1
|
Sun K, Xue Y, Zhang X, Li X, Zhao J, Xu X, Zhang X, Yang F. Tanshinone I alleviates steroid-induced osteonecrosis of femoral heads and promotes angiogenesis: in vivo and in vitro studies. J Orthop Surg Res 2023; 18:474. [PMID: 37391758 DOI: 10.1186/s13018-023-03934-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The impaired blood supply to the bones is an important pathological feature of steroid-induced osteonecrosis of the femoral head (SIONFH). Danshen is a Chinese herb that shows therapeutic effects on SIONFH, but the effects of one of its major bioactive constituents, Tanshinone I (TsI), on SIONFH remain unknown. Here, we evaluated the effects of TsI on SIONFH, particularly focusing on its effects on angiogenesis, in in vivo and in vitro research. METHODS SIONFH was induced in Sprague-Dawley rats by an intramuscular injection of methylprednisolone (40 mg/kg) in combination with an intraperitoneal injection of lipopolysaccharide (20 μg/kg). Morphological alterations of the femoral head were observed by dual-energy X-ray absorptiometry and HE staining. Western blot, qRT-PCR, and immunohistochemical/immunofluorescence staining were used to determine gene expression. RESULTS TsI (10 mg/kg) alleviated bone loss and rescued the expression of angiogenesis-related molecules (CD31, VWF, VEGF, and VEGFR2) in the femoral heads of SIONFH rats. Notably, TsI rescued the down-regulated expression of SRY-box transcription factor 11 (SOX11) in CD31+ endothelial cells in the femoral heads of SIONFH rats. In vitro studies showed that TsI preserved the dexamethasone-harmed angiogenic property (migration and tube formation) of human umbilical vein cells (EA.hy926), suppressed dexamethasone-induced cell apoptosis, reduced pro-apoptotic proteins (cytosolic cytochrome C, Bax, and caspase 3/9) and increased anti-apoptotic protein Bcl-2, whereas silencing of SOX11 reversed these beneficial effects. CONCLUSIONS This study demonstrates that TsI alleviates SIONFH and promotes angiogenesis by regulating SOX11 expression. Our work would provide new evidence for the application of TsI to treat SIONFH.
Collapse
Affiliation(s)
- Kai Sun
- The First Department of Orthopedics and Traumatology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuman Xue
- The Second Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaodong Li
- The Third Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jun Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xilin Xu
- The Third Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin, Heilongjiang, China
| | - Fubiao Yang
- President's Office, The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 2, Xiangjiang Road, Harbin, Heilongjiang, China.
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Tiwari R, Bommi PV, Gao P, Schipma MJ, Zhou Y, Quaggin SE, Chandel NS, Kapitsinou PP. Chemical inhibition of oxygen-sensing prolyl hydroxylases impairs angiogenic competence of human vascular endothelium through metabolic reprogramming. iScience 2022; 25:105086. [PMID: 36157579 PMCID: PMC9494243 DOI: 10.1016/j.isci.2022.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cell (EC) metabolism has emerged as a driver of angiogenesis. While hypoxia inactivates the oxygen sensors prolyl-4 hydroxylase domain-containing proteins 1-3 (PHD1-3) and stimulates angiogenesis, the effects of PHDs on EC functions remain poorly defined. Here, we investigated the impact of chemical PHD inhibition by dimethyloxalylglycine (DMOG) on angiogenic competence and metabolism of human vascular ECs. DMOG reduced EC proliferation, migration, and tube formation capacities, responses that were associated with an unfavorable metabolic reprogramming. While glycolytic genes were induced, multiple genes encoding sub-units of mitochondrial complex I were suppressed with concurrent decline in nicotinamide adenine dinucleotide (NAD+) levels. Importantly, the DMOG-induced defects in EC migration could be partially rescued by augmenting NAD+ levels through nicotinamide riboside or citrate supplementation. In summary, by integrating functional assays, transcriptomics, and metabolomics, we provide insights into the effects of PHD inhibition on angiogenic competence and metabolism of human vascular ECs.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prashant V. Bommi
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Gao
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yalu Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pinelopi P. Kapitsinou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Let-7a Targeting TNFAPI3 Promotes Vascular Endothelial Cell Apoptosis of Pediatric Patients with Henoch–Schönlein Purpura via NF-κB Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3889318. [PMID: 35256897 PMCID: PMC8898105 DOI: 10.1155/2022/3889318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Objective We aimed at exploring the role of let-7a in the pathogenesis of pediatric Henoch–Schönlein purpura (HSP) and its related mechanism. Methods Fifty-five pediatric HSP patients and 20 paired healthy controls were included. The expressions of let-7a and TNFAIP3 were detected by RT-qPCR or/and western blot. Vessel fibrinoid necrosis was evaluated in skin tissues by PTAH staining. The serum IgA level was measured by ELISA. Cells were transfected with let-7a inhibitor and/or TNFAIP3 siRNA, accompanied by pretreatment with NF-κB inhibitor PDTC or not. After being cultured in HSP serum, the changes in cell viability, cell apoptosis, apoptosis-related proteins, and NF-κB pathway-related proteins were detected by CCK8, flow cytometry, and western blot. Results The let-7a expression level was positively correlated with the serum IgA level and severity degree of vascular fibrinoid necrosis in HSP patients. Let-7a expression was significantly increased, whereas cell viability and TNFAIP3 expression were obviously decreased 48 h after HUVECs were incubated with HSP serum. Let-7a knockdown upregulated the cell viability, whereas it reduced the apoptotic ratio, apoptosis protein expressions (Bax/Bcl2 ratio, cleaved-caspase 3), and NF-κB pathway activation (reflected by reduced P65 nuclear translocation and p-IκBα expression) in HUVECs (all p < 0.05). The changes induced by let-7a knockdown were obviously reversed by TNFAIP3 siRNA transfection (p < 0.05). Besides, PDTC treatment remarkably diminished the anti-apoptosis effect of let-7a knockdown and pro-apoptosis effect of TNFAIP3 siRNA on HUVECs induced by HSP serum. Conclusions Let-7a knockdown significantly suppressed vascular endothelial cell apoptosis induced by HSP serum by targeting TNFAPI3 via NF-κB signaling pathway. Our findings provided a potential therapeutic target for the treatment of HSP.
Collapse
|
4
|
Wallace RG, Rochfort KD, Barabas P, Curtis TM, Uehara H, Ambati BK, Cummins PM. COMP-Ang1: Therapeutic potential of an engineered Angiopoietin-1 variant. Vascul Pharmacol 2021; 141:106919. [PMID: 34583025 DOI: 10.1016/j.vph.2021.106919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The Angiopoietin-1/2 system is an opportune target for therapeutic intervention in a wide range of vascular pathologies, particularly through its association with endothelium. The complex multi-domain structure of native human Angiopoietin-1 has hindered its widespread applicability as a therapeutic agent, prompting the search for alternative approaches to mimicking the Ang1:Tie2 signalling axis; a system with highly complex patterns of regulation involving multiple structurally similar molecules. An engineered variant, Cartilage Oligomeric Matrix Protein - Angiopoietin-1 (COMP-Ang1), has been demonstrated to overcome the limitations of the native molecule and activate the Tie2 pathway with several fold greater potency than Ang1, both in vitro and in vivo. The therapeutic efficacy of COMP-Ang1, at both the vascular and systemic levels, is evident from multiple studies. Beneficial impacts on skeletal muscle regeneration, wound healing and angiogenesis have been reported alongside renoprotective, anti-hypertensive and anti-inflammatory effects. COMP-Ang1 has also demonstrated synergy with other compounds to heighten bone repair, has been leveraged for potential use as a co-therapeutic for enhanced targeted cancer treatment, and has received considerable attention as an anti-leakage agent for microvascular diseases like diabetic retinopathy. This review examines the vascular Angiopoietin:Tie2 signalling mechanism, evaluates the potential therapeutic merits of engineered COMP-Ang1 in both vascular and systemic contexts, and addresses the inherent translational challenges in moving this potential therapeutic from bench-to-bedside.
Collapse
Affiliation(s)
- Robert G Wallace
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | - Keith D Rochfort
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, UK
| | - Timothy M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, UK
| | | | | | - Philip M Cummins
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
5
|
Zhu L, Huang X, Li Z, Cao G, Zhu X, She S, Huang T, Lu G. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125281. [PMID: 33582465 DOI: 10.1016/j.jhazmat.2021.125281] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Increasing use of organophosphorus flame retardants (OPFRs) has aroused great concern to their uncertain environment risk, especially to human health risk. In our study, hepatotoxicity screening of six aryl-OPFRs, potential hepatotoxicity mechanism of 2-ethylhexyldiphenyl phosphate (EHDPP) using RNA-sequencing and its metabolites were investigated in human hepatocytes (L02). The toxicity results demonstrated that EHDPP should be prioritized for further research with the highest toxicity. Further RNA-seq results through GO and KEGG enrichment analysis indicated that exposure to 10 mg/L of EHDPP significantly affected energy homeostasis, endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and inflammation response in cells. The top 12 hub genes were validated by RT-qPCR and conformed to be mainly related to glycolysis and ER stress, followed by cell cycle and inflammation response. Western blot, apoptosis detection, glycolysis stress test, and cell cycle analysis were further performed to verify the above main pathways. Additionally, it was found in the metabolism experiment that detoxification of EHDPP by phase I and phase II metabolism in cells wasn't significant until 48 h with a metabolic rate of 6.12%. EHDPP was stable and still dominated the induction of toxicity. Overall, this study provided valuable information regarding the toxicity and potential metabolism pathway of EHDPP.
Collapse
Affiliation(s)
- Lingfei Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaohan Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xuanjin Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shaohua She
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Tenghao Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Liu D, Wu H, Li YZ, Yang J, Yang J, Ding JW, Zhou G, Zhang J, Wang X, Fan ZX. Cellular FADD-like IL-1β-converting enzyme-inhibitory protein attenuates myocardial ischemia/reperfusion injury via suppressing apoptosis and autophagy simultaneously. Nutr Metab Cardiovasc Dis 2021; 31:1916-1928. [PMID: 33895078 DOI: 10.1016/j.numecd.2021.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Myocardial ischemia/reperfusion injury (MI/RI) is a result of coronary revascularization, and often increases cell apoptosis and autophagy. Downregulated cellular FADD-like-IL-1β-converting enzyme-inhibitory protein (cFLIP) was associated with development of several myocardial diseases, whether overexpression of cFLIP can attenuate MI/RI remains unclear. This study aimed to determine the effects of cFLIP on apoptosis and autophagy in MI/RI. METHODS AND RESULTS Ischemia/reperfusion (I/R) rat model and hypoxia/reoxygenation (H/R) cardiomyocytes model were established. Both I/R injury and H/R injury down-regulated expression of two cFLIP isoforms (cFLIPL and cFLIPS), and instigated apoptosis and autophagy simultaneously. Overexpression of cFLIPL and/or cFLIPS led to a significant increase in cardiomyocytes viability in vitro, and also reduced the myocardial infarct volume in vivo, these changes were associated with suppressed apoptosis and autophagy. Mechanistically, overexpression of cFLIP significantly downregulated pro-apoptotic molecules (Caspase-3, -8, -9), and pro-autophagic molecules (Beclin-1 and LC3-II). Moreover, cFLIP significantly suppressed activity of NF-κB pathway to upregulate the expression of Bcl-2, which is the molecular of interplay of apoptosis and autophagy. CONCLUSION Overexpression of cFLIP significantly attenuated MI/RI both in vivo and vitro via suppression of apoptosis and lethal autophagy. cFLIP can suppress activity of NF-κB pathway, and further upregulated expression of Bcl-2.
Collapse
Affiliation(s)
- Di Liu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Hui Wu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China.
| | - Yun Zhao Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Jun Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Jian Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
| | - Jia Wang Ding
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Gang Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Jing Zhang
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China; Department of Central Experimental Laboratory, Yichang Central People's Hospital, Yichang, 443003, China
| | - Xin'an Wang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China; Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443003, China
| | - Zhi Xing Fan
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, China
| |
Collapse
|
7
|
Pang Y, Zhu Z, Wen Z, Lu J, Lin H, Tang M, Xu Z, Lu J. HIGD‑1B inhibits hypoxia‑induced mitochondrial fragmentation by regulating OPA1 cleavage in cardiomyocytes. Mol Med Rep 2021; 24:549. [PMID: 34080026 PMCID: PMC8185509 DOI: 10.3892/mmr.2021.12188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The dynamic regulation of mitochondrial morphology is key for eukaryotic cells to manage physiological challenges. Therefore, it is important to understand the molecular basis of mitochondrial dynamic regulation. The aim of the present study was to explore the role of HIG1 hypoxia inducible domain family member 1B (HIGD‑1B) in hypoxia‑induced mitochondrial fragmentation. Protein expression was determined via western blotting. Immunofluorescence assays were performed to detect the subcellular location of HIGD‑1B. Cell Counting Kit‑8 assays and flow cytometry were carried out to measure cell viability and apoptosis, respectively. Protein interactions were evaluated by co‑immunoprecipitation. In the present study, it was found that HIGD‑1B serves a role in cell survival by maintaining the integrity of the mitochondria under hypoxic conditions. Knockdown of HIGD‑1B promoted mitochondrial fragmentation, while overexpression of HIGD‑1B increased survival by preventing activation of caspase‑3 and ‑9. HIGD‑1B expression was associated with cell viability and apoptosis in cardiomyocytes. Furthermore, HIGD‑1B delayed the cleavage process of optic atrophy 1 (OPA1) and stabilized mitochondrial morphology by interacting with OPA1. Collectively, the results from the present study identified a role for HIGD‑1B as an inhibitor of the mitochondrial fission in cardiomyocytes.
Collapse
Affiliation(s)
- Yan Pang
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Zhide Zhu
- Academic Affairs Section, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Zhihao Wen
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Junshen Lu
- Academic Affairs Section, Guangxi University of Traditional Chinese Medicine Attached Chinese Medicine School, Nanning, Guangxi 530001, P.R. China
| | - Hao Lin
- Department of Geriatrics, Danzhou Traditional Chinese Medicine Hospital, Danzhou, Hainan 571700, P.R. China
| | - Meiling Tang
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Zhiliang Xu
- Academic Affairs Section, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Jianqi Lu
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| |
Collapse
|
8
|
Zhang Y, Jiang L, Qin N, Cao M, Liang X, Wang R. hCINAP is potentially a direct target gene of HIF-1 and is required for hypoxia-induced EMT and apoptosis in cervical cancer cells. Biochem Cell Biol 2021; 99:203-213. [PMID: 32830518 DOI: 10.1139/bcb-2020-0090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The early metastasis of cervical cancer is a multistep process requiring the cancer cells to adapt to the signal input from different tissue environments, including hypoxia. Hypoxia-induced epithelial-to-mesenchymal transition (EMT) plays a critical role in the ability to invade surrounding tissues. However, the molecular mechanisms underlying EMT in cervical cancer remain to be elucidated. Herein, we show that hypoxia-inducible factor-1alpha (HIF-1α) and aryl hydrocarbon receptor nuclear translocator (ARNT) are recruited to the human coilin-interacting nuclear ATPase protein (hCINAP) promoter and initiate hCINAP expression in hypoxia. Ablation of hCINAP decreased the migratory capacity and EMT of cervical cancer cells under hypoxic conditions. Furthermore, hCINAP regulated EMT through the Akt–mTOR signaling pathway, and inhibits hypoxia-induced p53-dependent apoptosis. Our data collectively show that hCINAP may have essential roles in the metastasis of cervical cancer and could be a potential target for curing cervical cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Nianqun Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Mi Cao
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiujuan Liang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
9
|
Tong L, Li MD, Nie PY, Chen Y, Chen YL, Ji LL. miR-132 downregulation alleviates behavioral impairment of rats exposed to single prolonged stress, reduces the level of apoptosis in PFC, and upregulates the expression of MeCP2 and BDNF. Neurobiol Stress 2021; 14:100311. [PMID: 33718536 PMCID: PMC7921013 DOI: 10.1016/j.ynstr.2021.100311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 01/12/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is usually accompanied by anxiety symptoms and decreased expression of brain-derived neurotrophic factor (BDNF), which played an important role in promoting neuronal proliferation and survival. Methyl CpG-binding protein 2 (MeCP2) is a positive mediator of BDNF and is regulated by miR-132-3p. In the present study, we explored the possible molecular mechanism of miR-132, focusing on the involvement of MeCP2 and BDNF in the formation of anxiety-like symptoms of PTSD. Single prolonged stress (SPS) was used to establish a model of PTSD in adult rats and the anxiety-like behavior was tested by the elevated plus-maze (EPM). The level of miR-132 in the prefrontal cortex (PFC) was increased and intraventricular injection of anti-miR-132 could significantly improve the anxiety-like behavior of rats exposed to SPS through MeCP2 and the subsequent upregulation of BDNF levels. Then tropomyosin-related kinase B (TrkB) and downstream signals, including MAP kinase ERK1/2 and phosphoinositol 3-kinase (PI3K)/Akt pathways, were activated by BDNF upregulation, and might participate in regulating dendritic complexity and the expression of postsynaptic density-95 (PSD95) and synapsin I in the PFC of SPS rats. Furthermore, we found that the apoptosis of cells in PFC induced by SPS procedure could be alleviated by miR-132 inhibition. Our results suggest that miR-132 might be involved in the formation of anxiety-like symptoms of adult rat PTSD models by targeting MeCP2, and this effect is related to BDNF/TrkB and its downstream ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming-Da Li
- Department of 1st Clinical Medicine, China Medical University, Shenyang, China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yu-Lu Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Corresponding author.
| |
Collapse
|
10
|
Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021; 26:844. [PMID: 33562781 PMCID: PMC7915205 DOI: 10.3390/molecules26040844] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Collapse
Affiliation(s)
- Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Dóra I. Adamecz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Bettina Szerencsés
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Csaba Molnar
- Broad Institute of MIT and Harvard, Cambridge, 415 Main St, Cambridge, MA 02142, USA;
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1., H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Monika Kiricsi
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| |
Collapse
|
11
|
Karmous I, Pandey A, Haj KB, Chaoui A. Efficiency of the Green Synthesized Nanoparticles as New Tools in Cancer Therapy: Insights on Plant-Based Bioengineered Nanoparticles, Biophysical Properties, and Anticancer Roles. Biol Trace Elem Res 2020; 196:330-342. [PMID: 31512171 DOI: 10.1007/s12011-019-01895-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
The aim of this work is to review the current knowledge on the efficiency of plant-based synthesized nanoparticles in medical field, particularly in the prevention, diagnosis, and therapy of cancer. For this, we examine the advantages of nanotechnological tools. Besides, a particular attention was given to understand the mechanism by which plant-based bioengineered nanoparticles can interact with components of cancerous cells. Green biosynthesized nanoparticles seem to be novel tool for prognostic biomarkers for cancer diagnosis and drug delivery in tumor cells. They can act either by leading to the damage of tumor cells, or by the protection of healthy cells, via mechanisms involving the specific properties of nanoparticles themselves and the antioxidative and antitumor properties found in plants. However, special attention should be given to the choice of plant species, extracts, and the toxic dose of some phytocompounds during the biosynthesis process. An increase in metal or trace element release from metal and metal oxide biosynthesized nanoparticles can lead to greater oxidative stress, which is associated with higher risk of cancer. Hence, plant-based nanosystems should be more developed to increase their specific targeting of the cancerous cells, in order to preserve the healthy ones.
Collapse
Affiliation(s)
- Inès Karmous
- Applied Institute of Biology of Medenine, University of Gabes, Gabes, Tunisia.
- Plant Toxicology and Molecular Biology of Microorganism, Faculty of Sciences of Bizerta, 7021, Zarzouna, Tunisia.
| | - Ashish Pandey
- SUNUM, Sabanci University, Orhanli, Tuzla, 34956, Istanbul, Turkey
| | - Khemais Ben Haj
- Applied Institute of Biology of Medenine, University of Gabes, Gabes, Tunisia
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganism, Faculty of Sciences of Bizerta, 7021, Zarzouna, Tunisia
| |
Collapse
|
12
|
Jiang M, Wang H, Liu Z, Lin L, Wang L, Xie M, Li D, Zhang J, Zhang R. Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J 2020; 34:10835-10849. [PMID: 32592441 DOI: 10.1096/fj.202000734r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Exposure to microgravity results in vascular remodeling and cardiovascular dysfunction. To elucidate the mechanism involved in this condition, we investigated whether endoplasmic reticulum (ER) stress during simulated microgravity induced endothelial inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs). Microgravity was simulated by clinorotation in the current study. We examined markers of ER stress, inducible nitric oxide (NO) synthase (iNOS)/NO content, proinflammatory cytokine production, nuclear factor kappa B (NF-κB)/IκB signaling, NLRP3 inflammasome, and detected apoptosis in HUVECs. We found that the levels of C/EBP homologous protein and glucose-regulated protein 78, pro-inflammatory cytokines (IL-6, TNF-α, IL-8, and IL-1β), and iNOS/NO content were upregulated by clinorotation. ER stress inhibition with tauroursodeoxycholic acid or 4-phenylbutyric acid and iNOS inhibition with 1400 W dramatically suppressed activation of the NF-κB/IκB pathway and the NLRP3 inflammasome, and decreased the production of pro-inflammatory cytokines. The increase of apoptosis in HUVECs during clinorotation was significantly suppressed by inhibiting ER stress, iNOS activity, NF-κB/IκB, and the NLRP3 inflammasome signaling pathway. Therefore, simulated microgravity causes ER stress in HUVECs, and subsequently activates iNOS/NO-NF-κB/IκB and the NLRP3 inflammasome signaling pathway, which have key roles in the induction of endothelial inflammation and apoptosis.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Haiming Wang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Zifan Liu
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Lejian Lin
- Department of Cardiology, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Manjiang Xie
- Department of Aerospace Physiology & Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Danyang Li
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Jibin Zhang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ran Zhang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
13
|
Nijhawans P, Behl T, Bhardwaj S. Angiogenesis in obesity. Biomed Pharmacother 2020; 126:110103. [PMID: 32200253 DOI: 10.1016/j.biopha.2020.110103] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Angiogenesis is considered as a major progenitor in the progression of obesity. The current manuscript enumerates the extrinsic role of angiogenesis in obesity. RESULT High caloric diet and lack of physical exercise are the most common causes of obesity and related metabolic conditions. A grossly elevated levels of fat in adipose tissue escalate certain complications which further worsen the state of obesity. Enlargement of white adipose tissue (WAT), deposition of fat mass, proliferation of endothelial cells, production of inflammatory cytokines induces the formation of denovo capillaries from parent microvasculature. Also, several intracellular signaling pathways precipitate obesity. Though, angiostatic molecules (endostatin, angiostatin and TNP-470) have been designed to combat obesity and associated complications. CONCLUSION Adipose tissue trigger growth of blood capillaries, and in turn adipose tissue endothelial cells promote pre-adipocyte proliferation. Modulation of angiogenesis and treatment with angiostatic substances may have the potential to impair the progression of obesity.
Collapse
Affiliation(s)
- Priya Nijhawans
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | |
Collapse
|
14
|
Rafikova O, Al Ghouleh I, Rafikov R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid Redox Signal 2019; 31:933-953. [PMID: 31169021 PMCID: PMC6765063 DOI: 10.1089/ars.2018.7673] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature characterized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts. The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid increase in pulmonary vascular resistance, which results in right heart failure. Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease, largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is multifaceted in the advanced disease, and there has been promising recent progress in identifying various pathological pathways related to the late clinical picture. Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymptomatically, making it difficult to identify and treat early. Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a more successful strategy, and it ensures better survival in PAH patients.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Imad Al Ghouleh
- Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Spears JR. Reperfusion Microvascular Ischemia After Prolonged Coronary Occlusion: Implications And Treatment With Local Supersaturated Oxygen Delivery. HYPOXIA 2019; 7:65-79. [PMID: 31696129 PMCID: PMC6814765 DOI: 10.2147/hp.s217955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Following a prolonged coronary arterial occlusion, heterogeneously scattered, focal regions of low erythrocyte flow are commonly found throughout the reperfused myocardium. Experimental studies have also demonstrated the presence of widespread, focally patchy regions of microvascular ischemia during reperfusion (RMI). However, the potential contribution of RMI to tissue viability and function has received little attention in the absence of practical clinical methods for its detection. In this review, the anatomic/functional basis of RMI is summarized, along with the evidence for its presence in reperfused myocardium. Advances in microcirculation research related to obstructive responses of vascular endothelial cells and blood elements to the effects of hypoxia and low shear stress are discussed, and a potential cycle of intensification of RMI from such responses and progressive loss of functional capillary density is presented. In capillaries with impaired erythrocyte flow, compensatory increases in the delivery of oxygen, because of its low solubility in plasma, are effective only at high partial pressures. As discussed herein, attenuation of the cycle with oxygen at hyperbaric levels in plasma is, very likely, responsible for improved tissue level perfusion noted experimentally. Observed clinical benefits from intracoronary SuperSaturated oxygen (SSO2) delivery, including infarct size reduction, can be attributed to attenuation of RMI with improvement in microvascular blood flow.
Collapse
Affiliation(s)
- James Richard Spears
- Cardiovascular Research Laboratory, Department of Medicine, Division of Cardiology, Beaumont Heart & Vascular Center, Dearborn, MI 48124, USA
| |
Collapse
|
16
|
Fan T, Zhou Z, Fang W, Wang W, Xu L, Huo Y. Morphometry and hemodynamics of coronary artery aneurysms caused by atherosclerosis. Atherosclerosis 2019; 284:187-193. [DOI: 10.1016/j.atherosclerosis.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
|
17
|
Ji Q, Sun Z, Yang Z, Zhang W, Ren Y, Chen W, Yao M, Nie S. Protective effect of ginsenoside Rg1 on LPS-induced apoptosis of lung epithelial cells. Mol Immunol 2018; 136:168-174. [PMID: 30471963 DOI: 10.1016/j.molimm.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity in the critical care units. Though, it was commonly accepted that inflammation and apoptosis of lung epithelial cells played an essential role in the pathogenesis of ALI, the underlying mechanism remain unknown. In our study, we found that LPS-induced cell apoptosis could be counteracted by elevated cell autophagy. In LPS-treated MLE-12 cells, suppression of autophagy via 3-MA could aggravate LPS-induced apoptosis, while activation of autophagy via Rapamycin could effectively impair the apoptosis of MLE-12 cells induced by LPS. In order to further discover the molecular regulation mechanism between apoptosis and autophagy in LPS-treated MLE-12 cells, we demonstrated that autophagy could induced the expression of Nrf2, followed with the decrease of p-p65. Targeted inhibition of Nrf2 could induce enlarged cell apoptosis via increasing the level of p-p65. In addition, we demonstrated that ginsenoside Rg1 protected MLE-12 cells from LPS-induced apoptosis via augmenting autophagy and inducing the expression of Nrf2. Our data implicates that activation of autophagy and Nrf2 by ginsenoside Rg1 may provide a preventive and therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; Department of Critical Care Medicine, Xuyi People's hospital, xuyi, 211700, Jiangsu, PR China.
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Weijun Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Mengya Yao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| |
Collapse
|
18
|
Sturrock A, Woller D, Freeman A, Sanders K, Paine R. Consequences of Hypoxia for the Pulmonary Alveolar Epithelial Cell Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2018; 201:3411-3420. [PMID: 30381478 DOI: 10.4049/jimmunol.1701387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
Pulmonary innate immune responses involve a highly regulated multicellular network to defend the enormous surface area of the lung. Disruption of these responses renders the host susceptible to pneumonia. Alveolar epithelial cells (AEC) are a critical source of innate immune molecules such as GM-CSF, which determine the functional maturation of alveolar macrophages. In many pulmonary diseases, heterogeneous ventilation leads to regional hypoxia in the lung. The effect of hypoxia on AEC innate immune function is unknown. We now report that exposure of primary murine AEC to hypoxia (1% oxygen) for 24 h results in significant suppression of key innate immune molecules, including GM-CSF, CCL2, and IL-6. This exposure did not cause toxicity but did induce stabilization of hypoxia-inducible factor 1α protein (HIF-1α) and shift to glycolytic metabolism. Focusing on GM-CSF, we found that hypoxia greatly decreased the rate of GM-CSF transcription. Hypoxia both decreased NF-κB signaling in AEC and induced chromosomal changes, resulting in decreased accessibility in the GM-CSF proximal promoter of target sequences for NF-κB binding. In mice exposed to hypoxia in vivo (12% oxygen for 2 d), lung GM-CSF protein expression was reduced. In vivo phagocytosis of fluorescent beads by alveolar macrophages was also suppressed, but this effect was reversed by treatment with GM-CSF. These studies suggest that in critically ill patients, local hypoxia may contribute to the susceptibility of poorly ventilated lung units to infection through complementary effects on several pathways, reducing AEC expression of GM-CSF and other key innate immune molecules.
Collapse
Affiliation(s)
- Anne Sturrock
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Diana Woller
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Andrew Freeman
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Karl Sanders
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and.,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Robert Paine
- Department of Veterans Affairs Medicine Center, Salt Lake City, UT 84148; and .,Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
19
|
Detection of Matrix Metalloproteinases Patterns in Bovine Luteum cell during Pregnancy. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.2.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
Developing transmission line equations of oxygen transport for predicting oxygen distribution in the arterial system. Sci Rep 2018; 8:5369. [PMID: 29599481 PMCID: PMC5876338 DOI: 10.1038/s41598-018-23743-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/08/2018] [Indexed: 12/02/2022] Open
Abstract
The oxygen content in the arterial system plays a significant role in determining the physiological status of a human body. Understanding the oxygen concentration distribution in the arterial system is beneficial for the prevention and intervention of vascular disease. However, the oxygen concentration in the arteries could not be noninvasively monitored in clinical research. Although the oxygen concentration distribution in a vessel could be obtained from a three-dimensional (3D) numerical simulation of blood flow coupled with oxygen transport, a 3D numerical simulation of the systemic arterial tree is complicated and requires considerable computational resources and time. However, the lumped parameter model of oxygen transport derived from transmission line equations of oxygen transport requires fewer computational resources and less time to numerically predict the oxygen concentration distribution in the systemic arterial tree. In this study, transmission line equations of oxygen transport are developed according to the theory of oxygen transport in the vessel, and fluid transmission line equations are used as the theoretical reference for the development. The transmission line equations of oxygen transport could also be regarded as the theoretical basis for developing lumped parameter models of other substances in blood.
Collapse
|
21
|
Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Biol Interact 2018; 284:32-40. [DOI: 10.1016/j.cbi.2018.02.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
|
22
|
An Z, Yang G, Nie W, Ren J, Wang D. Retracted
: MicroRNA‐106b overexpression alleviates inflammation injury of cardiac endothelial cells by targeting BLNK via the NF‐κB signaling pathway. J Cell Biochem 2018; 119:3451-3463. [DOI: 10.1002/jcb.26517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zhe An
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Guang Yang
- Department of Molecular BiologyCollege of Basic Medical SciencesJilin UniversityChangchunP.R. China
| | - Wei Nie
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Jin Ren
- Department of Respiratory MedicineThe Second Hospital of Jilin UniversityChangchunP.R. China
| | - Dan Wang
- Department of Breast SurgeryThe Second Hospital of Jilin UniversityChangchunP.R. China
| |
Collapse
|
23
|
Farahmand L, Darvishi B, Majidzadeh-A K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides. Drug Deliv 2017; 24:1249-1261. [PMID: 28870118 PMCID: PMC8240980 DOI: 10.1080/10717544.2017.1370511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a prototypical pro-inflammatory transcription factor, constitutive activation of NF-κB signaling pathway has been reported in several chronic inflammatory disorders including inflammatory bowel disease, cystic fibrosis, rheumatoid arthritis and cancer. Application of decoy oligodeoxynucleotides (ODNs) against NF-κB, as an effective molecular therapy approach, has brought about several promising outcomes in treatment of chronic inflammatory disorders. However, systematic administration of these genetic constructs is mostly hampered due to their instability, rapid degradation by nucleases and poor cellular uptake. Both chemical modification and application of delivery systems have shown to effectively overcome some of these limitations. Among different administered delivery systems, nanomaterials have gained much attention for delivering NF-κB decoy ODNs owing to their high loading capacity, targeted delivery and ease of synthesis. In this review, we highlight some of the most recently developed nanomaterial-based delivery systems for overcoming limitations associated with clinical application of these genetic constructs.
Collapse
Affiliation(s)
- Leila Farahmand
- a Recombinant Proteins Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Behrad Darvishi
- a Recombinant Proteins Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Keivan Majidzadeh-A
- b Genetics Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran.,c Tasnim Biotechnology Research Center, Faculty of Medicine , AJA University of Medical Sciences , Tehran , Iran
| |
Collapse
|
24
|
Fuster-Matanzo A, Manferrari G, Marchetti B, Pluchino S. Wnt3a promotes pro-angiogenic features in macrophages in vitro: Implications for stroke pathology. Exp Biol Med (Maywood) 2017; 243:22-28. [PMID: 29199847 DOI: 10.1177/1535370217746392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wnt3a is implicated in several key cellular processes and its expression has been reported in different cell types. Here, we report a novel function for Wnt3a in macrophages, whose exposure to this ligand shifts them towards a pro-angiogenic phenotype capable, under oxygen and glucose deprivation, of inducing in vitro tubular pattern structures in endothelial cells resembling capillary-like vasculature. These newly acquired angiogenetic features also include increased proliferation and migration and surprisingly, an increase in cell death. This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro, which are worth further investigation in pathological conditions including stroke, where the stimulation of the angiogenic process might help to recovery after tissue injury Impact statement This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro. Our results reveal how Wnt3a shifts macrophages towards a pro-angiogenic phenotype, which is able-in absence of both glucose and oxygen-of inducing angiogenesis in vitro, thus pointing to a synergy between the activation of the pathway and the hypoxia scenario. This work also demonstrates that modulation of cell death is key in order to explain the observed angiogenic effects. We consider all these findings of significant importance, since no connection between Wnt3a, macrophages, and angiogenesis has been established so far. Furthermore, we do believe that this work provides new and interesting results, with Wnt signaling pathway emerging as an interesting target mediating beneficial outcomes during the inflammatory response undoubtedly linked to stroke pathology, where angiogenesis has been already proposed as a potential mechanism to promote recovery after the injury.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| | - Giulia Manferrari
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| | - Bianca Marchetti
- 2 Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, University of Catania Medical School, Catania 95125, Italy.,3 OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Troina 94018 (EN), Italy
| | - Stefano Pluchino
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| |
Collapse
|
25
|
Li LC, Wang ZW, Hu XP, Wu ZY, Hu ZP, Ruan YL. MDG‑1 inhibits H2O2‑induced apoptosis and inflammation in human umbilical vein endothelial cells. Mol Med Rep 2017; 16:3673-3679. [PMID: 28713956 DOI: 10.3892/mmr.2017.6957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
MDG‑1, a water‑soluble polysaccharide extracted from Ophiopogon japonicus, has been reported to serve a role in antimyocardial ischemia by protecting cardiomyocytes from hypoxia/reoxygenation‑induced damage. However, it remains unknown whether MDG‑1 protects human umbilical vein endothelial cells (HUVECs) against oxidative stress‑induced damage. In the present study, HUVECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress‑induced cell injury model. Treatment of HUVECs with different concentrations of H2O2 significantly attenuated cell viability and increased cell apoptosis in a time and dose‑dependent manner. Pretreatment with MDG‑1 markedly reduced H2O2‑induced cell death, ROS generation and inflammatory factor secretion. In addition, pretreatment with MDG‑1 decreased the expression levels of proapoptotic proteins BCL2 associated X (Bax) and caspase‑3, while it increased the expression levels of the antiapoptotic protein BCL2 apoptosis regulator (Bcl‑2), compared with H2O2 treatment alone. Taken together, the present data suggest that MDG‑1 protected HUVECs against H2O2‑induced apoptosis and inflammation through inhibition of Bax/Bcl‑2 protein ratio, caspase‑3 expression, and inflammatory factor secretion. This study provides a potential application for MDG‑1 in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Luo-Cheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Ping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Yong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Peng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong-Le Ruan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
26
|
Wang D, Liu Y, Zhong G, Wang Y, Zhang T, Zhao Z, Yan X, Liu Q. Compatibility of Tanshinone IIA and Astragaloside IV in attenuating hypoxia-induced cardiomyocytes injury. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:67-76. [PMID: 28389356 DOI: 10.1016/j.jep.2017.03.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines including Tanshinone IIA (TanIIA) and Astragaloside IV (AsIV) are widely used in Asia as therapeutic agents for cardiovascular diseases, due to their complementary roles and shared properties based on the theory of traditional Chinese medicine and pharmacological researches. However, the underlying pathological mechanisms for their efficacy are still unclear. In addition, the compatibility or incompatibility of the herbal medicines when administered with other herbal remedies or with prescription drugs is unknown. AIM OF THE STUDY We aimed to investigate the compatibility of TanIIA and AsIV in protecting cardiomyocytes against hypoxia-induced injury. MATERIALS AND METHODS Cultured cardiomyocytes were stimulated in hypoxia condition, in the absence or presence of the two herbal compounds, TanIIA and AsIV. Indicators were determined by cytotoxicity assay, quantitative PCR, ELISA, flow cytometry assay, immunofluorescence staining and western blot. RESULTS Either TanIIA alone or the combined herbal compounds inhibited hypoxia-triggered chemokines production including CCL2/5/19, CXCL2 and Transwell assay-indicated monocyte/macrophage recruitment, cytokines production including TNF-α and IL-6. While AsIV alone or the combined herbal compounds attenuated hypoxia-induced cell apoptosis indicated by decreased Annexin V+ cells and the ratio of Bax/Bcl-2, but no significant effect of the herbal compounds was observed in modulating cell apoptosis following both hypoxia and TNF-α stimulation. As an anti-apoptotic factor, stress granule formation was further enhanced by AsIV alone or the combined herbal compounds in hypoxia or heat shock stress. Moreover, immunoblotting analysis indicated that stress-responsive mitogen-activated protein kinases (MAPK) pathways including the phosphorylation of ERK1/2, p38 and JNK were inhibited while the phosphorylation of Akt in phosphatidylinositol 3-kinase (PI3K) -Akt pathway for cell survival was restored by the herbal compounds. Among these results, the combination of TanIIA and AsIV comprised most of the beneficial properties tested, although their combination did not improve the maximal effects achieved by any of the compounds alone. CONCLUSIONS Taken together, these data suggest a compatibility of TanIIA and AsIV in protecting cardiomyocyte against hypoxia-induced injury.
Collapse
Affiliation(s)
- Dawei Wang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Emergency Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Yuntao Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Emergency Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Guofu Zhong
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyuan Wang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tong Zhang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhao
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xia Yan
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
27
|
El-Sayyad SM, Soubh AA, Awad AS, El-Abhar HS. Mangiferin protects against intestinal ischemia/reperfusion-induced liver injury: Involvement of PPAR-γ, GSK-3β and Wnt/β-catenin pathway. Eur J Pharmacol 2017; 809:80-86. [PMID: 28506911 DOI: 10.1016/j.ejphar.2017.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
AIM Mangiferin (MF), a xanthonoid from Mangifera indica, possesses anti-inflammatory, immunomodulatory, and potent antioxidant effects; however, its protective effect against mesenteric ischemia/reperfusion (I/R)-induced liver injury has not been fully clarified. The study was designed to assess the possible mechanism of action of MF against mesenteric I/R model. MAIN METHODS Male Wister rats were treated with MF (20mg/kg, i.p) or the vehicle for 3 days before I/R, which was induced by clamping the superior mesenteric artery for 30min followed by declamping for 60min. KEY FINDINGS The mechanistic studies revealed that MF protected the 2 organs studied, viz., liver and intestine partly via increasing the content of β-catenin and PPAR-γ along with decreasing that of GSK-3β and the phosphorylated NF-қB-p65. MF antioxidant effect was evidenced by increasing contents of total antioxidant capacity and GST, besides normalizing that of MDA. Regarding the anti-inflammatory effect, MF reduced IL-1β and IL-6, effects that were mirrored on the tissue content of MPO. Moreover, MF possessed anti-apoptotic character evidenced by elevating Bcl-2 content and reducing that of caspase-3. In the serum, intestinal I/R increased the activity of ALT, AST, and creatine kinase. SIGNIFICANCE The intimated protective mechanisms of MF against mesenteric I/R are mediated, partially, by modulation of oxidative stress, inflammation, and apoptosis possibly via the involvement of Wnt/β-catenin/NF-қβ/ PPAR-γ signaling pathways.
Collapse
Affiliation(s)
- Shorouk M El-Sayyad
- Department of Pharmacology & Toxicology, October 6 University,12585 Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology & Toxicology, Ahram Canadian University, 12566 Giza, Egypt.
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Ahram Canadian University, 12566 Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
28
|
Liu C, Tsai AL, Li PC, Huang CW, Wu CC. Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFκB signals. Stem Cell Res Ther 2017; 8:29. [PMID: 28173835 PMCID: PMC5296962 DOI: 10.1186/s13287-017-0470-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are used to repair hypoxic or ischemic tissue. However, the underlining mechanism of resistance in the hypoxic microenvironment and the efficacy of migration to the injured tissue are still unknown. The current study aims to understand the hypoxia resistance and migration ability of MSCs during differentiation toward endothelial lineages by biochemical and mechanical stimuli. METHOD MSCs were harvested from the bone marrow of 6-8-week-old Sprague-Dawley rats. The endothelial growth medium (EGM) was added to MSCs for 3 days to initiate endothelial differentiation. Laminar shear stress was used as the fluid mechanical stimulation. RESULTS Application of EGM facilitated the early endothelial lineage cells (eELCs) to express EPC markers. When treating the hypoxic mimetic desferrioxamine, both MSCs and eELCs showed resistance to hypoxia as compared with the occurrence of apoptosis in rat fibroblasts. The eELCs under hypoxia increased the wound closure and C-X-C chemokine receptor type 4 (CXCR4) gene expression. Although the shear stress promoted eELC maturation and aligned cells parallel to the flow direction, their migration ability was not superior to that of eELCs either under normoxia or hypoxia. The eELCs showed higher protein expressions of CXCR4, phosphorylated Akt (pAkt), and endogenous NFκB and IκBα than MSCs under both normoxia and hypoxia conditions. The potential migratory signals were discovered by inhibiting either Akt or NFκB using specific inhibitors and revealed decreases of wound closure and transmigration ability in eELCs. CONCLUSION The Akt and NFκB pathways are important to regulate the early endothelial differentiation and its migratory ability under a hypoxic microenvironment.
Collapse
Affiliation(s)
- Cheng Liu
- Hyperbaric Oxygen Therapy Center, Chi-Mei Medical Center, Tainan, Taiwan.,Division of Plastic Surgery, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - An-Ly Tsai
- Division of Plastic Surgery, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chia Li
- Department of Occupational Therapy, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Wei Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
29
|
Yan F, Jiang WT, Dong RQ, Wang QY, Fan YB, Zhang M. Blood Flow and Oxygen Transport in Descending Branch of Lateral Femoral Circumflex Arteries After Transfemoral Amputation: A Numerical Study. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Lee CY, Shin S, Lee J, Seo HH, Lim KH, Kim H, Choi JW, Kim SW, Lee S, Lim S, Hwang KC. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1) Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs) Transplanted into Infarcted Heart. Int J Mol Sci 2016; 17:E1752. [PMID: 27775615 PMCID: PMC5085777 DOI: 10.3390/ijms17101752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/19/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022] Open
Abstract
Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.
Collapse
Affiliation(s)
- Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 03722 Seoul, Korea.
| | - Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 03722 Seoul, Korea.
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 03722 Seoul, Korea.
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 03722 Seoul, Korea.
| | - Kyu Hee Lim
- Department of Veterinary Medicine, Chonbuk National University, 54896 Jeonju, Korea.
| | - Hyemin Kim
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 03722 Seoul, Korea.
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, 25601 Gangwon-do, Korea.
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, 25601 Gangwon-do, Korea.
| | - Seahyung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, 25601 Gangwon-do, Korea.
- Catholic Kwandong University, International St. Mary's Hospital, 22711 Incheon, Korea.
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, 25601 Gangwon-do, Korea.
- Catholic Kwandong University, International St. Mary's Hospital, 22711 Incheon, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, 25601 Gangwon-do, Korea.
- Catholic Kwandong University, International St. Mary's Hospital, 22711 Incheon, Korea.
| |
Collapse
|
31
|
Das AM, Pescatori M, Vermeulen CE, Rens JAP, Seynhaeve ALB, Koning GA, Eggermont AMM, Ten Hagen TLM. Melanomas prevent endothelial cell death under restrictive culture conditions by signaling through AKT and p38 MAPK/ ERK-1/2 cascades. Oncoimmunology 2016; 5:e1219826. [PMID: 27853641 PMCID: PMC5087299 DOI: 10.1080/2162402x.2016.1219826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
Although melanoma progression and staging is clinically well characterized, a large variation is observed in pathogenesis, progression, and therapeutic responses. Clearly, intrinsic characteristics of melanoma cells contribute to this variety. An important factor, in both progression of the disease and response to therapy, is the tumor-associated vasculature. We postulate that melanoma cells communicate with endothelial cells (ECs) in order to establish a functional and supportive blood supply. We investigated the angiogenic potential of human melanoma cell lines by monitoring the survival of ECs upon exposure to melanoma conditioned medium (CM), under restrictive conditions. We observed long-term (up to 72 h) EC survival under hypoxic conditions upon treatment with all melanoma CMs. No such survival effect was observed with the CM of melanocytes. The CM of pancreatic and breast tumor cell lines did not show a long-term survival effect, suggesting that the survival factor is specific to melanoma cells. Furthermore, all size fractions (up to < 1 kDa) of the melanoma CM induced long-term survival of ECs. The survival effect observed by the < 1 kDa fraction excludes known pro-angiogenic factors. Heat inactivation and enzymatic digestion of the CM did not inactivate the survival factor. Global gene expression and pathway analysis suggest that this effect is mediated in part via the AKT and p38 MAPK/ ERK-1/2 signaling axis. Taken together, these data indicate the production of (a) survival factor/s (< 1 kDa) by melanoma cell lines, which enables long-term survival of ECs and promotes melanoma-induced angiogenesis.
Collapse
Affiliation(s)
- Asha M Das
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| | - Mario Pescatori
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| | - Cindy E Vermeulen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| | - Joost A P Rens
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| | - Ann L B Seynhaeve
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| | - Gerben A Koning
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| | - Alexander M M Eggermont
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands; Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Rotterdam, the Netherlands
| |
Collapse
|
32
|
He Y, Du Z, Ma S, Liu Y, Li D, Huang H, Jiang S, Cheng S, Wu W, Zhang K, Zheng X. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomedicine 2016; 11:1879-87. [PMID: 27217750 PMCID: PMC4862350 DOI: 10.2147/ijn.s103695] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.
Collapse
Affiliation(s)
- Yan He
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Zhiyun Du
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Shijing Ma
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Yue Liu
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dongli Li
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Huarong Huang
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Sen Jiang
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Shupeng Cheng
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Wenjing Wu
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Kun Zhang
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China
| | - Xi Zheng
- Allan H Conney Laboratory for Anticancer Drug Research, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou, People's Republic of China; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
33
|
Programación epigenética placentaria en restricción del crecimiento intrauterino. ACTA ACUST UNITED AC 2016; 87:154-61. [DOI: 10.1016/j.rchipe.2016.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 01/28/2023]
|
34
|
Zhou Q, Cao J, Chen L. Apelin/APJ system: A novel therapeutic target for oxidative stress-related inflammatory diseases (Review). Int J Mol Med 2016; 37:1159-69. [PMID: 27035220 DOI: 10.3892/ijmm.2016.2544] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Apelin, the endogenous ligand of APJ which is a member of G protein-coupled receptors, has been shown to be expressed in a variety of tissues in vivo and to exert significant biological effects. Studies have indicated that the apelin/APJ system is involved in the regulation of a variety of physiological functions and pathological processes, and that it is associated with cardiovascular diseases (such as atherosclerosis, hypertension, heart failure and myocardial injury), diabetes with microvascular complications, ischemia reperfusion injury, tumors, pre-eclampsia, as well as others. The occurrence of these diseases is closely related to endothelial dysfunction and the local inflammatory response; however, the occurrence of oxidative stress is related to vascular injury, due to the excessive generation of reactive oxygen species (ROS) and can lead to vascular damage and a series of inflammatory reactions. Therefore, this review summarizes the association between apelin/APJ, oxidative stress and inflammation-related diseases. In addition, drugs targeting the apelin/APJ system are recommended, thus providing a novel therapeutic strategy for oxidative stress-related inflammatory diseases.
Collapse
Affiliation(s)
- Qun Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiangang Cao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
35
|
Shahzad M, Small DM, Morais C, Wojcikowski K, Shabbir A, Gobe GC. Protection against oxidative stress-induced apoptosis in kidney epithelium by Angelica and Astragalus. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:412-9. [PMID: 26719285 DOI: 10.1016/j.jep.2015.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/06/2015] [Accepted: 12/20/2015] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus either alone or in combination with Angelica sinensis has been used traditionally for kidney disease in East Asia and China for thousands of years. Previous studies using in vivo animal models have shown the benefits of these medicinal herbs in kidney diseases that involve oxidative stress. However, the mechanisms by which these medicinal herbs protect kidney cells remain largely unknown. AIM OF THE STUDY To investigate the mechanisms by which ethanol, methanol and aqueous crude extracts of roots of A. membranaceus and A. sinensis afford protection to human kidney proximal tubular epithelial cells, using an in vitro model of oxidative stress. MATERIALS AND METHODS Ethanol, methanol and aqueous extracts of roots of A. membranaceus and A. sinensis were prepared by a three-solvent sequential process. HK2 human kidney proximal tubular epithelial cells were treated with H2O2 alone (0.5mM) or in combination with different concentrations of extracts. Cell mitosis and death (microscopy) and cell viability (MTT assay) were compared. Western immunoblot was used to study expression of apoptosis-related proteins (pro-apoptotic Bax andanti-apoptotic Bcl-XL), and cell survival (NFκB subunits p65 and p50), pro-inflammatory (TNF-α) and protective (TGFβ1) proteins. RESULTS H2O2-induced oxidative stress significantly increased apoptosis and reduced cell survival; upregulated pro-apoptotic and down-regulated Bcl-XL; increased NFκB (p65, p50); increased TNFα and decreased TGFβ1. All changes indicated kidney damage and dysfunction. All were modulated by all extracts of both plant species, except for NFκB which was only modulated by extracts of A. membranaceus. CONCLUSIONS In conclusion, in a model of oxidative stress that might occur after nephrotoxicity, the plant extracts were protective via anti-apoptotic and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - David M Small
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ken Wojcikowski
- Department of Natural and Complementary Medicine, Southern Cross University, Lismore, Australia
| | - Arham Shabbir
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
36
|
Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J. Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: Considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci 2015; 53:166-83. [PMID: 26678521 DOI: 10.3109/10408363.2015.1115820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing body of evidence suggests that cerebrovascular dysfunction and microvessel disease precede the evolution of hallmark pathological features that characterise Alzheimer's disease (AD), consistent with a causal association for onset or progression. Recent studies, principally in genetically unmanipulated animal models, suggest that chronic ingestion of diets enriched in saturated fats and cholesterol may compromise blood-brain barrier (BBB) integrity resulting in inappropriate blood-to-brain extravasation of plasma proteins, including lipid macromolecules that may be enriched in amyloid-β (Aβ). Brain parenchymal retention of blood proteins and lipoprotein bound Aβ is associated with heightened neurovascular inflammation, altered redox homeostasis and nitric oxide (NO) metabolism. Therefore, it is a reasonable proposition that lipid-lowering agents may positively modulate BBB integrity and by extension attenuate risk or progression of AD. In addition to their robust lipid lowering properties, reported beneficial effects of lipid-lowering agents were attributed to their pleiotropic properties via modulation of inflammation, oxidative stress, NO and Aβ metabolism. The review is a contemporary consideration of a complex body of literature intended to synthesise focussed consideration of mechanisms central to regulation of BBB function and integrity. Emphasis is given to dietary fat driven significant epidemiological evidence consistent with heightened risk amongst populations consuming greater amounts of saturated fats and cholesterol. In addition, potential neurovascular benefits associated with the use of hypolipidemic statins, probucol and fenofibrate are also presented in the context of lipid-lowering and pleiotropic properties.
Collapse
Affiliation(s)
- Menuka Pallebage-Gamarallage
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Ryusuke Takechi
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Virginie Lam
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - Mina Elahy
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| | - John Mamo
- a Faculty of Health Sciences , School of Public Health Curtin University , Perth , WA , Australia and.,b Curtin Health Innovation Research Institute of Aging and Chronic Disease, Curtin University , Perth , WA , Australia
| |
Collapse
|
37
|
Yang C, Xu Y, Zhou H, Yang L, Yu S, Gao Y, Huang Y, Lu L, Liang X. Tetramethylpyrazine protects CoCl2-induced apoptosis in human umbilical vein endothelial cells by regulating the PHD2/HIF/1α-VEGF pathway. Mol Med Rep 2015; 13:1287-96. [PMID: 26676934 DOI: 10.3892/mmr.2015.4679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
Tetramethylpyrazine (TMP), one of the active ingredients isolated from a Chinese herbal prescription, possesses protective effects against apoptosis in endothelial cells. However, the underlying mechanism of its protective effects in endothelial cells remains to be elucidated. Using human umbilical vein endothelial cells (HUVECs), the present study assessed the protective effects of TMP on CoCl2-induced apoptosis. Following pre-incubation with CoCl2 (150 µM/ml) for 4 h, the HUVECs were treated with TMP at different concentrations (50, 100 and 200 µM/ml) for 8 h. TMP upregulated the expression of prolyl hydroxylase (PHD)2, reduced the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), and reduced the expression of HIF-1α only at the protein level, not at the mRNA level in HUVECs, in a concentration-dependent manner. Furthermore, silencing of the PHD2 gene with small interfering (si)RNAs abolished the reduction in the expression of hypoxia-inducible factor (HIF)-1α and VEGF by TMP. In addition, TMP protected CoCl2-induced HUVEC injury via an apoptosis pathway, as characterized by the increased ratio of cell viability and the reduced percentage of apoptotic and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive HUVECs, activation of caspase-3, -8 and -9, B-cell lymphoma (Bcl)-2/Bcl-2-activated X protein expression, as well as the release of cytochrome c. The protective properties of TMP were partially attributed to the mRNA and protein expression levels of PHD, since silencing of the PHD2 gene with siRNAs abolished these effects. The present study demonstrated that the antiapoptotic effect of TMP in CoCl2-induced HUVECs was, at least in part, via the regulation of the PHD2/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Huanjiao Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Lu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yi Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yongsheng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
38
|
Lei Y, Chen M, Xiong G, Chen J. Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm. J Biomech 2015; 48:3312-22. [DOI: 10.1016/j.jbiomech.2015.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/13/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
|
39
|
Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discov 2015; 1:15007. [PMID: 27551443 PMCID: PMC4981000 DOI: 10.1038/cddiscovery.2015.7] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
Paracrine effect is the major mechanism that underlies mesenchymal stem cells (MSC)-based therapy. This study aimed to examine how Rap1, telomeric repeat-binding factor 2-interacting protein 1 (Terf2IP), which is a novel modulator involved in the nuclear factor-kappaB (NF-κB) pathway, regulates the paracrine effects of MSC-mediated heart repair following infarction. NF-κB activity of stromal cells was increased by Rap1 as measured by pNF-κB-luciferase reporter activity, and this was abolished by IkB-dominant-negative protein. Knockdown of Rap1 with shRap1 resulted in diminished translocation of p65-NF-κB from the cytoplasm to nuclei in response to tumor necrosis factor-α (TNF-α) stimulation. Compared with BM-MSCs, Rap1−/−-BM-MSCs displayed a significantly reduced ratio of phosphorylated NF-κB to NF-κB-p65 and of Bax to Bcl-2, and increased resistance to hypoxia-induced apoptosis by the terminal deoxynucleotidal transferase-mediated dUTP nick end labeling (TUNEL) assay. In contrast, re-expression of Rap1 in Rap1−/−-BM-MSCs resulted in loss of resistance to apoptosis in the presence of hypoxia. Moreover, absence of Rap1 in BM-MSCs led to downregulation of NF-κB activity accompanied by reduced pro-inflammatory paracrine cytokines TNF-α, IL (interleukin)-6 and monocyte chemotactic protein-1 in Rap1−/−-BM-MSCs compared with BM-MSCs. The apoptosis of neonatal cardiomyocytes (NCMCs) induced by hypoxia was significantly reduced when cocultured with Rap1−/−-BM-MSC hypoxic-conditioned medium (CdM). The increased cardioprotective effects of Rap1−/−-BM-MSCs were reduced when Rap1−/−-BM-MSCs were reconstituted with Rap1 re-expression. Furthermore, in vivo study showed that transplantation of Rap1−/−-BM-MSCs significantly improved heart function, decreased infarct size, prevented cardiomyocyte apoptosis and inhibited inflammation compared with controls and BM-MSCs (P<0.01). This study reveals that Rap1 has a critical role in the regulation of MSC paracrine actions. Compared with BM-MSCs, Rap1−/−-BM-MSCs decreased NF-κB sensitivity to stress-induced pro-inflammatory cytokine production and reduced apoptosis. Selective inhibition of Rap1 in BM-MSCs may be a novel strategy to enhance MSC-based therapeutic efficacy in myocardial infarction.
Collapse
|
40
|
Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, Schoenwaelder SM, Ruggeri ZM, Jackson SP. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015. [PMID: 26204458 DOI: 10.1038/ncomms8835] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thrombin is a central regulator of leukocyte recruitment and inflammation at sites of vascular injury, a function thought to involve primarily endothelial PAR cleavage. Here we demonstrate the existence of a distinct leukocyte-trafficking mechanism regulated by components of the haemostatic system, including platelet PAR4, GPIbα and fibrin. Utilizing a mouse endothelial injury model we show that thrombin cleavage of platelet PAR4 promotes leukocyte recruitment to sites of vascular injury. This process is negatively regulated by GPIbα, as seen in mice with abrogated thrombin-platelet GPIbα binding (hGPIbα(D277N)). In addition, we demonstrate that fibrin limits leukocyte trafficking by forming a physical barrier to intravascular leukocyte migration. These studies demonstrate a distinct 'checkpoint' mechanism of leukocyte trafficking involving balanced thrombin interactions with PAR4, GPIbα and fibrin. Dysregulation of this checkpoint mechanism is likely to contribute to the development of thromboinflammatory disorders.
Collapse
Affiliation(s)
- Zane S Kaplan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Alessandro Zarpellon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Imala Alwis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yuping Yuan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - James McFadyen
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Mehran Ghasemzadeh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
41
|
Qian GQ, Ding J, Zhang X, Yin X, Gao Y, Zhao GP. Preconditioning with glycyrrhizic, ferulic, paeoniflorin, cinnamic prevents rat hearts from ischemia/reperfusion injury via endothelial nitric oxide pathway. Pharmacogn Mag 2015; 11:292-6. [PMID: 25829767 PMCID: PMC4378126 DOI: 10.4103/0973-1296.153081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/27/2014] [Accepted: 03/12/2015] [Indexed: 11/24/2022] Open
Abstract
Objective: The objective was to investigate the endothelial nitric oxide synthase (eNOS/NO) pathway is involved or not in the protective effects of glycyrrhizic, ferulic, paeoniflorin, cinnamic (GFPC) in myocardial ischemia-reperfusion injury Sprague-Dawley rats. Materials and Methods: Ischemia-reperfusion (I/R) model was made by ligating the left anterior descending branch of the coronary artery for 30 min and releasing for 120 min, then the left ventricular apical was fixed and sliced, morphological changes of myocardial microvascular endothelial cell (MMVEC) was observed by electron microscopy, apoptosis index of MMVEC was observed by means of TUNEL, serum NO was tested by methods of nitrate reduction, lactate dehydrogenase (LDH), creatine kinase MB (CK-MB) was detected by automatic biochemical analyzer; Phosphorylated eNOS (PeNOS) and inducible NOS (iNOS) protein were measured by means of western blot. Results: In positive product control group, the serum levels of NO, LDH, CK-MB significantly increased (P < 0.05); MMVEC apoptosis was significantly decreased (P < 0.05); incidence of area at risk decreased significantly (P < 0.05); PeNOS protein increased (P < 0.05); iNOS protein decreased significantly (P < 0.05). Conclusion: Ischemic preconditioning of GFPC from GFPC plays a protective role in I/R heart through regulating the eNOS/NO signal pathway by increasing the PeNOS protein expression and decreasing the expression of iNOS protein.
Collapse
Affiliation(s)
- Guo-Qiang Qian
- Department of Nursing Science, Huanghuai University, Zhumadian, China
| | - Jingjing Ding
- Department of Nursing Science, Huanghuai University, Zhumadian, China
| | - Xiaozhao Zhang
- Department of Nursing Science, Huanghuai University, Zhumadian, China
| | - Xiaofeng Yin
- Department of Nursing Science, Huanghuai University, Zhumadian, China
| | - Yuqin Gao
- Department of Nursing Science, Huanghuai University, Zhumadian, China
| | - Guo-Ping Zhao
- Department of Traditional Chinese Medicine, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Liu J, Zhang H, Jia L, Sun H. Effects of Treg cells and IDO on human epithelial ovarian cancer cells under hypoxic conditions. Mol Med Rep 2014; 11:1708-14. [PMID: 25376937 PMCID: PMC4270340 DOI: 10.3892/mmr.2014.2893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/18/2014] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to explore the effect of hypoxia on ovarian cancer. A total of 6 samples were analyzed: SKOV3‑IP cells (ovarian cancer cell line); SKOV3‑IP and regulatory T (Treg) cells; SKOV3‑IP and cytotoxic T lymphocytes (CTLs); SKOV3‑IP and natural killer (NK) cells; SKOV3‑IP co-cultured with CTLs and Treg cells; and SKOV3‑IP co-cultured with Treg cells and NK cells. The expression of indoleamine 2,3‑dioxygenase (IDO) was detected by reverse transcription-polymerase chain reaction (RT‑PCR) and western blot analysis. An enzyme‑linked immunosorbent assay (ELISA) was used to detect the concentration of transforming growth factor‑β (TGF‑β), interferon‑γ (IFN‑γ), interleukin‑2 (IL‑2), interleukin‑10 (IL‑10), and perforin. Moreover, ovarian cancer cell apoptosis and invasive ability were examined using flow cytometry and a Transwell chamber assay. IDO expression was significantly reduced in hypoxia and enhanced by Treg cells. Treg cells inhibited the IL‑2, IFN‑γ and perforin secretion, and significantly (P<0.05) increased the IL‑10 and TGF‑β levels. The effects of Treg cells were enhanced with prolongation of the cell exposure to hypoxic conditions. In addition, Treg cells attenuated the promotive effect of CTLs and NK cells on cancer cell apoptosis. In addition, Treg cells significantly increased the SKOV3‑IP invasive ability (P=0.00109) under hypoxic conditions. Our results suggest that IDO and Treg cells may serve as important therapeutic targets for patients with ovarian cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Haiyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Luoqi Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Hong Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| |
Collapse
|
43
|
Shi Z, Lian A, Zhang F. Nuclear factor-κB activation inhibitor attenuates ischemia reperfusion injury and inhibits Hmgb1 expression. Inflamm Res 2014; 63:919-25. [PMID: 25209109 DOI: 10.1007/s00011-014-0765-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/08/2014] [Accepted: 07/26/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the effects of nuclear factor-κB activation inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) on cardiac ischemia reperfusion injury in a transplantation model. METHODS Hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipient. Some mice were administrated intraperitoneally with DHMEQ (8 mg/kg) 1 h before reperfusion. For inhibition of Hmgb1, mice were treated with glycyrrhizin at 250 mg/kg prior to reperfusion. RESULTS DHMEQ decreased cardiomyocyte apoptosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by DHMEQ treatment. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with DHMEQ treatment (IR+DHMEQ: 58.6 ± 5.75 ml/min; IR: 25.9 ± 4.1 ml/min; P < 0.05). Furthermore, DHMEQ suppressed high mobility group protein (Hmgb1) expression. And the Caspase 3 activity, the number of TUNEL-positive cardiomyocytes and infiltrated neutrophil in cardiac allograft were markedly decreased with Hmgb1 inhibitor treatment. CONCLUSIONS Nuclear factor-κB activation inhibitor DHMEQ attenuates ischemia reperfusion injury in a cardiac transplantation model and it may be a suitable agent for the protection of the cardiac against ischemia reperfusion injury.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Cardiothoracic Surgery, China Pingmei Shenma Medical Group General Hospital, Pingdingshan Kuanggong Road 1#, Henan, China,
| | | | | |
Collapse
|
44
|
Cyanidin-3-O-glucoside modulates intracellular redox status and prevents HIF-1 stabilization in endothelial cells in vitro exposed to chronic hypoxia. Toxicol Lett 2014; 226:206-13. [PMID: 24518827 DOI: 10.1016/j.toxlet.2014.01.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022]
Abstract
The term hypoxia refers to conditions characterized by a relative restriction of oxygen supply. It is usually associated to a paradoxical overproduction of reactive oxygen species (ROS) and to the activation of several transcription factors, including HIF-1α, which in turn trigger angiogenic and apoptotic response. In this study we have investigated the mechanisms by which the anthocyanin cyanidin-3-O-glucoside (C3G) modulates hypoxia induced response in human endothelial cells (HUVECs). In fact, hypoxia induces an increase of ROS generation in HUVECs paralleled by a loss of antioxidant cellular capacity. According to the observed increase of HO-1 mRNA expression, pretreatment of C3G to HUVEC reduces the entity of oxidative stress thanks to the activation of cellular antioxidant response. C3G also attenuates HIF-1α protein accumulation conditions supporting the hypothesis of a major role of oxidative stress in the presence of low oxygen. Furthermore, the increased expression of angiogenesis and apoptosis markers (MMP-2 and caspase-3) due to HIF-1α activation by hypoxia is reduced in C3G pretreated cells. Overall, our data suggest that the modulation of intracellular redox status induced by C3G may be an important protective mechanism against endothelial damage in hypoxic conditions.
Collapse
|
45
|
Effect of a novel nuclear factor-κB activation inhibitor on renal ischemia-reperfusion injury. Transplantation 2014; 96:863-70. [PMID: 23958925 DOI: 10.1097/tp.0b013e3182a3df74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND In kidney transplantation, the relationship between prolonged warm or cold ischemic storage of kidneys and a higher incidence of delayed graft function is previously known, and delayed graft function has been known to aggravate poor long-term graft survival. We investigated the effect of a novel nuclear factor-κB activation inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on renal ischemia-reperfusion (I/R) injury. METHODS DHMEQ was administered to Lewis rats once just before renal artery clamping (DHMEQ pretreatment group), and the effect on I/R injury was investigated. RESULTS In the DHMEQ pretreatment group, the 24-hr urine volume on days 1 to 3 after I/R was significantly larger, and the protein concentration of the urine on days 2 to 7 was significantly smaller than in the untreated group. The serum creatinine level was significantly improved, and significantly lower levels of the inflammatory cells and inflammatory cytokines were present in the kidneys on day 1. The relative ratio of nuclear to cytoplasmic nuclear factor-κB and oxidative stress of kidney tissue on day 1 were significantly decreased. CONCLUSIONS Treatment with DHMEQ before renal artery clamping may therefore be useful for renal I/R injury and application to renal transplantation is expected.
Collapse
|
46
|
Esteban MA, Maxwell PH. Manipulation of oxygen tensions forin vitrocell culture using a hypoxic workstation. Expert Rev Proteomics 2014; 2:307-14. [PMID: 16000078 DOI: 10.1586/14789450.2.3.307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is increasingly clear that oxygen tension exerts potent effects on many biologic processes in a range well above that at which aerobic metabolism is compromised. Cell culture ex vivo is traditionally performed in unstirred liquid media at ambient oxygen concentrations in the laboratory, with no attention to the level of oxygen experienced by the cells. This is certainly not reflecting physiology, and oxygenation may be further altered during cell handling and extraction procedures. The hypoxia-inducible factor pathway illustrates the potential for oxygen tension to have dramatic effects in terms of post-translational modification of proteins, and to influence a broad range of cellular pathways including those involved in substrate transport, metabolic pathways, growth factor signaling and differentiation. While the standard laboratory approach may remain suitable for many biologic applications, there are other situations in which more attention to oxygenation will be appropriate. This review discusses a workstation that allows investigators to manipulate oxygenation.
Collapse
Affiliation(s)
- Miguel A Esteban
- Imperial College, Renal laboratory, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | |
Collapse
|
47
|
Myatt L, Muralimanoharan S, Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA's and mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:133-46. [PMID: 25015807 DOI: 10.1007/978-1-4939-1031-1_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In pregnancy fetal growth and development occur in a sexually dimorphic manner. Male and female fetuses respond differently to the intrauterine environment with males disproportionately suffering from perinatal morbidity and mortality. We have demonstrated placental dysfunction and sexually dimorphic responses in pregnancies complicated by severe preeclampsia. Production of cytokines and apoptosis in the male placenta is heightened relative to that of the female placenta. We also find increased expression and stabilization and a sexual dimorphism in expression of the transcription factor HIF-1α, but a defect in binding to the hypoxia response element with corresponding reduced expression of HIF-1α target genes including VEGF and Glut-1. HIF-1α is involved in crosstalk with the redox sensitive transcription factor NFκB in regulation by cytokines, reactive oxygen species and expression of inflammatory genes. We find increased placental expression and DNA binding of NFκB and a sexually dimorphic response suggesting a role for NFκB in placental dysfunction with preeclampsia. Placental mitochondrial complex III activity and complex I and IV expression are reduced and alterations in mitochondrial morphology are found in preeclampsia and are linked to the hypoxamir miR-210. We propose that with severe PE placental HIF-1α is stabilized by excessive ROS, inflammation and relative hypoxia. This increases the expression of miR-210 in the placenta causing repression of mitochondria-associated target genes, potentially leading to mitochondrial and placental dysfunction. This placental dysfunction may lead to a fetal programming effect that results in disease in later life.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229-3900, USA,
| | | | | |
Collapse
|
48
|
Chen J, Gutmark E, Mylavarapu G, Backeljauw PF, Gutmark-Little I. Numerical investigation of mass transport through patient-specific deformed aortae. J Biomech 2013; 47:544-52. [PMID: 24210472 DOI: 10.1016/j.jbiomech.2013.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/15/2023]
Abstract
Blood flow in human arteries has been investigated using computational fluid dynamics tools. This paper considers flow modeling through three aorta models reconstructed from cross-sectional magnetic resonance scans of female patients. One has the normal control configuration, the second has elongation of the transverse aorta, and the third has tortuosity of the aorta with stenosis. The objective of this study is to determine the impact of aortic abnormal geometries on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDLs) concentration, and oxygen flux along the arterial wall. The results show that the curvature of the aortic arch and the stenosis have significant effects on the blood flow, and in turn, the mass transport. The location of hypoxia areas can be predicted well by ignoring the effect of hemoglobin on the oxygen transport. However, this simplification indeed alters the absolute value of Sherwood number on the wall.
Collapse
Affiliation(s)
- Jie Chen
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Goutham Mylavarapu
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Iris Gutmark-Little
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
49
|
Kim MJ, Yun HS, Hong EH, Lee SJ, Baek JH, Lee CW, Yim JH, Kim JS, Park JK, Um HD, Hwang SG. Depletion of end-binding protein 1 (EB1) promotes apoptosis of human non-small-cell lung cancer cells via reactive oxygen species and Bax-mediated mitochondrial dysfunction. Cancer Lett 2013; 339:15-24. [DOI: 10.1016/j.canlet.2013.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/15/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
|
50
|
Muralimanoharan S, Maloyan A, Myatt L. Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta 2013; 34:1183-9. [PMID: 24140080 DOI: 10.1016/j.placenta.2013.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/26/2023]
Abstract
Preeclampsia (PE) affects 5-8% of pregnancies and is responsible for 18% of maternal deaths in the US, and for long-term complications in mother and child. PE is an inflammatory state and may influence placental function in a sex-specific manner. We determined if there is a sexual dimorphism in the placental inflammatory and apoptotic responses in preeclamptic pregnancies. Placentas were collected from normotensive and preeclamptic pregnancies with either male or female fetuses (MPE and FPE respectively) after c-section at term with no labor. Expression patterns of markers of inflammation measured by ELISA, as well as hypoxia, apoptosis and angiogenesis markers measured by Western blotting were determined in the placenta. Consistent with previous studies, an increase in inflammation, hypoxia, and apoptotic cell death was observed in PE compared to normotensive pregnancies. Levels of TNFα, IL-6 and IL-8, and HIF-1α were significantly greater, whereas the angiogenic marker VEGF was significantly reduced in MPE vs. FPE. Sexual dimorphism was also observed in the activation of cell death: the number of TUNEL-positive cells, and the expression pro-apoptotic markers PUMA and Bax being higher in MPE vs. FPE. We also found an increase in the levels of protein and DNA-binding activity of NFκB p65 in MPE vs. FPE. In summary, we show here that in preeclamptic pregnancies the placentas of males were associated with significantly higher expression of inflammatory, hypoxia and apoptotic molecules but reduced expression of a pro-angiogenic marker compared to placentas of female fetuses. We propose that the transcription factor NFκB p65 might, at least partially, be involved in sexual dimorphism during PE.
Collapse
Affiliation(s)
- S Muralimanoharan
- Center for Pregnancy and Newborn Research, Dept of OB/GYN, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|