1
|
Lee WS, Abel ED, Kim J. New Insights into IGF-1 Signaling in the Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38713091 DOI: 10.1152/physiol.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
3
|
Li T, Zhao Y, Yang X, Feng Y, Li Y, Wu Y, Zhang M, Li X, Hu H, Zhang J, Yuan L, Liu Y, Sun X, Qin P, Chen C, Hu D. Association between insulin-like growth factor-1 and cardiovascular events: a systematic review and dose-response meta-analysis of cohort studies. J Endocrinol Invest 2022; 45:2221-2231. [PMID: 35596917 DOI: 10.1007/s40618-022-01819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) has increasingly been reported as linked to cardiovascular (CV) events; however, reported results have been inconsistent, and no meta-analysis has been undertaken to quantitatively assess this association. METHODS We searched PubMed, Embase, and Web of Science databases for cohort articles published up to December 1, 2020. Fixed or random-effects models were used to estimate the summary relative risks (RRs) and 95% confidence intervals (CIs) of CV events in relation to IGF-1. Restricted cubic splines were used to model the dose-response association. RESULTS We identified 11 articles (thirteen cohort studies) covering a total of 22,995 participants and 3040 CV events in this meta-analysis. The risk of overall CV events reduced by 16% from the highest to the lowest IGF-1 levels (RR 0.83, 95% CI 0.72-0.95), while the occurrence of CV events reduced by 28% (RR 0.72, 95% CI 0.56-0.92), but not for CV deaths, however (RR 1.00, 95% CI 0.65-1.55). We also found linear associations between IGF-1 levels and CV events. With each per 45 μg/mL IGF-1 increase, the pooled RRs were 0.91 (95% CI 0.86-0.96), 0.91 (95% CI 0.85-0.97) and 0.91 (95% CI 0.84-0.98) for overall CV events, for the occurrence of CV events, and for CV deaths, respectively. CONCLUSIONS Our findings based on cohort studies support the contention that any increase in IGF-1 is helpful in reducing the overall risk of CV events. As an important biomarker for assessing the likelihood of CV events, IGF-1 appears to offer a promising prognostic approach for aiding prevention.
Collapse
Affiliation(s)
- T Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Y Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - X Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Y Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Y Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Y Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - M Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - X Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - H Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - J Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - L Yuan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Y Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, 518001, Guangdong, People's Republic of China
| | - X Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, 518001, Guangdong, People's Republic of China
| | - P Qin
- Department of Endocrinology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, People's Republic of China
| | - C Chen
- Department of Medical Record Management, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, People's Republic of China
| | - D Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
4
|
Yılmaz Y, Tanrıverdi F, Duran M, Altay M, Eryol NK. Is IGF-1 level actually lowered in the early stage following an acute myocardial infarction and is IGF-1 associated with the left ventricle dysfunction or cardiac events? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2019. [DOI: 10.32322/jhsm.504184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration. Cell Death Dis 2019; 10:436. [PMID: 31164633 PMCID: PMC6547756 DOI: 10.1038/s41419-019-1655-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
An overdose of Isoproterenol (ISO) causes acute cardiomyocyte (CM) dropout and activates the resident cardiac c-kitpos stem/progenitor cells (CSCs) generating a burst of new CM formation that replaces those lost to ISO. Recently, unsuccessful attempts to reproduce these findings using c-kitCre knock-in (KI) mouse models were reported. We tested whether c-kit haploinsufficiency in c-kitCreKI mice was the cause of the discrepant results in response to ISO. Male C57BL/6J wild-type (wt) mice and c-kitCreKI mice were given a single dose of ISO (200 and/or 400 mg/Kg s.c.). CM formation was measured with different doses and duration of BrdU or EdU. We compared the myogenic and regenerative potential of the c-kitCreCSCs with wtCSCs. Acute ISO overdose causes LV dysfunction with dose-dependent CM death by necrosis and apoptosis, whose intensity follows a basal-apical and epicardium to sub-endocardium gradient, with the most severe damage confined to the apical sub-endocardium. The damage triggers significant new CM formation mainly in the apical sub-endocardial layer. c-kit haploinsufficiency caused by c-kitCreKIs severely affects CSCs myogenic potential. c-kitCreKI mice post-ISO fail to respond with CSC activation and show reduced CM formation and suffer chronic cardiac dysfunction. Transplantation of wtCSCs rescued the defective regenerative cardiac phenotype of c-kitCreKI mice. Furthermore, BAC-mediated transgenesis of a single c-kit gene copy normalized the functional diploid c-kit content of c-kitCreKI CSCs and fully restored their regenerative competence. Overall, these data show that c-kit haploinsufficiency impairs the endogenous cardioregenerative response after injury affecting CSC activation and CM replacement. Repopulation of c-kit haploinsufficient myocardial tissue with wtCSCs as well c-kit gene deficit correction of haploinsufficient CSCs restores CM replacement and functional cardiac repair. Thus, adult neo-cardiomyogenesis depends on and requires a diploid level of c-kit.
Collapse
|
6
|
Qin WD, Liu GL, Wang J, Wang H, Zhang JN, Zhang F, Ma Y, Ji XY, Li C, Zhang MX. Poly(ADP-ribose) polymerase 1 inhibition protects cardiomyocytes from inflammation and apoptosis in diabetic cardiomyopathy. Oncotarget 2018; 7:35618-35631. [PMID: 27027354 PMCID: PMC5094949 DOI: 10.18632/oncotarget.8343] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural alterations such as cardiomyocyte hypertrophy, necrosis and focal fibrosis. Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme which can be activated by DNA damage and plays a critical role in various diseases. We hypothesized that PARP-1 may play an important role in DCM and that its inhibition may protect cardiomyocytes from inflammation and apoptosis in DCM. H9c2 cardiomyocytes were treated with normal glucose, mannitol or high glucose (HG). Male C57BL/6 mice or PARP-1−/− mice were treated with streptozotocin (STZ) by intraperitoneal injection for 5 consecutive days to induce diabetes. In vitro, HG stimulation induced oxidative stress and DNA damage and increased PARP-1 expression and activity. Compared with the control, pretreatment with PARP-1 siRNA significantly reduced HG-induced inflammatory response, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 secretion, and intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) expression. PARP-1 inhibition reduced HG-induced cardiomyocyte apoptosis through downregulation of cleaved caspases and activation of IGF-1R/Akt pathway. In vivo, hyperglycemia increased the protein expression of nitrotyrosine and PARP-1 as well as PARP-1 activity. PARP-1 gene deletion significantly improved cardiac dysfunction and reduced inflammatory response and apoptosis. This work demonstrated the critical role of PARP-1 in diabetic heart injury, and suggested that PARP-1 inhibition may be a feasible strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Wei-Dong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guo-Liang Liu
- The Henan Provincial Key Engineering Laboratory of Antibody Drugs, School of Medicine, Henan University, Kaifeng, Henan, China
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jian-Ning Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yang Ma
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin-Ying Ji
- The Henan Provincial Key Engineering Laboratory of Antibody Drugs, School of Medicine, Henan University, Kaifeng, Henan, China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
|
8
|
Weeks KL, Bernardo BC, Ooi JYY, Patterson NL, McMullen JR. The IGF1-PI3K-Akt Signaling Pathway in Mediating Exercise-Induced Cardiac Hypertrophy and Protection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:187-210. [PMID: 29098623 DOI: 10.1007/978-981-10-4304-8_12] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regular physical activity or exercise training can lead to heart enlargement known as cardiac hypertrophy. Cardiac hypertrophy is broadly defined as an increase in heart mass. In adults, cardiac hypertrophy is often considered a poor prognostic sign because it often progresses to heart failure. Heart enlargement in a setting of cardiac disease is referred to as pathological cardiac hypertrophy and is typically characterized by cell death and depressed cardiac function. By contrast, physiological cardiac hypertrophy, as occurs in response to chronic exercise training (i.e. the 'athlete's heart'), is associated with normal or enhanced cardiac function. The following chapter describes the morphologically distinct types of heart growth, and the key role of the insulin-like growth factor 1 (IGF1) - phosphoinositide 3-kinase (PI3K)-Akt signaling pathway in regulating exercise-induced physiological cardiac hypertrophy and cardiac protection. Finally we summarize therapeutic approaches that target the IGF1-PI3K-Akt signaling pathway which are showing promise in preclinical models of heart disease.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia.
| | - Bianca C Bernardo
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Jenny Y Y Ooi
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Natalie L Patterson
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Julie R McMullen
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
9
|
The Role of Cardiac Tissue Macrophages in Homeostasis and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:105-118. [DOI: 10.1007/978-3-319-57613-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol 2016; 76:1-11. [PMID: 27131603 DOI: 10.1016/j.biocel.2016.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Cardiac progenitors, such as cardiospheres and cardiosphere-derived cells, represent an attractive cell source for cardiac regeneration. The PIWI-interacting RNAs, piRNAs, are an intriguing class of small non-coding RNAs, implicated in the regulation of epigenetic state, maintenance of genomic integrity and stem cell functions. Although non-coding RNAs are an exploiting field in cardiovascular research, the piRNA signatures of cardiac progenitors has not been evaluated yet.We profiled, through microarrays, 15,311 piRNAs expressed in cardiospheres, cardiosphere-derived cells and cardiac fibroblasts. Results showed a set of differentially expressed piRNAs (fold change ≥2, p<0.01): 641 piRNAs were upregulated and 1,301 downregulated in the cardiospheres compared to cardiosphere-derived cells, while 255 and 708 piRNAs resulted up- and down-regulated, respectively, if compared to cardiac fibroblasts. We also identified 181 piRNAs that are overexpressed and 129 are downregulated in cardiosphere-derived cells respect to cardiac fibroblasts.Bioinformatics analysis showed that the deregulated piRNAs were mainly distributed on few chromosomes, suggesting that piRNAs are organized in discrete genomic clusters.Furthermore, the bioinformatics search showed that the most upregulated piRNAs target transposons, especially belonged to LINE-1 class, as validated by qRT-PCR. This reduction is also associated to an activation of AKT signaling, which is beneficial for cardiac regeneration.The present study is the first to show a highly consistent piRNA expression pattern for human cardiac progenitors, likely responsible of their different regenerative power. Moreover, this piRNome analysis may provide new methods for characterize cardiac progenitors and may shed new light on the understanding the complex molecular mechanisms of cardiac regeneration.
Collapse
|
11
|
|
12
|
Wade F, Quijada P, Al-Haffar KMA, Awad SM, Kunhi M, Toko H, Marashly Q, Belhaj K, Zahid I, Al-Mohanna F, Stanford SM, Alvarez R, Liu Y, Colak D, Jordan MC, Roos KP, Assiri A, Al-Habeeb W, Sussman M, Bottini N, Poizat C. Deletion of low molecular weight protein tyrosine phosphatase (Acp1) protects against stress-induced cardiomyopathy. J Pathol 2015. [PMID: 26213100 PMCID: PMC5049627 DOI: 10.1002/path.4594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The low molecular weight protein tyrosine phosphatase (LMPTP), encoded by the ACP1 gene, is a ubiquitously expressed phosphatase whose in vivo function in the heart and in cardiac diseases remains unknown. To investigate the in vivo role of LMPTP in cardiac function, we generated mice with genetic inactivation of the Acp1 locus and studied their response to long‐term pressure overload. Acp1−/− mice develop normally and ageing mice do not show pathology in major tissues under basal conditions. However, Acp1−/− mice are strikingly resistant to pressure overload hypertrophy and heart failure. Lmptp expression is high in the embryonic mouse heart, decreased in the postnatal stage, and increased in the adult mouse failing heart. We also show that LMPTP expression increases in end‐stage heart failure in humans. Consistent with their protected phenotype, Acp1−/− mice subjected to pressure overload hypertrophy have attenuated fibrosis and decreased expression of fibrotic genes. Transcriptional profiling and analysis of molecular signalling show that the resistance of Acp1−/− mice to pathological cardiac stress correlates with marginal re‐expression of fetal cardiac genes, increased insulin receptor beta phosphorylation, as well as PKA and ephrin receptor expression, and inactivation of the CaMKIIδ pathway. Our data show that ablation of Lmptp inhibits pathological cardiac remodelling and suggest that inhibition of LMPTP may be of therapeutic relevance for the treatment of human heart failure. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fallou Wade
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Pearl Quijada
- San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA, USA
| | | | - Salma Mahmoud Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Haruhiro Toko
- San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA, USA
| | - Qussay Marashly
- College of Medicine and Health Sciences, Al-Faisal University, Riyadh, Saudi Arabia
| | - Karim Belhaj
- College of Medicine and Health Sciences, Al-Faisal University, Riyadh, Saudi Arabia
| | - Israa Zahid
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Falah Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, USA
| | - Roberto Alvarez
- San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA, USA
| | - Yingge Liu
- USC Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dilek Colak
- Department of Biostatistics and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, Los Angeles, CA, USA
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, Los Angeles, CA, USA
| | - Abdullah Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Mark Sussman
- San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, USA.,USC Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA, USA
| |
Collapse
|
13
|
Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol 2015; 309:H543-52. [PMID: 26071549 DOI: 10.1152/ajpheart.00899.2014] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/07/2015] [Indexed: 01/01/2023]
Abstract
Left ventricular (LV) hypertrophy is an important physiological compensatory mechanism in response to chronic increase in hemodynamic overload. There are two different forms of LV hypertrophy, one physiological and another pathological. Aerobic exercise induces beneficial physiological LV remodeling. The molecular/cellular mechanisms for this effect are not totally known, and here we review various mechanisms including the role of microRNA (miRNA). Studies in the heart, have identified antihypertrophic miRNA-1, -133, -26, -9, -98, -29, -378, and -145 and prohypertrophic miRNA-143, -103, -130a, -146a, -21, -210, -221, -222, -27a/b, -199a/b, -208, -195, -499, -34a/b/c, -497, -23a, and -15a/b. Four miRNAs are recognized as cardiac-specific: miRNA-1, -133a/b, -208a/b, and -499 and called myomiRs. In our studies we have shown that miRNAs respond to swimming aerobic exercise by 1) decreasing cardiac fibrosis through miRNA-29 increasing and inhibiting collagen, 2) increasing angiogenesis through miRNA-126 by inhibiting negative regulators of the VEGF pathway, and 3) modulating the renin-angiotensin system through the miRNAs-27a/b and -143. Exercise training also increases cardiomyocyte growth and survival by swimming-regulated miRNA-1, -21, -27a/b, -29a/c, -30e, -99b, -100, -124, -126, -133a/b, -143, -144, -145, -208a, and -222 and running-regulated miRNA-1, -26, -27a, -133, -143, -150, and -222, which influence genes associated with the heart remodeling and angiogenesis. We conclude that there is a potential role of these miRNAs in promoting cardioprotective effects on physiological growth.
Collapse
Affiliation(s)
- Tiago Fernandes
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Valério G Baraúna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Carlos E Negrão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Heart Institute (InCor), Medical School, University of São Paulo, São Paulo, Brazil; and
| | - M Ian Phillips
- Laboratory of Stem Cells, Keck Graduate Institute, Claremont, California
| | - Edilamar M Oliveira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil;
| |
Collapse
|
14
|
Abstract
Exercise is the archetype of physiologic demands placed on the cardiovascular system. Acute responses provide an informative assessment of cardiovascular function and fitness, while repeated exercise promotes cardiovascular health and evokes important molecular, structural, and functional changes contributing to its effects in primary and secondary prevention. Here we examine the use of exercise in murine models, both as a phenotypic assay and as a provocative intervention. We first review the advantages and limitations of exercise testing for assessing cardiac function, then highlight the cardiac structural and cellular changes elicited by chronic exercise and key molecular pathways that mediate these effects.
Collapse
Affiliation(s)
- Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Nicholas Houstis
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215.,Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Fortuño MA, López N, González A, Díez J. Involvement of cardiomyocyte survival–apoptosis balance in hypertensive cardiac remodeling. Expert Rev Cardiovasc Ther 2014; 1:293-307. [PMID: 15030288 DOI: 10.1586/14779072.1.2.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The balance between cell death and cell survival is a tightly controlled process, especially in terminally differentiated cells, such as the cardiomyocyte. Accumulating data support a role for cardiomyocyte apoptosis in the development of several cardiac diseases, including the transition from hypertensive compensatory hypertrophy to heart failure. This review briefly summarizes the status of the knowledge regarding the death-survival balance of cardiomyocytes in the context of hypertensive heart disease. Several molecular and cellular aspects as well as the most relevant pathophysiological implications are presented. Moreover, diagnosis tools under development and the possibilities for pharmacological intervention are also examined.
Collapse
Affiliation(s)
- María A Fortuño
- Division of Cardiovascular Pathophysiology, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
16
|
Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2013; 17:325-44. [PMID: 21626163 DOI: 10.1007/s10741-011-9257-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is an important and prevalent risk factor for congestive heart failure. Diabetic cardiomyopathy has been defined as ventricular dysfunction that occurs in diabetic patients independent of a recognized cause such as coronary artery disease or hypertension. The disease course consists of a hidden subclinical period, during which cellular structural insults and abnormalities lead initially to diastolic dysfunction, later to systolic dysfunction, and eventually to heart failure. Left ventricular hypertrophy, metabolic abnormalities, extracellular matrix changes, small vessel disease, cardiac autonomic neuropathy, insulin resistance, oxidative stress, and apoptosis are the most important contributors to diabetic cardiomyopathy onset and progression. Hyperglycemia is a major etiological factor in the development of diabetic cardiomyopathy. It increases the levels of free fatty acids and growth factors and causes abnormalities in substrate supply and utilization, calcium homeostasis, and lipid metabolism. Furthermore, it promotes excessive production and release of reactive oxygen species, which induces oxidative stress leading to abnormal gene expression, faulty signal transduction, and cardiomyocytes apoptosis. Stimulation of connective tissue growth factor, fibrosis, and the formation of advanced glycation end-products increase the stiffness of the diabetic hearts. Despite all the current information on diabetic cardiomyopathy, translational research is still scarce due to limited human myocardial tissue and most of our knowledge is extrapolated from animals. This paper aims to elucidate some of the molecular and cellular pathophysiologic mechanisms, structural changes, and therapeutic strategies that may help struggle against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, University of Porto, Porto, Portugal
| | | |
Collapse
|
17
|
Kim CH, Hao J, Ahn HY, Kim SW. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury. J Vet Sci 2013; 13:235-44. [PMID: 23000580 PMCID: PMC3467398 DOI: 10.4142/jvs.2012.13.3.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase (PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved post-ischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3+), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3+. In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3+ pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC.
Collapse
Affiliation(s)
- Chan-Hyung Kim
- Department of Pharmacology, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea.
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Nina Mann
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Harvard/MIT Health Sciences and Technology Program, Boston, MA
| | - Anthony Rosenzweig
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Goyal BR, Mehta AA. Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 2012; 32:571-90. [PMID: 23174745 DOI: 10.1177/0960327112450885] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several experimental, pathological, epidemiological, and clinical studies have clearly depicted that diabetes mellitus results in cardiac functional and structural changes. Diabetic cardiomyopathy results in both structural and functional alterations in the myocardium. Several mechanisms have been implicated in the pathophysiology of diabetic cardiomyopathy. Of these, metabolic disturbances, myocardial fibrosis, small vessel disease, and cardiac autonomic neuropathy are the major players in the pathophysiology of diabetic cardiomyopathy. This review is intended to discuss various such pathophysiological mechanisms of diabetic cardiomyopathy. We have also described the systolic and diastolic dysfunctioning and its corelation to structural changes in diabetes.
Collapse
Affiliation(s)
- B R Goyal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
20
|
Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 2012; 67:599-610. [PMID: 22451468 DOI: 10.1093/gerona/gls072] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review focuses on cardiovascular protective effects of insulin-like growth factor (IGF)-1, provides a landscape of molecular mechanisms involved in cardiovascular alterations in patients and animal models with congenital and adult-onset IGF-1 deficiency, and explores the link between age-related IGF-1 deficiency and the molecular, cellular, and functional changes that occur in the cardiovascular system during aging. Microvascular protection conferred by endocrine and paracrine IGF-1 signaling, its implications for the pathophysiology of cardiac failure and vascular cognitive impairment, and the role of impaired cellular stress resistance in cardiovascular aging considered here are based on emerging knowledge of the effects of IGF-1 on Nrf2-driven antioxidant response.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
21
|
Serum Pregnancy-Associated Plasma Protein A in Patients With Heart Failure. J Card Fail 2011; 17:819-26. [DOI: 10.1016/j.cardfail.2011.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/20/2011] [Accepted: 05/26/2011] [Indexed: 11/20/2022]
|
22
|
Hudson JE, Brooke G, Blair C, Wolvetang E, Cooper-White JJ. Development of Myocardial Constructs Using Modulus-Matched Acrylated Polypropylene Glycol Triol Substrate and Different Nonmyocyte Cell Populations. Tissue Eng Part A 2011; 17:2279-89. [DOI: 10.1089/ten.tea.2010.0743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- James E. Hudson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Gary Brooke
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Chris Blair
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Justin John Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Abstract
IGF-1 (insulin-like growth factor-1) plays a unique role in the cell protection of multiple systems, where its fine-tuned signal transduction helps to preserve tissues from hypoxia, ischaemia and oxidative stress, thus mediating functional homoeostatic adjustments. In contrast, its deprivation results in apoptosis and dysfunction. Many prospective epidemiological surveys have associated low IGF-1 levels with late mortality, MI (myocardial infarction), HF (heart failure) and diabetes. Interventional studies suggest that IGF-1 has anti-atherogenic actions, owing to its multifaceted impact on cardiovascular risk factors and diseases. The metabolic ability of IGF-1 in coupling vasodilation with improved function plays a key role in these actions. The endothelial-protective, anti-platelet and anti-thrombotic activities of IGF-1 exert critical effects in preventing both vascular damage and mechanisms that lead to unstable coronary plaques and syndromes. The pro-survival and anti-inflammatory short-term properties of IGF-1 appear to reduce infarct size and improve LV (left ventricular) remodelling after MI. An immune-modulatory ability, which is able to suppress 'friendly fire' and autoreactivity, is a proposed important additional mechanism explaining the anti-thrombotic and anti-remodelling activities of IGF-1. The concern of cancer risk raised by long-term therapy with IGF-1, however, deserves further study. In the present review, we discuss the large body of published evidence and review data on rhIGF-1 (recombinant human IGF-1) administration in cardiovascular disease and diabetes, with a focus on dosage and safety issues. Perhaps the time has come for the regenerative properties of IGF-1 to be assessed as a new pharmacological tool in cardiovascular medicine.
Collapse
|
24
|
Abstract
The insulin-like growth factor (IGF) system plays essential role in the regulation of cell growth, proliferation and survival and affects nearly every organ system in the body. IGF-I, which has a high structural similarity to insulin, exerts growth-promoting effects, influences glucose metabolism and has neuroprotective and cardioprotective effects, partly because of its cell-proliferative and antiapoptotic properties. Aberrations in the IGF system may associate with various pathological conditions, including cancer. Insulin and its synthetic analogs are known to possess IGF-IR binding affinity, and concern has been raised about their mitogenic potential in humans. The present review summarizes the main aspects of the IGF system biology and the interactions among IGF-I, insulin, insulin analogs and their receptors.
Collapse
Affiliation(s)
- Marta Annunziata
- Division of Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University of Turin, Corso Dogliotti 14, Turin, Italy
| | | | | |
Collapse
|
25
|
el Azzouzi H, Leptidis S, Bourajjaj M, Armand AS, van der Nagel R, van Bilsen M, Da Costa Martins PA, De Windt LJ. Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a PPARalpha target gene in cardioprotection. J Biol Chem 2011; 286:14598-607. [PMID: 21245137 DOI: 10.1074/jbc.m111.220525] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARβ/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions.
Collapse
Affiliation(s)
- Hamid el Azzouzi
- Hubrecht Institute and Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, 3584 CS Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Anversa P, Olivetti G. Cellular Basis of Physiological and Pathological Myocardial Growth. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Didenko VV. In situ ligation simplified: using PCR fragments for detection of double-strand DNA breaks in tissue sections. Methods Mol Biol 2011; 682:65-75. [PMID: 21057921 PMCID: PMC3324586 DOI: 10.1007/978-1-60327-409-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The simplified in situ ligation procedure is described. All reagents for the assay can be easily obtained in any molecular or cell biology laboratory. The technique uses ligation of double-stranded, PCR-derived DNA fragments labeled with digoxigenin or fluorophores for highly selective detection of apoptotic cells in paraffin-embedded tissue sections. Two types of DNA fragments prepared by PCR are employed. The fragment synthesized by Taq polymerase contains single-base 3' overhangs, whereas the Pfu polymerase-made fragment is blunt ended. Both fragments can be used as specific, sensitive and cost-effective DNA damage probes. After ligation to apoptotic nuclei in tissue sections, they indicate the presence of double-strand DNA breaks with single-base 3' overhangs as well as blunt ends.
Collapse
Affiliation(s)
- Vladimir V Didenko
- Departments of Neurosurgery and Molecular & Cellular Biology, Baylor College of Medicine, and Michael E DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
28
|
Kuster GM, Häuselmann SP, Rosc-Schlüter BI, Lorenz V, Pfister O. Reactive oxygen/nitrogen species and the myocardial cell homeostasis: an ambiguous relationship. Antioxid Redox Signal 2010; 13:1899-910. [PMID: 20698753 DOI: 10.1089/ars.2010.3464] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The totality of functional cardiomyocytes and an intact cardiac progenitor cell pool are key players in the myocardial cell homeostasis. Perturbation of either one may compromise the structural and functional integrity of the heart and lead to heart failure. Reactive oxygen/nitrogen species (ROS/RNS) are important regulators of cardiomyocyte viability; more recently, the interrelation between ROS and progenitor cell behavior and fate has moved into the spotlight. Increasing evidence suggests not only that ROS participate in the regulation of cardiac progenitor cell survival but also that they likewise affect their functional properties in terms of self-proliferation and differentiation. The apparent dichotomy of ROS/RNS effects with their adaptive and regulatory character on the one hand and their maladaptive and damaging features on the other pose a great challenge in view of the therapeutic exploitation of their role in the regulation of the myocardial cell homeostasis. In this article, mechanisms and potential significance of ROS/RNS action in the regulation of the myocardial cell homeostasis, in particular with respect to the preservation of viable cardiomyocytes and the maintenance of a functional cardiac progenitor cell pool, will be discussed.
Collapse
Affiliation(s)
- Gabriela M Kuster
- Clinic of Cardiology, University Hospital Basel, University of Basel , Basel, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Boucher M, Pesant S, Lei YH, Nanton N, Most P, Eckhart AD, Koch WJ, Gao E. Simultaneous administration of insulin-like growth factor-1 and darbepoetin alfa protects the rat myocardium against myocardial infarction and enhances angiogenesis. Clin Transl Sci 2010; 1:13-20. [PMID: 20443814 DOI: 10.1111/j.1752-8062.2008.00008.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent studies have shown that insulin growth factor-1 (IGF-1) and either erythropoietin (EPO) or the long-acting EPO analog Darbepoetin alfa (DA) protect the heart against ischemia/reperfusion (I/R) and myocardial infarction (MI). The present study examined the cardioprotective effect of simultaneous treatments with IGF-1 and DA in these models of cardiac injury. Rats were subjected to I/R or MI and were treated with IGF-1, DA, and a combination of IGF-1 and DA, or vehicle treatment. IGF-1 and DA treatments imparted similar protective effect by reducing infarct size. Moreover, these treatments led to improvement of cardiac function after I/R or MI compared to vehicle. In the reperfused heart, apoptosis was reduced with either or both IGF-1 and DA treatments as measured by reduced TUNEL staining and caspase-3 activity. In addition, after MI, treatment with IGF-1 or DA significantly induced angiogenesis. This angiogenic effect was enhanced significantly when IGF-1 and DA were given simultaneously compared to vehicle or either agents alone. These data indicate simultaneous pharmacological treatments with IGF-1 and DA protect the heart against I/R and MI injuries. This protection results in reduced infarct size and improved cardiac function. Moreover, this treatment reduces apoptosis and enhances angiogenesis in the ischemic heart.
Collapse
Affiliation(s)
- Matthieu Boucher
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 2010; 65:1028-41. [PMID: 20576649 DOI: 10.1093/gerona/glq113] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses on molecular, cellular, and functional changes that occur in the vasculature during aging; explores the links between mitochondrial oxidative stress, inflammation, and development of vascular disease in the elderly patients; and provides a landscape of molecular mechanisms involved in cellular oxidative stress resistance, which could be targeted for the prevention or amelioration of unsuccessful vascular aging. Practical interventions for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the effects of anti-inflammatory treatments, regular exercise, dietary interventions, and caloric restriction mimetics.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
31
|
Huynh K, McMullen JR, Julius TL, Tan JW, Love JE, Cemerlang N, Kiriazis H, Du XJ, Ritchie RH. Cardiac-specific IGF-1 receptor transgenic expression protects against cardiac fibrosis and diastolic dysfunction in a mouse model of diabetic cardiomyopathy. Diabetes 2010; 59:1512-20. [PMID: 20215428 PMCID: PMC2874713 DOI: 10.2337/db09-1456] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Compelling epidemiological and clinical evidence has identified a specific cardiomyopathy in diabetes, characterized by early diastolic dysfunction and adverse structural remodeling. Activation of the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) promotes physiological cardiac growth and enhances contractile function. The aim of the present study was to examine whether cardiac-specific overexpression of IGF-1R prevents diabetes-induced myocardial remodeling and dysfunction associated with a murine model of diabetes. RESEARCH DESIGN AND METHODS Type 1 diabetes was induced in 7-week-old male IGF-1R transgenic mice using streptozotocin and followed for 8 weeks. Diastolic and systolic function was assessed using Doppler and M-mode echocardiography, respectively, in addition to cardiac catheterization. Cardiac fibrosis and cardiomyocyte width, heart weight index, gene expression, Akt activity, and IGF-1R protein content were also assessed. RESULTS Nontransgenic (Ntg) diabetic mice had reduced initial (E)-to-second (A) blood flow velocity ratio (E:A ratio) and prolonged deceleration times on Doppler echocardiography compared with nondiabetic counterparts, indicative markers of diastolic dysfunction. Diabetes also increased cardiomyocyte width, collagen deposition, and prohypertrophic and profibrotic gene expression compared with Ntg nondiabetic littermates. Overexpression of the IGF-1R transgene markedly reduced collagen deposition, accompanied by a reduction in the incidence of diastolic dysfunction. Akt phosphorylation was elevated approximately 15-fold in IGF-1R nondiabetic mice compared with Ntg, and this was maintained in a setting of diabetes. CONCLUSIONS The current study suggests that cardiac overexpression of IGF-1R prevented diabetes-induced cardiac fibrosis and diastolic dysfunction. Targeting IGF-1R-Akt signaling may represent a therapeutic target for the treatment of diabetic cardiac disease.
Collapse
Affiliation(s)
- Karina Huynh
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Julie R. McMullen
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tracey L. Julius
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joon Win Tan
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jane E. Love
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nelly Cemerlang
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Xiao-Jun Du
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rebecca H. Ritchie
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Medicine, Monash University, Melbourne, Victoria, Australia
- Corresponding author: Rebecca H. Ritchie,
| |
Collapse
|
32
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 635] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
33
|
Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 2009; 120:254-65. [PMID: 20038803 DOI: 10.1172/jci40295] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/21/2009] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts, which are the most numerous cell type in the heart, interact with cardiomyocytes in vitro and affect their function; however, they are considered to play a secondary role in cardiac hypertrophy and failure. Here we have shown that cardiac fibroblasts are essential for the protective and hypertrophic myocardial responses to pressure overload in vivo in mice. Haploinsufficiency of the transcription factor-encoding gene Krüppel-like factor 5 (Klf5) suppressed cardiac fibrosis and hypertrophy elicited by moderate-intensity pressure overload, whereas cardiomyocyte-specific Klf5 deletion did not alter the hypertrophic responses. By contrast, cardiac fibroblast-specific Klf5 deletion ameliorated cardiac hypertrophy and fibrosis, indicating that KLF5 in fibroblasts is important for the response to pressure overload and that cardiac fibroblasts are required for cardiomyocyte hypertrophy. High-intensity pressure overload caused severe heart failure and early death in mice with Klf5-null fibroblasts. KLF5 transactivated Igf1 in cardiac fibroblasts, and IGF-1 subsequently acted in a paracrine fashion to induce hypertrophic responses in cardiomyocytes. Igf1 induction was essential for cardioprotective responses, as administration of a peptide inhibitor of IGF-1 severely exacerbated heart failure induced by high-intensity pressure overload. Thus, cardiac fibroblasts play a pivotal role in the myocardial adaptive response to pressure overload, and this role is partly controlled by KLF5. Modulation of cardiac fibroblast function may provide a novel strategy for treating heart failure, with KLF5 serving as an attractive target.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, Koutsilieris M. IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol Med 2009; 15:127-35. [PMID: 19295919 DOI: 10.2119/molmed.2009.00012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/05/2009] [Indexed: 11/06/2022] Open
Abstract
Insulinlike growth factor-1 (IGF-1) expression is implicated in myocardial pathophysiology, and two IGF-1 mRNA splice variants have been detected in rodents, IGF-1Ea and mechano-growth factor (MGF). We investigated the expression pattern of IGF-1 gene transcripts in rat myocardium from 1 h up to 8 wks after myocardial infarction induced by left anterior descending coronary artery ligation. In addition, we characterized IGF-1 and MGF E peptide action and their respective signaling in H9C2 myocardial-like cells in vitro. IGF-1Ea and MGF expression were significantly increased, both at transcriptional and translational levels, during the late postinfarction period (4 and 8 wks) in infarcted rat myocardium. Measurements of serum IGF-1 levels in infarcted rats were initially decreased (24 h up to 1 wk) but remained unaltered throughout the late experimental phase (4 to 8 wks) compared with sham-operated rats. Furthermore, specific anti-IGF-1R neutralizing antibody failed to block the synthetic MGF E peptide action, whereas it completely blocked IGF-1 action on the proliferation of H9C2 cells. Moreover, this synthetic MGF E peptide did not activate Akt phosphorylation, whereas it activated ERK1/2 in H9C2 rat myocardial cells. These data support the role of IGF-1 expression in the myocardial repair process and suggest that synthetic MGF E peptide actions may be mediated via an IGF-1R independent pathway in rat myocardial cells, as suggested by our in vitro experiments.
Collapse
Affiliation(s)
- Anastasia Stavropoulou
- Department of Experimental Physiology, Medical School, National Kapodistrian University of Athens, Goudi-Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
35
|
Kawada S, Ishii N. Peripheral venous occlusion causing cardiac hypertrophy and changes in biological parameters in rats. Eur J Appl Physiol 2009; 105:909-17. [DOI: 10.1007/s00421-008-0977-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
|
36
|
High insulinlike growth factor binding protein 1 level predicts incident congestive heart failure in the elderly. Am Heart J 2008; 155:1006-12. [PMID: 18513511 DOI: 10.1016/j.ahj.2007.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/26/2007] [Indexed: 01/19/2023]
Abstract
BACKGROUND Low levels of insulinlike growth factor 1 (IGF-I) may influence the development of age-related cardiovascular diseases including congestive heart failure (CHF). Insulinlike growth factor binding protein 1 (IGFBP-1), which increases during catabolic states and inhibits anabolic IGF-I effects, is increased in patients with CHF and has been associated prospectively with increased mortality among older adults and survivors of myocardial infarction. We investigated the association between fasting plasma levels of IGF-I, IGFBP-1, IGFBP-3, and insulin and risk of incident CHF in the prospective Cardiovascular Health Study. METHODS From among 5,888 adults 65 years old and older in the Cardiovascular Health Study, we studied 566 incident CHF cases and 1,072 comparison subjects after exclusion of underweight individuals (body mass index <18.5 kg/m(2)) and insulin users. Hazard ratios (HRs) with 95% CIs for CHF were estimated after adjustment for age, race, sex, hypertension, systolic blood pressure, lipid levels, left ventricular hypertrophy, coronary disease, C-reactive protein, health status, diabetes, and body mass index. RESULTS High baseline IGFBP-1 level was a significant predictor of CHF, independent of established CHF risk factors and inflammation markers. The HR per SD of IGFBP-1 was 1.22 (95% CI 1.07-1.39, P < .01). Relative to the lowest IGFBP-1 tertile, the HR was 1.29 (95% CI 0.96-1.74, P = .09) for the second IGFBP-1 tertile and 1.47 (95% CI 1.06-2.04; P = .02) for the highest IGFBP-1 tertile (tertile cut points 19.5 and 35.8 ng/mL). Total IGF-I, IGFBP-3, or insulin levels had no association with CHF after adjustment for CHF risk factors. CONCLUSIONS High circulating IGFBP-1 level may be a CHF risk factor among older adults.
Collapse
|
37
|
Pretorius L, Owen KL, Jennings GL, McMullen JR. PROMOTING PHYSIOLOGICAL HYPERTROPHY IN THE FAILING HEART. Clin Exp Pharmacol Physiol 2008; 35:438-41. [DOI: 10.1111/j.1440-1681.2008.04893.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 2008; 14:442-7. [PMID: 18345011 PMCID: PMC2655270 DOI: 10.1038/nm1736] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 02/11/2008] [Indexed: 02/05/2023]
Abstract
Muscular dystrophies comprise a diverse group of genetic disorders that lead to muscle wasting and, in many instances, premature death. Many mutations that cause muscular dystrophy compromise the support network that connects myofilament proteins within the cell to the basal lamina outside the cell, rendering the sarcolemma more permeable or leaky. Here we show that deletion of the gene encoding cyclophilin D (Ppif) rendered mitochondria largely insensitive to the calcium overload-induced swelling associated with a defective sarcolemma, thus reducing myofiber necrosis in two distinct models of muscular dystrophy. Mice lacking delta-sarcoglycan (Scgd(-/-) mice) showed markedly less dystrophic disease in both skeletal muscle and heart in the absence of Ppif. Moreover, the premature lethality associated with deletion of Lama2, encoding the alpha-2 chain of laminin-2, was rescued, as were other indices of dystrophic disease. Treatment with the cyclophilin inhibitor Debio-025 similarly reduced mitochondrial swelling and necrotic disease manifestations in mdx mice, a model of Duchenne muscular dystrophy, and in Scgd(-/-) mice. Thus, mitochondrial-dependent necrosis represents a prominent disease mechanism in muscular dystrophy, suggesting that inhibition of cyclophilin D could provide a new pharmacologic treatment strategy for these diseases.
Collapse
MESH Headings
- Animals
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/antagonists & inhibitors
- Cyclophilins/deficiency
- Cyclophilins/genetics
- Cyclosporine/pharmacology
- Humans
- Laminin/deficiency
- Laminin/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/pathology
- Mitochondrial Swelling/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Myocardium/pathology
- Necrosis
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
Collapse
Affiliation(s)
- Douglas P Millay
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 2008; 102:519-28. [PMID: 18340017 DOI: 10.1161/circresaha.107.168369] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review focuses on the emerging evidence that attenuation of the production of reactive oxygen species and inhibition of inflammatory pathways play a central role in the antiaging cardiovascular effects of caloric restriction. Particular emphasis is placed on the potential role of the plasma membrane redox system in caloric restriction-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that caloric restriction increases bioavailability of NO, decreases vascular reactive oxygen species generation, activates the Nrf2/antioxidant response element pathway, inducing reactive oxygen species detoxification systems, exerts antiinflammatory effects, and, thereby, suppresses initiation/progression of vascular disease that accompany aging.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, USA
| | | | | | | |
Collapse
|
40
|
McMullen JR. ROLE OF INSULIN-LIKE GROWTH FACTOR 1 AND PHOSPHOINOSITIDE 3-KINASE IN A SETTING OF HEART DISEASE. Clin Exp Pharmacol Physiol 2008; 35:349-54. [DOI: 10.1111/j.1440-1681.2007.04873.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Rivière AB, Doevendans PA, Field LJ. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res 2007; 78:18-25. [PMID: 18079102 DOI: 10.1093/cvr/cvm101] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiomyocyte loss is a major contributor to the decreased cardiac function observed in diseased hearts. Previous studies have shown that cardiomyocyte-restricted cyclin D2 expression resulted in sustained cell cycle activity following myocardial injury in transgenic (MHC-cycD2) mice. Here, we investigated the effects of this cell cycle activation on cardiac function following myocardial infarction (MI). METHODS AND RESULTS MI was induced in transgenic and non-transgenic mice by left coronary artery occlusion. At 7, 60, and 180 days after MI, left ventricular pressure-volume measurements were recorded and histological analysis was performed. MI had a similar adverse effect on cardiac function in transgenic and non-transgenic mice at 7 days post-injury. No improvement in cardiac function was observed in non-transgenic mice at 60 and 180 days post-MI. In contrast, the transgenic animals exhibited a progressive and marked increase in cardiac function at subsequent time points. Improved cardiac function in the transgenic mice at 60 and 180 days post-MI correlated positively with the presence of newly formed myocardial tissue which was not apparent at 7 days post-MI. Intracellular calcium transient imaging indicated that cardiomyocytes present in the newly formed myocardium participated in a functional syncytium with the remote myocardium. CONCLUSION These findings indicate that cardiomyocyte cell cycle activation leads to improvement of cardiac function and morphology following MI and may represent an important clinical strategy to promote myocardial regeneration.
Collapse
Affiliation(s)
- Rutger J Hassink
- Department of Cardiology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In the past few years it has been established that the heart contains a reservoir of stem and progenitor cells. These cells are positive for various stem/progenitor cell markers (Kit, Sca-1, Isl-1, and Side Population (SP) properties). The relationship between the various cardiac stem cells (CSC) and progenitor cells described awaits clarification. Furthermore, they may open a new therapeutic strategies of cardiac repair based on the regeneration potential of cardiac stem cells. Currently, cellular cardiomyoplasty is actively explored as means of regenerating damaged myocardium using several different cell types. CSCs seem a logical cell source to exploit for cardiac regeneration therapy. Their presence into the heart, the frequent co-expression of early cardiac progenitor transcription factors, and the capability for ex vivo and in vivo differentiation toward the cardiac lineages offer promise of enhanced cardiogenicity compared to other cell sources. CSCs, when isolated from various animal models by selection based on c-Kit, Sca-1, and/or MDR1, have shown cardiac regeneration potential in vivo following injection in the infracted myocardium. Recently, we have successfully isolated CSCs from small biopsies of human myocardium and expanded them ex vivo by many folds without losing differentiation potential into cardiomyocytes and vascular cells, bringing autologous transplantation of CSCs closer to clinical evaluation. These cells are spontaneously shed from human surgical specimens and murine heart samples in primary culture. This heterogeneous population of cells forms multi-cellular clusters, dubbed cardiospheres (CSs), in suspension culture. CSs are composed of clonally-derived cells, consist of proliferating c-Kit positive cells primarily in their core and differentiating cells expressing cardiac and endothelial cell markers on their periphery. Although the intracardiac origin of adult myocytes has been unequivocally documented, the potential of an extracardiac source of cells, able to repopulate the lost CSCs in pathological conditions (infarct) cannot be excluded and will be discussed in this review. The delivery of human CSs or of CSs-derived cells into the injured heart of the SCID mouse resulted in engraftment, migration, myocardial regeneration and improvement of left ventricular function. Our method for ex vivo expansion of resident CSCs for subsequent autologous transplantation back into the heart, may give these cell populations, the resident and the transplanted one, the combined ability to mediate myocardial regeneration to an appreciable degree, and may change the way in which cardiovascular disease will be approached in the future.
Collapse
Affiliation(s)
- Lucio Barile
- Department of Experimental Medicine, Cenci-Bolognetti Foundation, Pasteur Institute, University La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
43
|
Kaplan RC, McGinn AP, Pollak MN, Kuller LH, Strickler HD, Rohan TE, Cappola AR, Xue X, Psaty BM. Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab 2007; 92:1319-25. [PMID: 17264182 DOI: 10.1210/jc.2006-1631] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Prior observational studies have demonstrated that the GH/IGF axis is associated with cardiovascular disease. However, this association has not been extensively studied among older adults. OBJECTIVE The objective of this study was to assess the association between levels of total IGF-I and IGF binding proteins (IGFBP-1, IGFBP-3) and risk of incident coronary events and ischemic stroke. DESIGN AND PARTICIPANTS A case-cohort analysis was conducted among adults 65 yr and older in the Cardiovascular Health Study. MAIN OUTCOME MEASURES A total of 534 coronary events [316 nonfatal myocardial infarctions (MIs), 48 fatal MIs, and 170 fatal coronary heart disease events] and 370 ischemic strokes were identified on follow-up. Comparison subjects were 1122 randomly selected participants from the Cardiovascular Health Study. RESULTS Mean follow-up time was 6.7 yr for coronary events, 5.6 yr for strokes, and 9.3 yr for comparison subjects. Hazard ratios (95% confidence intervals) associated with baseline levels of total IGF-I and IGFBPs were estimated using multivariate adjusted Cox proportional hazards models. Neither IGF-I nor IGFBP-1 levels predicted risk of incident coronary events or stroke. IGFBP-3 had an inverse association with risk of coronary events [adjusted hazard ratio per sd=0.88 (0.78-1.00), P=0.05] but was not associated with stroke. Exploratory analyses suggested that low IGF-I and low IGFBP-3 levels were significantly associated with higher risk of nonfatal MI (P<0.05) but not with risk of fatal MI or fatal coronary heart disease. CONCLUSION Circulating levels of total IGF-I or IGFBP-1 were not associated with risk of total coronary events or ischemic stroke among older adults, whereas low IGFBP-3 level was associated with increased risk of incident coronary events.
Collapse
Affiliation(s)
- Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA, and Department of Medicine, Lady Davis Research Institute of Jewish General Hospital, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hu BS, Landeen LK, Aroonsakool N, Giles WR. An analysis of the effects of stretch on IGF-I secretion from rat ventricular fibroblasts. Am J Physiol Heart Circ Physiol 2007; 293:H677-83. [PMID: 17400715 DOI: 10.1152/ajpheart.01413.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical force can induce a number of fundamental short- and long-term responses in myocardium. These include alterations in ECM, activation of cell-signaling pathways, altered gene regulation, changes in cell proliferation and growth, and secretion of a number of peptides and growth factors. It is now known that a number of these autocrine/paracrine factors are secreted from both cardiomyocytes and ventricular cardiac fibroblasts (CFb) in response to stretch. One such substance is IGF-I. IGF-I is an important autocrine/paracrine factor that can regulate physiological or pathophysiological responses, such as hypertrophy. In this study, we addressed the possible effects of mechanical perturbation, biaxial strain, on IGF-I secretion from adult rat CFb. CFb were subjected to either static stretch (3-10%) or cyclic stretch (10%; 0.1-1 Hz) over a 24-h period. IGF-1 secretion from CFb in response to selected stretch paradigms was examined using ELISA to measure IGF-I concentrations in conditioned media. Static stretch did not result in any measurable modulation of IGF-I secretion from CFb. However, cyclic stretch significantly increased IGF-I secretion from CFb in a frequency- and time-dependent manner compared with nonstretched controls. This stretch-induced increase in secretion was relatively insensitive to changes in extracellular [Ca(2+)] or to block of L-type Ca(2+) channels. In contrast, thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, remarkably decreased stretch-induced IGF-I secretion from CFb. We further show that IGF-I can upregulate mRNA expression of atrial natriuretic peptide in myocytes. In summary, cyclic stretch can significantly increase IGF-I secretion from CFb, and this effect is dependent on a thapsigargin-sensitive pool of intracellular [Ca(2+)].
Collapse
Affiliation(s)
- Betty S Hu
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
45
|
Kajstura J, Rota M, Urbanek K, Hosoda T, Bearzi C, Anversa P, Bolli R, Leri A. The telomere-telomerase axis and the heart. Antioxid Redox Signal 2006; 8:2125-41. [PMID: 17034355 DOI: 10.1089/ars.2006.8.2125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The preservation of myocyte number and cardiac mass throughout life is dependent on the balance between cell death and cell division. Rapidly emerging evidence indicates that new myocytes can be formed through the activation and differentiation of resident cardiac progenitor cells. The critical issue is the identification of mechanisms that define the aging of cardiac progenitor cells and, ultimately, their inability to replace dying myocytes. The most reliable marker of cellular senescence is the modification of the telomere-telomerase axis, together with the expression of the cell cycle inhibitors p16INK4a and p53. Cellular senescence is characterized by biochemical events that occur within the cell. In this regard, one of the most relevant processes is represented by repeated oxidative stress that may evolve into the activation of the cell death program or result in the development of a senescent phenotype. Thus, the modulation of telomerase activity and the control of telomeric length, together with the attenuation of the formation of reactive oxygen species, may represent important therapeutic tools in regenerative medicine and in prevention of aging and diabetic cardiomyopathies.
Collapse
Affiliation(s)
- Jan Kajstura
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bisping E, Ikeda S, Kong SW, Tarnavski O, Bodyak N, McMullen JR, Rajagopal S, Son JK, Ma Q, Springer Z, Kang PM, Izumo S, Pu WT. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc Natl Acad Sci U S A 2006; 103:14471-6. [PMID: 16983087 PMCID: PMC1636702 DOI: 10.1073/pnas.0602543103] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important event in the pathogenesis of heart failure is the development of pathological cardiac hypertrophy. In cultured cardiomyocytes, the transcription factor Gata4 is required for agonist-induced hypertrophy. We hypothesized that, in the intact organism, Gata4 is an important regulator of postnatal heart function and of the hypertrophic response of the heart to pathological stress. To test this hypothesis, we studied mice heterozygous for deletion of the second exon of Gata4 (G4D). At baseline, G4D mice had mild systolic and diastolic dysfunction associated with reduced heart weight and decreased cardiomyocyte number. After transverse aortic constriction (TAC), G4D mice developed overt heart failure and eccentric cardiac hypertrophy, associated with significantly increased fibrosis and cardiomyocyte apoptosis. Inhibition of apoptosis by overexpression of the insulin-like growth factor 1 receptor prevented TAC-induced heart failure in G4D mice. Unlike WT-TAC controls, G4D-TAC cardiomyocytes hypertrophied by increasing in length more than width. Gene expression profiling revealed up-regulation of genes associated with apoptosis and fibrosis, including members of the TGF-beta pathway. Our data demonstrate that Gata4 is essential for cardiac function in the postnatal heart. After pressure overload, Gata4 regulates the pattern of cardiomyocyte hypertrophy and protects the heart from load-induced failure.
Collapse
Affiliation(s)
- Egbert Bisping
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Sadakatsu Ikeda
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Sek Won Kong
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Oleg Tarnavski
- Cardiovascular Disease Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Natalya Bodyak
- Cardiovascular Disease Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Julie R. McMullen
- Cardiovascular Disease Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Satish Rajagopal
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Jennifer K. Son
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Qing Ma
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Zhangli Springer
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
| | - Peter M. Kang
- Cardiovascular Disease Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Seigo Izumo
- Cardiovascular Disease Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - William T. Pu
- *Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Kurmasheva RT, Houghton PJ. IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta Rev Cancer 2006; 1766:1-22. [PMID: 16844299 DOI: 10.1016/j.bbcan.2006.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 02/07/2023]
Abstract
The type-I and -II insulin-like growth factors (IGF-I, II) are now established as survival- or proliferation-factors in many in vitro systems. Of note IGFs provide trophic support for multiple cell types or organ cultures explanted from various species, and delay the onset of programmed cell death (apoptosis) through the mitochondrial (intrinsic pathway) or by antagonizing activation of cytotoxic cytokine signaling (extrinsic pathway). In some instances, IGFs protect against other forms of death such as necrosis or autophagy. The effect of IGFs on cell survival appears to be context specific, being determined both by the cell origin (tissue specific) and the cellular stress that induces loss of cellular viability. In many human cancers, there is a strong association with dysregulated IGF signaling, and this association has been extensively reviewed recently. IGF-regulation is also disrupted in childhood cancers as a consequence of chromosomal translocations. IGFs are implicated also in acute renal failure, traumatic injury to brain tissue, and cardiac disease. This article focuses on the role of IGFs and their cellular signaling pathways that provide survival signals in stressed cells.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105-2794, USA
| | | |
Collapse
|
48
|
Abstract
Many forms of pediatric and adult heart disease result from a deficiency in cardiomyocyte number. Through repopulation of the heart with new cardiomyocytes (that is, induction of regenerative cardiac growth), cardiac disease potentially can be reversed, provided that the newly formed myocytes structurally and functionally integrate in the preexisting myocardium. A number of approaches have been utilized to effect regenerative growth of the myocardium in experimental animals. These include interventions aimed at enhancing the ability of cardiomyocytes to proliferate in response to cardiac injury, as well as transplantation of cardiomyocytes or myogenic stem cells into diseased hearts. Here we review efforts to induce myocardial regeneration. We also provide a critical review of techniques currently used to assess cardiac regeneration and functional integration of de novo cardiomyocytes.
Collapse
Affiliation(s)
- Michael Rubart
- Herman B Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5225, USA.
| | | |
Collapse
|
49
|
Yazdanpanah M, Rietveld I, Janssen JAMJL, Njajou OT, Hofman A, Stijnen T, Pols HAP, Lamberts SWJ, Witteman JCM, van Duijn CM. An insulin-like growth factor-I promoter polymorphism is associated with increased mortality in subjects with myocardial infarction in an elderly Caucasian population. Am J Cardiol 2006; 97:1274-6. [PMID: 16635594 DOI: 10.1016/j.amjcard.2005.11.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
We investigated whether an insulin-like growth factor I (IGF-I) promoter polymorphism is associated with excess mortality in elderly subjects with myocardial infarction (MI). This association was assessed in 7,983 subjects of the Rotterdam Study during 14 years of follow-up. Among 345 subjects who developed a MI, the risk of mortality was 1.49 times higher in the variant carriers of the IGF-I promoter polymorphism than in the nonvariant carriers (95% confidence interval 1.10 to 2.10, p = 0.02). The risk of death increased with the number of variant alleles. Our study suggests that genetically determined low IGF-I activity is an important determinant of mortality in subjects with MI.
Collapse
Affiliation(s)
- Mojgan Yazdanpanah
- Department of Epidemiology and Biostatistics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dawn B, Guo Y, Rezazadeh A, Huang Y, Stein AB, Hunt G, Tiwari S, Varma J, Gu Y, Prabhu SD, Kajstura J, Anversa P, Ildstad ST, Bolli R. Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ Res 2006; 98:1098-105. [PMID: 16556872 PMCID: PMC3652380 DOI: 10.1161/01.res.0000218454.76784.66] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We systematically investigated the comparative efficacy of three different cytokine regimens, administered after a reperfused myocardial infarction, in regenerating cardiac tissue and improving left ventricular (LV) function. Wild-type (WT) mice underwent a 30-minute coronary occlusion followed by reperfusion and received vehicle, granulocyte colony-stimulating factor (G-CSF)+Flt-3 ligand (FL), G-CSF+stem cell factor (SCF), or G-CSF alone starting 4 hours after reperfusion. In separate experiments, chimeric mice generated by reconstitution of radioablated WT mice with bone marrow from enhanced green fluorescent protein (EGFP) transgenic mice underwent identical protocols. Mice were euthanized 5 weeks later. Echocardiographically, LV function was improved in G-CSF+FL- and G-CSF+SCF-treated but not in G-CSF-treated mice, whereas LV end-diastolic dimensions were smaller in all three groups. Morphometrically, cytokine-treated hearts had smaller LV diameter and volume. Numerous EGFP-positive cardiomyocytes, capillaries, and arterioles were noted in the infarcted region in cytokine-treated chimeric mice treated with G-CSF+FL or G-CSF+SCF, but the numbers were much smaller in G-CSF-treated mice. G-CSF+FL therapy mobilized bone marrow-derived cells exhibiting increased expression of surface antigens (CD62L and CD11a) that facilitate homing. We conclude that postinfarct cytokine therapy with G-CSF+FL or G-CSF+SCF limits adverse LV remodeling and improves LV performance by promoting cardiac regeneration and probably also by exerting other beneficial actions unrelated to regeneration, and that G-CSF alone is less effective.
Collapse
Affiliation(s)
- Buddhadeb Dawn
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|