation(s)
- Wenjie Jin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
- Laboratory of Animal Reproduction and Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - E Tan
- Laboratory of Animal Reproduction and Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - George Ghartey-Kwansah
- Laboratory of Animal Reproduction and Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yishu Jia
- Laboratory of Animal Reproduction and Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Gengsi Xi
- Laboratory of Animal Reproduction and Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
27
|
Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10081167. [PMID: 34439415 PMCID: PMC8388996 DOI: 10.3390/antiox10081167] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|
28
|
Yadid M, Lind JU, Ardoña HAM, Sheehy SP, Dickinson LE, Eweje F, Bastings MMC, Pope B, O'Connor BB, Straubhaar JR, Budnik B, Kleber AG, Parker KK. Endothelial extracellular vesicles contain protective proteins and rescue ischemia-reperfusion injury in a human heart-on-chip. Sci Transl Med 2021; 12:12/565/eaax8005. [PMID: 33055246 DOI: 10.1126/scitranslmed.aax8005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) derived from various stem cell sources induce cardioprotective effects during ischemia-reperfusion injury (IRI). These have been attributed mainly to the antiapoptotic, proangiogenic, microRNA (miRNA) cargo within the stem cell-derived EVs. However, the mechanisms of EV-mediated endothelial signaling to cardiomyocytes, as well as their therapeutic potential toward ischemic myocardial injury, are not clear. EV content beyond miRNA that may contribute to cardioprotection has not been fully illuminated. This study characterized the protein cargo of human vascular endothelial EVs (EEVs) to identify lead cardioactive proteins and assessed the effect of EEVs on human laminar cardiac tissues (hlCTs) exposed to IRI. We mapped the protein content of human vascular EEVs and identified proteins that were previously associated with cellular metabolism, redox state, and calcium handling, among other processes. Analysis of the protein landscape of human cardiomyocytes revealed corresponding modifications induced by EEV treatment. To assess their human-specific cardioprotection in vitro, we developed a human heart-on-a-chip IRI assay using human stem cell-derived, engineered cardiac tissues. We found that EEVs alleviated cardiac cell death as well as the loss in contractile capacity during and after simulated IRI in an uptake- and dose-dependent manner. Moreover, we found that EEVs increased the respiratory capacity of normoxic cardiomyocytes. These results suggest that vascular EEVs rescue hlCTs exposed to IRI possibly by supplementing injured myocytes with cargo that supports multiple metabolic and salvage pathways and therefore may serve as a multitargeted therapy for IRI.
Collapse
Affiliation(s)
- Moran Yadid
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Johan U Lind
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sean P Sheehy
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Lauren E Dickinson
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maartje M C Bastings
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Ecole Polytechnique Federale Lausanne (EPFL), School of Engineering, Institute of Materials, Programmable Biomaterials Laboratory, Station 12, 1015 Lausanne, Switzerland
| | - Benjamin Pope
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Blakely B O'Connor
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Bogdan Budnik
- FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Andre G Kleber
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
29
|
PARK DJ, KANG JB, KOH PO. Identification of regulated proteins by epigallocatechin gallate treatment in an ischemic cerebral cortex animal model: a proteomics approach. J Vet Med Sci 2021; 83:916-926. [PMID: 33883340 PMCID: PMC8267205 DOI: 10.1292/jvms.21-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a fatal disease that has long-term disability. It induces excessive oxidative stress generation and cellular metabolic disorders, result in tissue damage. Epigallocatechin gallate (EGCG) is a naturally derived flavonoid with strong antioxidant property. We previously reported the neuroprotective effect of EGCG in ischemic stroke. The defensive mechanisms of stroke are very diverse and complex. This study investigated specific proteins that are regulated by EGCG treatment in the ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. EGCG (50 mg/kg) or vehicle was intraperitoneally administered just prior to MCAO. MCAO induced severe neurological deficits and disorders. EGCG treatment alleviated these neurological disorder and damage. Cerebral cortex was used for this study. Two-dimensional gel electrophoresis and mass spectrometry were performed to detect the proteins altered by EGCG. We identified various proteins that were changed between vehicle- and EGCG-treated animals. Among these proteins, isocitrate dehydrogenase, dynamin-like protein 1, and γ-enolase were decreased in vehicle-treated animals, while EGCG treatment prevented these decreases. However, pyridoxal-5'-phosphate phosphatase and 60 kDa heat shock protein were increased in vehicle-treated animals with MCAO injury. EGCG treatment attenuated these increases. The changes in these proteins were confirmed by Western blot and reverse transcription-PCR analyses. These proteins were associated with cellular metabolism and neuronal regeneration. Thus, these findings can suggest that EGCG performs a defensive mechanism in ischemic damage by regulating specific proteins related to energy metabolism and neuronal protection.
Collapse
Affiliation(s)
- Dong-Ju PARK
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| |
Collapse
|
30
|
Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs. Exp Gerontol 2021; 147:111267. [PMID: 33548486 PMCID: PMC9897888 DOI: 10.1016/j.exger.2021.111267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Menopause leads to estradiol (E2) deficiency that is associated with decreases in muscle mass and strength. Here we studied the effect of E2 deficiency on microRNA (miR) signaling that targets apoptotic pathways. METHODS C57BL6 mice were divided into control (normal estrous cycle, n = 8), OVX (E2 deficiency, n = 7) and OVX + E2 groups (E2-pellet, n = 4). Six weeks following the OVX surgery, mice were sacrificed and RNA isolated from gastrocnemius muscles. miR-profiles were studied with Next-Generation Sequencing (NGS) and candidate miRs verified using qPCR. The target proteins of the miRs were found using in silico analysis and measured at mRNA (qPCR) and protein levels (Western blot). RESULTS Of the apoptosis-linked miRs present, eleven (miRs-92a-3p, 122-5p, 133a-3p, 214-3p, 337-3p, 381-3p, 483-3p, 483-5p, 491-5p, 501-5p and 652-3p) indicated differential expression between OVX and OVX + E2 mice in NGS analysis. In qPCR verification, muscle from OVX mice had lower expression of all eleven miRs compared with OVX + E2 (p < 0.050). Accordingly, OVX had higher expression of cytochrome C and caspases 6 and 9 compared with OVX + E2 at the mRNA level (p < 0.050). At the protein level, OVX also had lower anti-apoptotic BCL-W and greater pro-apoptotic cytochrome C and active caspase 9 compared with OVX + E2 (p < 0.050). CONCLUSION E2 deficiency downregulated several miRs related to apoptotic pathways thus releasing their targets from miR-mediated suppression, which may lead to increased apoptosis and contribute to reduced skeletal muscle mass.
Collapse
|
31
|
Wang X, Zhu Y, Zhou Q, Yan Y, Qu J, Ye H. Heat shock protein 70 expression protects against sepsis-associated cardiomyopathy by inhibiting autophagy. Hum Exp Toxicol 2021; 40:735-741. [PMID: 33073623 DOI: 10.1177/0960327120965758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Increasing evidence suggests that heat shock protein 70 (Hsp70) has a protective effect in sepsis-induced cardiomyopathy; however, the protective mechanism remains unclear. METHODS Previous studies have also implicated autophagy in sepsis-induced cardiomyopathy. The aim of the current study was to reveal the protective mechanisms of Hsp70 in sepsis-induced cardiomyopathy using a cecal ligation and puncture (CLP) rat sepsis model. The roles of Hsp70 and autophagy in sepsis-induced cardiomyopathy were investigated by pretreating rats with the Hsp70 inhibitor quercetin or the autophagy inhibitor 3-methyladenine (3-Ma) before CLP. We also investigated the protective mechanisms of Hsp70 and the relationship between Hsp70 and autophagy in vitro by stimulating H9c2 cells with lipopolysaccharide (LPS) to simulate sepsis. RESULTS The result show that inhibition of Hsp70 promoted sepsis-induced death in rats, while inhibition of autophagy inhibited sepsis-induced death. These results suggested that both Hsp70 and autophagy were involved in sepsis-induced cardiomyopathy. Overexpression of Hsp70 in H9c2 myocardial cells in vitro suppressed LPS-induced apoptosis, while inhibition of autophagy with 3-Ma also decreased LPS-induced H9c2 cell apoptosis, suggesting that the protective effect of Hsp70 in sepsis-induced cardiomyopathy was related to autophagy regulation. CONCLUSION Overall, these results suggested that Hsp70 protected against sepsis-induced cardiac impairment by attenuating sepsis-induced autophagy.
Collapse
Affiliation(s)
| | | | - Qiuxiang Zhou
- Department of Critical Care and Emergency, 56652Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yueyue Yan
- Department of Critical Care and Emergency, 56652Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jinlong Qu
- Department of Critical Care and Emergency, 56652Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongwei Ye
- Department of Critical Care and Emergency, The Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu, China
| |
Collapse
|
32
|
Kim S, Kim Y, Hyun YS, Choi H, Kim SY, Kim TG. Exosomes from human cord blood plasma accelerate cutaneous wound healing by promoting fibroblast function, angiogenesis, and M2 macrophage differentiation. Biomater Sci 2021; 9:3028-3039. [PMID: 33657200 DOI: 10.1039/d0bm01801e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exosomes contain natural cargo molecules, such as miRNA, mRNA, and proteins, and transfer these functional cargos to neighboring or distant cells through circulation. In the wound-healing process, exosomes in the human blood and body fluids perform various functions, including proliferation, angiogenesis, differentiation, and wound healing, owing to their unique compositions. However, there is very limited information on the wound-healing effect of proteins in human cord blood plasma exosomes (CBPexo). Therefore, we studied the wound-healing potential of these proteins in terms of fibroblast functions, angiogenesis, and M2 macrophage differentiation. When scratch wound assays were conducted using human fibroblasts, CBPexo exhibited better wound-healing effects than adult blood plasma exosomes (ABPexo). CBPexo also promoted angiogenesis and differentiation of M2 macrophages, thus promoting the transition from inflammation to proliferation. To evaluate the CBPexo molecules involved, five proteins, GAL-3, GAL-7, HSP-72, PIP, and S100-A7, were selected through proteomic analysis, and their functions were investigated using an artificial exosome that expresses these proteins. Among these, HSP72 and PIP exhibited wound-healing effects similar to CBPexo. Furthermore, artificial exosomes expressing both HSP72 and PIP showed better wound-healing effects than CBPexo. Therefore, the use of artificial CBPexo can potentially overcome the limitations related to exosome production from CB.
Collapse
Affiliation(s)
- Sueon Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeongwon Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su-Yeon Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea and Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
33
|
Vahidinia Z, Mahdavi E, Talaei SA, Naderian H, Tamtaji A, Haddad Kashani H, Beyer C, Azami Tameh A. The effect of female sex hormones on Hsp27 phosphorylation and histological changes in prefrontal cortex after tMCAO. Pathol Res Pract 2021; 221:153415. [PMID: 33857717 DOI: 10.1016/j.prp.2021.153415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Female sex hormones are protective factors against many neurological disorders such as brain ischemia. Heat shock protein like HSP27 is activated after tissue injury. The main purpose of the present study is to determine the effect of a combined estrogen / progesterone cocktail on the morphology of astrocytes, neurons and Hsp27 phosphorylation after cerebral ischemia. METHODS One hour after the MCAO induction, a single dose of estrogen and progesterone was injected. The infarct volume was calculated by TTC staining 24 h after ischemia. Immunohistochemistry was used to show the effects of estrogen and progesterone on astrocyte and neuron morphology, as well as the Western blot technique used for the quantitation of phosphorylated Hsp27. RESULTS The combined dose of estrogen and progesterone significantly decreased astrocytosis after ischemia and increased neuron survival. There was a large increase in Hsp27 phosphorylation in the penumbra ischemic region after stroke, which was significantly reduced by hormone therapy. CONCLUSION Our results indicate that the neuroprotective effect of neurosteroids in the brain may be due to the modulation of heat shock proteins.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Mahdavi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Homayoun Naderian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Aboutaleb Tamtaji
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Yin L, Yang Y, Zhu W, Xian Y, Han Z, Huang H, Peng L, Zhang K, Zhao Y. Heat Shock Protein 90 Triggers Multi-Drug Resistance of Ovarian Cancer via AKT/GSK3β/β-Catenin Signaling. Front Oncol 2021; 11:620907. [PMID: 33738259 PMCID: PMC7960917 DOI: 10.3389/fonc.2021.620907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic tumor, with which multi-drug resistance as the major therapeutic hindrance. Heat shock protein 90 (Hsp90) has been involved in cancer malignant behaviors. However, its role and mechanism in multi-drug resistance of ovarian cancer remains poorly understood. Our results demonstrated that Hsp90 was overexpressed in multi-drug resistant ovarian cancer cells. Hsp90 downregulation by shHsp90 or inhibitor BIIB021 increased the sensitivity of multi-drug resistant ovarian cancer cells to paclitaxel and cisplatin, and augmented the drugs-induced apoptosis. Hsp90 positively regulated the expressions of multi-drug resistance protein 1 (P-gp/MDR1), breast cancer resistance protein (BCRP), Survivin and Bcl-2 expressions closely associated with multi-drug resistance. Moreover, overexpression of Hsp90 promoted β-catenin accumulation, while Hsp90 downregulation decreased the accumulation, nuclear translocation and transcriptional activity of β-catenin. We also identified that β-catenin was responsible for Hsp90-mediated expressions of P-gp, BCRP, Survivin, and Bcl-2. Furthermore, Hsp90 enhanced the AKT/GSK3β signaling, and AKT signaling played a critical role in Hsp90-induced accumulation and transcriptional activity of β-catenin, as well as multi-drug resistance to paclitaxel and cisplatin. In conclusion, Hsp90 enhanced the AKT/GSK3β/β-catenin signaling to induce multi-drug resistance of ovarian cancer. Suppressing Hsp90 chemosensitized multi-drug resistant ovarian cancer cells via impairing the AKT/GSK3β/β-catenin signaling, providing a promising therapeutic strategy for a successful treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lan Yin
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Xian
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Houyi Huang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Liaotian Peng
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Ye Zhao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
35
|
Rigopoulos AG, Kalogeropoulos AS, Tsoporis JN, Sakadakis EA, Triantafyllis AS, Noutsias M, Gupta S, Parker TG, Rizos I. Heat Shock Protein 70 Is Associated With Cardioversion Outcome and Recurrence of Symptomatic Recent Onset Atrial Fibrillation in Hypertensive Patients. J Cardiovasc Pharmacol 2021; 77:360-369. [PMID: 33298735 DOI: 10.1097/fjc.0000000000000962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Accumulating evidence indicates that heat shock proteins (HSPs) may represent a suitable biomarker to predict atrial fibrillation (AF). We investigated the relation of circulating serum HSP70 (sHSP70) with inflammatory cytokines and recurrence of symptomatic recent onset AF (ROAF). We enrolled 90 patients with ROAF (the duration from onset of symptoms ≤24 hours) and 30 controls. Patients received amiodarone for cardioversion and rhythm control. The association of serum HSP70, serum interleukin-2 (sIL-2), and serum interleukin-4 (sIL-4) with the presence of cardioversion and AF recurrence within a year was investigated. Toll-like receptor 4 (TLR4) signaling dependence for IL-2 and IL-4 induction in response to stimulation with HSP70 was tested in rat aortic vascular smooth muscle cell cultures. Patients had higher sHSP70 and sIL-2 and lower sIL-4 compared with controls. Serum HSP70 was independently associated with ROAF (P = 0.005) and correlated with sIL-2 (r = 0.494, P < 0.001) and sIL-4 (r = -0.550, P < 0.001). By 48 hours, 71 of the 90 patients were cardioverted, with noncardioverted patients having higher sHSP70 and sIL-2 and lower sIL-4, which were the only independent factors associated with cardioversion. AF recurred in 38 of the 71 cardioverted patients in 1 year. A cutoff value of sHSP70 ≥0.65 ng/mL and sIL-2 ≥0.21 pg/mL was the only independent factor associated with AF recurrence (hazard ratio: 3.311, 95% confidence interval: 1.503-7.293, P = 0.003 and hazard ratio: 3.144, 95% confidence interval: 1.341-7.374, P = 0.008, respectively). The exposure of smooth muscle cell to HSP70 in vitro increased the expression of IL-2 (5×) and IL-4 (1.5×) through TLR4-dependent and receptor-independent mechanisms. In conclusion, sHSP70 and sIL-2 might constitute a prognostic tool for determining the cardioversion and recurrence likelihood in ROAF.
Collapse
Affiliation(s)
- Angelos G Rigopoulos
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
- Department of Internal Medicine III, Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany ; and
| | - Andreas S Kalogeropoulos
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - James N Tsoporis
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eleftherios A Sakadakis
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Andreas S Triantafyllis
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Michel Noutsias
- Department of Internal Medicine III, Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany ; and
| | - Sahil Gupta
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas G Parker
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ioannis Rizos
- 2nd Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| |
Collapse
|
36
|
Mitra S, Bagchi A, Dasgupta R. Elucidation of Diverse Physico-Chemical Parameters in Mammalian Small Heat Shock Proteins: A Comprehensive Classification and Structural and Functional Exploration Using In Silico Approach. Appl Biochem Biotechnol 2021; 193:1836-1852. [PMID: 33570730 DOI: 10.1007/s12010-021-03497-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Small heat shock proteins (sHSPs), often known as molecular chaperones, are most prevalent in nature. Under certain stress-induced conditions, these sHSPs act as an ATP-independent variation and thus prevent the inactivation of various non-native substrate proteins and their aggregation. They also assist other ATP-dependent chaperones in the refolding of these substrates. In the case of prokaryotes and lower eukaryotes, the chaperone functions of sHSPs can bind a wide range of cellular proteins but preferentially protect translation-related proteins and metabolic enzymes. Eukaryotes usually encode a larger number of sHSPs than those of prokaryotes. The chaperone functions of mammalian sHSPs are regulated by phosphorylation in cells and also by temperature. Their sHSPs have different sub-cellular compartments and cell/tissue specificity. The substrate proteins of mammalian sHSPs or eukaryotic sHSPs accordingly reflect their multi-cellular complexity. The sHSPs of animals play roles in different physiological processes as cell differentiation, apoptosis, and longevity. In this work, the characterization, location, tissue specificity, and functional diversity of sHSPs from seven different mammalian species with special emphasis on humans have been studied. Through this extensive work, a novel and significant attempt have been made to classify them based on their omnipresence, tissue specificity, localization, secondary structure, probable mutations, and evolutionary significance.
Collapse
Affiliation(s)
- Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India.
| | - Rakhi Dasgupta
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
37
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
38
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Nitu SS, Miriyala S, Panchatcharam M, Kevil CG, Orr AW, Bhuiyan MS. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J Am Heart Assoc 2020; 9:e017195. [PMID: 33208022 PMCID: PMC7763772 DOI: 10.1161/jaha.120.017195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Background The mutated α-B-Crystallin (CryABR120G) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryABR120G expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryABR120G mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryABR120G mice. In the present study, we report that the CryABR120G mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryABR120G hearts. Mitochondria isolated from CryABR120G transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryABR120G hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Richa Aishwarya
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Mahboob Morshed
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sadia S. Nitu
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher G. Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - A. Wayne Orr
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
39
|
Zhang X, Li Y, Sun Y, Guo M, Feng J, Wang Y, Zhang Z. Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor. BMC Mol Cell Biol 2020; 21:83. [PMID: 33228519 PMCID: PMC7685655 DOI: 10.1186/s12860-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background The effects of diverse stresses ultimately alter the structures and functions of proteins. As molecular chaperones, heat shock proteins (HSPs) are a group of highly conserved proteins that help in the refolding of misfolded proteins and the elimination of irreversibly damaged proteins. They are mediated by a family of transcription factors called heat shock factors (HSFs). The small abalone Haliotis diversicolor is a species naturally distributed along the southern coast of China. In this study, the expression of HdHSF1 was inhibited by RNAi in hemocytes in order to further elucidate the regulatory roles of HdHSF1 on heat shock responsive genes in abalone. Meanwhile, to understand the transcriptional regulation of the HdHSF1 gene, the 5′-upstream regulatory region of HdHSF1 was characterized, and the relative promoter activity was examined by dual-luciferase reporter gene assay system in HEK293T cell lines. Results After the inhibition of the H. diversicolor HSF1 gene (HdHSF1) by dsRNA (double-stranded RNA), the expression of most heat shock related-genes was down-regulated (p < 0.05). It indicated the importance of HdHSF1 in the heat shock response of H. diversicolor. Meanwhile, 5′-flanking region sequence (2633 bp) of the HdHSF1 gene was cloned; it contained a putative core promoter region, TATA box, CAAT box, CpG island, and many transcription elements. In HEK293T cells, the 5′-flanking region sequence can drive expression of the enhanced green fluorescent protein (EGFP), proving its promoter function. Exposure of cells to the high-temperature (39 °C and 42 °C) resulted in the activation of HdHSF1 promoter activity, which may explain why the expression of the HdHSF1 gene participates in heat shock response. Luciferase activity of different recombinant plasmids, which contained different truncated promoter fragments of the HdHSF1 gene in HEK293T cells, revealed the possible active regions of the promoter. To further identify the binding site of the critical transcription factor in the region, an expression vector with the site-directed mutation was constructed. After being mutated on the GATA-1 binding site, we found that the luciferase activity was significantly increased, which suggested that the GATA-1 binding site has a certain weakening effect on the activity of the HdHSF1 promoter. Conclusions These findings suggest that GATA-1 may be one of the transcription factors of HdHSF1, and a possible signaling pathway mediated by HdHSF1 may exist in H. diversicolor to counteract the adverse effects of heat shock stress. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12860-020-00323-9.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yuting Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingxing Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianjun Feng
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China. .,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
40
|
Intravenous Administration of Heat Shock-Treated MSCs Can Improve Neuroprotection and Neuroregeneration in Canine Spinal Cord Injury Model. Animals (Basel) 2020; 10:ani10112164. [PMID: 33233628 PMCID: PMC7699699 DOI: 10.3390/ani10112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Mesenchymal stem cells (MSCs), which are found in connective tissues, can be used to treat spinal cord injury (SCI) in dogs. These stem cells have the ability to repair damaged tissues and can be transplanted into the injured area. While this is considered a promising treatment, the transplanted cells often do not survive in the injured spinal cord. In this study, we found that heat shock treatment, i.e., exposure to high temperatures, increased the efficacy of MSC treatment for SCI. Abstract Transplantation of mesenchymal stem cells (MSCs) is a promising treatment for spinal cord injury (SCI). However, many transplanted cells die within a few days, eventually limiting the efficacy of cellular therapy. To overcome this problem, we focused on the potential of heat shock (HS) proteins in facilitating recovery from cell damage and protecting against cytotoxicity. PCR results showed that the expression of neurotrophic factor, anti-inflammatory, stemness, and homing genes increased in HS-treated MSCs. We investigated whether HS-treated MSCs could promote recovery of hindlimb function in an acute canine SCI model. We compared the effects of intravenous transplantation with (i) lactated Ringer’s solution as a control, (ii) green fluorescent protein-expressing MSCs (MSCs-GFP), and (iii) GFP-expressing and HS-treated MSCs (MSCs-GFP-HS). Spinal cords were harvested at four weeks and used for Western blot and histopathological analyses. The MSCs-GFP-HS group showed significant improvements in hindlimb function from weeks 3 and 4 compared with the other groups. This group also showed higher expression of neural markers, fewer intervening fibrotic changes, and pronounced myelination. These results suggest that induction of an HS response in MSCs could promote neural sparing. In conclusion, transplantation of HS-treated MSCs could improve neuroprotection and neuroregeneration in acute SCI.
Collapse
|
41
|
Nakashima D, Onuma T, Tanabe K, Kito Y, Uematsu K, Mizutani D, Enomoto Y, Tsujimoto M, Doi T, Matsushima-Nishiwaki R, Tokuda H, Ogura S, Iwama T, Kozawa O, Iida H. Synergistic effect of collagen and CXCL12 in the low doses on human platelet activation. PLoS One 2020; 15:e0241139. [PMID: 33119719 PMCID: PMC7595269 DOI: 10.1371/journal.pone.0241139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/08/2020] [Indexed: 11/30/2022] Open
Abstract
CXCL12, also known as stromal cell-derived factor-1, is a chemokine classified into CXC families, which exerts its function by binding to specific receptors called CXCR4 and CXCR7. Human platelets express CXCR4 and CXCR7 on the plasma membrane. It has been reported that CXCL12 potentiates to induce platelet aggregation in cooperation with agonists including collagen. However, the precise roles and mechanisms of CXCL12 in human platelet activation are not fully elucidated. In the present study, we investigated the effect of simultaneous stimulation with low doses of collagen and CXCL12 on the activation of human platelets. The simultaneous stimulation with collagen and CXCL12 induced the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble CD40 ligand (sCD40L) from human platelets in addition to their aggregation, despite the fact that the simultaneous stimulation with thrombin receptor-activating peptide (TRAP) or adenosine diphosphate (ADP), and CXCL12 had little effects on the platelet aggregation. The agonist of Glycoprotein (GP) Ⅵ convulxin and CXCL12 also induced platelet aggregation synergistically. The monoclonal antibody against CXCR4 but not CXCR7 suppressed the platelet aggregation induced by simultaneous stimulation with collagen and CXCL12. The phosphorylation of p38 mitogen-activated protein kinase (MAPK), but not p44/p42 MAPK, was induced by the simultaneous stimulation. In addition, the simultaneous stimulation with collagen and CXCL12 induced the phosphorylation of HSP27 and the subsequent release of phosphorylated-HSP27 from human platelets. SB203580, a specific inhibitor of p38 MAPK, attenuated the platelet aggregation, the phosphorylation of p38 MAPK and HSP27, the PDGF-AB secretion, the sCD40L release and the phosphorylated-HSP27 release induced by the simultaneous stimulation with collagen and CXCL12. These results strongly suggest that collagen and CXCL12 in low doses synergistically act to induce PDGF-AB secretion, sCD40L release and phosphorylated-HSP27 release from activated human platelets via p38 MAPK activation.
Collapse
Affiliation(s)
- Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Mizutani
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Tsujimoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
42
|
SINGH SANJEEV, SINGH KM, GANGULY INDRAJIT. Effect of season and SNPs of HSP90 and HSP70 genes on the biochemical traits in Indian sheep (Ovis aries) breeds. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i6.105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Heat shock proteins (HSPs) are evolutionary conserved family of proteins produced by living cells in response to various biological stresses, including heat shock. Heat stress affects the productivity of the livestock species, which causes severe economic losses to the animal keepers. The present study was undertaken to establish reference baseline values for thyroid (T3 and T4) and adrenal gland (cortisol) hormones in four indigenous sheep breeds (Chokla, Marwari, Magra and Madras Red). The effect of the seasons and genotypes of the HSP90 and HSP70 genes on the functions of the thyroid gland as well as cortisol levels were examined in plasma samples of these sheep breeds. A total of 80 plasma samples (10 animals per breed for the summer and winter season) were analyzed. The least square analysis revealed significant seasonal effect on Triiodothyronine (T3) and Thyroxine (T4). Significantly higher T3 and T4 levels were observed in the winter with a low temperature humidity index (THI) than in summer with high THI. Cortisol was non-significantly higher in the summer than in winter season. Overall, the influence of the breeds on these three parameters was non-significant. Genotypes of SNP1 (HSP90 gene) and SNP2 (HSP70 gene) had significant effect on T3 level. These SNP markers may be useful for identifying animals that are more adaptable to heat stress following a thorough association analysis over a large sample size.
Collapse
|
43
|
Shaker SR, Al-Amran F, Fatima G, Al-Aubaid H, Hadi NR. Trimetazidine Improves the Outcome of EECP Therapy in Patients with Refractory Angina Pectoris. Med Arch 2020; 74:199-204. [PMID: 32801436 PMCID: PMC7406001 DOI: 10.5455/medarh.2020.74.199-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction: Cardiovascular disease (CAD) associated with death and disability remains a serious medical problem. In some patients the initial clinical coronary artery disease presentation is stable angina pectoris. Aim: The aim of the study was to evaluate the effect of EECP therapy with or without trimetazidine (TMZ) in patients with refractory angina via modulating peripheral monocyte expression of Toll like receptor2 (TLR2) and its downstream signaling. Methods: This is a double-blind randomized prospective study in which 88 stable refractory angina patients allocated into two groups, Enhanced External Counter Pulsation (EECP) group: included 44 patients with stable refractory angina, and were treated with EECP-Therapy. TMZ-EECP group: included 44 patients with stable refractory angina, we gave TMZ 35 mg twice daily in addition to EECP-Therapy. Results: TLR2 expression in peripheral monocyte investigated by flow cytometry and 8-iso-prostaglandin F2β (8-iso-PGF2 β), interleukin1β (IL-1β), heat shock protein 60 (HSP60) and monocytes chemoattractant protein-1(MCP-1) were also measured before the EECP-therapy and before giving TMZ to patients, and after 35 hours of EECP treatment (7 consecutive weeks). Inhibition in TLR2 expression in peripheral monocyte was observed among the EECP group (P<0.05). Inflammatory cytokine MCP-1 was remarkably decreased in both study groups but (heat shock protein 60 (HSP60), MCP-1 and interleukin-1β (IL-1β)) significantly decreased levels were observed among the TMZ-EECP group (P<0.05). Also, the oxidative stress biomarker 8-iso-prostaglandin F2β (8-iso-PGF2β) was decreased in both study groups but significantly decreased levels were observed among the TMZ-EECP group (P<0.05). TMZ and EECP therapy in patients with stable refractory angina remarkably decreased the inflammatory markers HSP60, MCP-1 and IL-1β in serum levels also the decreased levels were found in serum levels of oxidative stress marker 8-iso-PGF2β serum level. Conclusion: EECP-therapy decreased the expression of TLR2 on peripheral monocytes in patients with chronic stable refractory angina which yield improvement in the quality of patients’ life by decreasing the frequency of angina episodes, decreasing the Short-acting nitrate use and change the exercise tolerance and distance.
Collapse
Affiliation(s)
- Saad Rasool Shaker
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| | - Fadhil Al-Amran
- Department of Cardiothoracic Surgery, Faculty of Medicine, University of Kufa
| | - Ghizal Fatima
- Department of Biotechnology, Era University, Lucknow, India
| | | | - Najah R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| |
Collapse
|
44
|
Romano N, Ceci M. Are microRNAs responsible for cardiac hypertrophy in fish and mammals? What we can learn in the activation process in a zebrafish ex vivo model. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165896. [PMID: 32681863 DOI: 10.1016/j.bbadis.2020.165896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
Abstract
Recent studies have correlated dysregulated miRNA expression with diseased hearts. With the aim of developing an easily manipulated experimental model, phenylephrine (PE) was added to cultured zebrafish hearts to study the expression of miR1 and miR133a by qRT-PCR. Both miRs were downregulated, with greater downregulation leading to higher hypertrophy. The involvement of this miRs was confirmed by the in-vivo inoculation of complementary sequences (AmiR1 and AmiR133a). HSP70 (involved in transporting proteins and in anti-apoptosis processes) was increased in both treatments. Hyperplasia was observed in the epicardium based on WT1 expression (embryonic epicardial cell marker) in both the PE treatment and AmiR133a treatment. The treatment with AmiR1 showed only cardiomyocyte hypertrophy. This ex-vivo model revealed that miR1 and miR133a play a key role in activating early processes leading to myocardium hypertrophy and epicardium hyperplasia and confirmed the expected similarities with hypertrophic disease that occurs in humans.
Collapse
Affiliation(s)
- Nicla Romano
- Dept of Ecology & Biology Sciences, University of Tuscia, Viterbo, Italy.
| | - Marcello Ceci
- Dept of Ecology & Biology Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
45
|
Der Sarkissian S, Aceros H, Williams PM, Scalabrini C, Borie M, Noiseux N. Heat shock protein 90 inhibition and multi-target approach to maximize cardioprotection in ischaemic injury. Br J Pharmacol 2020; 177:3378-3388. [PMID: 32335899 DOI: 10.1111/bph.15075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/23/2019] [Accepted: 04/10/2020] [Indexed: 01/27/2023] Open
Abstract
Despite several advances in medicine, ischaemic heart disease remains a major cause of morbidity and mortality. The unravelling of molecular mechanisms underlying disease pathophysiology has revealed targets for pharmacological interventions. However, transfer of these pharmcological possibilities to clinical use has been disappointing. Considering the complexity of ischaemic disease at the cellular and molecular levels, an equally multifaceted treatment approach may be envisioned. The pharmacological principle of 'one target, one key' may fall short in such contexts, and optimal treatment may involve one or many agents directed against complementary targets. Here, we introduce a 'multi-target approach to cardioprotection' and propose heat shock protein 90 (HSP90) as a target of interest. We report on a member of a distinct class of HSP90 inhibitor possessing pleiotropic activity, which we found to exhibit potent infarct-sparing effects.
Collapse
Affiliation(s)
- Shant Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Henry Aceros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Mélanie Borie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
46
|
Herwig M, Kolijn D, Lódi M, Hölper S, Kovács Á, Papp Z, Jaquet K, Haldenwang P, Dos Remedios C, Reusch PH, Mügge A, Krüger M, Fielitz J, Linke WA, Hamdani N. Modulation of Titin-Based Stiffness in Hypertrophic Cardiomyopathy via Protein Kinase D. Front Physiol 2020; 11:240. [PMID: 32351396 PMCID: PMC7174613 DOI: 10.3389/fphys.2020.00240] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
The giant protein titin performs structure-preserving functions in the sarcomere and is important for the passive stiffness (Fpassive) of cardiomyocytes. Protein kinase D (PKD) enzymes play crucial roles in regulating myocardial contraction, hypertrophy, and remodeling. PKD phosphorylates myofilament proteins, but it is not known whether the giant protein titin is also a PKD substrate. Here, we aimed to determine whether PKD phosphorylates titin and thereby modulates cardiomyocyte Fpassive in normal and failing myocardium. The phosphorylation of titin was assessed in cardiomyocyte-specific PKD knock-out mice (cKO) and human hearts using immunoblotting with a phosphoserine/threonine and a phosphosite-specific titin antibody. PKD-dependent site-specific titin phosphorylation in vivo was quantified by mass spectrometry using stable isotope labeling by amino acids in cell culture (SILAC) of SILAC-labeled mouse heart protein lysates that were mixed with lysates isolated from hearts of either wild-type control (WT) or cKO mice. Fpassive of single permeabilized cardiomyocytes was recorded before and after PKD and HSP27 administration. All-titin phosphorylation was reduced in cKO compared to WT hearts. Multiple conserved PKD-dependent phosphosites were identified within the Z-disk, A-band and M-band regions of titin by quantitative mass spectrometry, and many PKD-dependent phosphosites detected in the elastic titin I-band region were significantly decreased in cKO. Analysis of titin site-specific phosphorylation showed unaltered or upregulated phosphorylation in cKO compared to matched WT hearts. Fpassive was elevated in cKO compared to WT cardiomyocytes and PKD administration lowered Fpassive of WT and cKO cardiomyocytes. Cardiomyocytes from hypertrophic cardiomyopathy (HCM) patients showed higher Fpassive compared to control hearts and significantly lower Fpassive after PKD treatment. In addition, we found higher phosphorylation at CaMKII-dependent titin sites in HCM compared to control hearts. Expression and phosphorylation of HSP27, a substrate of PKD, were elevated in HCM hearts, which was associated with increased PKD expression and phosphorylation. The relocalization of HSP27 in HCM away from the sarcomeric Z-disk and I-band suggested that HSP27 failed to exert its protective action on titin extensibility. This protection could, however, be restored by administration of HSP27, which significantly reduced Fpassive in HCM cardiomyocytes. These findings establish a previously unknown role for PKDin regulating diastolic passive properties of healthy and diseased hearts.
Collapse
Affiliation(s)
- Melissa Herwig
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Detmar Kolijn
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Soraya Hölper
- Sanofi-Aventis Deutschland GmbH Industriepark Höchst, Frankfurt, Germany
| | - Árpád Kovács
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornelia Jaquet
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Cris Dos Remedios
- School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, NSW, Australia
| | - Peter H Reusch
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Jens Fielitz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, University of Münster, Münster, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochums, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Zhao J, Wang T, Lv Q, Zhou N. Expression of heat shock protein 70 and Annexin A1 in serum of patients with acutely severe traumatic brain injury. Exp Ther Med 2020; 19:1896-1902. [PMID: 32104246 PMCID: PMC7026958 DOI: 10.3892/etm.2019.8357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Trends of early expression levels of heat shock protein 70 (Hsp70) and Annexin A1 (ANXA1) in serum of patients with acutely severe traumatic brain injury and the effects on clinical prognosis were investigated. Eighty-four patients with severe traumatic brain injury admitted to Binzhou Center Hospital from June 2014 to July 2017 were selected as the experimental group. Glasgow coma scale and acute physiology and chronic health evaluation II (APACHE II) score were obtained after admission. A further 75 healthy subjects were selected as the control group. Serum expression of Hsp70 and ANXA1 in the two groups was detected by enzyme-linked immunosorbent assay on the 1st, 2nd, 3rd and 4th day after admission. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic value of Hsp70 and ANXA1 for the death of patients with acutely severe traumatic brain injury. Compared with the control group, expression of Hsp70 in the experimental group was significantly increased on the 1st, 2nd, 3rd and 4th day after admission (P<0.05), while expression of ANXA1 was significantly decreased (P<0.05). Expression levels of serum Hsp70 in the experimental group reached the peak on the 3rd day after admission, and the difference was statistically significant compared with the 1st, 2nd and 4th day (P<0.05). Expression of ANXA1 was the lowest on the 3rd day, and the difference was statistically significant compared with the 1st, 2nd and 4th day (P<0.05). The ROC curve analysis showed that the area under the curve of serum Hsp70 and ANXA1 was, respectively, 0.721 (95% CI: 0.611-0.829) and 0.684 (95% CI: 0.569-0.799). In conclusion, Hsp70 and ANXA1 may be involved in the occurrence and progression of acutely severe traumatic brain injury. The detection of serum Hsp70 and ANXA1 has certain diagnostic value for the death of patients with acutely severe traumatic brain injury.
Collapse
Affiliation(s)
- Junjing Zhao
- Department of Neurosurgery, Binzhou Center Hospital, Binzhou, Shandong 251700, P.R. China
| | - Tao Wang
- Department of Neurosurgery, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Qiming Lv
- Department of Neurosurgery, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Nan Zhou
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
48
|
Wang Y, Liu J, Kong Q, Cheng H, Tu F, Yu P, Liu Y, Zhang X, Li C, Li Y, Min X, Du S, Ding Z, Liu L. Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction. Cardiovasc Res 2020; 115:154-167. [PMID: 29982352 DOI: 10.1093/cvr/cvy163] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Aims Inadequate healing after myocardial infarction (MI) leads to heart failure and fatal ventricular rupture, while optimal healing requires timely induction and resolution of inflammation. This study tested the hypothesis that heat shock protein B1 (HSPB1), which limits myocardial inflammation during endotoxemia, modulates wound healing after MI. Methods and results To test this hypothesis, cardiomyocyte-specific HSPB1 knockout (Hspb1-/-) mice were generated using the Cre-LoxP recombination system. MI was induced by ligation of the left anterior descending coronary artery in Hspb1-/- and wild-type (WT) littermates. HSPB1 was up-regulated in cardiomyocytes of WT animals in response to MI, and deficiency of cardiomyocyte HSPB1 increased MI-induced cardiac rupture and mortality within 21 days after MI. Serial echocardiography showed more aggravated remodelling and cardiac dysfunction in Hspb1-/- mice than in WT mice at 1, 3, and 7 days after MI. Decreased collagen deposition and angiogenesis, as well as increased MMP2 and MMP9 activity, were also observed in Hspb1-/- mice compared with WT controls after MI, using immunofluorescence, polarized light microscopy, and zymographic analyses. Notably, Hspb1-/- hearts exhibited enhanced and prolonged leucocyte infiltration, enhanced expression of inflammatory cytokines, and enhanced TLR4/MyD88/NFκB activation compared with WT controls after MI. In-depth molecular analyses in both mice and primary cardiomyocytes demonstrated that cardiomyocyte-specific knockout of HSPB1 increased nuclear factor-κB (NFκB) activation, which promoted the expression of proinflammatory mediators. This led to increased leucocyte recruitment, thereby to excessive inflammation, ultimately resulting in adverse remodelling, cardiac dysfunction, and cardiac rupture following MI. Conclusion These data suggest that HSPB1 acts as a negative regulator of NFκB-mediated leucocyte recruitment and the subsequent inflammation in cardiomyocytes. Cardiomyocyte HSPB1 is required for wound healing after MI and could be a target for myocardial repair in MI patients.
Collapse
Affiliation(s)
- Yana Wang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Jiali Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Cheng
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Tu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Peng Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Ying Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuya Du
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Guangzhou Rd. 300, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| |
Collapse
|
49
|
Tian X, Zhou N, Yuan J, Lu L, Zhang Q, Wei M, Zou Y, Yuan L. Heat shock transcription factor 1 regulates exercise-induced myocardial angiogenesis after pressure overload via HIF-1α/VEGF pathway. J Cell Mol Med 2020; 24:2178-2188. [PMID: 31930683 PMCID: PMC7011135 DOI: 10.1111/jcmm.14872] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Exercise training is believed to have a positive effect on cardiac hypertrophy after hypertension. However, its mechanism is still not fully understood. Herein, our findings suggest that heat shock transcription factor 1 (HSF1) improves exercise‐initiated myocardial angiogenesis after pressure overload. A sustained narrowing of the diagonal aorta (TAC) and moderately‐ intense exercise training protocol were imposed on HSF1 heterozygote (KO) and their littermate wild‐type (WT) male mice. After two months, the cardiac function was assessed using the adaptive responses to exercise training, or TAC, or both of them such as catheterization and echocardiography. The HE stains assessed the area of myocyte cross‐sectional. The Western blot and real‐time PCR measured the levels of expression for heat shock factor 1 (HSF1), vascular endothelial growth factor (VEGF) and hypoxia inducible factor‐1 alpha (HIF‐1α) in cardiac tissues. The anti‐CD31 antibody immunohistochemical staining was done to examine how exercise training influenced cardiac ontogeny. The outcome illustrated that exercise training significantly improved the cardiac ontogeny in TAC mice, which was convoyed by elevated levels of expression for VEGF and HIF‐1α and preserved the heart microvascular density. More importantly, HSF1 deficiency impaired these effects induced by exercise training in TAC mice. In conclusion, exercise training encourages cardiac ontogeny by means of HSF1 activation and successive HIF‐1α/VEGF up‐regulation in endothelial cells during continued pressure overload.
Collapse
Affiliation(s)
- Xu Tian
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Ning Zhou
- Section of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Le Lu
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Qi Zhang
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Minmin Wei
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Lingyan Yuan
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| |
Collapse
|
50
|
Conflicting Actions of Inhalational Anesthetics, Neurotoxicity and Neuroprotection, Mediated by the Unfolded Protein Response. Int J Mol Sci 2020; 21:ijms21020450. [PMID: 31936788 PMCID: PMC7013687 DOI: 10.3390/ijms21020450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Preclinical studies have shown that exposure of the developing brain to inhalational anesthetics can cause neurotoxicity. However, other studies have claimed that anesthetics can exert neuroprotective effects. We investigated the mechanisms associated with the neurotoxic and neuroprotective effects exerted by inhalational anesthetics. Neuroblastoma cells were exposed to sevoflurane and then cultured in 1% oxygen. We evaluated the expression of proteins related to the unfolded protein response (UPR). Next, we exposed adult mice in which binding immunoglobulin protein (BiP) had been mutated, and wild-type mice, to sevoflurane, and evaluated their cognitive function. We compared our results to those from our previous study in which mice were exposed to sevoflurane at the fetal stage. Pre-exposure to sevoflurane reduced the expression of CHOP in neuroblastoma cells exposed to hypoxia. Anesthetic pre-exposure also significantly improved the cognitive function of adult wild-type mice, but not the mutant mice. In contrast, mice exposed to anesthetics during the fetal stage showed cognitive impairment. Our data indicate that exposure to inhalational anesthetics causes endoplasmic reticulum (ER) stress, and subsequently leads to an adaptive response, the UPR. This response may enhance the capacity of cells to adapt to injuries and improve neuronal function in adult mice, but not in developing mice.
Collapse
|