1
|
Masenga SK, Wandira N, Cattivelli-Murdoch G, Saleem M, Beasley H, Hinton A, Ertuglu LA, Mwesigwa N, Kleyman TR, Kirabo A. Salt sensitivity of blood pressure: mechanisms and sex-specific differences. Nat Rev Cardiol 2025:10.1038/s41569-025-01135-0. [PMID: 39984695 DOI: 10.1038/s41569-025-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease in individuals with or without hypertension. However, the mechanisms and management of SSBP remain unclear, mainly because the diagnosis of this condition relies on salt loading-depletion protocols that are not feasible in the clinic. The prevalence of hypertension is lower in premenopausal women than in men, but this sex-specific difference is reversed after menopause. Whether excessive SSBP in women at any age contributes to this reversal is unknown, but many clinical studies that have rigorously assessed for SSBP using salt loading-depletion protocols have confirmed that SSBP is more prevalent in women than in men, including during premenopausal age. In this Review, we discuss sex-specific mechanisms of SSBP. We describe sex-related differences in renal transporters, hypertensive pregnancy, SSBP in autoimmune disorders and mitogen-activated protein kinase signalling pathways, and highlight limitations and lessons learned from Dahl salt-sensitive rat models.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND research Group, Department of Pathology and Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia.
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Nelson Wandira
- Vanderbilt Mater of Public Health Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lale A Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Department of Cell Biology, and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Kheradkhah G, Sheibani M, Kianfar T, Toreyhi Z, Azizi Y. A comprehensive review on the effects of sex hormones on chemotherapy-induced cardiotoxicity: are they lucrative or unprofitable? CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:86. [PMID: 39627907 PMCID: PMC11613924 DOI: 10.1186/s40959-024-00293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Chemotherapy is one of the routine treatment for preventing rapid growth of the tumor cells. However, chemotherapeutic agents, especially doxorubicin cause damages to the normal cells especially cardiomyocytes. Cardiotoxicity induced by chemotherapeutic drugs lead to the myocardial cell injury and finally causes left ventricular dysfunction. It seems that there were some differences in the severity of cardiovascular side effects of drugs used in the treatment of cancers. Sex hormones in male and female play crucial roles in cardiovascular development and physiological function of the heart and blood vessels. Gender differences and sex-specific hormones influence various aspects of cardiovascular health, including ventricular function, mitochondrial autophagy, and the development of abdominal aortic aneurysms. The most important gender related hormones are LH, FSH, testosterone, estrogen, progesterone, prolactin and oxytocin. They exert very important cardiovascular effects via different signaling mechanisms. Sex related hormones are also important in the cardiovascular side effects of chemotherapeutic agents, so that chronic cardiotoxicity induced by anthracyclines is more common in women. During different stages of life (before, during, and after sexual life), the levels of these hormones will be changed. This alterations can affect cardiovascular function during physiological conditions and pathological process. Because of the importance of the sex related hormones in the cardiac function, in this review we tried to comprehensively elucidate the role of these physiological hormones in cardiotoxicity induced by chemotherapeutic agents with emphasizing their signaling mechanisms.
Collapse
Affiliation(s)
- Golnaz Kheradkhah
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tina Kianfar
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Toreyhi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Curry-Koski T, Gusek B, Potter RM, Jones TB, Dickman R, Johnson N, Stallone JN, Rahimian R, Vallejo-Elias J, Esfandiarei M. Genetic Manipulation of Caveolin-1 in a Transgenic Mouse Model of Aortic Root Aneurysm: Sex-Dependent Effects on Endothelial and Smooth Muscle Function. Int J Mol Sci 2024; 25:12702. [PMID: 39684412 DOI: 10.3390/ijms252312702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology. Caveolin-1 (Cav1), a structural protein of plasma membrane caveolae, is known to inhibit eNOS activity, suggesting its involvement in MFS aneurysm progression by modulating NO levels. In this study, we examined the role of Cav1 in aortic smooth muscle and endothelial function, aortic wall elasticity, and wall strength in male and female MFS mice (FBN1+/Cys1041Gly) by generating developing Cav1-deficient MFS mice (MFS/Cav1KO). Our findings reveal that Cav1 ablation leads to a pronounced reduction in aortic smooth muscle contraction in response to phenylephrine, attributable to an increase in NO production in the aortic wall. Furthermore, we observed enhanced aortic relaxation responses to acetylcholine in MFS/Cav1KO mice, further underscoring Cav1's inhibitory impact on NO synthesis within the aorta. Notably, van Gieson staining and chamber myography analyses showed improved elastin fiber structure and wall strength in male MFS/Cav1KO mice, whereas these effects were absent in female counterparts. Cav1's regulatory influence on aortic root aneurysm development in MFS through NO-mediated modulation of smooth muscle and endothelial function, with notable sex-dependent variations.
Collapse
Affiliation(s)
- Tala Curry-Koski
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Brikena Gusek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Ross M Potter
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - T Bucky Jones
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Raechel Dickman
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Nathan Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - John N Stallone
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Johana Vallejo-Elias
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|
4
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Kalyanaraman H, Casteel DE, China SP, Zhuang S, Boss GR, Pilz RB. A plasma membrane-associated form of the androgen receptor enhances nuclear androgen signaling in osteoblasts and prostate cancer cells. Sci Signal 2024; 17:eadi7861. [PMID: 38289986 PMCID: PMC10916501 DOI: 10.1126/scisignal.adi7861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Androgen binding to the androgen receptor (AR) in the cytoplasm induces the AR to translocate to the nucleus, where it regulates the expression of target genes. Here, we found that androgens rapidly activated a plasma membrane-associated signaling node that enhanced nuclear AR functions. In murine primary osteoblasts, dihydrotestosterone (DHT) binding to a membrane-associated form of AR stimulated plasma membrane-associated protein kinase G type 2 (PKG2), leading to the activation of multiple kinases, including ERK. Phosphorylation of AR at Ser515 by ERK increased the nuclear accumulation and binding of AR to the promoter of Ctnnb1, which encodes the transcription factor β-catenin. In male mouse osteoblasts and human prostate cancer cells, DHT induced the expression of Ctnnb1 and CTNN1B, respectively, as well as β-catenin target genes, stimulating the proliferation, survival, and differentiation of osteoblasts and the proliferation of prostate cancer cells in a PKG2-dependent fashion. Because β-catenin is a master regulator of skeletal homeostasis, these results explain the reported male-specific osteoporotic phenotype of mice lacking PKG2 in osteoblasts and imply that PKG2-dependent AR signaling is essential for maintaining bone mass in vivo. Our results suggest that widely used pharmacological PKG activators, such as sildenafil, could be beneficial for male and estrogen-deficient female patients with osteoporosis but detrimental in patients with prostate cancer.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Lazaro CM, Victorio JA, Davel AP, Oliveira HCF. CETP expression ameliorates endothelial function in female mice through estrogen receptor-α and endothelial nitric oxide synthase pathway. Am J Physiol Heart Circ Physiol 2023; 325:H592-H600. [PMID: 37539470 DOI: 10.1152/ajpheart.00365.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Endothelial dysfunction is an early manifestation of atherosclerosis. The cholesteryl ester transfer protein (CETP) has been considered proatherogenic by reducing plasma HDL levels. However, CETP may exhibit cell- or tissue-specific effects. We have previously reported that male mice expressing the human CETP gene show impaired endothelium-mediated vascular relaxation associated with oxidative stress. Although sexual dimorphisms on the metabolic role of CETP have been proposed, possible sex differences in the vascular effects of CETP were not previously studied. Thus, here we investigated the endothelial function of female CETP transgenic mice as compared with nontransgenic controls (NTg). Aortas from CETP females presented preserved endothelium-dependent relaxation to acetylcholine and an endothelium-dependent reduction of phenylephrine-induced contraction. eNOS phosphorylation (Ser1177) and calcium-induced NO levels were enhanced, whereas reactive oxygen species (ROS) production and NOX2 and SOD2 expression were reduced in the CETP female aortas. Furthermore, CETP females exhibited increased aortic relaxation to 17β-estradiol (E2) and upregulation of heat shock protein 90 (HSP90) and caveolin-1, proteins that stabilize estrogen receptor (ER) in the caveolae. Indeed, CETP females showed an increased E2-induced relaxation in a manner sensitive to estrogen receptor-α (ERα) and HSP90 inhibitors methylpiperidinopyrazole (MPP) and geldanamycin, respectively. MPP also impaired the relaxation response to acetylcholine in CETP but not in NTg females. Altogether, the study indicates that CETP expression ameliorates the anticontractile endothelial effect and relaxation to E2 in females. This was associated with less ROS production, and increased eNOS-NO and E2-ERα pathways. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.NEW & NOTEWORTHY Here we demonstrated that CETP expression has a sex-specific impact on the endothelium function. Contrary to what was described for males, CETP-expressing females present preserved endothelium-dependent relaxation to acetylcholine and improved relaxation response to 17β-estradiol. This was associated with less ROS production, increased eNOS-derived NO, and increased expression of proteins that stabilize estrogen receptor-α (ERα), thus increasing E2-ERα signaling sensitivity. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.
Collapse
Affiliation(s)
- Carolina M Lazaro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
7
|
Mott MN, Goeders NE. Methamphetamine-induced vaginal lubrication in rats. J Sex Med 2023; 20:1145-1152. [PMID: 37291060 DOI: 10.1093/jsxmed/qdad076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Based on previous studies of vaginal lubrication as well as our own previously reported interview study of women who self-reported methamphetamine (meth)-induced vaginal lubrication, in the current study we sought to determine the potential dose-response relationship leading to meth-induced vaginal lubrication. We also developed an animal model to study the reported effects and examine potential mechanisms mediating this phenomenon. AIM We sought to characterize the effects of meth on vaginal lubrication in an animal model with the aim of providing a potential framework for new mechanisms that incorporate novel therapeutic agents for the treatment of vaginal dryness. METHODS Vaginal lubrication was measured via insertion of a preweighed, cotton-tipped swab into the vaginal canal of anesthetized rats following treatment with various doses of intravenous (IV) meth, up to 0.96 mg/kg, and after additional pharmacological manipulations, including administration of a nitric oxide synthase inhibitor and an estrogen receptor antagonist. Plasma signaling molecules, including estradiol, progesterone, testosterone, nitric oxide, and vasoactive intestinal polypeptide, were measured immediately before and at 9 time points after IV meth administration. Blood was collected via a previously implanted chronic indwelling jugular catheter and analyzed by use of commercially available kits per the manufacturer's instructions. OUTCOMES Outcomes for this study include the measurement of vaginal lubrication in anesthetized rats following various pharmacological manipulations and plasma levels of various signaling molecules. RESULTS Meth dose-dependently increased vaginal lubrication in anesthetized female rats. Meth significantly increased plasma levels compared to baseline of estradiol (2 and 15 minutes after meth infusion) as well as progesterone, testosterone, and nitric oxide (10 minutes after meth infusion). Also, vasoactive intestinal polypeptide decreased significantly compared to baseline for 45 minutes following meth infusion. Our data further suggest that nitric oxide, but not estradiol, is critical in the production of vaginal secretions in response to meth. CLINICAL IMPLICATIONS This study has far-reaching implications for women who are suffering from vaginal dryness and for whom estrogen therapy is unsuccessful, as the investigation has demonstrated that meth presents a novel mechanism for producing vaginal lubrication that can be targeted pharmacologically. STRENGTHS AND LIMITATIONS This study is, to our knowledge, the first performed to measure the physiological sexual effects of meth in an animal model. Animals were anesthetized when they were administered meth. In an ideal situation, animals would be self-administering the drug to recapitulate better the contingent nature of drug taking; however, this method was not feasible for the study reported here. CONCLUSION Methamphetamine increases vaginal lubrication in female rats through a nitric oxide-dependent mechanism.
Collapse
Affiliation(s)
- Maggie N Mott
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Shreveport, LA, United States
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Shreveport, LA, United States
| |
Collapse
|
8
|
Sacharidou A, Chambliss K, Peng J, Barrera J, Tanigaki K, Luby-Phelps K, Özdemir İ, Khan S, Sirsi SR, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Kanchwala M, Sathe AA, Lemoff A, Xing C, Hoyt K, Mineo C, Shaul PW. Endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Nat Commun 2023; 14:4989. [PMID: 37591837 PMCID: PMC10435471 DOI: 10.1038/s41467-023-40562-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ken Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jose Barrera
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - İpek Özdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Sohaib Khan
- University of Cincinnati Cancer Institute, Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Shashank R Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Departments of Physiology and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adwait A Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
10
|
Tokiwa H, Ueda K, Takimoto E. The emerging role of estrogen's non-nuclear signaling in the cardiovascular disease. Front Cardiovasc Med 2023; 10:1127340. [PMID: 37123472 PMCID: PMC10130590 DOI: 10.3389/fcvm.2023.1127340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexual dimorphism exists in the epidemiology of cardiovascular disease (CVD), which indicates the involvement of sexual hormones in the pathophysiology of CVD. In particular, ample evidence has demonstrated estrogen's protective effect on the cardiovascular system. While estrogen receptors, bound to estrogen, act as a transcription factor which regulates gene expressions by binding to the specific DNA sequence, a subpopulation of estrogen receptors localized at the plasma membrane induces activation of intracellular signaling, called "non-nuclear signaling" or "membrane-initiated steroid signaling of estrogen". Although the precise molecular mechanism of non-nuclear signaling as well as its physiological impact was unclear for a long time, recent development of genetically modified animal models and pathway-selective estrogen receptor stimulant bring new insights into this pathway. We review the published experimental studies on non-nuclear signaling of estrogen, and summarize its role in cardiovascular system, especially focusing on: (1) the molecular mechanism of non-nuclear signaling; (2) the design of genetically modified animals and pathway-selective stimulant of estrogen receptor.
Collapse
Affiliation(s)
- Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Shields CA, Wang X, Cornelius DC. Sex differences in cardiovascular response to sepsis. Am J Physiol Cell Physiol 2023; 324:C458-C466. [PMID: 36571442 PMCID: PMC9902216 DOI: 10.1152/ajpcell.00134.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, there has been increased recognition of the importance of sex as a biological factor affecting disease and health. Many preclinical studies have suggested that males may experience a less favorable outcome in response to sepsis than females. The underlying mechanisms for these differences are still largely unknown but are thought to be related to the beneficial effects of estrogen. Furthermore, the immunosuppressive role of testosterone is also thought to contribute to the sex-dependent differences that are present in clinical sepsis. There are still significant knowledge gaps in this field. This mini-review will provide a brief overview of sex-dependent variables in relation to sepsis and the cardiovascular system. Preclinical animal models for sepsis research will also be discussed. The intent of this mini-review is to inspire interest for future considerations of sex-related variables in sepsis that should be addressed to increase our understanding of the underlying mechanisms in sepsis-induced cardiovascular dysfunction for the identification of therapeutic targets and improved sepsis management and treatment.
Collapse
Affiliation(s)
- Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci 2022; 23:ijms232415482. [PMID: 36555124 PMCID: PMC9778916 DOI: 10.3390/ijms232415482] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
13
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
14
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Zahreddine R, Davezac M, Buscato M, Smirnova N, Laffargue M, Henrion D, Adlanmerini M, Lenfant F, Arnal JF, Fontaine C. A historical view of estrogen effect on arterial endothelial healing: From animal models to medical implication. Atherosclerosis 2021; 338:30-38. [PMID: 34785429 DOI: 10.1016/j.atherosclerosis.2021.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues. In contrast, abnormalities of endothelial cell function and loss of the integrity of the endothelial monolayer constitute a key step in the onset of atherosclerosis. Endothelial erosion is directly responsible for thrombus formation and cardiovascular events in about one-third of the cases of acute coronary syndromes. Thus, after endothelial injury, the vascular repair process is crucial to restore endothelial junctions and rehabilitate a semipermeable barrier, preventing the development of vascular diseases. Endothelial healing can be modulated by several factors. In particular, 17β-estradiol (E2), the main estrogen, improves endothelial healing, reduces neointimal accumulation of smooth muscle cells and atherosclerosis in several animal models. The aim of this review is to highlight how various experimental models enabled the progress in the cellular and molecular mechanisms underlying the accelerative E2 effect on arterial endothelial healing through the estrogen receptor (ER) α, the main receptor mediating the physiological effects of estrogens. We first summarize the different experimental procedures used to reproduce vascular injury. We then provide an overview of how the combination of transgenic mouse models impacting ERα signalling with pharmacological tools demonstrated the pivotal role of non-genomic actions of ERα in E2-induced endothelial repair. Finally, we describe recent advances in the action of selective estrogen receptor modulators (SERMs) on this beneficial vascular effect, which surprisingly involves different cell types and activates different ERα subfunctions compared to E2.
Collapse
Affiliation(s)
- Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Natalia Smirnova
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Muriel Laffargue
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Daniel Henrion
- MITOVASC Institute, CARFI Facility, INSERM U1083, UMR CNRS 6015, University of Angers, France
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1297, University of Toulouse3, Toulouse, France.
| |
Collapse
|
16
|
Zhao X, Li X, Liu P, Li P, Xu X, Chen Y, Cheng Y, Zhu D, Fu X. 17β-estradiol promotes angiogenesis through non-genomic activation of Smad1 signaling in endometriosis. Vascul Pharmacol 2021; 142:106932. [PMID: 34763099 DOI: 10.1016/j.vph.2021.106932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
17β-estradiol (E2) plays a key role in endometriosis through regulation of angiogenesis. Smad1 has been reported to be up-regulated in patients with endometriosis. However, the role of Smad1 in E2-mediated angiogenesis during the development of endometriosis remains to be determined. This study aimed to explore the role of Smad1 in E2-mediated angiogenesis during endometriosis and its underlying mechanisms. Immunofluorescence staining and Western blotting were performed to examine the expression of p-Smad1 in ectopic and control endometrium. Western blotting was used to examine activation of Smad1 signaling in NMECs, EMECs and HUVECs. Tube formation assay was performed to examine the effect of E2 on angiogenesis. Cell proliferation and migration was determined using in real-time by xCELLigence RTCA DP instrument. We found that the expression of p-Smad1 was significantly up-regulated in ectopic endometrium and ectopic intima microvascular endothelial cells. E2 non-genomically stimulated phosphorylation of Smad1 in HUVECs. c-Src and p44/42 MAPK(ERK1/2) signaling pathways are required for E2's induction on Smad1 phosphorylation. Moreover, caveolae is involved in E2-induced Smad1 phosphorylation in vascular endothelial cells. E2 promoted tube formation of vascular endothelial cells through c-Src/ERK1/2/Smad1 signaling pathway. Knockdown of Smad1 expression attenuated E2-induced proliferation and migration of HUVECs. In conclusion, E2 promotes proliferation, migration and tube formation of HUVECs through c-Src/ERK1/2/Smad1 signaling pathway. Our data shed new lights on the mechanisms through which E2 contributes to endometriosis, and may provide novel strategies to treat endometriosis.
Collapse
Affiliation(s)
- Xinran Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, PR China
| | - Pei Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, 510630, China
| | - Ping Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Xingyan Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yiwen Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Municipal First People's Hospital of Guangzhou, Guangzhou 510180, PR China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, PR China.
| |
Collapse
|
17
|
Ueda K, Fukuma N, Adachi Y, Numata G, Tokiwa H, Toyoda M, Otani A, Hashimoto M, Liu PY, Takimoto E. Sex Differences and Regulatory Actions of Estrogen in Cardiovascular System. Front Physiol 2021; 12:738218. [PMID: 34650448 PMCID: PMC8505986 DOI: 10.3389/fphys.2021.738218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Great progress has been made in the understanding of the pathophysiology of cardiovascular diseases (CVDs), and this has improved the prevention and prognosis of CVDs. However, while sex differences in CVDs have been well documented and studied for decades, their full extent remains unclear. Results of the latest clinical studies provide strong evidence of sex differences in the efficacy of drug treatment for heart failure, thereby possibly providing new mechanistic insights into sex differences in CVDs. In this review, we discuss the significance of sex differences, as rediscovered by recent studies, in the pathogenesis of CVDs. First, we provide an overview of the results of clinical trials to date regarding sex differences and hormone replacement therapy. Then, we discuss the role of sex differences in the maintenance and disruption of cardiovascular tissue homeostasis.
Collapse
Affiliation(s)
- Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Masayuki Toyoda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Akira Otani
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Masaki Hashimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Pang-Yen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan.,Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Querio G, Antoniotti S, Geddo F, Tullio F, Penna C, Pagliaro P, Gallo MP. Ischemic heart disease and cardioprotection: Focus on estrogenic hormonal setting and microvascular health. Vascul Pharmacol 2021; 141:106921. [PMID: 34592428 DOI: 10.1016/j.vph.2021.106921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Ischemic Heart Disease (IHD) is a clinical condition characterized by insufficient blood flow to the cardiac tissue, and the consequent inappropriate oxygen and nutrients supply and metabolic waste removal in the heart. In the last decade a broad scientific literature has underlined the distinct mechanism of onset and the peculiar progress of IHD between female and male patients, highlighting the estrogenic hormonal setting as a key factor of these sex-dependent divergences. In particular, estrogen-activated cardioprotective pathways exert a pivotal role for the microvascular health, and their impairment, both physiologically and pathologically driven, predispose to vascular dysfunctions. Aim of this review is to summarize the current knowledge on the estrogen receptors localization and function in the cardiovascular system, particularly focusing on sex-dependent differences in microvascular vs macrovascular dysfunction and on the experimental models that allowed the researchers to reach the current findings and sketching the leading estrogen-mediated cardioprotective mechanisms.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
19
|
17 β-Estradiol Increases APE1/Ref-1 Secretion in Vascular Endothelial Cells and Ovariectomized Mice: Involvement of Calcium-Dependent Exosome Pathway. Biomedicines 2021; 9:biomedicines9081040. [PMID: 34440244 PMCID: PMC8394342 DOI: 10.3390/biomedicines9081040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/16/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that can be secreted, and recently suggested as new biomarker for vascular inflammation. However, the endogenous hormones for APE1/Ref-1 secretion and its underlying mechanisms are not defined. Here, the effect of twelve endogenous hormones on APE1/Ref-1 secretion was screened in cultured vascular endothelial cells. The endogenous hormones that significantly increased APE1/Ref-1 secretion was 17β-estradiol (E2), 5𝛼-dihydrotestosterone, progesterone, insulin, and insulin-like growth factor. The most potent hormone inducing APE1/Ref-1 secretion was E2, which in cultured endothelial cells, E2 for 24 h increased APE1/Ref-1 secretion level of 4.56 ± 1.16 ng/mL, compared to a basal secretion level of 0.09 ± 0.02 ng/mL. Among the estrogens, only E2 increased APE1/Ref-1 secretion, not estrone and estriol. Blood APE1/Ref-1 concentrations decreased in ovariectomized (OVX) mice but were significantly increased by the replacement of E2 (0.39 ± 0.09 ng/mL for OVX vs. 4.67 ± 0.53 ng/mL for OVX + E2). E2-induced APE1/Ref-1secretion was remarkably suppressed by the estrogen receptor (ER) blocker fulvestrant and intracellular Ca2+ chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), suggesting E2-induced APE1/Ref-1 secretion was dependent on ER and intracellular calcium. E2-induced APE1/Ref-1 secretion was significantly inhibited by exosome inhibitor GW4869. Furthermore, APE1/Ref-1 level in CD63-positive exosome were increased by E2. Finally, fluorescence imaging data showed that APE1/Ref-1 co-localized with CD63-labled exosome in the cytoplasm of cells upon E2 treatment. Taken together, E2 was the most potent hormone for APE1/Ref-1 secretion, which appeared to occur through exosomes that were dependent on ER and intracellular Ca2+. Furthermore, hormonal effects should be considered when analyzing biomarkers for vascular inflammation.
Collapse
|
20
|
Park JS, Lee GH, Jin SW, Pham TH, Thai TN, Kim JY, Kim CY, Han EH, Hwang YP, Choi CY, Jeong HG. G protein-coupled estrogen receptor regulates the KLF2-dependent eNOS expression by activating of Ca 2+ and EGFR signaling pathway in human endothelial cells. Biochem Pharmacol 2021; 192:114721. [PMID: 34363795 DOI: 10.1016/j.bcp.2021.114721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022]
Abstract
G protein-coupled estrogen receptor (GPER) is important for maintaining normal blood vessel function by preventing endothelial cell dysfunction. It has been reported that G-1, an agonist of GPER, increases nitric oxide (NO) production through the phosphorylation of endothelial nitric oxide synthase (eNOS). However, the effect of GPER activation on eNOS expression has not been studied. Our results show that G-1 significantly increased the expression of eNOS and Kruppel-like factor 2 (KLF2) in human endothelial EA.hy926 cells. The individual silences of KLF2 and GPER attenuated G-1-induced eNOS expression. In addition, inhibition of the Gαq and Gβγ suppressed G-1-induced the expression of eNOS and KLF2 in EA.hy926 cells. Interestingly, these effects were similar in HUVECs. Furthermore, we found that GPER-mediated Ca2+ signaling increased the phosphorylation of CaMKKβ, AMPK, and CaMKIIα in the cells. The phosphorylation of histone deacetylase 5 (HDAC5) by activation of AMPK and CaMKIIα increased the expression of eNOS via transcriptional activity of KLF2. We further demonstrate that GPER activation increased the phosphorylation of Src, EGFR, ERK5, and MEF2C and consequently induced the expression of eNOS and KLF2. Meanwhile, inhibition of ERK5 and HDAC5 suppressed the expression of eNOS and KLF2 induced by G-1 in the cells. These findings suggest that GPER provides a novel mechanism for understanding the regulation of eNOS expression and is an essential therapeutic target in preventing cardiovascular-related endothelial dysfunction.
Collapse
Affiliation(s)
- Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yong Pil Hwang
- Fisheries Promotion Division, Mokpo City, Mokpo 58613, Republic of Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
21
|
Pleiotropic and Potentially Beneficial Effects of Reactive Oxygen Species on the Intracellular Signaling Pathways in Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10060904. [PMID: 34205032 PMCID: PMC8229098 DOI: 10.3390/antiox10060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier.
Collapse
|
22
|
Biwer LA, Carvajal BV, Lu Q, Man JJ, Jaffe IZ. Mineralocorticoid and Estrogen Receptors in Endothelial Cells Coordinately Regulate Microvascular Function in Obese Female Mice. Hypertension 2021; 77:2117-2126. [PMID: 33934622 DOI: 10.1161/hypertensionaha.120.16911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (L.A.B., B.V.C., Q.L., J.J.M., I.Z.J.)
| | - Brigett V Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (L.A.B., B.V.C., Q.L., J.J.M., I.Z.J.).,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA (B.V.C., J.J.M., I.Z.J.)
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (L.A.B., B.V.C., Q.L., J.J.M., I.Z.J.)
| | - Joshua J Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (L.A.B., B.V.C., Q.L., J.J.M., I.Z.J.).,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA (B.V.C., J.J.M., I.Z.J.)
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (L.A.B., B.V.C., Q.L., J.J.M., I.Z.J.).,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA (B.V.C., J.J.M., I.Z.J.)
| |
Collapse
|
23
|
Hormonal Effects on Urticaria and Angioedema Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2209-2219. [PMID: 33895364 DOI: 10.1016/j.jaip.2021.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Women appear to be more frequently affected with urticaria and angioedema. Sex hormones are believed to have an important mechanistic role in regulating pathways involved in these conditions. This effect is likely nonspecific for chronic spontaneous urticaria (CSU) or many forms of angioedema (AE), because many other chronic diseases such as asthma are also affected by sex hormones. The role of sex hormones has been better elucidated for hereditary AE, because they have been shown to have multiple effects including upregulation of FXII, an important activator of the kallikrein pathway. However, their role in the underlying pathogenesis for CSU is less clear. Autoimmunity is clearly linked to CSU, which is more common in women. This suggests that sex hormones could act as adjuvants in activating or upregulating autoimmune pathways. The purpose of this review is to discuss in detail the role of sex hormones in CSU and AE and how a better understanding of the impact hormones has on these conditions might lead to new treatment advancements with better clinical outcomes.
Collapse
|
24
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
25
|
Popescu M, Feldman TB, Chitnis T. Interplay Between Endocrine Disruptors and Immunity: Implications for Diseases of Autoreactive Etiology. Front Pharmacol 2021; 12:626107. [PMID: 33833678 PMCID: PMC8021784 DOI: 10.3389/fphar.2021.626107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The sex-bias of disease susceptibility has remained a puzzling aspect of several autoimmune conditions, including post-infection viral autoimmunity. In the last half of the twentieth century, the incidence rate of female-biased autoimmunity has steadily increased independent of medical advances. This has suggested a role for environmental factors, such as endocrine disrupting chemicals, which have been described to interfere with endocrine signaling. Endocrine involvement in the proper function of innate and adaptive immunity has also been defined, however, these two areas have rarely been reviewed in correlation. In addition, studies addressing the effects of endocrine disruptors have reported findings resulting from a broad range of exposure doses, schedules and models. This experimental heterogeneity adds confusion and may mislead the translation of findings to human health. Our work will normalize results across experiments and provide a necessary summary relevant to human exposure. Through a novel approach, we describe how different categories of ubiquitously used environmental endocrine disruptors interfere with immune relevant endocrine signaling and contribute to autoimmunity. We hope this review will guide identification of mechanisms and concentration-dependent EDC effects important not only for the sex-bias of autoimmunity, but also for other conditions of immune dysfunction, including post-infection autoreactivity such as may arise following severe acute respiratory syndrome coronavirus 2, Epstein-Barr virus, Herpes Simplex virus.
Collapse
Affiliation(s)
- Maria Popescu
- Harvard Medical School, Boston, MA, United States.,Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Talia B Feldman
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States.,Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
27
|
Saha S, Dey S, Nath S. Steroid Hormone Receptors: Links With Cell Cycle Machinery and Breast Cancer Progression. Front Oncol 2021; 11:620214. [PMID: 33777765 PMCID: PMC7994514 DOI: 10.3389/fonc.2021.620214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Progression of cells through cell cycle consists of a series of events orchestrated in a regulated fashion. Such processes are influenced by cell cycle regulated expression of various proteins where multiple families of transcription factors take integral parts. Among these, the steroid hormone receptors (SHRs) represent a connection between the external hormone milieu and genes that control cellular proliferation. Therefore, understanding the molecular connection between the transcriptional role of steroid hormone receptors and cell cycle deserves importance in dissecting cellular proliferation in normal as well as malignant conditions. Deregulation of cell cycle promotes malignancies of various origins, including breast cancer. Indeed, SHR members play crucial role in breast cancer progression as well as management. This review focuses on SHR-driven cell cycle regulation and moving forward, attempts to discuss the role of SHR-driven crosstalk between cell cycle anomalies and breast cancer.
Collapse
Affiliation(s)
- Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
28
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
29
|
Hung MJ, Chang NC, Hu P, Chen TH, Mao CT, Yeh CT, Hung MY. Association between Coronary Artery Spasm and the risk of incident Diabetes: A Nationwide population-based Cohort Study. Int J Med Sci 2021; 18:2630-2640. [PMID: 34104095 PMCID: PMC8176166 DOI: 10.7150/ijms.57987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Non-diabetic coronary artery spasm (CAS) without obstructive coronary artery disease increases insulin resistance. We investigated the risk of incident type 2 diabetes (diabetes) associated with CAS. Methods: Patient records were retrospectively collected from the Taiwan National Health Insurance Research Database during the period 2000-2012. The matched cohorts consisted of 12,413 patients with CAS and 94,721 patients in the control group. Results: During the entire follow-up, the incidence of newly-diagnosed diabetes was 22.2 events per 1000 person-years in the CAS group and 13.9 events per 1000 person-years in the control group. The increased risk of CAS-related incident diabetes was observed regardless of sex and length of follow-up. The median time to incident diabetes was 2.9 and 3.5 years in the CAS and the control group (P <0.001), respectively, regardless of sex. Although age did not affect the risk of CAS-related incident diabetes, the risk was less apparent in the subgroups of male, dyslipidemia, chronic obstructive pulmonary disease, stroke, gout and medicated hypertension. However, CAS patients aged <50 years compared with patients ≥50 years had a greater risk of incident diabetes in females but not in males. Older CAS patients developed diabetes in a shorter length of time than younger patients. Conclusion: CAS is a risk factor for incident diabetes regardless of sex. However, females aged <50 years have a more apparent risk for CAS-related diabetes than old females, which is not observed in males. The median time of 2.9 years to incident diabetes warrants close follow-up.
Collapse
Affiliation(s)
- Ming-Jui Hung
- Division of Cardiology, Department of Medicine and Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Chang Gung University College of Medicine, Keelung City, Taiwan
| | - Nen-Chung Chang
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Patrick Hu
- University of California, Riverside, Riverside, California, USA.,Department of Cardiology, Riverside Medical Clinic, Riverside, California, USA
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Medicine and Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Chang Gung University College of Medicine, Keelung City, Taiwan
| | - Chun-Tai Mao
- Division of Cardiology, Department of Medicine and Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Chang Gung University College of Medicine, Keelung City, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
30
|
Teoh JP, Li X, Simoncini T, Zhu D, Fu X. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab 2020; 31:773-784. [PMID: 32682630 DOI: 10.1016/j.tem.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERβ, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| |
Collapse
|
31
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
32
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
33
|
The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int J Mol Sci 2020; 21:ijms21093244. [PMID: 32375307 PMCID: PMC7247322 DOI: 10.3390/ijms21093244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.
Collapse
|
34
|
Pastore MB, Landeros RV, Chen DB, Magness RR. Structural analysis of estrogen receptors: interaction between estrogen receptors and cav-1 within the caveolae†. Biol Reprod 2020; 100:495-504. [PMID: 30137221 DOI: 10.1093/biolre/ioy188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/12/2023] Open
Abstract
Pregnancy is a physiologic state of substantially elevated estrogen biosynthesis that maintains vasodilator production by uterine artery endothelial cells (P-UAECs) and thus uterine perfusion. Estrogen receptors (ER-α and ER-β; ESR1 and ESR2) stimulate nongenomic rapid vasodilatory responses partly through activation of endothelial nitric oxide synthase (eNOS). Rapid estrogenic responses are initiated by the ∼4% ESRs localized to the plasmalemma of endothelial cells. Caveolin-1 (Cav-1) interactions within the caveolae are theorized to influence estrogenic effects mediated by both ESRs. Hypothesis: Both ESR1 and ESR2 display similar spatial partitioning between the plasmalemma and nucleus of UAECs and have similar interactions with Cav-1 at the plasmalemma. Using transmission electron microscopy, we observed numerous caveolae structures in UAECs, while immunogold labeling and subcellular fractionations identified ESR1 and ESR2 in three subcellular locations: membrane, cytosol, and nucleus. Bioinformatics approaches to analyze ESR1 and ESR2 transmembrane domains identified no regions that facilitate ESR interaction with plasmalemma. However, sucrose density centrifugation and Cav-1 immunoisolation columns uniquely demonstrated very high protein-protein association only between ESR1, but not ESR2, with Cav-1. These data demonstrate (1) both ESRs localize to the plasmalemma, cytosol and nucleus; (2) neither ESR1 nor ESR2 contain a classic region that crosses the plasmalemma to facilitate attachment; and (3) ESR1, but not ESR2, can be detected in the caveolar subcellular domain demonstrating ESR1 is the only ESR bound in close proximity to Cav-1 and eNOS within this microdomain. Lack of protein-protein interaction between Cav-1 and ESR2 demonstrates a novel independent association of these proteins at the plasmalemma.
Collapse
Affiliation(s)
- Mayra B Pastore
- Department of Obstetrics and Gynecology Perinatal Research Labs, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, California, USA
| | - Rosalina Villalon Landeros
- Department of Obstetrics and Gynecology Perinatal Research Labs, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology University of California Irvine, Irvine, California, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology Perinatal Research Labs, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology University of South Florida, Tampa, Florida, USA
| |
Collapse
|
35
|
Contreras-Zárate MJ, Cittelly DM. Sex steroid hormone function in the brain niche: Implications for brain metastatic colonization and progression. Cancer Rep (Hoboken) 2020; 5:e1241. [PMID: 33350105 PMCID: PMC8022872 DOI: 10.1002/cnr2.1241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While sex hormones and their receptors play well-known roles in progression of primary tumors through direct action on sex steroid hormone-responsive cancer cells, emerging evidence suggest that hormones also play important roles in metastatic progression by modulating the tumor microenvironment. Estrogens and androgens synthesized in gonads and within the brain influence memory, behavior, and outcomes of brain pathologies. Yet, their impact on brain metastatic colonization and progression is just beginning to be explored. RECENT FINDINGS Estradiol and testosterone cross the blood-brain barrier and are synthesized de novo in astrocytes and other cells within the adult brain. Circulating and brain-synthesized estrogens have been shown to promote brain metastatic colonization of tumors lacking estrogen receptors (ERs), through mechanisms involving the upregulation of growth factors and neurotrophins in ER+ reactive astrocytes. In this review, we discuss additional mechanisms by which hormones may influence brain metastases, through modulation of brain endothelial cells, astrocytes, and microglia. CONCLUSION A greater understanding of hormone-brain-tumor interactions may shed further light on the mechanisms underlying the adaptation of cancer cells to the brain niche, and provide therapeutic alternatives modulating the brain metastatic niche.
Collapse
Affiliation(s)
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
36
|
de Aguiar Greca SC, Kyrou I, Pink R, Randeva H, Grammatopoulos D, Silva E, Karteris E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J Clin Med 2020; 9:jcm9020405. [PMID: 32028606 PMCID: PMC7074564 DOI: 10.3390/jcm9020405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro. Methods: qRT-PCR, Western blotting, immunofluorescence, ELISA, microarray analyses, and bioinformatics have been employed to study the effects of BPA using nonsyncytialised (non-ST) and syncytialised (ST) BeWo cells. Results: Treatment with 3 nM BPA led to an increase in cell number and altered the phosphorylation status of p38, an effect mediated primarily via the membrane-bound estrogen receptor (GPR30). Nonbiased microarray analysis identified 1195 and 477 genes that were differentially regulated in non-ST BeWo cells, whereas in ST BeWo cells, 309 and 158 genes had altered expression when treated with 3 and 10 nM, respectively. Enriched pathway analyses in non-ST BeWo identified a leptin and insulin overlap (3 nM), methylation pathways (10 nM), and differentiation of white and brown adipocytes (common). In the ST model, most significantly enriched were the nuclear factor erythroid 2-related factor 2 (NRF2) pathway (3 nM) and mir-124 predicted interactions with cell cycle and differentiation (10 nM). Conclusion: Collectively, our data offer a new insight regarding BPA effects at the placental level, and provide a potential link with metabolic changes that can have an impact on the developing fetus.
Collapse
Affiliation(s)
| | - Ioannis Kyrou
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK;
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Pink
- Dept of Bio. & Med. Sci., Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Harpal Randeva
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Dimitris Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| |
Collapse
|
37
|
Gompel A, Fain O, Boccon-Gibod I, Gobert D, Bouillet L. Exogenous hormones and hereditary angioedema. Int Immunopharmacol 2020; 78:106080. [DOI: 10.1016/j.intimp.2019.106080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/17/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
|
38
|
Padilla J, Woodford ML, Lastra-Gonzalez G, Martinez-Diaz V, Fujie S, Yang Y, Lising AMC, Ramirez-Perez FI, Aroor AR, Morales-Quinones M, Ghiarone T, Whaley-Connell A, Martinez-Lemus LA, Hill MA, Manrique-Acevedo C. Sexual Dimorphism in Obesity-Associated Endothelial ENaC Activity and Stiffening in Mice. Endocrinology 2019; 160:2918-2928. [PMID: 31617909 PMCID: PMC6853665 DOI: 10.1210/en.2019-00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Guido Lastra-Gonzalez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Vanesa Martinez-Diaz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | - Shumpei Fujie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Alexandre M C Lising
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Annayya R Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Adam Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biological Engineering, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri
- Correspondence: Camila Manrique-Acevedo, MD, Department of Medicine, University of Missouri, D109 Diabetes Center UHC, One Hospital Drive, Columbia, Missouri 65212. E-mail:
| |
Collapse
|
39
|
Majumdar S, Rinaldi JC, Malhotra NR, Xie L, Hu DP, Gauntner TD, Grewal HS, Hu WY, Kim SH, Katzenellenbogen JA, Kasper S, Prins GS. Differential Actions of Estrogen Receptor α and β via Nongenomic Signaling in Human Prostate Stem and Progenitor Cells. Endocrinology 2019; 160:2692-2708. [PMID: 31433456 PMCID: PMC6804489 DOI: 10.1210/en.2019-00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
Abstract
Human prostate stem and progenitor cells express estrogen receptor (ER)α and ERβ and exhibit proliferative responses to estrogens. In this study, membrane-initiated estrogen signaling was interrogated in human prostate stem/progenitor cells enriched from primary epithelial cultures and stem-like cell lines from benign and cancerous prostates. Subcellular fractionation and proximity ligation assays localized ERα and ERβ to the cell membrane with caveolin-1 interactions. Exposure to 17β-estradiol (E2) for 15 to 60 minutes led to sequential phosphorylation of signaling molecules in MAPK and AKT pathways, IGF1 receptor, epidermal growth factor receptor, and ERα, thus documenting an intact membrane signalosome that activates diverse downstream cascades. Treatment with an E2-dendrimer conjugate or ICI 182,870 validated E2-mediated actions through membrane ERs. Overexpression and knockdown of ERα or ERβ in stem/progenitor cells identified pathway selectivity; ERα preferentially activated AKT, whereas ERβ selectively activated MAPK cascades. Furthermore, prostate cancer stem-like cells expressed only ERβ, and brief E2 exposure activated MAPK but not AKT cascades. A gene subset selectively regulated by nongenomic E2 signaling was identified in normal prostate progenitor cells that includes BGN, FOSB, FOXQ1, and MAF. Membrane-initiated E2 signaling rapidly modified histone methyltransferases, with MLL1 cleavage observed downstream of phosphorylated AKT and EZH2 phosphorylation downstream of MAPK signaling, which may jointly modify histones to permit rapid gene transcription. Taken together, the present findings document ERα and ERβ membrane-initiated signaling in normal and cancerous human prostate stem/progenitor cells with differential engagement of downstream effectors. These signaling pathways influence normal prostate stem/progenitor cell homeostasis and provide novel therapeutic sites to target the elusive prostate cancer stem cell population.
Collapse
Affiliation(s)
- Shyama Majumdar
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaqueline C Rinaldi
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Neha R Malhotra
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Timothy D Gauntner
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Harinder S Grewal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | | | - Susan Kasper
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
40
|
Davis TL. Nonclassical actions of estradiol-17beta are not detectable in the alphaT3-1 and LbetaT2 immortalized gonadotrope cell lines†. Biol Reprod 2019; 101:791-799. [PMID: 31290547 DOI: 10.1093/biolre/ioz118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
The immortalized mouse gonadotrope cell lines alphaT3-1 and LbetaT2 cells have been a substitute model for primary gonadotropes. These cell lines have provided a homogeneous cell population, as compared to the dissociated anterior pituitaries, which contain a heterogeneous population of cells potentially responsive to estradiol-17beta (E2). Nonclassical actions of E2 assumed to occur through the plasma membrane estrogen receptor 1 (ESR1, also known as ERalpha). These actions have included inhibition of gonadotropin-releasing hormone (GnRH)-induced increases in intracellular calcium concentrations and phosphorylation of p44/42 mitogen-activated protein kinase (ERK-1/2) in ovine pituitaries including primary gonadotropes in vitro. The objective of the present experiment was to determine if alphaT3-1 and LbetaT2 are cell models with limitations to examine the nonclassical actions of E2 occurring in gonadotropes. Experiments were conducted to determine if the cells have ESR1 at the plasma membrane using biotinylation cell and isolation of surface protein and staining with a fluorescently labeled E2 conjugate. The alphaT3-1 cells contain ESR1 associated with but not enriched within lipid rafts of the plasma membrane and do not translocate to lipid rafts upon binding of E2. In contrast, LbetaT2 cells lack ESR1 associated with the plasma membrane. Pretreatment with E2 did not cause inhibition of GnRH-stimulated increases in intracellular concentrations of calcium for either cell type. Phosphorylation of ERK-1/2 was not stimulated by E2 in either cell type. Although these cells lines have been used extensively to study GnRH signaling, in vitro or in vivo effects of nonclassical actions of E2 cannot be replicated in either cell line.
Collapse
Affiliation(s)
- Tracy L Davis
- Department of Biology, Wingate University, Wingate, North Carolina, USA
| |
Collapse
|
41
|
Matthaeus C, Lian X, Kunz S, Lehmann M, Zhong C, Bernert C, Lahmann I, Müller DN, Gollasch M, Daumke O. eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization. PLoS One 2019; 14:e0223620. [PMID: 31600286 PMCID: PMC6786623 DOI: 10.1371/journal.pone.0223620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS)-related vessel relaxation is a highly coordinated process that regulates blood flow and pressure and is dependent on caveolae. Here, we investigated the role of caveolar plasma membrane stabilization by the dynamin-related ATPase EHD2 on eNOS-nitric oxide (NO)-dependent vessel relaxation. Loss of EHD2 in small arteries led to increased numbers of caveolae that were detached from the plasma membrane. Concomitantly, impaired relaxation of mesenteric arteries and reduced running wheel activity were observed in EHD2 knockout mice. EHD2 deletion or knockdown led to decreased production of nitric oxide (NO) although eNOS expression levels were not changed. Super-resolution imaging revealed that eNOS was redistributed from the plasma membrane to internalized detached caveolae in EHD2-lacking tissue or cells. Following an ATP stimulus, reduced cytosolic Ca2+ peaks were recorded in human umbilical vein endothelial cells (HUVECs) lacking EHD2. Our data suggest that EHD2-controlled caveolar dynamics orchestrates the activity and regulation of eNOS/NO and Ca2+ channel localization at the plasma membrane.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Crystallography, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Xiaoming Lian
- Charité—Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), Campus Buch, Berlin, Germany
| | - Séverine Kunz
- Electron Microscopy Core Facility, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Martin Lehmann
- Department of Molecular Pharmacology & Cell Biology and Imaging Core Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Cheng Zhong
- Charité—Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), Campus Buch, Berlin, Germany
| | - Carola Bernert
- Crystallography, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ines Lahmann
- Signal Transduction/Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dominik N. Müller
- Experimental & Clinical Research Center, a cooperation between Charité Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Maik Gollasch
- Charité—Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), Campus Buch, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Medical Clinic for Nephrology and Internal Intensive Care, Campus Virchow, Berlin, Germany
| | - Oliver Daumke
- Crystallography, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Xie X, Deng T, Duan J, Ding S, Yuan J, Chen M. Comparing the effects of diethylhexyl phthalate and dibutyl phthalate exposure on hypertension in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:75-82. [PMID: 30822670 DOI: 10.1016/j.ecoenv.2019.02.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological studies have shown that high molecular weight phthalates (HMW) such as diethylhexyl phthalate (DEHP), are associated with hypertension in humans, while low molecular weight phthalates (LMW) such as dibutyl phthalate (DBP), have hardly any impact on the elevation of blood pressure. However, the molecular mechanisms responsible for this difference are not completely understood. In this experiment, mice were exposed to 0.1/1/10 mg/kg/day DEHP and 0.1/1/10 mg/kg/day DBP for 6 weeks, and their blood pressure was monitored using the tail pressure method. The results showed that exposure to DEHP dosages of 1 or 10 mg/kg/day resulted in a sharp increase in blood pressure, while exposure to DBP did not induce any significant changes in blood pressure. Investigating the renin-angiotensin-aldosterone system (RAAS) and NO pathway in mice exposed to DEHP, we found that levels of angiotensin-converting enzyme (ACE) and angiotensin II (AngII) increased with increasing exposure to DEHP, and the expression of nitric oxide synthase (eNOS) and the level of NO decreased. Treatment with ACE inhibitor (ACEI) to block the ACE pathway inhibited the enhancement of RAAS expression, inhibited the increase in blood pressure, and inhibited the decrease in NO levels induced by DEHP. However, the expression of ACE, AngII, AT1R, and eNOS in the DBP treatment groups showed no significant changes. When examining estradiol in vivo, we found that exposure to DBP resulted in a significant increase in the level of estradiol, while exposure to DEHP did not lead to a significant change. When ICI182780 was used to block the estradiol receptors, any increase in the level of NO induced by DBP exposure, was inhibited. These results indicate that exposure to DEHP induces an increase in mouse blood pressure through RAAS, and the different effects of DEHP and DBP on blood pressure are partly due to the different estradiol levels induced by DEHP and DBP.
Collapse
Affiliation(s)
- Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Junlin Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
43
|
Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019; 177:116-143. [PMID: 31129450 DOI: 10.1016/j.ejmech.2019.05.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.
Collapse
Affiliation(s)
- Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India.
| |
Collapse
|
44
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 565] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
45
|
Caldwell JD, Londe K, Ochs SD, Hajdu Z, Rodewald A, Gebhart VM, Jirikowski GF. Three steroid-binding globulins, their localization in the brain and nose, and what they might be doing there. Steroids 2019; 142:48-54. [PMID: 29246492 DOI: 10.1016/j.steroids.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Steroid-binding globulins (SBGs) such as sex hormone binding globulin, corticosteroid binding globulin, and vitamin-D binding protein are receiving increasing notice as being actively involved in steroid actions. This paper reviews data of all three of these SBGs, focusing on their presence and possible activity in the brain and nose. We have found all three proteins in the brain in limbic areas such as the paraventricular (PVN) and supraoptic nuclei (SON) as well as other areas of the hypothalamus, hippocampus, and medial preoptic area. There is also evidence that all three are made in the PVN and SON, in conjunction with the neuropeptides oxytocin and vasopressin. The localization of these three SBGs is more variable within areas of the main olfactory area and the vomeronasal organ. However, all three are found in the mucus of these areas, suggesting that one of their functions is to sequester aerosol steroids, such as pheromones, and deliver them to sensory cells and then to deeper sensory areas. In this manuscript, we present multiple models of SBG action including: A) SBG binding to a membrane receptor, B) this SBG receptor being associated with a larger protein complex including cytoplasmic steroid receptors, C) when the SBGs binds to their SBG receptors, second messengers within the cells respond, D) after SBG binding to its receptor, it releases its associated steroid into the membrane's lipid bilayer, from which it gains access into the cell only when bound by an internal protein, E) the SBG, possibly with its bound SBG receptor, is internalized into the cell from which it can gain access to numerous organelles and possibly the cell's nucleus or F) associate with intracellular steroid receptors, G) SBGs produced in target cells are released from those cells upon specific stimulation, and H) according to the Free Steroid Hypothesis steroids released from the extracellular SBG passively diffuse across the plasma membrane of the cell. These models move the area of steroid endocrinology forward by providing important paths of steroid activity within many steroid target cells.
Collapse
Affiliation(s)
- J D Caldwell
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA.
| | - K Londe
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - S D Ochs
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - Z Hajdu
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - A Rodewald
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| | - V M Gebhart
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| | - G F Jirikowski
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| |
Collapse
|
46
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
47
|
Ueda K, Adachi Y, Liu P, Fukuma N, Takimoto E. Regulatory Actions of Estrogen Receptor Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2019; 10:909. [PMID: 31998238 PMCID: PMC6965027 DOI: 10.3389/fendo.2019.00909] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
Premenopausal females have a lower incidence of death from cardiovascular disease (CVD) than male counterparts, supporting the notion that estrogen is protective against the development and progression of CVD. Although large-scale randomized trials of postmenopausal hormone replacement therapy failed to show cardiovascular benefits, recent ELITE study demonstrated anti-atherosclerotic benefits of exogenous estrogen depending on the initiation timing of the therapy. These results have urged us to better understand the mechanisms for actions of estrogens on CVD. Here, we review experimental and human studies, highlighting the emerging role of estrogen's non-nuclear actions linking to NO-cGMP signaling pathways.
Collapse
Affiliation(s)
- Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pangyen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Eiki Takimoto
| |
Collapse
|
48
|
Fujiyoshi K, Yamaoka-Tojo M, Minami Y, Kutsuna T, Obara S, Kakizaki R, Nemoto T, Hashimoto T, Namba S, Shimohama T, Tojo T, Ako J. Endothelial Dysfunction Is Associated with Cognitive Impairment of Elderly Cardiovascular Disease Patients. Int Heart J 2018; 59:1034-1040. [DOI: 10.1536/ihj.17-610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences
| | - Yoshiyasu Minami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Toshiki Kutsuna
- Department of Cardiac Rehabilitation, Kitasato University East Hospital
| | - Shinichi Obara
- Department of Cardiac Rehabilitation, Kitasato University East Hospital
| | | | | | | | - Sayaka Namba
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Takao Shimohama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Taiki Tojo
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| |
Collapse
|
49
|
Vajaria R, Vasudevan N. Is the membrane estrogen receptor, GPER1, a promiscuous receptor that modulates nuclear estrogen receptor-mediated functions in the brain? Horm Behav 2018; 104:165-172. [PMID: 29964007 DOI: 10.1016/j.yhbeh.2018.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen signals both slowly to regulate transcription and rapidly to activate kinases and regulate calcium levels. Both rapid, non-genomic signaling as well as genomic transcriptional signaling via intracellular estrogen receptors (ER)s can change behavior. Rapid non-genomic signaling is initiated from the plasma membrane by a G-protein coupled receptor called GPER1 that binds 17β-estradiol. GPER1 or GPR30 is one of the candidates for a membrane ER (mER) that is not only highly expressed in pathology i.e. cancers but also in several behaviorally-relevant brain regions. In the brain, GPER1 signaling, in response to estrogen, facilitates neuroprotection, social behaviors and cognition. In this review, we describe several notable characteristics of GPER1 such as the ability of several endogenous steroids as well as artificially synthesized molecules to bind the GPER1. In addition, GPER1 is localized to the plasma membrane in breast cancer cell lines but may be present in the endoplasmic reticulum or the Golgi apparatus in the hippocampus. Unusually, GPER1 can also translocate to the perinuclear space from the plasma membrane. We explore the idea that subcellular localization and ligand promiscuity may determine the varied downstream signaling cascades of the activated GPER1. Lastly, we suggest that GPER1 can act as a modulator of ERα-mediated action on a convergent target, spinogenesis, in neurons that in turn drives female social behaviors such as lordosis and social learning.
Collapse
Affiliation(s)
- Ruby Vajaria
- School of Biological Sciences, Hopkins Building, University of Reading WhiteKnights Campus, Reading RG6 6AS, United Kingdom.
| | - Nandini Vasudevan
- School of Biological Sciences, Hopkins Building Room 205, University of Reading WhiteKnights Campus, Reading RG6 6AS, United Kingdom.
| |
Collapse
|
50
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|