1
|
Ghosh S, Bishnoi B, Das S. Artery regeneration: Molecules, mechanisms and impact on organ function. Semin Cell Dev Biol 2025; 171:103611. [PMID: 40318557 DOI: 10.1016/j.semcdb.2025.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Replenishment of artery cells to repair or create new arteries is a promising strategy to re-vascularize ischemic tissue. However, limited understanding of cellular and molecular programs associated with artery (re-)growth impedes our efforts towards designing optimal therapeutic approaches. In this review, we summarize different cellular mechanisms that drive injury-induced artery regeneration in distinct organs and organisms. Artery formation during embryogenesis includes migration, self-amplification, and changes in cell fates. These processes are coordinated by multiple signaling pathways, like Vegf, Wnt, Notch, Cxcr4; many of which, also involved in injury-induced vascular responses. We also highlight how physiological and environmental factors determine the extent of arterial re-vascularization. Finally, we discuss different in vitro cellular reprogramming and tissue engineering approaches to promote artery regeneration, in vivo. This review provides the current understanding of endothelial cell fate reprogramming and explores avenues for regenerating arteries to restore organ function through efficient revascularization.
Collapse
Affiliation(s)
- Swarnadip Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India.
| |
Collapse
|
2
|
Xu X, Zhang Y, Wu S, Wu Y, Lin X, Chen K, Lin X. Hepatitis B Virus Promotes Angiogenesis in Hepatocellular Carcinoma by Increasing m6A Modification of VEGFA mRNA via IGF2BP3. J Med Virol 2025; 97:e70356. [PMID: 40260505 DOI: 10.1002/jmv.70356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Angiogenesis plays a crucial role in the development of HBV-related hepatocellular carcinoma (HCC). VEGFA is a key angiogenic factor, and while its transcriptional regulation by HBV has been extensively studied, its posttranscriptional regulation by HBV remains poorly understood. Building on our previous findings that delineated an RBM15/YTHDF2/IGF2BP3 regulatory axis in m6A-mediated RNA metabolism in HCC, this study further explores the posttranscriptional regulation of VEGFA by HBV. By MeRIP-qPCR and integrating MeRIP-seq data, we discovered that HBV enhances m6A methylation of VEGFA mRNA. Comprehensive cellular and molecular biology experiments demonstrated that HBV induces the upregulation of IGF2BP3, which serves as a key "reader" that recognizes and stabilizes VEGFA mRNA in an m6A methylation-dependent manner. This stabilization leads to elevated VEGFA expression, promoting enhanced cellular functions such as HUVEC migration and tube formation. Furthermore, in an HBV-associated HCC xenograft model, IGF2BP3 knockdown resulted in decreased VEGFA expression and inhibited tumor growth. This study expands our understanding of HBV-driven angiogenesis and identifies the IGF2BP3-VEGFA axis as a potential therapeutic target for antiangiogenic strategies in HBV-related HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Liver Neoplasms/virology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Animals
- Neovascularization, Pathologic/virology
- Neovascularization, Pathologic/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/physiology
- Mice
- Methylation
- Cell Line, Tumor
- Human Umbilical Vein Endothelial Cells
- Mice, Nude
- Hepatitis B/virology
- Hepatitis B/complications
- Angiogenesis
Collapse
Affiliation(s)
- Xiaoxin Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Shuxiang Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuecheng Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Moon S, Ito Y. A simplified in vitro disease-mimicking culture system can determine the angiogenic effect of medicines on vascular diseases. Cytotechnology 2025; 77:75. [PMID: 40062227 PMCID: PMC11889311 DOI: 10.1007/s10616-025-00736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/27/2025] [Indexed: 03/21/2025] Open
Abstract
Many patients undergoing clinical regenerative treatments experience severe conditions arising from endothelial disruption. In chronic cardiac and perivascular diseases, deficiencies in vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), and heparin, which are essential for maintaining and activating endothelial cells, can lead to angiogenic dysregulation. Endothelial disruption caused by ischemic hypoxia and a deficiency in these factors is associated with many vascular diseases. However, their pathogenic processes remain unclear at the cellular level. Therefore, the present study aimed to develop a culture system that mimics the disease environment to test the effectiveness of drug candidates in restoring damaged blood vessels in chronic vascular diseases, including coronary artery disease and peripheral vascular disease. This study focused on VEGF, IGF, and heparin and developed a pseudo-disease culture system by pre-treating human umbilical vein endothelial cells (HUVECs) with a starvation medium (EGM-2™ medium lacking VEGF, IGF, and heparin) to examine the ability of HUVECs to form a traditional 2D vascular network. The results indicated that a deficiency in these proteins results in disruptions in tube morphogenesis. Moreover, the results suggested that dysregulation of the PI3K/AKT pathway plays a key role for in vascular disruption in HUVECs. The proposed pseudo-disease starvation system provides a simple way to visualize pathological disruptions to blood vessels and assess the efficacy of drugs for vascular regeneration. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00736-4.
Collapse
Affiliation(s)
- SongHo Moon
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yuzuru Ito
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
- Life Science Development Department, CHIYODA Corporation, Yokohama, Kanagawa Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Japan
| |
Collapse
|
4
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
5
|
Campos I, Richter B, Thomas SM, Czaya B, Yanucil C, Kentrup D, Fajol A, Li Q, Secor SM, Faul C. FGFR4 Is Required for Concentric Growth of Cardiac Myocytes during Physiologic Cardiac Hypertrophy. J Cardiovasc Dev Dis 2024; 11:320. [PMID: 39452290 PMCID: PMC11508992 DOI: 10.3390/jcdd11100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand. To determine whether FGF23/FGFR4 contributes to physiologic cardiac hypertrophy, we studied FGFR4 knockout mice (FGFR4-/-) during late pregnancy. In comparison to virgin littermates, pregnant wild-type and FGFR4-/- mice showed increases in serum FGF23 levels and heart weight; however, the elevation in myocyte area observed in pregnant wild-type mice was abrogated in pregnant FGFR4-/- mice. This outcome was supported by treatments of cultured cardiac myocytes with serum from fed Burmese pythons, another model of physiologic hypertrophy, where the co-treatment with an FGFR4-specific inhibitor abrogated the serum-induced increase in cell area. Interestingly, we found that in pregnant mice, the heart, and not the bone, shows elevated FGF23 expression, and that increases in serum FGF23 are not accompanied by changes in phosphate metabolism. Our study suggests that in physiologic cardiac hypertrophy, the heart produces FGF23 that contributes to hypertrophic growth of cardiac myocytes in a paracrine and FGFR4-dependent manner, and that the kidney does not respond to heart-derived FGF23.
Collapse
Affiliation(s)
- Isaac Campos
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Beatrice Richter
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Sarah Madison Thomas
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Brian Czaya
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Christopher Yanucil
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Dominik Kentrup
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Abul Fajol
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Qing Li
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| |
Collapse
|
6
|
Janes PW, Parslow AC, Cao D, Rigopoulos A, Lee FT, Gong SJ, Cartwright GA, Burvenich IJG, Eriksson U, Johns TG, Scott FE, Scott AM. An Anti-VEGF-B Antibody Reduces Abnormal Tumor Vasculature and Enhances the Effects of Chemotherapy. Cancers (Basel) 2024; 16:1902. [PMID: 38791979 PMCID: PMC11119922 DOI: 10.3390/cancers16101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, which we demonstrate to be expressed in tumor cells and in tumor stroma and vasculature across a range of tumor types. We examined the anti-VEGF-B-specific monoclonal antibody 2H10 in preclinical xenograft models of breast and colorectal cancer, in comparison with the anti-VEGF-A antibody bevacizumab. Similar to bevacizumab, 2H10 therapy was associated with changes in tumor blood vessels and intra-tumoral diffusion consistent with normalization of the tumor vasculature. Accordingly, treatment resulted in partial inhibition of tumor growth, and significantly improved the response to chemotherapy. Our studies indicate the importance of VEGF-B in tumor growth, and the potential of specific anti-VEGF-B treatment to inhibit tumor development, alone or in combination with established chemotherapies.
Collapse
Affiliation(s)
- Peter W. Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
| | - Adam C. Parslow
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Diana Cao
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Angela Rigopoulos
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Fook-Thean Lee
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Sylvia J. Gong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC 3083, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| | - Glenn A. Cartwright
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Fiona E. Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Andrew M. Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
8
|
Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:817-831. [PMID: 38884751 DOI: 10.1007/978-3-031-44087-8_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Coronary blood vessels are in charge of sustaining cardiac homeostasis. It is thus logical that coronary congenital anomalies (CCA) directly or indirectly associate with multiple cardiac conditions, including sudden death. The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature have been described. Despite the clinical interest of CCA, very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data on the morphogenesis of the coronary vascular system derive from complex studies carried out in animals (mostly transgenic mice), and are not often accessible to the clinician, who, in turn, possesses essential information on the significance of CCA. During the last decade, advances in our understanding of normal embryonic development of coronary blood vessels have provided insight into the cellular and molecular mechanisms underlying coronary arteries anomalies. These findings are the base for our attempt to offer plausible embryological explanations to a variety of CCA as based on the analysis of multiple animal models for the study of cardiac embryogenesis, and present them in an organized manner, offering to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
9
|
Rauniyar K, Bokharaie H, Jeltsch M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis 2023; 26:437-461. [PMID: 37017884 PMCID: PMC10328876 DOI: 10.1007/s10456-023-09874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Together with the platelet-derived growth factors (PDGFs), the vascular endothelial growth factors (VEGFs) form the PDGF/VEGF subgroup among cystine knot growth factors. The evolutionary relationships within this subgroup have not been examined thoroughly to date. Here, we comprehensively analyze the PDGF/VEGF growth factors throughout all animal phyla and propose a phylogenetic tree. Vertebrate whole-genome duplications play a role in expanding PDGF/VEGF diversity, but several limited duplications are necessary to account for the temporal pattern of emergence. The phylogenetically oldest PDGF/VEGF-like growth factor likely featured a C-terminus with a BR3P signature, a hallmark of the modern-day lymphangiogenic growth factors VEGF-C and VEGF-D. Some younger VEGF genes, such as VEGFB and PGF, appeared completely absent in important vertebrate clades such as birds and amphibia, respectively. In contrast, individual PDGF/VEGF gene duplications frequently occurred in fish on top of the known fish-specific whole-genome duplications. The lack of precise counterparts for human genes poses limitations but also offers opportunities for research using organisms that diverge considerably from humans. Sources for the graphical abstract: 326 MYA and older [1]; 72-240 MYA [2]; 235-65 MYA [3].
Collapse
Affiliation(s)
- Khushbu Rauniyar
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland
| | - Honey Bokharaie
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Helsinki, Finland.
- Helsinki One Health, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Zhang H, Wang SL, Sun T, Liu J, Li P, Yang JC, Gao F. Role of circulating CD14++CD16 + monocytes and VEGF-B186 in formation of collateral circulation in patients with hyperacute AMI. Heliyon 2023; 9:e17692. [PMID: 37456037 PMCID: PMC10345246 DOI: 10.1016/j.heliyon.2023.e17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Collateral formation is insufficient in some patients with acute myocardial infarction (AMI). Peripheral blood CD14++CD16+ monocytes (intermediate monocytes; IM) and vascular endothelial growth factors (VEGFs) are associated with formation of collateral circulation. Methods We enrolled 49 patients with AMI who underwent emergency percutaneous transluminal coronary intervention (PCI) (Group A) and 27 patients underwent delayed PCI 1 week after AMI (Group B). The percentage of circulating IM and levels of VEGFs in circulation were determined on day 8th. Left ventricular ejection fraction (LVEF) was measured 3 months after AMI. Results The peripheral levels of IM and serum VEGF levels on day 8th were significantly higher in patients with well-developed collateral circulation in Group A than those in Group B. The levels of circulating VEGFs in the collateral circulation (+) subgroup in Group B were lower than those in the collateral circulation (-) subgroup. Moreover, the serum VEGF-B186 levels positively correlated with IM. Conclusions Hyperacute collateral formation in patients with AMI correlated with a higher percentage of CD14++CD16+ monocytes and VEGF-B186 levels in the circulation, which was associated with milder left ventricular remodeling. The regulation of CD14++CD16+ monocytes and VEGF-B may be critical to the formation of collateral circulation and to healing AMI.
Collapse
Affiliation(s)
- He Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| | - Shi-lei Wang
- Catheter Lab, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| | - Tao Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Beijing, 100011, China
| | - Jia Liu
- Department of Cardiology, Hebei Provincial People's Hospital, Shijiazhuang, 050000, China
| | - Ping Li
- Department of Medical Affairs, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| | - Jing-ci Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fang Gao
- Department of Infectious Diseases, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| |
Collapse
|
11
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
12
|
Xu L, Fu T, Wang Y, Ji N. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:520-529. [PMID: 36852944 DOI: 10.1002/jcu.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
13
|
Therapeutic Potential of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells 2022; 11:cells11244134. [PMID: 36552897 PMCID: PMC9776740 DOI: 10.3390/cells11244134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death around the world. Based on the roles of vascular endothelial growth factor (VEGF) family members to regulate blood and lymphatic vessels and metabolic functions, several therapeutic approaches have been attempted during the last decade. However proangiogenic therapies based on classical VEGF-A have been disappointing. Therefore, it has become important to focus on other VEGFs such as VEGF-B, which is a novel member of the VEGF family. Recent studies have shown the very promising potential of the VEGF-B to treat CHD and heart failure. The aim of this review article is to present the role of VEGF-B in endothelial biology and as a potential therapeutic agent for CHD and heart failure. In addition, key differences between the VEGF-A and VEGF-B effects on endothelial functions are demonstrated.
Collapse
|
14
|
Bu MT, Chandrasekhar P, Ding L, Hugo W. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther 2022; 240:108211. [PMID: 35577211 PMCID: PMC10956517 DOI: 10.1016/j.pharmthera.2022.108211] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) has become well-known in cancer therapy, strengthening the body's antitumor immune response rather than directly targeting cancer cells. Therapies targeting immune inhibitory checkpoints, such as PD-1, PD-L1, and CTLA-4, have resulted in impressive clinical responses across different types of solid tumors. However, as with other types of cancer treatments, ICB-based immunotherapy is hampered by both innate and acquired drug resistance. We previously reported the enrichment of gene signatures associated with wound healing, epithelial-to-mesenchymal, and angiogenesis processes in the tumors of patients with innate resistance to PD-1 checkpoint antibody therapy; we termed these the Innate Anti-PD-1 Resistance Signatures (IPRES). The TGF-β and VEGFA pathways emerge as the dominant drivers of IPRES-associated processes. Here, we review these pathways' functions, their roles in immunosuppression, and the currently available therapies that target them. We also discuss recent developments in the targeting of TGF-β using a specific antibody class termed trap antibody. The application of trap antibodies opens the promise of localized targeting of the TGF-β and VEGFA pathways within the tumor microenvironment. Such specificity may offer an enhanced therapeutic window that enables suppression of the IPRES processes in the tumor microenvironment while sparing the normal homeostatic functions of TGF-β and VEGFA in healthy tissues.
Collapse
Affiliation(s)
- Melissa T Bu
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pallavi Chandrasekhar
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lizhong Ding
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Willy Hugo
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Saikia Q, Reeve H, Alzahrani A, Critchley WR, Zeqiraj E, Divan A, Harrison MA, Ponnambalam S. VEGFR endocytosis: Implications for angiogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 194:109-139. [PMID: 36631189 DOI: 10.1016/bs.pmbts.2022.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.
Collapse
Affiliation(s)
- Queen Saikia
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Reeve
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Areej Alzahrani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - William R Critchley
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Elton Zeqiraj
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Aysha Divan
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Michael A Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
16
|
Korpela H, Hätinen OP, Nieminen T, Mallick R, Toivanen P, Airaksinen J, Valli K, Hakulinen M, Poutiainen P, Nurro J, Ylä-Herttuala S. Adenoviral VEGF-B186R127S gene transfer induces angiogenesis and improves perfusion in ischemic heart. iScience 2021; 24:103533. [PMID: 34917905 PMCID: PMC8666349 DOI: 10.1016/j.isci.2021.103533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is an interesting therapeutic candidate for coronary artery disease. However, it can also cause ventricular arrhythmias, potentially preventing its use in clinics. We cloned VEGF-B isoforms with different receptor binding profiles to clarify the roles of VEGFR-1 and Nrp-1 in angiogenesis and to see if angiogenic properties can be maintained while avoiding side effects. VEGF-B constructs were studied in vivo using adenovirus (Ad)-mediated intramyocardial gene transfers into the normoxic and ischemic porcine heart (n = 51). It was found that the unprocessed isoform VEGF-B186R127S is as efficient angiogenic growth factor as the native VEGF-B186 in normoxic and ischemic heart. In addition, AdVEGF-B186R127S increased myocardial perfusion reserve by 22% in ischemic heart without any side effects. AdVEGF-B127 (VEGFR-1 and Nrp-1 ligand) and AdVEGF-B109 (VEGFR-1 ligand) did not induce angiogenesis. Thus, VEGF-B186 is angiogenic only before its proteolytic processing to VEGF-B127. Only the VEGF-B186 C-terminal fragment was associated with arrhythmias. AdVEGF-B186R127S induces angiogenesis and improves perfusion in the ischemic heart No significant side effects were observed after AdVEGF-B186R127S therapy VEGF-B186 is angiogenic only prior to its proteolytic processing C-terminal fragment of VEGF-B186 is associated with ventricular arrhythmias
Collapse
Affiliation(s)
- Henna Korpela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli-Pekka Hätinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pyry Toivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Airaksinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Valli
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Jussi Nurro
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
17
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
19
|
Micro-Current Stimulation Has Potential Effects of Hair Growth-Promotion on Human Hair Follicle-Derived Papilla Cells and Animal Model. Int J Mol Sci 2021; 22:ijms22094361. [PMID: 33921970 PMCID: PMC8122395 DOI: 10.3390/ijms22094361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
Recently, a variety of safe and effective non-pharmacological methods have been introduced as new treatments of alopecia. Micro-current electrical stimulation (MCS) is one of them. It is generally known to facilitate cell proliferation and differentiation and promote cell migration and ATP synthesis. This study aimed to investigate the hair growth-promoting effect of MCS on human hair follicle-derived papilla cells (HFDPC) and a telogenic mice model. We examined changes in cell proliferation, migration, and cell cycle progression with MCS-applied HFDPC. The changes of expression of the cell cycle regulatory proteins, molecules related to the PI3K/AKT/mTOR/Fox01 pathway and Wnt/β-catenin pathway were also examined by immunoblotting. Subsequently, we evaluated the various growth factors in developing hair follicles by RT-PCR in MCS-applied (MCS) mice model. From the results, the MCS-applied groups with specific levels showed effects on HFDPC proliferation and migration and promoted cell cycle progression and the expression of cell cycle-related proteins. Moreover, these levels significantly activated the Wnt/β-catenin pathway and PI3K/AKT/mTOR/Fox01 pathway. Various growth factors in developing hair follicles, including Wnts, FGFs, IGF-1, and VEGF-B except for VEGF-A, significantly increased in MCS-applied mice. Our results may confirm that MCS has hair growth-promoting effect on HFDPC as well as telogenic mice model, suggesting a potential treatment strategy for alopecia.
Collapse
|
20
|
Souidi M, Sleiman Y, Acimovic I, Pribyl J, Charrabi A, Baecker V, Scheuermann V, Pesl M, Jelinkova S, Skladal P, Dvorak P, Lacampagne A, Rotrekl V, Meli AC. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Int J Mol Sci 2021; 22:ijms22020662. [PMID: 33440843 PMCID: PMC7827232 DOI: 10.3390/ijms22020662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Here, we hypothesized that low oxygen exposure enhances the molecular and functional maturity of the cardiomyocytes. We aimed at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hPSCs in 2D- and 3D-based protocols. hPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed. The mitochondrial localization and metabolic properties were evaluated. The intracellular Ca2+ handling and contractile properties were also monitored. The 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac spheroids containing hPSC-CMs in LOE further exhibited cardiac markers, hypertrophy, steadier SR Ca2+ release properties revealing a better SR Ca2+ handling, and enhanced contractile force. Preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Our results brought evidences that LOE is moderately beneficial for the 3D cardiac spheroids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.
Collapse
Affiliation(s)
- Monia Souidi
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
| | - Yvonne Sleiman
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
| | - Ivana Acimovic
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (S.J.); (P.D.); (V.R.)
| | - Jan Pribyl
- CEITEC, Masaryk University, 62500 Brno, Czech Republic; (J.P.); (P.S.)
| | - Azzouz Charrabi
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
| | - Volker Baecker
- Montpellier Ressources Imagerie, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, 34000 Montpellier, France;
| | - Valerie Scheuermann
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (S.J.); (P.D.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic
- First Department of Internal Medicine/Cardioangiology, St. Anne’s Hospital, Masaryk University, 65691 Brno, Czech Republic
- Correspondence: (M.P.); (A.C.M.); Tel.: +420-723-860-905 (M.P.); +33-4-67-41-52-44 (A.C.M.); Fax: +33-4-67-41-52-42 (A.C.M.)
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (S.J.); (P.D.); (V.R.)
| | - Petr Skladal
- CEITEC, Masaryk University, 62500 Brno, Czech Republic; (J.P.); (P.S.)
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (S.J.); (P.D.); (V.R.)
| | - Alain Lacampagne
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (S.J.); (P.D.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, 65691 Brno, Czech Republic
| | - Albano C. Meli
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France; (M.S.); (Y.S.); (I.A.); (A.C.); (V.S.); (A.L.)
- Correspondence: (M.P.); (A.C.M.); Tel.: +420-723-860-905 (M.P.); +33-4-67-41-52-44 (A.C.M.); Fax: +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
21
|
Räsänen M, Sultan I, Paech J, Hemanthakumar KA, Yu W, He L, Tang J, Sun Y, Hlushchuk R, Huan X, Armstrong E, Khoma OZ, Mervaala E, Djonov V, Betsholtz C, Zhou B, Kivelä R, Alitalo K. VEGF-B Promotes Endocardium-Derived Coronary Vessel Development and Cardiac Regeneration. Circulation 2020; 143:65-77. [PMID: 33203221 DOI: 10.1161/circulationaha.120.050635] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction. METHODS We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene-deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3-CreERT recombinase-mediated genetic cell lineage tracing and viral vector-mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2'-deoxyuridine-mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B-induced vessels in the heart. RESULTS We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function. CONCLUSIONS The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.
Collapse
Affiliation(s)
- Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Jennifer Paech
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Wei Yu
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Liqun He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, China (L.H.).,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H., Y.S., C.B.)
| | - Juan Tang
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Ying Sun
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H., Y.S., C.B.)
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, Switzerland (R.H., O.-Z.K., V.D.)
| | - Xiuzheng Huan
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Emma Armstrong
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | | | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.M.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Switzerland (R.H., O.-Z.K., V.D.)
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden (C.B.)
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| |
Collapse
|
22
|
Hypoxia-induced downregulation of Sema3a and CXCL12/CXCR4 regulate the formation of the coronary artery stem at the proper site. J Mol Cell Cardiol 2020; 147:62-73. [PMID: 32777295 DOI: 10.1016/j.yjmcc.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND During the formation of the coronary artery stem, endothelial strands from the endothelial progenitor pool surrounding the conotruncus penetrate into the aortic wall. Vascular endothelial growth factors (VEGFs) as well as CXCL12/CXCR4 signaling are thought to play a role in the formation of the coronary stem. However, the mechanisms regulating how endothelial strands exclusively invade into the aorta remain unknown. METHODS AND RESULTS Immunohistochemistry showed that before the formation of endothelial strands, Sema3a was highly expressed in endothelial progenitors surrounding the great arteries. At the onset of/during invasion of endothelial strands into the aorta, Sema3a was downregulated and CXCR4 was upregulated in the endothelial strands. In situ hybridization showed that Cxcl12 was highly expressed in the aortic wall compared with in the pulmonary artery. Using avian embryonic hearts, we established two types of endothelial penetration assay, in which coronary endothelial strands preferentially invaded into the aorta in culture. Sema3a blocking peptide induced an excess number of endothelial strands penetrating into the pulmonary artery, whereas recombinant Sema3a inhibited the formation of endothelial strands. In cultured coronary endothelial progenitors, recombinant VEGF protein induced CXCR4-positive endothelial strands, which were capable of being attracted by CXCL12-impregnated beads. Monoazo rhodamine detected that hypoxia was predominant in aortic/subaortic region in ovo and hypoxic condition downregulated the expression of Sema3a in culture. CONCLUSION Results suggested that hypoxia in the aortic region downregulates the expression of Sema3a, thereby enhancing VEGF activity to induce the formation of CXCR4-positive endothelial strands, which are subsequently attracted into the Cxcl12-positive aortic wall to connect the aortic lumen.
Collapse
|
23
|
Affiliation(s)
- Mauro Giacca
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, London, UK; University of Trieste, Department of Medical, Surgical and Health Sciences, Trieste, Italy.
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione G. Monasterio, Pisa, Italy; Cardiovascular Research Institute, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Hemanthakumar KA, Kivelä R. Angiogenesis and angiocrines regulating heart growth. VASCULAR BIOLOGY 2020; 2:R93-R104. [PMID: 32935078 PMCID: PMC7487598 DOI: 10.1530/vb-20-0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Endothelial cells (ECs) line the inner surface of all blood and lymphatic vessels throughout the body, making endothelium one of the largest tissues. In addition to its transport function, endothelium is now appreciated as a dynamic organ actively participating in angiogenesis, permeability and vascular tone regulation, as well as in the development and regeneration of tissues. The identification of endothelial-derived secreted factors, angiocrines, has revealed non-angiogenic mechanisms of endothelial cells in both physiological and pathological tissue remodeling. In the heart, ECs play a variety of important roles during cardiac development as well as in growth, homeostasis and regeneration of the adult heart. To date, several angiocrines affecting cardiomyocyte growth in response to physiological or pathological stimuli have been identified. In this review, we discuss the effects of angiogenesis and EC-mediated signaling in the regulation of cardiac hypertrophy. Identification of the molecular and metabolic signals from ECs during physiological and pathological cardiac growth could provide novel therapeutic targets to treat heart failure, as endothelium is emerging as one of the potential target organs in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Karthik Amudhala Hemanthakumar
- Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| | - Riikka Kivelä
- Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
25
|
Moessinger C, Nilsson I, Muhl L, Zeitelhofer M, Heller Sahlgren B, Skogsberg J, Eriksson U. VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content. EMBO Rep 2020; 21:e49343. [PMID: 32449307 PMCID: PMC7332976 DOI: 10.15252/embr.201949343] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Regulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor B (VEGF‐B) signaling in endothelial cells promotes uptake and transcytosis of fatty acids from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here, we demonstrate that VEGF‐B limits endothelial glucose transport independent of fatty acid uptake. Specifically, VEGF‐B signaling impairs recycling of low‐density lipoprotein receptor (LDLR) to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading. Reduced cholesterol levels in the membrane leads to a decrease in glucose transporter 1 (GLUT1)‐dependent endothelial glucose uptake. Inhibiting VEGF‐B in vivo reconstitutes membrane cholesterol levels and restores glucose uptake, which is of particular relevance for conditions involving insulin resistance and diabetic complications. In summary, our study reveals a mechanism whereby VEGF‐B regulates endothelial nutrient uptake and highlights the impact of membrane cholesterol for regulation of endothelial glucose transport.
Collapse
Affiliation(s)
- Christine Moessinger
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Nilsson
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lars Muhl
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Josefin Skogsberg
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ulf Eriksson
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Lähteenvuo J, Hätinen OP, Kuivanen A, Huusko J, Paananen J, Lähteenvuo M, Nurro J, Hedman M, Hartikainen J, Laham-Karam N, Mäkinen P, Räsänen M, Alitalo K, Rosenzweig A, Ylä-Herttuala S. Susceptibility to Cardiac Arrhythmias and Sympathetic Nerve Growth in VEGF-B Overexpressing Myocardium. Mol Ther 2020; 28:1731-1740. [PMID: 32243833 DOI: 10.1016/j.ymthe.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
VEGF-B gene therapy is a promising proangiogenic treatment for ischemic heart disease, but, unexpectedly, we found that high doses of VEGF-B promote ventricular arrhythmias (VAs). VEGF-B knockout, alpha myosin heavy-chain promoter (αMHC)-VEGF-B transgenic mice, and pigs transduced intramyocardially with adenoviral (Ad)VEGF- B186 were studied. Immunostaining showed a 2-fold increase in the number of nerves per field (76 vs. 39 in controls, p < 0.001) and an abnormal nerve distribution in the hypertrophic hearts of 11- to 20-month-old αMHC-VEGF-B mice. AdVEGF-B186 gene transfer (GT) led to local sprouting of nerve endings in pig myocardium (141 vs. 78 nerves per field in controls, p < 0.05). During dobutamine stress, 60% of the αMHC-VEGF-B hypertrophic mice had arrhythmias as compared to 7% in controls, and 20% of the AdVEGF-B186-transduced pigs and 100% of the combination of AdVEGF-B186- and AdsVEGFR-1-transduced pigs displayed VAs and even ventricular fibrillation. AdVEGF-B186 GT significantly increased the risk of sudden cardiac death in pigs when compared to any other GT with different VEGFs (hazard ratio, 500.5; 95% confidence interval [CI] 46.4-5,396.7; p < 0.0001). In gene expression analysis, VEGF-B induced the upregulation of Nr4a2, ATF6, and MANF in cardiomyocytes, molecules previously linked to nerve growth and differentiation. Thus, high AdVEGF-B186 overexpression induced nerve growth in the adult heart via a VEGFR-1 signaling-independent mechanism, leading to an increased risk of VA and sudden cardiac death.
Collapse
Affiliation(s)
- Johanna Lähteenvuo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Olli-Pekka Hätinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Antti Kuivanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Jussi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Markku Lähteenvuo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Jussi Nurro
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Marja Hedman
- Heart Center, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Juha Hartikainen
- Heart Center, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland; Heart Center, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland.
| |
Collapse
|
27
|
Heallen TR, Kadow ZA, Wang J, Martin JF. Determinants of Cardiac Growth and Size. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037150. [PMID: 31615785 DOI: 10.1101/cshperspect.a037150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the realm of zoological study, the question of how an organism reaches a specific size has been largely unexplored. Recently, studies performed to understand the regulation of organ size have revealed that both cellular signals and external cues contribute toward the determination of total cell mass within each organ. The establishment of final organ size requires the precise coordination of cell growth, proliferation, and survival throughout development and postnatal life. In the mammalian heart, the regulation of size is biphasic. During development, cardiomyocyte proliferation predominantly determines cardiac growth, whereas in the adult heart, total cell mass is governed by signals that regulate cardiac hypertrophy. Here, we review the current state of knowledge regarding the extrinsic factors and intrinsic mechanisms that control heart size during development. We also discuss the metabolic switch that occurs in the heart after birth and precedes homeostatic control of postnatal heart size.
Collapse
Affiliation(s)
- Todd R Heallen
- Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - James F Martin
- Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
29
|
Tarallo V, Iaccarino E, Cicatiello V, Sanna R, Ruvo M, De Falco S. Oral Delivery of a Tetrameric Tripeptide Inhibitor of VEGFR1 Suppresses Pathological Choroid Neovascularization. Int J Mol Sci 2020; 21:ijms21020410. [PMID: 31936463 PMCID: PMC7014271 DOI: 10.3390/ijms21020410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in advanced countries. Repeated intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents has represented an important advancement for the therapy of wet AMD with significative results in terms of blindness prevention and partial vision restore. Nonetheless, some patients are not responsive or do not attain significant visual improvement, intravitreal injection may cause serious complications and important side effects have been reported for the prolonged block of VEGF-A. In order to evaluate new anti-angiogenic strategies, we focused our attention on VEGF receptor 1 (VEGFR1) developing a specific VEGFR-1 antagonist, a tetrameric tripeptide named inhibitor of VEGFR 1 (iVR1). We have evaluated its anti-angiogenic activity in the preclinical model of AMD, the laser-induced choroid neovascularization (CNV). iVR1 is able to potently inhibit CNV when delivered by intravitreal injection. Surprisingly, it is able to significantly reduce CNV also when delivered by gavage. Our data show that the specific block of VEGFR1 in vivo represents a valid alternative to the block of VEGF-A and that the inhibition of the pathological neovascularization at ocular level is also possible by systemic delivery of compounds not targeting VEGF-A.
Collapse
Affiliation(s)
- Valeria Tarallo
- Istituto di Genetica e Biofisica ‘Adriano Buzzati-Traverso’—CNR, 80131 Napoli, Italy
| | | | - Valeria Cicatiello
- Istituto di Genetica e Biofisica ‘Adriano Buzzati-Traverso’—CNR, 80131 Napoli, Italy
| | | | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini—CNR, 80134 Napoli, Italy
- ANBITION s.r.l., Department of R&D, 80128 Napoli, Italy
| | - Sandro De Falco
- Istituto di Genetica e Biofisica ‘Adriano Buzzati-Traverso’—CNR, 80131 Napoli, Italy
- ANBITION s.r.l., Department of R&D, 80128 Napoli, Italy
- Correspondence: or ; Tel.: +39-081-6132-354
| |
Collapse
|
30
|
Elhadidy MG, Elmasry A, Rabei MR, Eladel AE. Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy. J Basic Clin Physiol Pharmacol 2019; 31:jbcpp-2018-0212. [PMID: 31730522 DOI: 10.1515/jbcpp-2018-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
Abstract
Background Since their discovery in the early 1960s, doxorubicin (DOX) remains the most effective anticancer drug. However, this drug has confirmed to be a double-edged sword because it causes a cardiomyopathy that leads to congestive heart failure. Ghrelin, a multi-functional peptide, plays an important role in cardiovascular protection. Therefore, we investigated the effects of ghrelin on vascular endothelial growth factor-beta (VEGF-B) and connexin-43 (Cx43) expression in DOX-induced cardiomyopathy. Methods Forty adult male rats were divided randomly into four groups: normal, normal + ghrelin, DOX-induced cardiomyopathy, and DOX-induced cardiomyopathy + ghrelin. Biochemical and histopathological analysis, electrocardiograph (ECG), heart rate, systolic blood pressure (SBP), and immunohistochemical staining of VEGF-B and Cx43 were assessed for all rats in heart tissue specimens. The duration of the study was 2 weeks. Results DOX-induced cardiomyopathy in rats showed significant ECG changes such as prolongation of PR, QT, QTC intervals and ST segment, a decrease in amplitude and an increase in the duration of QRS complex, bradycardia, and a decrease in SBP. Also, rats in the DOX group showed myocardial histopathological damage in the form of severe fibrosis with decreased expression of Cx43 and a non-significant difference in expression of VEGF-B when compared to normal rats. Treatment with ghrelin resulted in a significant improvement in all the studied parameters and was associated with an increase in VEGF-B and Cx43 expression. Conclusions Ghrelin has a beneficial effect against DOX-induced cardiomyopathy which may be mediated through VEGF-B and Cx43 expression in the myocardium. Ghrelin is a promising cardioprotective drug in DOX-induced cardiomyopathy patients, but further studies are needed to evaluate its use.
Collapse
Affiliation(s)
- Mona G Elhadidy
- Mansoura University, Faculty of Medicine, Department of Medical Physiology, 35516Mansoura, Egypt
| | - Ahlam Elmasry
- Mansoura University, Faculty of Medicine, Department of Clinical Pharmacology, 24 Gomhouria St., 35516Mansoura, Egypt
| | - Mohammed R Rabei
- Mansoura University, Faculty of Medicine, Department of Medical Physiology, 35516Mansoura, Egypt
| | - Ahmed E Eladel
- Mansoura University, Faculty of Medicine, Department of Pathology, 35516Mansoura, Egypt
| |
Collapse
|
31
|
Neves KB, Rios FJ, Jones R, Evans TRJ, Montezano AC, Touyz RM. Microparticles from vascular endothelial growth factor pathway inhibitor-treated cancer patients mediate endothelial cell injury. Cardiovasc Res 2019; 115:978-988. [PMID: 30753341 PMCID: PMC6452312 DOI: 10.1093/cvr/cvz021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor pathway inhibitors (VEGFi), used as anti-angiogenic drugs to treat cancer are associated with cardiovascular toxicities through unknown molecular mechanisms. Endothelial cell-derived microparticles (ECMPs) are biomarkers of endothelial injury and are also functionally active since they influence downstream target cell signalling and function. We questioned whether microparticle (MP) status is altered in cancer patients treated with VEGFi and whether they influence endothelial cell function associated with vascular dysfunction. Plasma MPs were isolated from cancer patients before and after treatment with VEGFi (pazopanib, sunitinib, or sorafenib). Human aortic endothelial cells (HAECs) were stimulated with isolated MPs (106 MPs/mL). Microparticle characterization was assessed by flow cytometry. Patients treated with VEGFi had significantly increased levels of plasma ECMP. Endothelial cells exposed to post-VEGFi treatment ECMPs induced an increase in pre-pro-ET-1 mRNA expression, corroborating the increase in endothelin-1 (ET-1) production in HAEC stimulated with vatalanib (VEGFi). Post-VEGFi treatment MPs increased generation of reactive oxygen species in HAEC, effects attenuated by ETA (BQ123) and ETB (BQ788) receptor blockers. VEGFi post-treatment MPs also increased phosphorylation of the inhibitory site of endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO), and increased ONOO- levels in HAEC, responses inhibited by ETB receptor blockade. Additionally, gene expression of proinflammatory mediators was increased in HAEC exposed to post-treatment MPs, effects inhibited by BQ123 and BQ788. Our findings define novel molecular mechanism involving interplay between microparticles, the ET-1 system and endothelial cell pro-inflammatory and redox signalling, which may be important in cardiovascular toxicity and hypertension associated with VEGFi anti-cancer treatment. New and noteworthy: our novel data identify MPs as biomarkers of VEGFi-induced endothelial injury and important mediators of ET-1-sensitive redox-regulated pro-inflammatory signalling in effector endothelial cells, processes that may contribute to cardiovascular toxicity in VEGFi-treated cancer patients.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| | - Robert Jones
- Beatson West of Scotland Cancer Centre, Glasgow, UK
- Cancer Research UK Glasgow Clinical Trials Unit, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas Ronald Jeffry Evans
- Beatson West of Scotland Cancer Centre, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| |
Collapse
|
32
|
Li LJ, Ma J, Li SB, Chen X, Zhang J. Vascular endothelial growth factor B inhibits lipid accumulation in C2C12 myotubes incubated with fatty acids. Growth Factors 2019; 37:76-84. [PMID: 31215273 DOI: 10.1080/08977194.2019.1626851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate (1) the effect of vascular endothelial growth factor B (VEGFB) on lipid accumulation and the alteration of fatty acids and fatty acid-related enzymes in C2C12 myotubes incubated with fatty acids and (2) the regulatory effect of VEGFB on skeletal muscle lipid metabolism. Mouse C2C12 myotubes were incubated with oleic acid (OA) and palmitic acid (PA), and differentiated mature C2C12 myotubes were treated with VEGFB. Oil-red O staining, BODIPY staining and cell triglycerides (TG) content were examined. Total RNA was isolated, and real-time PCR analysis was performed. Treatment with 100 μM OA and 50 μM PA induced lipid droplet accumulation and increased TG content (p < .01), and 100 ng/mL VEGFB reduced lipid droplet accumulation and decreased TG content (p < .01). Treatment with 100 ng/mL VEGFB significantly induced the mRNA expression of fatty acid transport protein 1 (FATP1) (p < .01) and FATP4 (p < .01). Treatment with 100 ng/mL VEGFB significantly induced the mRNA expression of adipose TG lipase and hormone-sensitive lipase (p < .01) as well as carnitine palmitoyltransferase I (p < .01), peroxisome proliferator-activated receptor-γ coactivator-1α (p < .01), acyl-coa dehydrogenase very long chain (p < .05), acyl-coa synthetase long-chain family member 1 (p < .01), peroxisomal acyl-coenzyme A oxidase 1 (p < .05), and mitochondrial uncoupling protein 3 (p < .01). VEGFB enhanced FATP1and FATP4 expression, promoted C2C12 myotube fatty acid oxidation and TG decomposition, and inhibited C2C12 myotube fatty acid re-esterification, thus inhibiting lipid accumulation in C2C12 myotubes incubated with fatty acids.
Collapse
Affiliation(s)
- Ling-Jie Li
- a College of P.E. and Sports, Beijing Normal University , Beijing , China
| | - Jin Ma
- a College of P.E. and Sports, Beijing Normal University , Beijing , China
| | - Song-Bo Li
- b China Academy of Sport and Health Science, Beijing Sport University , Beijing , China
| | - Xuefei Chen
- a College of P.E. and Sports, Beijing Normal University , Beijing , China
| | - Jing Zhang
- a College of P.E. and Sports, Beijing Normal University , Beijing , China
| |
Collapse
|
33
|
Chen R, Lee C, Lin X, Zhao C, Li X. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res 2019; 143:33-39. [PMID: 30851357 DOI: 10.1016/j.phrs.2019.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress, due to insufficiency of antioxidants or over-production of oxidants, can lead to severe cell and tissue damage. Oxidative stress occurs constantly and has been shown to be involved in innumerable diseases, such as degenerative, cardiovascular, neurological, and metabolic disorders, cancer, and aging, thus highlighting the vital need of antioxidant defense mechanisms. Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago, and is abundantly expressed in most types of cells and tissues. VEGF-B remained functionally mysterious for many years and later on has been shown to be minimally angiogenic. Recently, VEGF-B is reported to be a potent antioxidant by boosting the expression of key antioxidant enzymes. Thus, one major role of VEGF-B lies in safeguarding tissues and cells from oxidative stress-induced damage. VEGF-B may therefore have promising therapeutic utilities in treating oxidative stress-related diseases. In this review, we discuss the current knowledge on the newly discovered antioxidant function of VEGF-B and the related molecular mechanisms, particularly, in relationship to some oxidative stress-related diseases, such as retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, China; Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200023, Shanghai, China.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
34
|
Abstract
VEGF-B was discovered a long time ago. However, unlike VEGF-A, whose function has been extensively studied, the function of VEGF-B and the mechanisms involved still remain poorly understood. Notwithstanding, drugs that inhibit VEGF-B and other VEGF family members have been used to treat patients with neovascular diseases. It is therefore critical to have a better understanding of VEGF-B function and the underlying mechanisms. Here, using comprehensive methods and models, we have identified VEGF-B as a potent antioxidant. Loss of Vegf-b by gene deletion leads to retinal degeneration in mice, and treatment with VEGF-B rescues retinal cells from death in a retinitis pigmentosa model. Mechanistically, we demonstrate that VEGF-B up-regulates numerous key antioxidative genes, particularly, Gpx1 Loss of Gpx1 activity largely diminished the antioxidative effect of VEGF-B, demonstrating that Gpx1 is at least one of the critical downstream effectors of VEGF-B. In addition, we found that the antioxidant function of VEGF-B is mediated mainly by VEGFR1. Given that oxidative stress is a crucial factor in numerous human diseases, VEGF-B may have therapeutic value for the treatment of such diseases.
Collapse
|
35
|
Guillory AN, Clayton RP, Prasai A, El Ayadi A, Herndon DN, Finnerty CC. Biventricular differences in β-adrenergic receptor signaling following burn injury. PLoS One 2017; 12:e0189527. [PMID: 29232706 PMCID: PMC5726759 DOI: 10.1371/journal.pone.0189527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 12/17/2022] Open
Abstract
Burn injury detrimentally affects the myocardium, primarily due to over-activation of β-adrenergic receptors (β-AR). Autopsy reports from our institution reveal that patients often suffer from right ventricle (RV) failure. Since burn injury affects β-AR signaling in the left ventricle (LV), we proposed that β-AR signaling may also be altered in the RV. A rodent model with a scald burn of 60% of the total body surface area was used to test this hypothesis. Ventricles were isolated 7 days post-burn. We examined the expression of β-ARs via Western blotting and the mRNA expression of downstream signaling proteins via qRT-PCR. Cyclic adenosine monophosphate (cAMP) production and protein kinase A (PKA) activity were measured in membrane and cytosolic fractions, respectively, using enzyme immunoassay kits. β1-AR protein expression was significantly increased in the RV following burn injury compared to non-burned RV but not in the LV (p = 0.0022). In contrast, β2-AR expression was unaltered among the groups while Gαi expression was significantly higher in the LV post-burn (p = 0.023). B-arrestin-1 and G-protein coupled receptor kinase-2 mRNA expression were significantly increased in the left ventricle post-burn (p = 0.001, p<0.0001, respectively). cAMP production and PKA activity were significantly lower in the LV post-burn (p = 0.0063, 0.0042, respectively). These data indicate that burn injury affects the β-AR signaling pathway in the RV independently of the LV. Additionally, non-canonical β-AR signaling may be activated in the RV as cAMP production and PKA activity were unchanged despite changes in β1-AR protein expression.
Collapse
Affiliation(s)
- Ashley N. Guillory
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Shriners Hospitals for Children—Galveston, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert P. Clayton
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Shriners Hospitals for Children—Galveston, Galveston, Texas, United States of America
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Shriners Hospitals for Children—Galveston, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David N. Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Shriners Hospitals for Children—Galveston, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Celeste C. Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Shriners Hospitals for Children—Galveston, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, Neves A, Passarinha LA, Tomaz CT. Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev 2017; 39:102-115. [PMID: 29248329 DOI: 10.1016/j.cytogfr.2017.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Vision loss due to disease or degeneration of the eye (retina, choroid, retinal veins, or macula) is a leading cause of blindness worldwide. In most cases, vision-threatening ocular diseases are accompanied by abnormal changes in the vasculature of the eye, especially the retina, and these conditions are collectively referred to as retinal vasculopathies. Impaired blood supply or hypoxia stimulates angiogenesis in the vascular and non-vascular sections of the eye, which results in neovascularization, leading to conditions such as diabetic retinopathy or age-related macular degeneration. Studies show that vascular endothelial growth factors: VEGF-A, VEGF-B, and placental growth factor (PlGF) are elevated in these diseases, and hence, these factors could be used as markers for disease prognosis and therapy. In this review, we discuss the function of these growth factors in normal development and disease, with focus on ocular disorders and emphasize the importance of accurately determining their levels in the vitreous and serum of patients for correct diagnosis and therapy.
Collapse
Affiliation(s)
- Joana Mesquita
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - João Paulo Castro-de-Sousa
- Faculty of Medical Sciences, Universidade da Beira Interior, Covilhã, Portugal; Department of Ophthalmology, Centro Hospitalar de Leiria, R. das Olhalvas, 2410-197 Leiria, Portugal.
| | - Sara Vaz-Pereira
- Department of Ophthalmology, Hospital de Santa Maria, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal; Department of Ophthalmology, Faculty of Medicine, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal.
| | - Arminda Neves
- Department of Ophthalmology, Centro Hospitalar de Leiria, R. das Olhalvas, 2410-197 Leiria, Portugal.
| | - Luís A Passarinha
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; Faculty of Medical Sciences, Universidade da Beira Interior, Covilhã, Portugal.
| | - Cândida T Tomaz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
37
|
Abstract
Angiogenesis plays an important role in controlling tissue development and maintaining normal tissue function. Dysregulated angiogenesis is implicated in the pathogenesis of a variety of diseases, particularly diabetes, cancers, and neurodegenerative disorders. As the major regulator of angiogenesis, the vascular endothelial growth factor (VEGF) family is composed of a group of crucial members including VEGF-B. While the physiological roles of VEGF-B remain debatable, increasing evidence suggests that this protein is able to protect certain type of cells from apoptosis under pathological conditions. More importantly, recent studies reveal that VEGF-B is involved in lipid transport and energy metabolism, implicating this protein in obesity, diabetes and related metabolic complications. This article summarizes the current knowledge and understanding of VEGF-B in physiology and pathology, and shed light on the therapeutic potential of this crucial protein.
Collapse
Affiliation(s)
- Hongyu Zhu
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Mingming Gao
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Xiangdong Gao
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Yue Tong
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
38
|
Naumenko N, Huusko J, Tuomainen T, Koivumäki JT, Merentie M, Gurzeler E, Alitalo K, Kivelä R, Ylä-Herttuala S, Tavi P. Vascular Endothelial Growth Factor-B Induces a Distinct Electrophysiological Phenotype in Mouse Heart. Front Physiol 2017; 8:373. [PMID: 28620319 PMCID: PMC5450225 DOI: 10.3389/fphys.2017.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is a potent mediator of vascular, metabolic, growth, and stress responses in the heart, but the effects on cardiac muscle and cardiomyocyte function are not known. The purpose of this study was to assess the effects of VEGF-B on the energy metabolism, contractile, and electrophysiological properties of mouse cardiac muscle and cardiac muscle cells. In vivo and ex vivo analysis of cardiac-specific VEGF-B TG mice indicated that the contractile function of the TG hearts was normal. Neither the oxidative metabolism of isolated TG cardiomyocytes nor their energy substrate preference showed any difference to WT cardiomyocytes. Similarly, myocyte Ca2+ signaling showed only minor changes compared to WT myocytes. However, VEGF-B overexpression induced a distinct electrophysiological phenotype characterized by ECG changes such as an increase in QRSp time and decreases in S and R amplitudes. At the level of isolated TG cardiomyocytes, these changes were accompanied with decreased action potential upstroke velocity and increased duration (APD60–70). These changes were partly caused by downregulation of sodium current (INa) due to reduced expression of Nav1.5. Furthermore, TG myocytes had alterations in voltage-gated K+ currents, namely decreased density of transient outward current (Ito) and total K+ current (Ipeak). At the level of transcription, these were accompanied by downregulation of Kv channel-interacting protein 2 (Kcnip2), a known modulatory subunit for Kv4.2/3 channel. Cardiac VEGF-B overexpression induces a distinct electrophysiological phenotype including remodeling of cardiomyocyte ion currents, which in turn induce changes in action potential waveform and ECG.
Collapse
Affiliation(s)
- Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Jussi T Koivumäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Mari Merentie
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Erika Gurzeler
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum HelsinkiHelsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum HelsinkiHelsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University HospitalKuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
39
|
Insights into the Mechanisms Involved in Protective Effects of VEGF-B in Dopaminergic Neurons. PARKINSONS DISEASE 2017; 2017:4263795. [PMID: 28473940 PMCID: PMC5394414 DOI: 10.1155/2017/4263795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor-B (VEGF-B), when initially discovered, was thought to be an angiogenic factor, due to its intimate sequence homology and receptor binding similarity to the prototype angiogenic factor, vascular endothelial growth factor-A (VEGF-A). Studies demonstrated that VEGF-B, unlike VEGF-A, did not play a significant role in angiogenesis or vascular permeability and has become an active area of interest because of its role as a survival factor in pathological processes in a multitude of systems, including the brain. By characterization of important downstream targets of VEGF-B that regulate different cellular processes in the nervous system and cardiovascular system, it may be possible to develop more effective clinical interventions in diseases such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and ischemic heart disease, which all share mitochondrial dysfunction as part of the disease. Here we summarize what is currently known about the mechanism of action of VEGF-B in pathological processes. We explore its potential as a homeostatic protective factor that improves mitochondrial function in the setting of cardiovascular and neurological disease, with a specific focus on dopaminergic neurons in Parkinson's disease.
Collapse
|
40
|
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12:18-34. [PMID: 28212521 PMCID: PMC5312547 DOI: 10.1016/j.redox.2017.01.007] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a multifocal alteration of the vascular wall of medium and large arteries characterized by a local accumulation of cholesterol and non-resolving inflammation. Atherothrombotic complications are the leading cause of disability and mortality in western countries. Neovascularization in atherosclerotic lesions plays a major role in plaque growth and instability. The angiogenic process is mediated by classical angiogenic factors and by additional factors specific to atherosclerotic angiogenesis. In addition to its role in plaque progression, neovascularization may take part in plaque destabilization and thromboembolic events. Anti-angiogenic agents are effective to reduce atherosclerosis progression in various animal models. However, clinical trials with anti-angiogenic drugs, mainly anti-VEGF/VEGFR, used in anti-cancer therapy show cardiovascular adverse effects, and require additional investigations.
Collapse
Affiliation(s)
- Caroline Camaré
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| | - Mélanie Pucelle
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France
| | - Anne Nègre-Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France.
| | - Robert Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France.
| |
Collapse
|
41
|
|
42
|
Rud'ko AS, Efendieva MK, Budzinskaya MV, Karpilova MA. [Influence of vascular endothelial growth factor on angiogenesis and neurogenesis]. Vestn Oftalmol 2017; 133:75-81. [PMID: 28745660 DOI: 10.17116/oftalma2017133375-80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is known as a key mediator of angiogenesis, but there is also evidence of its broad significance in neurogenesis and neuroprotection. Cytokines of the VEGF family affect neovascularization and neural development in the brain, particularly during cerebral ischemia, in which there is a coordinated interaction of angiogenesis and neurogenesis that contributes to rapid functional recovery. This review examines the involvement of VEGF family members and their receptors in physiological and pathophysiological processes as well as the relationship between VEGF-A plasma levels and ischemic stroke.
Collapse
Affiliation(s)
- A S Rud'ko
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M Kh Efendieva
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M V Budzinskaya
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M A Karpilova
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| |
Collapse
|
43
|
Sharma B, Chang A, Red-Horse K. Coronary Artery Development: Progenitor Cells and Differentiation Pathways. Annu Rev Physiol 2016; 79:1-19. [PMID: 27959616 DOI: 10.1146/annurev-physiol-022516-033953] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronary artery disease (CAD) is the number one cause of death worldwide and involves the accumulation of plaques within the artery wall that can occlude blood flow to the heart and cause myocardial infarction. The high mortality associated with CAD makes the development of medical interventions that repair and replace diseased arteries a high priority for the cardiovascular research community. Advancements in arterial regenerative medicine could benefit from a detailed understanding of coronary artery development during embryogenesis and of how these pathways might be reignited during disease. Recent research has advanced our knowledge on how the coronary vasculature is built and revealed unexpected features of progenitor cell deployment that may have implications for organogenesis in general. Here, we highlight these recent findings and discuss how they set the stage to interrogate developmental pathways during injury and disease.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Stanford University, Stanford, California 94305;
| | - Andrew Chang
- Department of Biology, Stanford University, Stanford, California 94305; .,Department of Developmental Biology, Stanford University, Stanford, California 94305
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
44
|
Kazanski V, Mitrokhin VM, Mladenov MI, Kamkin AG. Cytokine Effects on Mechano-Induced Electrical Activity in Atrial Myocardium. Immunol Invest 2016; 46:22-37. [PMID: 27617892 DOI: 10.1080/08820139.2016.1208220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of cytokines as regulators of stretch-related mechanisms is of special importance since mechano-sensitivity plays an important role in a wide variety of biological processes. Here, we elucidate the influence of cytokine application on mechano-sensitivity and mechano-transduction. The atrial myocardial stretch induces production of interleukin (IL)-2, IL-6, IL-13, IL-17A, and IL-18 with exception of tumor necrosis factor α (TNF-α), IL-1β, and vascular endothelial growth factor B (VEGF-B). Positive ionotropic effect was specific for VEGF-B, negative ionotropic effects were specific for TNF-α, IL-1β, IL-2, IL-6, IL-13, IL-17A and IL-18, while IL-1α doesn't show direct ionotropic effect. The IL-2, IL-6, IL-17A, IL-18, and VEGF-B cause elongation of the APD, in comparison with the reduced APD caused by the IL-13. The TNF-α, IL-1β, and IL-18 influences L-type Ca2+ channels, IL-2 has an inhibitory effect on the fast Na+ channels while IL-17A and VEGF-B were specific for Kir channels. With exception of the IL-1α, IL-2, and VEGF-B, all analyzed cytokines include nitric oxide dependent signaling with resultant combined effects on mechano-gated and Ca2+ channels. The relationships between these pathways and the time-dependence of their activation are of important considerations in the evaluation of cytokine-induced electrical abnormality, specific for cardiac dysfunctions. In general, the discussion presented in this review covers research devoted to counterbalance between different cytokines in the regulation of stretch-induced effects in rat atrial myocardium. ABBREVIATIONS APs: action potentials; APD25: action potential durations to 25% of re-polarization; APD50: action potential durations to 50% of repolarization; APD90: action potential durations to 90% of repolarization; MGCs: mechanically gated channels.
Collapse
Affiliation(s)
- V Kazanski
- a Department of Fundamental and Applied Physiology , Russian National Research Medical University , Moscow , Russia
| | - V M Mitrokhin
- a Department of Fundamental and Applied Physiology , Russian National Research Medical University , Moscow , Russia
| | - M I Mladenov
- a Department of Fundamental and Applied Physiology , Russian National Research Medical University , Moscow , Russia.,b Faculty of Natural Sciences and Mathematics, Institute of Biology , "Ss. Cyril and Methodius" University , Skopje , Macedonia
| | - A G Kamkin
- a Department of Fundamental and Applied Physiology , Russian National Research Medical University , Moscow , Russia
| |
Collapse
|
45
|
Abstract
Development of coronary vessels is a complex process in developmental biology and it may have clinical implications. Although coronary vessels develop as a form of vasculogenesis followed by angiogenesis, the cells of the entire coronary system do not arise from the developing heart. The key events of the coronary system formation include the generation of primordium and proepicardial organ; formation of epicardium; generation of subepicardial mesenchymal cells, and the formation, remodeling and maturation of the final vascular plexus. These events represent a complex regulation of the cell fate determination, cellular migration, epicardial/mesenchymal transformation, and patterning of vasculatures. Recent studies suggest that several transcription factors, adhesion molecules, growth factors and signaling molecules play essential roles in these events. This article reviews the literature on the development of coronary vessels, and discusses current advances and controversies of molecular and cellular mechanisms, thereby directing future investigations.
Collapse
Affiliation(s)
- Hong Mu
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Tarantini S, Tucsek Z, Valcarcel-Ares MN, Toth P, Gautam T, Giles CB, Ballabh P, Wei JY, Wren JD, Ashpole NM, Sonntag WE, Ungvari Z, Csiszar A. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:273-289. [PMID: 27613724 PMCID: PMC5061685 DOI: 10.1007/s11357-016-9931-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center- New York Medical College, Valhalla, NY, USA
| | - Jeanne Y Wei
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Science, 4301 West Markham Street, No. 748, Little Rock, AR, 72205, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Pecs, Pecs, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
47
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
48
|
Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016; 111:172-83. [PMID: 27288009 DOI: 10.1093/cvr/cvw159] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022] Open
Abstract
The incidence of diabetes is increasing globally, with cardiovascular disease accounting for a substantial number of diabetes-related deaths. Although atherosclerotic vascular disease is a primary reason for this cardiovascular dysfunction, heart failure in patients with diabetes might also be an outcome of an intrinsic heart muscle malfunction, labelled diabetic cardiomyopathy. Changes in cardiomyocyte metabolism, which encompasses a shift to exclusive fatty acid utilization, are considered a leading stimulus for this cardiomyopathy. In addition to cardiomyocytes, endothelial cells (ECs) make up a significant proportion of the heart, with the majority of ATP generation in these cells provided by glucose. In this review, we will discuss the metabolic machinery that drives energy metabolism in the cardiomyocyte and EC, its breakdown following diabetes, and the research direction necessary to assist in devising novel therapeutic strategies to prevent or delay diabetic heart disease.
Collapse
Affiliation(s)
- Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
49
|
Claesson-Welsh L. VEGF receptor signal transduction - A brief update. Vascul Pharmacol 2016; 86:14-17. [PMID: 27268035 DOI: 10.1016/j.vph.2016.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/20/2016] [Accepted: 05/28/2016] [Indexed: 12/31/2022]
Abstract
Vascular endothelial growth factor (VEGF) signal transduction through receptor tyrosine kinases VEGF receptor-1, -2 and -3 is of crucial importance for monocytes/macrophages, blood vascular endothelial and lymphatic endothelial cells both in physiology and in a number of pathologies notably cancer. This brief review summarizes the current status of VEGF receptor signaling with emphasis on in vivo data.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Dept. Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsv 20, 751 85 Uppsala, Sweden.
| |
Collapse
|
50
|
Clouet S, Di Pietrantonio L, Daskalopoulos EP, Esfahani H, Horckmans M, Vanorlé M, Lemaire A, Balligand JL, Beauloye C, Boeynaems JM, Communi D. Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy. J Biol Chem 2016; 291:15841-52. [PMID: 27231349 DOI: 10.1074/jbc.m115.684118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Sophie Clouet
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Larissa Di Pietrantonio
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | | | - Hrag Esfahani
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Michael Horckmans
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Marion Vanorlé
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Anne Lemaire
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Jean-Luc Balligand
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Christophe Beauloye
- the Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels
| | - Jean-Marie Boeynaems
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels, the Department of Laboratory Medicine, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Didier Communi
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels,
| |
Collapse
|