1
|
Kawada S, Chakraborty P, Kakarla J, Nanthakumar J, Mondésert B, Khairy P, Nair K. Role of subpulmonary right ventricle in sudden cardiac death in adults with congenital heart disease. Heart Rhythm 2025; 22:821-831. [PMID: 39127230 DOI: 10.1016/j.hrthm.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Despite improved childhood survival of congenital heart disease (CHD) as a result of advances in management, late-onset sudden cardiac death (SCD) from malignant ventricular arrhythmias remains a leading cause of mortality in adults with CHD. Preventing SCD in these patients requires an understanding of the underlying pathophysiological mechanisms. Many CHD patients experience significant hemodynamic stress on the subpulmonary right ventricle (RV), leading to pathologic remodeling. Unlike acquired heart disease in which left ventricular pathology is prevalent, RV pathologies are crucial in the SCD pathogenesis in CHD patients. This review examines the mechanisms and management of SCD related to subpulmonary RV pathologies in CHD patients.
Collapse
Affiliation(s)
- Satoshi Kawada
- Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University Health Network Toronto, and University of Toronto, Toronto, Ontario, Canada
| | - Praloy Chakraborty
- Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University Health Network Toronto, and University of Toronto, Toronto, Ontario, Canada
| | - Jayant Kakarla
- Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University Health Network Toronto, and University of Toronto, Toronto, Ontario, Canada
| | - Jared Nanthakumar
- Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University Health Network Toronto, and University of Toronto, Toronto, Ontario, Canada; Michael De Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Blandine Mondésert
- Adult Congenital Heart Disease Centre, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Paul Khairy
- Adult Congenital Heart Disease Centre, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Krishnakumar Nair
- Toronto Congenital Cardiac Centre for Adults, Peter Munk Cardiac Centre, University Health Network Toronto, and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Sykora M, Andelova K, Szeiffova Bacova B, Egan Benova T, Martiskova A, Knezl V, Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules 2023; 13:biom13020330. [PMID: 36830700 PMCID: PMC9953310 DOI: 10.3390/biom13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.
Collapse
|
3
|
Mendelson JB, Sternbach JD, Doyle MJ, Mills L, Hartweck LM, Tollison W, Carney JP, Lahti MT, Bianco RW, Kalra R, Kazmirczak F, Hindmarch C, Archer SL, Prins KW, Martin CM. A Multi-omic and Multi-Species Analysis of Right Ventricular Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527661. [PMID: 36798212 PMCID: PMC9934613 DOI: 10.1101/2023.02.08.527661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no approved treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. Here, we used transcriptomics and proteomics analyses to define the molecular pathways associated with cardiac MRI-derived values of RV hypertrophy, dilation, and dysfunction in pulmonary artery banded (PAB) piglets. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare the three species. Transcriptomic and proteomic analyses identified multiple pathways that were associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the three species. FAO and ETC proteins and transcripts were mostly downregulated in rats, but were predominately upregulated in PAB pigs, which more closely matched the human data. Thus, the pig PAB metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and that pigs more accurately recapitulate the metabolic aspects of human RVF.
Collapse
|
4
|
Wu J, Liu T, Shi S, Fan Z, Hiram R, Xiong F, Cui B, Su X, Chang R, Zhang W, Yan M, Tang Y, Huang H, Wu G, Huang C. Dapagliflozin reduces the vulnerability of rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling. Cardiovasc Diabetol 2022; 21:197. [PMID: 36171554 PMCID: PMC9516842 DOI: 10.1186/s12933-022-01614-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
Background Malignant ventricular arrhythmia (VA) is a major contributor to sudden cardiac death (SCD) in patients with pulmonary arterial hypertension (PAH)-induced right heart failure (RHF). Recently, dapagliflozin (DAPA), a sodium/glucose cotransporter-2 inhibitor (SGLT2i), has been found to exhibit cardioprotective effects in patients with left ventricular systolic dysfunction. In this study, we examined the effects of DAPA on VA vulnerability in a rat model of PAH-induced RHF. Methods Rats randomly received monocrotaline (MCT, 60 mg/kg) or vehicle via a single intraperitoneal injection. A day later, MCT-injected rats were randomly treated with placebo, low-dose DAPA (1 mg/kg/day), or high-dose (3 mg/kg/day) DAPA orally for 35 days. Echocardiographic analysis, haemodynamic experiments, and histological assessments were subsequently performed to confirm the presence of PAH-induced RHF. Right ventricle (RV) expression of calcium (Ca2+) handling proteins were detected via Western blotting. RV expression of connexin 43 (Cx43) was determined via immunohistochemical staining. An optical mapping study was performed to assess the electrophysiological characteristics in isolated hearts. Cellular Ca2+ imaging from RV cardiomyocytes (RVCMs) was recorded using Fura-2 AM or Fluo-4 AM. Results High-dose DAPA treatment attenuated RV structural remodelling, improved RV function, alleviated Cx43 remodelling, increased the conduction velocity, restored the expression of key Ca2+ handling proteins, increased the threshold for Ca2+ and action potential duration (APD) alternans, decreased susceptibility to spatially discordant APD alternans and spontaneous Ca2+ events, promoted cellular Ca2+ handling, and reduced VA vulnerability in PAH-induced RHF rats. Low-dose DAPA treatment also showed antiarrhythmic effects in hearts with PAH-induced RHF, although with a lower level of efficacy. Conclusion DAPA administration reduced VA vulnerability in rats with PAH-induced RHF by improving RVCM Ca2+ handling. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01614-5.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Department of Cardiology, Qinghai Provincial People's Hospital, No.2 Gong He Road, Xining, 810007, People's Republic of China
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Zhixing Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montreal, QC, Canada
| | - Feng Xiong
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montreal, QC, Canada
| | - Bo Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, No.2 Gong He Road, Xining, 810007, People's Republic of China
| | - Rong Chang
- Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, No. 187 Guanlan Road, Longhua District, Shenzhen, 518109, China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Min Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
5
|
Alves-Silva JM, Zuzarte M, Marques C, Viana S, Preguiça I, Baptista R, Ferreira C, Cavaleiro C, Domingues N, Sardão VA, Oliveira PJ, Reis F, Salgueiro L, Girão H. 1,8-cineole Ameliorates Right Ventricle Dysfunction Associated With Pulmonary Arterial Hypertension by Restoring Connexin 43 and Mitochondrial Homeostasis. Pharmacol Res 2022; 180:106151. [PMID: 35247601 DOI: 10.1016/j.phrs.2022.106151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated discs and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| | - Carla Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês Preguiça
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Rui Baptista
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Cardiology Department, Hospital Centre of Entre Douro and Vouga, Santa Maria da Feira, Portugal
| | - Cátia Ferreira
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Carlos Cavaleiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Vilma A Sardão
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal; Univ Coimbra, Faculty of Sport Science and Physical Education, Coimbra, Portugal
| | - Paulo J Oliveira
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
| | - Flávio Reis
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
6
|
Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for Right Ventricular Function. Int J Mol Sci 2021; 22:ijms22030987. [PMID: 33498172 PMCID: PMC7863922 DOI: 10.3390/ijms22030987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.
Collapse
|
7
|
Medvedev R, Sanchez-Alonso JL, Alvarez-Laviada A, Rossi S, Dries E, Schorn T, Abdul-Salam VB, Trayanova N, Wojciak-Stothard B, Miragoli M, Faggian G, Gorelik J. Nanoscale Study of Calcium Handling Remodeling in Right Ventricular Cardiomyocytes Following Pulmonary Hypertension. Hypertension 2020; 77:605-616. [PMID: 33356404 DOI: 10.1161/hypertensionaha.120.14858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a complex disorder characterized by pulmonary vascular remodeling and right ventricular hypertrophy, leading to right heart failure. The mechanisms underlying this process are not well understood. We hypothesize that the structural remodeling occurring in the cardiomyocytes of the right ventricle affects the cytosolic Ca2+ handling leading to arrhythmias. After 12 days of monocrotaline-induced pulmonary hypertension in rats, epicardial mapping showed electrical remodeling in both ventricles. In myocytes isolated from the hypertensive rats, a combination of high-speed camera and confocal line-scan documented a prolongation of Ca2+ transients along with a higher local Ca2+-release activity. These Ca2+ transients were less synchronous than in controls, likely due to disorganized transverse-axial tubular system. In fact, following pulmonary hypertension, hypertrophied right ventricular myocytes showed significantly reduced number of transverse tubules and increased number of axial tubules; however, Stimulation Emission Depletion microscopy demonstrated that the colocalization of L-type Ca2+ channels and RyR2 (ryanodine receptor 2) remained unchanged. Finally, Stimulation Emission Depletion microscopy and super-resolution scanning patch-clamp analysis uncovered a decrease in the density of active L-type Ca2+ channels in right ventricular myocytes with an elevated open probability of the T-tubule anchored channels. This may represent a general mechanism of how nanoscale structural changes at the early stage of pulmonary hypertension impact on the development of the end stage failing phenotype in the right ventricle.
Collapse
Affiliation(s)
- Roman Medvedev
- From the Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, Italy (R.M., G.F.).,National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | - Eef Dries
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Lab of Experimental Cardiology, University of Leuven, Belgium (E.D.)
| | - Tilo Schorn
- Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Vahitha B Abdul-Salam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation; Johns Hopkins University; Baltimore, MD (N.T.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | | | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| |
Collapse
|
8
|
Okada M, Fukuyama K, Shiroyama T, Murata M. A Working Hypothesis Regarding Identical Pathomechanisms between Clinical Efficacy and Adverse Reaction of Clozapine via the Activation of Connexin43. Int J Mol Sci 2020; 21:ijms21197019. [PMID: 32987640 PMCID: PMC7583770 DOI: 10.3390/ijms21197019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Clozapine (CLZ) is an approved antipsychotic agent for the medication of treatment-resistant schizophrenia but is also well known as one of the most toxic antipsychotics. Recently, the World Health Organization’s (WHO) global database (VigiBase) reported the relative lethality of severe adverse reactions of CLZ. Agranulocytosis is the most famous adverse CLZ reaction but is of lesser lethality compared with the other adverse drug reactions of CLZ. Unexpectedly, VigiBase indicated that the prevalence and relative lethality of pneumonia, cardiotoxicity, and seizures associated with CLZ were more serious than that of agranulocytosis. Therefore, haematological monitoring in CLZ patients monitoring system provided success in the prevention of lethal adverse events from CLZ-induced agranulocytosis. Hereafter, psychiatrists must amend the CLZ patients monitoring system to protect patients with treatment-resistant schizophrenia from severe adverse CLZ reactions, such as pneumonia, cardiotoxicity, and seizures, according to the clinical evidence and pathophysiology. In this review, we discuss the mechanisms of clinical efficacy and the adverse reactions of CLZ based on the accumulating pharmacodynamic findings of CLZ, including tripartite synaptic transmission, and we propose suggestions for amending the monitoring and medication of adverse CLZ reactions associated with pneumonia, cardiotoxicity, and seizures.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
- Correspondence: ; Tel.: +81-59-231-5018
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Masahiko Murata
- National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan;
| |
Collapse
|
9
|
Norepinephrine Leads to More Cardiopulmonary Toxicities than Epinephrine by Catecholamine Overdose in Rats. TOXICS 2020; 8:toxics8030069. [PMID: 32947820 PMCID: PMC7560392 DOI: 10.3390/toxics8030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022]
Abstract
While catecholamines like epinephrine (E) and norepinephrine (NE) are commonly used in emergency medicine, limited studies have discussed the harm of exogenously induced catecholamine overdose. We investigated the possible toxic effects of excessive catecholamine administration on cardiopulmonary function and structure via continuous 6 h intravenous injection of E and/or NE in rats. Heart rate, echocardiography, and ventricular pressure were measured throughout administration. Cardiopulmonary structure was also assessed by examining heart and lung tissue. Consecutive catecholamine injections induced severe tachycardia. Echocardiography results showed NE caused worse dysfunction than E. Simultaneously, both E and NE led to higher expression of Troponin T and connexin43 in the whole ventricles, which increased further with E+NE administration. The NE and E+NE groups showed severe pulmonary edema while all catecholamine-administering groups demonstrated reduced expression of receptor for advanced glycation end products and increased connexin43 levels in lung tissue. The right ventricle was more vulnerable to catecholamine overdose than the left. Rats injected with NE had a lower survival rate than those injected with E within 6 h. Catecholamine overdose induces acute lung injuries and ventricular cardiomyopathy, and E+NE is associated with a more severe outcome. The similarities of the results between the NE and E+NE groups may indicate a predominant role of NE in determining the overall cardiopulmonary damage. The results provide important clinical insights into the pathogenesis of catecholamine storm.
Collapse
|
10
|
Zhai X, Larkin JW, Süel GM, Mugler A. Spiral Wave Propagation in Communities with Spatially Correlated Heterogeneity. Biophys J 2020; 118:1721-1732. [PMID: 32105650 DOI: 10.1016/j.bpj.2020.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
Many multicellular communities propagate signals in a directed manner via excitable waves. Cell-to-cell heterogeneity is a ubiquitous feature of multicellular communities, but the effects of heterogeneity on wave propagation are still unclear. Here, we use a minimal FitzHugh-Nagumo-type model to investigate excitable wave propagation in a two-dimensional heterogeneous community. The model shows three dynamic regimes in which waves either propagate directionally, die out, or spiral indefinitely, and we characterize how these regimes depend on the heterogeneity parameters. We find that in some parameter regimes, spatial correlations in the heterogeneity enhance directional propagation and suppress spiraling. However, in other regimes, spatial correlations promote spiraling, a surprising feature that we explain by demonstrating that these spirals form by a second, distinct mechanism. Finally, we characterize the dynamics using techniques from percolation theory. Despite the fact that percolation theory does not completely describe the dynamics quantitatively because it neglects the details of the excitable propagation, we find that it accounts for the transitions between the dynamic regimes and the general dependency of the spiral period on the heterogeneity and thus provides important insights. Our results reveal that the spatial structure of cell-to-cell heterogeneity can have important consequences for signal propagation in cellular communities.
Collapse
Affiliation(s)
- Xiaoling Zhai
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Joseph W Larkin
- Department of Biology and Department of Physics, Boston University, Boston, Massachusetts
| | - Gürol M Süel
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
11
|
Expression of connexin-43 in the cardiac muscle of children diagnosed with hypoplastic left heart syndrome: a Western blot and confocal laser scanning microscopy study. Cardiol Young 2020; 30:238-242. [PMID: 31845643 DOI: 10.1017/s104795111900297x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypoplastic left heart syndrome consists of several structural abnormalities in the left side of the heart and may be associated with a hereditary genetic cause, possibly related to the connexin gene GJA1; however, only a few studies have investigated it. The present study aimed to analyse the expression of connexin-43 in the cardiac muscle of hypoplastic left heart syndrome children by Western blot method and confocal laser scanning microscopy. For that, tissue samples were taken during corrective surgery to treat heart defects. Patients of control group (8) presented any type of heart defect not related to hypoplastic left heart syndrome, connexin-43, or its gene and those of hypoplastic left heart syndrome group (9) presented this disease singly, without any other associated congenital diseases. By means of confocal laser scanning microscopy, it was noticed no connexin-43 qualitative differences in positioning and location pattern between both groups. From Western blot analysis, the connexin-43 expression did not show a statistically significant difference (p = 0.0571) as well. Within the limits of this study, it is suggested that cardiomyocytes of hypoplastic left heart syndrome children are similar in connexin-43 location, distribution, and structural and conformational patterns to those of children with heart defects not related to this protein and its genes.
Collapse
|
12
|
Strauss B, Sassi Y, Bueno-Beti C, Ilkan Z, Raad N, Cacheux M, Bisserier M, Turnbull IC, Kohlbrenner E, Hajjar RJ, Hadri L, Akar FG. Intra-tracheal gene delivery of aerosolized SERCA2a to the lung suppresses ventricular arrhythmias in a model of pulmonary arterial hypertension. J Mol Cell Cardiol 2018; 127:20-30. [PMID: 30502350 DOI: 10.1016/j.yjmcc.2018.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.
Collapse
Affiliation(s)
- Benjamin Strauss
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Carlos Bueno-Beti
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Zeki Ilkan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Nour Raad
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Marine Cacheux
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA.
| |
Collapse
|
13
|
Kim JC, Son MJ, Wang J, Woo SH. Regulation of cardiac Ca 2+ and ion channels by shear mechanotransduction. Arch Pharm Res 2017; 40:783-795. [PMID: 28702845 DOI: 10.1007/s12272-017-0929-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/06/2017] [Indexed: 11/25/2022]
Abstract
Cardiac contraction is controlled by a Ca2+ signaling sequence that includes L-type Ca2+ current-gated opening of Ca2+ release channels (ryanodine receptors) in the sarcoplasmic reticulum (SR). Local Ca2+ signaling in the atrium differs from that in the ventricle because atrial myocytes lack transverse tubules and have more abundant corbular SR. Myocardium is subjected to a variety of forces with each contraction, such as stretch, shear stress, and afterload, and adapts to those mechanical stresses. These mechanical stimuli increase in heart failure, hypertension, and valvular heart diseases that are clinically implicated in atrial fibrillation and stroke. In the present review, we describe distinct responses of atrial and ventricular myocytes to shear stress and compare them with other mechanical responses in the context of local and global Ca2+ signaling and ion channel regulation. Recent evidence suggests that shear mechanotransduction in cardiac myocytes involves activation of gap junction hemichannels, purinergic signaling, and generation of mitochondrial reactive oxygen species. Significant alterations in Ca2+ signaling and ionic currents by shear stress may be implicated in the pathogenesis of cardiac arrhythmia and failure.
Collapse
Affiliation(s)
- Joon-Chul Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Min-Jeong Son
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Jun Wang
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Sun-Hee Woo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea.
| |
Collapse
|
14
|
Temple IP, Logantha SJRJ, Absi M, Zhang Y, Pervolaraki E, Yanni J, Atkinson A, Petkova M, Quigley GM, Castro S, Drinkhill M, Schneider H, Monfredi O, Cartwright E, Zi M, Yamanushi TT, Mahadevan VS, Gurney AM, White E, Zhang H, Hart G, Boyett MR, Dobrzynski H. Atrioventricular Node Dysfunction and Ion Channel Transcriptome in Pulmonary Hypertension. Circ Arrhythm Electrophysiol 2017; 9:CIRCEP.115.003432. [PMID: 27979911 DOI: 10.1161/circep.115.003432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/10/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Heart block is associated with pulmonary hypertension, and the aim of the study was to test the hypothesis that the heart block is the result of a change in the ion channel transcriptome of the atrioventricular (AV) node. METHODS AND RESULTS The most commonly used animal model of pulmonary hypertension, the monocrotaline-injected rat, was used. The functional consequences of monocrotaline injection were determined by echocardiography, ECG recording, and electrophysiological experiments on the Langendorff-perfused heart and isolated AV node. The ion channel transcriptome was measured by quantitative PCR, and biophysically detailed computer modeling was used to explore the changes observed. After monocrotaline injection, echocardiography revealed the pattern of pulmonary artery blood flow characteristic of pulmonary hypertension and right-sided hypertrophy and failure; the Langendorff-perfused heart and isolated AV node revealed dysfunction of the AV node (eg, 50% incidence of heart block in isolated AV node); and quantitative PCR revealed a widespread downregulation of ion channel and related genes in the AV node (eg, >50% downregulation of Cav1.2/3 and HCN1/2/4 channels). Computer modeling predicted that the changes in the transcriptome if translated into protein and function would result in heart block. CONCLUSIONS Pulmonary hypertension results in a derangement of the ion channel transcriptome in the AV node, and this is the likely cause of AV node dysfunction in this disease.
Collapse
Affiliation(s)
- Ian P Temple
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Sunil Jit R J Logantha
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Mais Absi
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Yu Zhang
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Eleftheria Pervolaraki
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Joseph Yanni
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Andrew Atkinson
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Maria Petkova
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Gillian M Quigley
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Simon Castro
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Mark Drinkhill
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Heiko Schneider
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Oliver Monfredi
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Elizabeth Cartwright
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Min Zi
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Tomoko T Yamanushi
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Vaikom S Mahadevan
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Alison M Gurney
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Ed White
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Henggui Zhang
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - George Hart
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| | - Mark R Boyett
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.).
| | - Halina Dobrzynski
- From the Institute of Cardiovascular Sciences (I.P.T., S.J.R.J.L., M.A., Y.Z., J.Y., A.A., M.P., G.M.Q., H.S., O.M., E.C., M.Z., A.M.G., G.H., M.R.B., H.D.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; School of Biomedical Sciences, University of Leeds, United Kingdom (E.P., M.D., E.W.); Kagawa Prefectural College of Health Sciences, Takamatsu, Japan (T.T.Y.); and Department of Medicine, University of California, San Francisco (V.S.M.)
| |
Collapse
|
15
|
Ahmed LA, Rizk SM, El-Maraghy SA. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats. Biochem Pharmacol 2017; 138:193-204. [PMID: 28450224 DOI: 10.1016/j.bcp.2017.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
Abstract
Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation/adverse effects
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Progenitor Cells/cytology
- Endothelial Progenitor Cells/drug effects
- Endothelial Progenitor Cells/immunology
- Endothelial Progenitor Cells/transplantation
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Flavanones/therapeutic use
- Graft Rejection/prevention & control
- Heart Ventricles/immunology
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/surgery
- Lung/blood supply
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Pulmonary Artery/pathology
- Random Allocation
- Rats, Wistar
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
16
|
Kusakari Y, Urashima T, Shimura D, Amemiya E, Miyasaka G, Yokota S, Fujimoto Y, Akaike T, Inoue T, Minamisawa S. Impairment of Excitation-Contraction Coupling in Right Ventricular Hypertrophied Muscle with Fibrosis Induced by Pulmonary Artery Banding. PLoS One 2017; 12:e0169564. [PMID: 28068381 PMCID: PMC5222608 DOI: 10.1371/journal.pone.0169564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/28/2016] [Indexed: 01/20/2023] Open
Abstract
Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling) has not yet been clarified. We developed an animal model of right ventricular (RV) hypertrophy with fibrosis by pulmonary artery (PA) banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33). The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1) the decrease in Ca2+ responsiveness and 2) the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.
Collapse
Affiliation(s)
- Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Takashi Urashima
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Shimura
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Erika Amemiya
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Genki Miyasaka
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Yokota
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshitaka Fujimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Akaike
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Inoue
- Department of Cardiac Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Sukhacheva TV, Chudinovskikh YA, Eremeeva MV, Serov RA, Bockeria LA. Proliferative Potential of Cardiomyocytes in Hypertrophic Cardiomyopathy: Correlation with Myocardial Remodeling. Bull Exp Biol Med 2016; 162:160-169. [PMID: 27882462 DOI: 10.1007/s10517-016-3566-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 01/07/2023]
Affiliation(s)
- T V Sukhacheva
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Yu A Chudinovskikh
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M V Eremeeva
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - R A Serov
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L A Bockeria
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Boulaksil M, Bierhuizen MFA, Engelen MA, Stein M, Kok BJM, van Amersfoorth SCM, Vos MA, van Rijen HVM, de Bakker JMT, van Veen TAB. Spatial Heterogeneity of Cx43 is an Arrhythmogenic Substrate of Polymorphic Ventricular Tachycardias during Compensated Cardiac Hypertrophy in Rats. Front Cardiovasc Med 2016; 3:5. [PMID: 26973841 PMCID: PMC4773605 DOI: 10.3389/fcvm.2016.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/18/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ventricular remodeling increases the propensity of ventricular tachyarrhythmias and sudden death in patients. We studied the mechanism underlying these fatal arrhythmias, electrical and structural cardiac remodeling, as well as arrhythmogeneity during early, compensated hypertrophy in a rat model of chronic pressure overload. METHODS Twenty-six Wistar rats were subjected to transverse aortic constriction (TAC) (n = 13) or sham operation (n = 13). Four weeks postoperative, echo- and electrocardiography was performed. Epicardial (208 or 455 sites) and transmural (30 sites) ventricular activation mapping was performed on Langendorff perfused hearts. Subsequently, hearts were processed for (immuno)histological and molecular analyses. RESULTS TAC rats showed significant hypertrophy with preserved left ventricular (LV) function. Epicardial conduction velocity (CV) was similar, but more dispersed in TAC. Transmural CV was slowed in TAC (37.6 ± 2.9 cm s(-1)) compared to sham (58.5 ± 3.9 cm s(-1); P < 0.01). Sustained polymorphic ventricular tachycardias were induced from LV in 8/13 TAC and in 0/13 sham rats. During VT, electrical activation patterns showed variable sites of earliest epicardial activation and altering sites of functional conduction block. Wandering epicardial reentrant activation was sporadically observed. Collagen deposition was significantly higher in TAC compared to sham, but not different between arrhythmogenic and non-arrhythmogenic TAC animals. Connexin43 (Cx43) expression was heterogeneous with a higher prevalence of non-phosphorylated Cx43 in arrhythmogenic TAC animals. CONCLUSION In TAC rats with compensated cardiac hypertrophy, dispersion of conduction correlated to arrhythmogenesis, an increased heterogeneity of Cx43, and a partial substitution with non-phosphorylated Cx43. These alterations may result in the increased vulnerability to polymorphic VTs.
Collapse
Affiliation(s)
- Mohamed Boulaksil
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands; Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marti F A Bierhuizen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht , Utrecht , Netherlands
| | - Markus A Engelen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands; Division of Cardiology, Department of Cardiovascular Medicine, University of Muenster, Muenster, Germany
| | - Mèra Stein
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands; Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart J M Kok
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht , Utrecht , Netherlands
| | | | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht , Utrecht , Netherlands
| | - Harold V M van Rijen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jacques M T de Bakker
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands; Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands; Heart Failure Research Center, Academic Medical Center, Amsterdam, Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
19
|
Evaluation of cardiac electrophysiological properties in an experimental model of right ventricular hypertrophy and failure. Cardiol Young 2016; 26:451-8. [PMID: 25872028 DOI: 10.1017/s1047951115000402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Malignant arrhythmias are a major cause of sudden cardiac death in adults with congenital heart disease. We developed a model to serially investigate electrophysiological properties in an animal model of right ventricular hypertrophy and failure. METHOD We created models of compensated (cHF; n=11) and decompensated (dHF; n=11) right ventricular failure in Wistar rats by pulmonary trunk banding. Healthy controls underwent sham operation (Control; n=13). Surface electrocardiography was recorded from extremities, and inducibility of ventricular tachycardia was evaluated in vivo by programmed stimulation. Isolated right ventricular myocardium was analysed for mRNA expression of selected genes. RESULTS Banding caused an increased mRNA expression of both connexin 43 and the voltage-gated sodium channel 1.5, as well as a prolongation of PQ, QRS and QTc intervals. Ventricular tachycardia was induced in the majority of banded animals compared with none in the healthy control group. No differences were found between the two degrees of failure in neither the electrophysiological parameters nor inducibility. CONCLUSIONS The electrophysiological properties of rat hearts subjected to pulmonary trunk banding were significantly changed with increased susceptibility to ventricular tachycardia, but no differences were found between compensated and decompensated right ventricular failure. Furthermore, we demonstrate that in vivo electrophysiological evaluation is a sensitive method to characterise the cardiac electric phenotype in an experimental rat model.
Collapse
|
20
|
Kim JC, Woo SH. Shear stress induces a longitudinal Ca(2+) wave via autocrine activation of P2Y1 purinergic signalling in rat atrial myocytes. J Physiol 2015; 593:5091-109. [PMID: 26377030 DOI: 10.1113/jp271016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/11/2015] [Indexed: 12/25/2022] Open
Abstract
Atrial myocytes are exposed to shear stress during the cardiac cycle and haemodynamic disturbance. In response, they generate a longitudinally propagating global Ca(2+) wave. Here, we investigated the cellular mechanisms underlying the shear stress-mediated Ca(2+) wave, using two-dimensional confocal Ca(2+) imaging combined with a pressurized microflow system in single rat atrial myocytes. Shear stress of ∼16 dyn cm(-2) for 8 s induced ∼1.2 aperiodic longitudinal Ca(2+) waves (∼79 μm s(-1)) with a delay of 0.2-3 s. Pharmacological blockade of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors (IP3 Rs) abolished shear stress-induced Ca(2+) wave generation. Furthermore, in atrial myocytes from type 2 IP3R (IP3R2) knock-out mice, shear stress failed to induce longitudinal Ca(2+) waves. The phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the shear-induced longitudinal Ca(2+) wave. However, pretreating atrial cells with blockers for stretch-activated channels, Na(+)-Ca(2+) exchanger, transient receptor potential melastatin subfamily 4, or nicotinamide adenine dinucleotide phosphate oxidase did not suppress wave generation under shear stress. The P2 purinoceptor inhibitor suramin, and the potent P2Y1 receptor antagonist MRS 2179, both suppressed the Ca(2+) wave, whereas the P2X receptor antagonist, iso-PPADS, did not alter it. Suppression of gap junction hemichannels permeable to ATP or extracellular application of ATP-metabolizing apyrase inhibited the wave. Removal of external Ca(2+) to enhance hemichannel opening facilitated the wave generation. Our data suggest that longitudinally propagating, regenerative Ca(2+) release through RyRs is triggered by P2Y1-PLC-IP3R2 signalling that is activated by gap junction hemichannel-mediated ATP release in atrial myocytes under shear stress.
Collapse
Affiliation(s)
- Joon-Chul Kim
- Laboratory of Physiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Sun-Hee Woo
- Laboratory of Physiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea
| |
Collapse
|
21
|
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 2015; 768:71-6. [PMID: 26499977 DOI: 10.1016/j.ejphar.2015.10.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.
Collapse
Affiliation(s)
| | | | - Pinto Aldo
- Department of Pharmacy, University of Salerno, Italy
| | - Popolo Ada
- Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
22
|
Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials. Sci Rep 2015; 5:11067. [PMID: 26053434 PMCID: PMC4459200 DOI: 10.1038/srep11067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/13/2015] [Indexed: 12/02/2022] Open
Abstract
Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 - 2.22) are comparable with values for healthy adult rat ventricles (1.98 - 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies.
Collapse
|
23
|
van der Laarse A, Cobbaert CM, Umar S. Stem and progenitor cell therapy for pulmonary arterial hypertension: effects on the right ventricle (2013 Grover Conference Series). Pulm Circ 2015; 5:73-80. [PMID: 25992272 DOI: 10.1086/679701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
In experimental animals and in patients with pulmonary arterial hypertension (PAH), a wide spectrum of structural and functional conditions is known that may be responsible for the switch of a state of "compensated" right ventricular (RV) hypertrophy to a state of RV failure. In recent years, therapy with differentiated cells, endothelial progenitor cells, and mesenchymal stem cells has been shown to cause partial or complete reversal of pathological characteristics of PAH. The therapeutic effects of stem or progenitor cell therapy are considered to be (1) paracrine effects from stem or progenitor cells that had engrafted in the myocardium (or elsewhere), by compounds that have anti-inflammatory, antiapoptotic, and proangiogenic actions and (2) unloading effects on the right ventricle due to stem or progenitor cell-induced decrease in pulmonary vascular resistance and decrease in pulmonary artery pressure.
Collapse
Affiliation(s)
- Arnoud van der Laarse
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands ; Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| |
Collapse
|
24
|
Kessler EL, Boulaksil M, van Rijen HVM, Vos MA, van Veen TAB. Passive ventricular remodeling in cardiac disease: focus on heterogeneity. Front Physiol 2014; 5:482. [PMID: 25566084 PMCID: PMC4273631 DOI: 10.3389/fphys.2014.00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Passive ventricular remodeling is defined by the process of molecular ventricular adaptation to different forms of cardiac pathophysiology. It includes changes in tissue architecture, such as hypertrophy, fiber disarray, alterations in cell size and fibrosis. Besides that, it also includes molecular remodeling of gap junctions, especially those composed by Connexin43 proteins (Cx43) in the ventricles that affect cell-to-cell propagation of the electrical impulse, and changes in the sodium channels that modify excitability. All those alterations appear mainly in a heterogeneous manner, creating irregular and inhomogeneous electrical and mechanical coupling throughout the heart. This can predispose to reentry arrhythmias and adds to a further deterioration into heart failure. In this review, passive ventricular remodeling is described in Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Ischemic Cardiomyopathy (ICM), and Arrhythmogenic Cardiomyopathy (ACM), with a main focus on the heterogeneity of those alterations mentioned above.
Collapse
Affiliation(s)
- Elise L Kessler
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Mohamed Boulaksil
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Cardiology, Radboud University Medical Center Nijmegen, Netherlands
| | - Harold V M van Rijen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Marc A Vos
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Toon A B van Veen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
25
|
Zhang SS, Shaw RM. Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization. ACTA ACUST UNITED AC 2014; 21:43-54. [PMID: 24460200 DOI: 10.3109/15419061.2013.876014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell-cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.
Collapse
|
26
|
Yamanushi TT, Kabuto H, Hirakawa E, Janjua N, Takayama F, Mankura M. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats. J Nutr 2014; 144:467-74. [PMID: 24523492 DOI: 10.3945/jn.113.175125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.
Collapse
Affiliation(s)
- Tomoko T Yamanushi
- Kagawa Prefectural University of Health Sciences, Takamatsu City, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2432-41. [DOI: 10.1016/j.bbadis.2013.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/01/2013] [Indexed: 01/07/2023]
|
28
|
Tanaka Y, Takase B, Yao T, Ishihara M. Right Ventricular Electrical Remodeling and Arrhythmogenic Substrate in Rat Pulmonary Hypertension. Am J Respir Cell Mol Biol 2013; 49:426-36. [DOI: 10.1165/rcmb.2012-0089oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Kinoshita SI, Iwamoto M, Tateishi K, Suematsu NJ, Ueyama D. Mechanism of spiral formation in heterogeneous discretized excitable media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062815. [PMID: 23848737 DOI: 10.1103/physreve.87.062815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Spiral waves on excitable media strongly influence the functions of living systems in both a positive and negative way. The spiral formation mechanism has thus been one of the major themes in the field of reaction-diffusion systems. Although the widely believed origin of spiral waves is the interaction of traveling waves, the heterogeneity of an excitable medium has recently been suggested as a probable cause. We suggest one possible origin of spiral waves using a Belousov-Zhabotinsky reaction and a discretized FitzHugh-Nagumo model. The heterogeneity of the reaction field is shown to stochastically generate unidirectional sites, which can induce spiral waves. Furthermore, we found that the spiral wave vanished with only a small reduction in the excitability of the reaction field. These results reveal a gentle approach for controlling the appearance of a spiral wave on an excitable medium.
Collapse
Affiliation(s)
- Shu-ichi Kinoshita
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), 4-21-1 Nakano, Tokyo 164-8525, Japan
| | | | | | | | | |
Collapse
|
30
|
Meens MJ, Pfenniger A, Kwak BR, Delmar M. Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res 2013; 99:304-14. [PMID: 23612582 DOI: 10.1093/cvr/cvt095] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexins.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, Foundation for Medical Research, University of Geneva, 2nd floor, 64 Avenue de Roseraie, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
31
|
The efficacy of MSC-HGF in treating pulmonary arterial hypertension (PAH) and connexin remodelling. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0128-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
32
|
Yen CH, Tsai TH, Leu S, Chen YL, Chang LT, Chai HT, Chung SY, Chua S, Tsai CY, Chang HW, Ko SF, Sun CK, Yip HK. Sildenafil improves long-term effect of endothelial progenitor cell-based treatment for monocrotaline-induced rat pulmonary arterial hypertension. Cytotherapy 2012; 15:209-23. [PMID: 23321332 DOI: 10.1016/j.jcyt.2012.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 09/02/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND AIMS We hypothesized that the long-term therapeutic effect of combined sildenafil and bone marrow-derived endothelial progenitor cells (BMDEPCs) on monocrotaline (MCT)-induced rat pulmonary arterial hypertension (PAH) is superior to either treatment alone. METHODS Male Sprague-Dawley rats (n = 40) were equally divided into normal controls, MCT (65 mg/kg, subcutaneously) only, MCT + sildenafil (25 mg/kg/day, orally), MCT + BMDEPCs (2.0 × 10(6) autologous cells, intravenously) and MCT + sildenafil+ BMDEPCs. BMDEPCs and sildenafil were given on day 21 after MCT administration. Animals were sacrificed by day 90 after MCT administration. RESULTS The apoptotic (caspase 3, Bax) and inflammatory (tumor necrosis factor-α, matrix metalloproteinase-9) biomarkers in right ventricle and lung and pulmonary expressions of fibrotic biomarkers (transforming growth factor-β, p-Smad3) and connexin 43 protein were lower in monotherapy groups (i.e., MCT + sildenafil and MCT + BMDEPCs) and further decreased in normal controls and combined treatment groups (i.e., MCT + sildenafil + BMDEPCs) compared with untreated animals (i.e., MCT only) (all P < 0.01). Expressions of anti-fibrotic biomarkers (bone morphogenetic protein-2, p-Smad1/5) and numbers of alveolar sacs and arterioles in lung were higher in monotherapy groups and further increased in normal controls and combined treatment groups compared with untreated animals (all P < 0.005). In right ventricle, connexin 43 and α-myosin heavy chain (MHC) expressions were higher in the monotherapy groups and further elevated in normal controls and combined treatment groups compared with untreated animals, whereas β-MHC exhibited the opposite pattern (all P < 0.01). Right ventricular systolic pressure and weight were lower in the monotherapy animals and further reduced in normal controls and combined treatment groups compared with untreated animals (all P < 0.0001). CONCLUSIONS Combined therapy with BMDEPCs and sildenafil was superior to either treatment alone in attenuating rodent MCT-induced PAH.
Collapse
Affiliation(s)
- Chia-Hung Yen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Oishi S, Sasano T, Tateishi Y, Tamura N, Isobe M, Furukawa T. Stretch of atrial myocytes stimulates recruitment of macrophages via ATP released through gap-junction channels. J Pharmacol Sci 2012. [PMID: 23196902 DOI: 10.1254/jphs.12202fp] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Atrial inflammation is critical to atrial fibrillation initiation and progression. Although left atrial dilatation is a risk factor for atrial fibrillation, the mechanism linking atrial dilatation and inflammation is unclear. We evaluated the mechanisms underlying infiltration of macrophages induced by stretch of atrial myocytes. Murine macrophages were co-cultured with HL-1 murine atrial myocyte-derived cells. Mechanical stretch applied to atrial myocytes induced transwell macrophage migration. The gap junction-channel blocker carbenoxolone and the non-specific ATP-signaling modifiers apyrase and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate inhibited the enhanced migration. Mechanical stretch of atrial myocytes induced transient increase in extracellular ATP concentration, which was inhibited by carbenoxolone. siRNA knockdown of pannexin-2 inhibited ATP release and macrophage migration. Mice underwent transverse aortic constriction or sham procedure. Transverse aortic constriction procedure induced macrophage infiltration. Daily carbenoxolone administration significantly inhibited macrophage infiltration in the atrium. Thus, mechanical stretch of atrial myocytes induces macrophage migration by ATP released through gap-junction channels, at least in part, in vitro. Administering a gap junction family-channel blocker inhibited this inflammatory change in vivo.
Collapse
Affiliation(s)
- Sakiko Oishi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Sysa-Shah P, Xu Y, Guo X, Belmonte F, Kang B, Bedja D, Pin S, Tsuchiya N, Gabrielson K. Cardiac-specific over-expression of epidermal growth factor receptor 2 (ErbB2) induces pro-survival pathways and hypertrophic cardiomyopathy in mice. PLoS One 2012; 7:e42805. [PMID: 22912742 PMCID: PMC3415416 DOI: 10.1371/journal.pone.0042805] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/11/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. METHODOLOGY/PRINCIPAL FINDINGS We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2-3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. CONCLUSIONS/SIGNIFICANCE These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling pathways and induce a phenotype consistent with Hypertrophic Cardiomyopathy. Furthermore, our work suggests that in the situation where ErbB2 signaling contributes to cardiac hypertrophy, inhibition of this pathway may reverse this process.
Collapse
Affiliation(s)
- Polina Sysa-Shah
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Yi Xu
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Xin Guo
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Frances Belmonte
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Byunghak Kang
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Djahida Bedja
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Scott Pin
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
| | - Noriko Tsuchiya
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
- Drug Safety Evaluation, Drug Developmental Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Kathleen Gabrielson
- Johns Hopkins University, School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2381-95. [PMID: 22427523 PMCID: PMC3378302 DOI: 10.1152/ajpheart.01084.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/15/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.
Collapse
Affiliation(s)
- David Benoist
- Institute of Membrane and Systems Biology, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chkourko HS, Guerrero-Serna G, Lin X, Darwish N, Pohlmann JR, Cook KE, Martens JR, Rothenberg E, Musa H, Delmar M. Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization. Heart Rhythm 2012; 9:1133-1140.e6. [PMID: 22406144 DOI: 10.1016/j.hrthm.2012.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Desmosomes and adherens junctions provide mechanical continuity between cardiac cells, whereas gap junctions allow for cell-cell electrical/metabolic coupling. These structures reside at the cardiac intercalated disc (ID). Also at the ID is the voltage-gated sodium channel (VGSC) complex. Functional interactions between desmosomes, gap junctions, and VGSC have been demonstrated. Separate studies show, under various conditions, reduced presence of gap junctions at the ID and redistribution of connexin43 (Cx43) to plaques oriented parallel to fiber direction (gap junction "lateralization"). OBJECTIVE To determine the mechanisms of Cx43 lateralization, and the fate of desmosomal and sodium channel molecules in the setting of Cx43 remodeling. METHODS Adult sheep were subjected to right ventricular pressure overload (pulmonary hypertension). Tissue was analyzed by quantitative confocal microscopy and by transmission electron microscopy. Ionic currents were measured using conventional patch clamp. RESULT Quantitative confocal microscopy demonstrated lateralization of immunoreactive junctional molecules. Desmosomes and gap junctions in lateral membranes were demonstrable by electron microscopy. Cx43/desmosomal remodeling was accompanied by lateralization of 2 microtubule-associated proteins relevant for Cx43 trafficking: EB1 and kinesin protein Kif5b. In contrast, molecules of the VGSC failed to reorganize in plaques discernable by confocal microscopy. Patch-clamp studies demonstrated change in amplitude and kinetics of sodium current and a small reduction in electrical coupling between cells. CONCLUSIONS Cx43 lateralization is part of a complex remodeling that includes mechanical and gap junctions but may exclude components of the VGSC. We speculate that lateralization results from redirectionality of microtubule-mediated forward trafficking. Remodeling of junctional complexes may preserve electrical synchrony under conditions that disrupt ID integrity.
Collapse
Affiliation(s)
- Halina S Chkourko
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Palatinus JA, Rhett JM, Gourdie RG. The connexin43 carboxyl terminus and cardiac gap junction organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1831-43. [PMID: 21856279 DOI: 10.1016/j.bbamem.2011.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 12/09/2022]
Abstract
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
38
|
Fontes MSC, van Veen TAB, de Bakker JMT, van Rijen HVM. Functional consequences of abnormal Cx43 expression in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2020-9. [PMID: 21839722 DOI: 10.1016/j.bbamem.2011.07.039] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/23/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
Abstract
The major gap junction protein expressed in the heart, connexin43 (Cx43), is highly remodeled in the diseased heart. Usually, Cx43 is down-regulated and heterogeneously redistributed to the lateral sides of cardiomyocytes. Reverse remodeling of the impaired Cx43 expression could restore normal cardiac function and normalize electrical stability. In this review, the reduced and heterogeneous Cx43 expression in the heart will be addressed in hypertrophic, dilated and ischemic cardiomyopathy together with its functional consequences of conduction velocity slowing, dispersed impulse conduction, its interaction with fibrosis and propensity to generate arrhythmias. Finally, different therapies are discussed. Treatments aimed to improve the Cx43 expression levels show new potentially anti-arrhythmic therapies during heart failure, but those in the context of acute ischemia can be anti-arrhythmogenic at the cost of larger infarct sizes. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Magda S C Fontes
- Department of Medical Physiology, University Medical Center, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Benoist D, Stones R, Drinkhill M, Bernus O, White E. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2011; 300:H2230-7. [PMID: 21398591 PMCID: PMC3119089 DOI: 10.1152/ajpheart.01226.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/09/2011] [Indexed: 02/05/2023]
Abstract
Mechanisms associated with right ventricular (RV) hypertension and arrhythmias are less understood than those in the left ventricle (LV). The aim of our study was to investigate whether and by what mechanisms a proarrhythmic substrate exists in a rat model of RV hypertension and hypertrophy. Rats were injected with monocrotaline (MCT; 60 mg/kg) to induce pulmonary artery hypertension or with saline (CON). Myocardial levels of mRNA for genes expressing ion channels were measured by real-time RT-PCR. Monophasic action potential duration (MAPD) was recorded in isolated Langendorff-perfused hearts. MAPD restitution was measured, and arrhythmias were induced by burst stimulation. Twenty-two to twenty-six days after treatment, MCT animals had RV hypertension, hypertrophy, and decreased ejection fractions compared with CON. A greater proportion of MCT hearts developed sustained ventricular tachycardias/fibrillation (0.83 MCT vs. 0.14 CON). MAPD was prolonged in RV and less so in the LV of MCT hearts. There were decreased levels of mRNA for K(+) channels. Restitution curves of MCT RV were steeper than CON RV or either LV. Dispersion of MAPD was greater in MCT hearts and was dependent on stimulation frequency. Computer simulations based on ion channel gene expression closely predicted experimental changes in MAPD and restitution. We have identified a proarrhythmic substrate in the hearts of MCT-treated rats. We conclude that steeper RV electrical restitution and rate-dependant RV-LV action potential duration dispersion may be contributing mechanisms and be implicated in the generation of arrhythmias associated with in RV hypertension and hypertrophy.
Collapse
Affiliation(s)
- David Benoist
- Institute of Membrane and Systems Biology, Garstang Bldg., Univ. of Leeds, Leeds LS29JT, UK
| | | | | | | | | |
Collapse
|
40
|
Enhanced protection against pulmonary hypertension with sildenafil and endothelial progenitor cell in rats. Int J Cardiol 2011; 162:45-58. [PMID: 21620490 DOI: 10.1016/j.ijcard.2011.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/19/2011] [Accepted: 05/06/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Sildenafil and bone marrow-derived endothelial progenitor cells (BMDEPCs) have been shown to ameliorate monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in the rat. We test whether combined sildenafil and BMDEPC treatment exerts additional protection against MCT-induced PAH in rats. METHODS Male Sprague-Dawley rats were randomized to receive saline injection only (group 1), MCT (70 mg/kg) only (group 2), MCT plus autologous BMDEPC (2.0×10(6) cells) transplantation (group 3), MCT with sildenafil (30 mg/kg/day) (group 4), and MCT with combined BMDEPCs-sildenafil (30 mg/kg/day) (group 5). Intravenous BMDEPC and oral sildenafil were given on day 3 after MCT administration. Hemodynamics were analyzed using Labchart software, whereas cellular and molecular parameters were measured using flow cytometry, real-time PCR, TUNEL assay, Western blot, and immunohistochemical staining. RESULTS By day 35 following MCT treatment, lower expression of connexin43, protein kinase C-ε, Bcl-2, and endothelial nitric oxide synthase and higher expression of tumor necrosis factor-α and caspase 3 were found in right ventricle (RV) and lung in group 2 compared with other groups (all p<0.05). The number of alveolar sacs and lung arterioles were also lower in group 2 than in other groups (all p<0.05). Furthermore, RV systolic pressure (RVSP), RV weight, and RV-to-final body weight ratio were substantially increased in group 2 than in other groups, and notably higher in groups 3 and 4 than in groups 1 and 5 (all p<0.0001). CONCLUSIONS Combined therapy with autologous BMDEPC and sildenafil is superior to either BMDPEC or sildenafil alone for preventing MCT-induced PAH.
Collapse
|
41
|
Benes J, Melenovsky V, Skaroupkova P, Pospisilova J, Petrak J, Cervenka L, Sedmera D. Myocardial Morphological Characteristics and Proarrhythmic Substrate in the Rat Model of Heart Failure Due to Chronic Volume Overload. Anat Rec (Hoboken) 2010; 294:102-11. [DOI: 10.1002/ar.21280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/09/2010] [Indexed: 11/06/2022]
|
42
|
Hussain W, Patel PM, Chowdhury RA, Cabo C, Ciaccio EJ, Lab MJ, Duffy HS, Wit AL, Peters NS. The Renin-Angiotensin system mediates the effects of stretch on conduction velocity, connexin43 expression, and redistribution in intact ventricle. J Cardiovasc Electrophysiol 2010; 21:1276-83. [PMID: 20487124 PMCID: PMC2937061 DOI: 10.1111/j.1540-8167.2010.01802.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Effect of Stretch on Conduction and Cx43. INTRODUCTION In disease states such as heart failure, myocardial infarction, and hypertrophy, changes in the expression and location of Connexin43 (Cx43) occur (Cx43 remodeling), and may predispose to arrhythmias. Stretch may be an important stimulus to Cx43 remodeling; however, it has only been investigated in neonatal cell cultures, which have different physiological properties than adult myocytes. We hypothesized that localized stretch in vivo causes Cx43 remodeling, with associated changes in conduction, mediated by the renin-angiotensin system (RAS). METHODS AND RESULTS In an open-chest canine model, a device was used to stretch part of the right ventricle (RV) by 22% for 6 hours. Activation mapping using a 312-electrode array was performed before and after stretch. Regional stretch did not change longitudinal conduction velocity (post-stretch vs baseline: 51.5 ± 5.2 vs 55.3 ± 8.1 cm/s, P = 0.24, n = 11), but significantly reduced transverse conduction velocity (28.7 ± 2.5 vs 35.4 ± 5.4 cm/s, P < 0.01). It also reduced total Cx43 expression, by Western blotting, compared with nonstretched RV of the same animal (86.1 ± 32.2 vs 100 ± 19.4%, P < 0.02, n = 11). Cx43 labeling redistributed to the lateral cell borders. Stretch caused a small but significant increase in the proportion of the dephosphorylated form of Cx43 (stretch 9.95 ± 1.4% vs control 8.74 ± 1.2%, P < 0.05). Olmesartan, an angiotensin II blocker, prevented the stretch-induced changes in Cx43 levels, localization, and conduction. CONCLUSION Myocardial stretch in vivo has opposite effects to that in neonatal myocytes in vitro. Stretch in vivo causes conduction changes associated with Cx43 remodeling that are likely caused by local stretch-induced activation of the RAS.
Collapse
Affiliation(s)
- Wajid Hussain
- Department of Cardiac Electrophysiology, Imperial College & St. Mary's Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sildenafil limits monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. J Cardiovasc Pharmacol 2010; 55:574-84. [PMID: 20224427 DOI: 10.1097/fjc.0b013e3181d9f5f4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We hypothesize that sildenafil attenuates pulmonary hypertension through suppressing pulmonary vascular remodeling. Thirty male adult Sprague-Dawley rats were randomized to receive saline injection (Group 1), subcutaneous monocrotaline (MCT) (60 mg/kg) (Group 2), and MCT plus oral sildenafil (30 g/kg per day) (Group 3) 5 days after MCT administration. By Day 35, Western blot showed lower connexin43 and membranous protein kinase C epsilon expressions but higher oxidative stress in right ventricle in Group 2 compared with the other groups. Additionally, pulmonary Smad1/5 was lowest, whereas connexin43 and Smad3 were highest in Group 2. Pulmonary mRNA expressions of tumor necrosis factor-alpha, caspase-3, plasminogen activator inhibitor-1, and transforming growth factor-beta were higher, whereas bone morphogenetic protein Type II receptor, Bcl-2, and endothelial nitric oxide synthase were lower in Group 2 than in the other groups. Similarly, mRNA expressions of tumor necrosis factor-alpha, caspase-3, and beta-myosin heavy chain were increased, whereas Bcl-2, endothelial nitric oxide synthase, and alpha-myosin heavy chain expressions in right ventricle were reduced in Group 2 compared with the other groups. Number of lung arterioles was lowest, whereas number of arterioles with muscularization of the medial layer was highest in Group 2. Right ventricle systolic pressure and weight were elevated in Group 2 compared with the other groups. In conclusion, sildenafil effectively alleviates MCT-induced pulmonary hypertension through suppressing pulmonary vascular remodeling.
Collapse
|
44
|
Chen CC, Lien HY, Hsu YJ, Lin CC, Shih CM, Lee TM. Effect of pravastatin on ventricular arrhythmias in infarcted rats: role of connexin43. J Appl Physiol (1985) 2010; 109:541-52. [DOI: 10.1152/japplphysiol.01070.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiologic studies showed that men treated with statins appear to have a lower incidence of sudden death than men without statins. However, the specific factor for this remained disappointingly elusive. We assessed whether pravastatin enhanced connexin43 expression after myocardial infarction through attenuation of endothelin-1. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to vehicle, pravastatin, mevalonate, bosentan, or a combination of pravastatin and mevalonate or pravastatin and bosentan for 4 wk. Myocardial endothelin-1 levels were significantly elevated in vehicle-treated rats at the border zone compared with sham-operated rats. Myocardial connexin43 expression at the border zone was significantly decreased in vehicle-treated infarcted rats compared with sham-operated rats. Attenuated connexin43 expression was blunted after administration of pravastatin, as assessed by immunofluorescence analysis, Western blotting, and real-time quantitative RT-PCR of connexin43. Bosentan enhanced connexin43 amount in infarcted rats and did not have additional beneficial effects on pravastatin-treated rats. Arrhythmic scores during programmed stimulation in vehicle-treated rats were significantly higher than scores in those treated with pravastatin. In contrast, the beneficial effects of pravastatin-induced connexin43 were abolished by the addition of mevalonate and a protein kinase C inducer. In addition, the amount of connexin43 showed significant increase after addition of bisindolylmaleimide, implicating that protein kinase C is a relevant target in endothelin-1-mediated connexin43 expression. Thus chronic use of pravastatin after infarction, resulting in enhanced connexin43 amount by attenuation of mevalonate-dependent endothelin-1 through a protein kinase C-dependent pathway, may attenuate the arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy Science, Tainan County, and Department of Surgery, Cardiology Section, Chi-Mei Medical Center, Tainan
| | - Hsiao-Yin Lien
- Department of Pharmacy, Yongkang Veterans Hospital, Tainan
- Department of Cosmetic Application and Management, Tung Fang Institute of Technology, Kaohsiung
| | - Yu-Jung Hsu
- Department of Medical Research, Chi-Mei Medical Center, Tainan
| | - Chih-Chan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan
| | - Chun-Ming Shih
- Department of Medicine, Cardiology Section, Taipei Medical University Hospital, Taipei; and
| | - Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Taipei Medical University and Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
45
|
Bae S, Ke Q, Koh YY, Lee W, Choi JH, Kang PM, Morgan JP. Exacerbation of acute viral myocarditis by tobacco smoke is associated with increased viral load and cardiac apoptosis. Can J Physiol Pharmacol 2010; 88:568-75. [DOI: 10.1139/y10-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to tobacco smoke is known to have deleterious cardiovascular effects. In this study, we tested whether exposure to tobacco smoke exacerbates the severity of viral myocarditis in mice. Viral myocarditis was generated in 4-week-old male BALB/c mice by injection of Encephalomyocarditis virus (EMCV). Four groups were studied: (1) control (C, no smoke and no virus); (2) smoke only (S, exposure to cigarette smoke for 90 min/day for 15 days); (3) virus only (V); and (4) exposure to smoke for 5 days before plus 10 days following virus injection (S+V). We found that viral inoculation preceded by smoke exposure increased mortality more than twofold compared with virus inoculation alone. In addition, the mRNA level of atrial natriuretic factor was significantly higher in S+V than among any of the other 3 groups. Virus injection significantly decreased cardiac function compared with controls, with further deterioration observed in the S+V group. We also observed a significantly increased rate of apoptosis, with an increased activation of apoptosis-inducing factor in hearts exposed to S+V compared with those exposed to V alone. Our results suggest that preexposure to smoke significantly exacerbates the severity of viral myocarditis, likely through increased viral load and increased cardiomyocyte cell death.
Collapse
Affiliation(s)
- Soochan Bae
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| | - Qingen Ke
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| | - Young Youp Koh
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| | - Wooseung Lee
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| | - Jun H. Choi
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| | - Peter M. Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| | - James P. Morgan
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- Division of Cardiovascular Medicine, Caritas St. Elizabeth’s Medical Center and Tufts University School of Medicine, Boston, MA 02135, USA
| |
Collapse
|
46
|
Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF. Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 2010; 106:1153-63. [PMID: 20167932 PMCID: PMC2896878 DOI: 10.1161/circresaha.108.182147] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. OBJECTIVE To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. METHODS AND RESULTS By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. CONCLUSIONS Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Johns Hopkins University School of Medicine, 720 N Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Hill JA. Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 2010; 48:619-32. [PMID: 20096285 DOI: 10.1016/j.yjmcc.2010.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Heart failure affects nearly 6 million Americans, with a half-million new cases emerging each year. Whereas up to 50% of heart failure patients die of arrhythmia, the diverse mechanisms underlying heart failure-associated arrhythmia are poorly understood. As a consequence, effectiveness of antiarrhythmic pharmacotherapy remains elusive. Here, we review recent advances in our understanding of heart failure-associated molecular events impacting the electrical function of the myocardium. We approach this from an anatomical standpoint, summarizing recent insights gleaned from pre-clinical models and discussing their relevance to human heart failure.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
48
|
Bose S, Leclerc GM, Vasquez-Martinez R, Boockfor FR. Administration of connexin43 siRNA abolishes secretory pulse synchronization in GnRH clonal cell populations. Mol Cell Endocrinol 2010; 314:75-83. [PMID: 19716855 PMCID: PMC2783823 DOI: 10.1016/j.mce.2009.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/01/2022]
Abstract
GnRH is released from hypothalamic neurons in coordinated pulses, but the cellular basis for this process is poorly understood. Previously, we found that secretory pulses from GT1-7 cells became synchronized with time in culture. Using this culture model, we investigated whether the gap junction proteins connexin43 (Cx43) and/or connexin26 (Cx26) are involved in this synchronization. Our results reveal that cytoplasmic densities immunoreactive for Cx43, and mRNA or protein for Cx43 increase with time in culture. Also, microinjection of day-3 cultures with siRNA for Cx43 abolished synchronized activity at day 7. Interestingly, cytoplasmic plaques, mRNA, or protein for Cx26 remained stable with culture time and Cx26 siRNA administration did not alter secretory activity. Our findings demonstrate that Cx43, but not Cx26 is necessary for synchronized secretory activity in these GT1-7 cultures and raise the possibility that Cx43-related gap junctions may be important in GnRH neuronal coordination in the hypothalamus.
Collapse
Affiliation(s)
- Sudeep Bose
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina
| | - Gilles M. Leclerc
- Department of Pediatrics, Hematology and Oncology, University of Miami, Miami, Florida
| | - Rafael Vasquez-Martinez
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Fredric R. Boockfor
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina
| |
Collapse
|
49
|
Waghabi MC, Coutinho-Silva R, Feige JJ, Higuchi MDL, Becker D, Burnstock G, Araújo-Jorge TCD. Gap junction reduction in cardiomyocytes following transforming growth factor-β treatment and Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2009; 104:1083-90. [DOI: 10.1590/s0074-02762009000800004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 10/19/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mariana C Waghabi
- Instituto Oswaldo Cruz-Fiocruz, Brasil; University College Medical School, UK
| | - Robson Coutinho-Silva
- University College Medical School, UK; Universidade Federal do Rio de Janeiro, Brasil
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale; Institut de Recherches en Technologies et Sciences pour le Vivant, France
| | | | | | | | | |
Collapse
|
50
|
Ai X, Zhao W, Pogwizd SM. Connexin43 knockdown or overexpression modulates cell coupling in control and failing rabbit left ventricular myocytes. Cardiovasc Res 2009; 85:751-62. [PMID: 19880431 DOI: 10.1093/cvr/cvp353] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS We have shown that failing human and rabbit left ventricle (LV) exhibits downregulation and dephosphorylation of connexin43 (Cx43) and that Cx43 dephosphorylation in heart failure (HF) contributes to reduced cell coupling. However, the role of Cx43 downregulation per se in impaired coupling in HF is unclear. METHODS AND RESULTS First, we used adenovirus (Ad) encoding a Cx43 siRNA sequence to knock down Cx43 protein levels in cultured control rabbit LV myocytes. Cells cultured for up to 48 h with intermittent pacing maintained Cx43 protein levels and phosphorylation status. Cell coupling in Cx43 knockdown myocyte pairs (by Lucifer Yellow dye transfer) was markedly reduced after 24 h infection (associated with approximately 40% Cx43 knockdown) and after 48 h (associated with approximately 70% Cx43 knockdown). The phosphorylation status, distribution of remaining Cx43 proteins, and levels of other cardiac connexins (Cx40 and Cx45) were unchanged. Second, we overexpressed Cx43 to levels comparable to control using an adenovirus encoding wild-type Cx43 (Cx43WT) gene in isolated LV myocytes from our arrhythmogenic HF rabbit model. We found 87% more Cx43WT proteins improved dye coupling [vs. Ad-beta-galactosidase (LacZ) infected HF controls]. Overexpressed Cx43 protein was located throughout the myocyte membrane (same pattern as in controls), and the phosphorylation status of Cx43 remained comparable to that in AdLacZ infected HF controls. CONCLUSION In addition to Cx43 dephosphorylation, downregulation of Cx43 plays an essential role in reduced cell coupling in the failing rabbit heart. Modulation of Cx43 expression could be a novel therapeutic approach to improve conduction and decrease sudden death in HF.
Collapse
Affiliation(s)
- Xun Ai
- Division of Cardiovascular Disease, Department of Medicine, UAB Center for Cardiovascular Biology, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall B140, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|