1
|
Wang HS, Karnik SJ, Margetts TJ, Plotkin LI, Movila A, Fehrenbacher JC, Kacena MA, Oblak AL. Mind Gaps and Bone Snaps: Exploring the Connection Between Alzheimer's Disease and Osteoporosis. Curr Osteoporos Rep 2024; 22:483-494. [PMID: 38236512 PMCID: PMC11420299 DOI: 10.1007/s11914-023-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW This comprehensive review discusses the complex relationship between Alzheimer's disease (AD) and osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies. RECENT FINDINGS AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These commonalities include amyloid beta deposition, the Wnt/β-catenin signaling pathway, and estrogen deficiency. The shared mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides the development of novel therapeutics in which both conditions are targeted. This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared players that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Toubasi AA, Xu J, Eisma JJ, AshShareef S, Gheen C, Vinarsky T, Adapa P, Shah S, Eaton J, Dortch RD, Donahue MJ, Bagnato F. Watershed regions are more susceptible to tissue microstructural injury in multiple sclerosis. Brain Commun 2024; 6:fcae299. [PMID: 39372138 PMCID: PMC11452773 DOI: 10.1093/braincomms/fcae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Histopathologic studies report higher concentrations of multiple sclerosis white matter lesions in watershed areas of the brain, suggesting that areas with relatively lower oxygen levels may be more vulnerable to disease. However, it is unknown at what point in the disease course lesion predilection for watershed territories begins. Accordingly, we studied a cohort of people with newly diagnosed disease and asked whether (1) white matter lesions disproportionally localize to watershed-regions and (2) the degree of microstructural injury in watershed-lesions is more severe. Fifty-four participants, i.e. 38 newly diagnosed people with multiple sclerosis, clinically isolated syndrome or radiologically isolated syndrome, and 16 age- and sex-matched healthy controls underwent brain magnetic resonance imaging. T1-weighted and T2-weighted fluid-attenuated inversion recovery sequences, selective inversion recovery quantitative magnetisation transfer images, and the multi-compartment diffusion imaging with the spherical mean technique were acquired. We computed the macromolecular-to-free pool size ratio, and the apparent axonal volume fraction maps to indirectly estimate myelin and axonal integrity, respectively. We produced a flow territory atlas in each subject's native T2-weighted fluid-attenuated inversion recovery images using a T1-weighted magnetic resonance imaging template in the Montreal Neurological Institute 152 space. Lesion location relative to the watershed, non-watershed and mixed brain vascular territories was annotated. The same process was performed on the T2-weighted fluid-attenuated inversion recovery images of the healthy controls using 294 regions of interest. Generalized linear mixed models for continuous outcomes were used to assess differences in size, pool size ratio and axonal volume fraction between lesions/regions of interests (in healthy controls) situated in different vascular territories. In patients, we assessed 758 T2-lesions and 356 chronic black holes (cBHs). The watershed-territories had higher relative and absolute concentrations of T2-lesions (P≤0.041) and cBHs (P≤0.036) compared to either non-watershed- or mixed-zones. T2-lesions in watershed-areas also had lower pool size ratio relative to T2-lesions in either non-watershed- or mixed-zones (P = 0.039). These results retained significance in the sub-cohort of people without vascular comorbidities and when accounting for periventricular lesions. In healthy controls, axonal volume fraction was higher only in mixed-areas regions of interest compared to non-watershed-ones (P = 0.008). No differences in pool size ratio were seen. We provide in vivo evidence that there is an association between arterial vascularisation of the brain and multiple sclerosis-induced tissue injury as early as the time of disease diagnosis. Our findings underline the importance of oxygen delivery and healthy arterial vascularisation to prevent lesion formation and foster a better outcome in multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad A Toubasi
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Junzhong Xu
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, VUMC, Nashville, TN 37232, USA
| | - Jarrod J Eisma
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Salma AshShareef
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Caroline Gheen
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Taegan Vinarsky
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Pragnya Adapa
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Shailee Shah
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
| | - James Eaton
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
- Cognitive Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
| | - Richard D Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Manus J Donahue
- Cognitive Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, VUMC, Nashville, TN 37232, USA
| | - Francesca Bagnato
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- Department of Neurology, TN Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
3
|
Behl T, Kaur I, Sehgal A, Khandige PS, Imran M, Gulati M, Khalid Anwer M, Elossaily GM, Ali N, Wal P, Gasmi A. The link between Alzheimer's disease and stroke: A detrimental synergism. Ageing Res Rev 2024; 99:102388. [PMID: 38914265 DOI: 10.1016/j.arr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-β plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Ishnoor Kaur
- University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Prasanna Shama Khandige
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangaluru, Karnataka, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Baisc Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Pranay Wal
- PSIT Kanpur, Department of Pharmacy, Uttar Pradesh, India
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
4
|
Duval GT, Raud E, Gohier H, Dramé M, Tabue-Teguo M, Annweiler C. Orthostatic hypotension and cognitive impairment: Systematic review and meta-analysis of longitudinal studies. Maturitas 2024; 185:107866. [PMID: 38604094 DOI: 10.1016/j.maturitas.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 09/22/2023] [Indexed: 04/13/2024]
Abstract
The association between cognitive disorders and orthostatic hypotension (OH) has been empirically explored, but the results have been divergent, casting doubt on the presence and direction of the association. The objective of this meta-analysis was to systematically review and quantitatively synthesize the association of OH and cognitive function, specifically mean score on the Mini-Mental State Examination (MMSE), cognitive impairment and incident dementia. A Medline search was conducted in May 2022 with no date limit, using the MeSH terms "orthostatic hypotension" OR "orthostatic intolerance" OR "hypotension" combined with the Mesh terms "cognitive dysfunction" OR "Alzheimer disease" OR "dementia" OR "cognition disorder" OR "neurocognitive disorder" OR "cognition" OR "neuropsychological test". Of the 746 selected studies, 15 longitudinal studies met the selection criteria, of which i) 5 studies were eligible for meta-analysis of mean MMSE score comparison, ii) 5 studies for the association of OH and cognitive impairment, and iii) 6 studies for the association between OH and incident dementia. The pooled effect size in fixed-effects meta-analysis was: i) -0.25 (-0.42; -0.07) for the mean MMSE score, which indicates that the MMSE score was lower for those with OH; ii) OR (95 % CI) = 1.278 (1.162; 1.405), P < 0.0001, indicating a 28 % greater risk of cognitive impairment for those with OH at baseline; and iii) HR (95 % CI) = 1.267 (1.156; 1.388), P < 0.0001, indicating a 27 % greater risk of incident dementia for those with OH at baseline. Patients with OH had a lower MMSE score and higher risk of cognitive impairment and incident dementia in this meta-analysis of longitudinal studies. This study confirmed the presence of an association between OH and cognitive disorders in older adults.
Collapse
Affiliation(s)
- Guillaume T Duval
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France.
| | - Eve Raud
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France
| | - Hugo Gohier
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France
| | - Moustapha Dramé
- University of the French West Indies, EpiCliV Research Unit, Fort-de-France, Martinique; University Hospitals of Martinique, Department of Clinical Research and Innovation, Fort-de-France, Martinique
| | - Maturin Tabue-Teguo
- Department of Geriatrics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Cédric Annweiler
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France; Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, St. Joseph's Health Care London, Gait and Brain Lab, Lawson Health Research Institute, the University of Western Ontario, London, ON, Canada; Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Anderson ME, Wind EJ, Robison LS. Exploring the neuroprotective role of physical activity in cerebral small vessel disease. Brain Res 2024; 1833:148884. [PMID: 38527712 DOI: 10.1016/j.brainres.2024.148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.
Collapse
Affiliation(s)
- Maria E Anderson
- Department of Psychology, Family, and Justice Studies, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA
| | - Eleanor J Wind
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
6
|
Bermudez C, Kerley CI, Ramadass K, Farber-Eger EH, Lin YC, Kang H, Taylor WD, Wells QS, Landman BA. Volumetric brain MRI signatures of heart failure with preserved ejection fraction in the setting of dementia. Magn Reson Imaging 2024; 109:49-55. [PMID: 38430976 DOI: 10.1016/j.mri.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an important, emerging risk factor for dementia, but it is not clear whether HFpEF contributes to a specific pattern of neuroanatomical changes in dementia. A major challenge to studying this is the relative paucity of datasets of patients with dementia, with/without HFpEF, and relevant neuroimaging. We sought to demonstrate the feasibility of using modern data mining tools to create and analyze clinical imaging datasets and identify the neuroanatomical signature of HFpEF-associated dementia. We leveraged the bioinformatics tools at Vanderbilt University Medical Center to identify patients with a diagnosis of dementia with and without comorbid HFpEF using the electronic health record. We identified high resolution, clinically-acquired neuroimaging data on 30 dementia patients with HFpEF (age 76.9 ± 8.12 years, 61% female) as well as 301 age- and sex-matched patients with dementia but without HFpEF to serve as comparators (age 76.2 ± 8.52 years, 60% female). We used automated image processing pipelines to parcellate the brain into 132 structures and quantify their volume. We found six regions with significant atrophy associated with HFpEF: accumbens area, amygdala, posterior insula, anterior orbital gyrus, angular gyrus, and cerebellar white matter. There were no regions with atrophy inversely associated with HFpEF. Patients with dementia and HFpEF have a distinct neuroimaging signature compared to patients with dementia only. Five of the six regions identified in are in the temporo-parietal region of the brain. Future studies should investigate mechanisms of injury associated with cerebrovascular disease leading to subsequent brain atrophy.
Collapse
Affiliation(s)
- Camilo Bermudez
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Cailey I Kerley
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Eric H Farber-Eger
- Department of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ya-Chen Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Warren D Taylor
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn S Wells
- Department of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bennett A Landman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Aranha MR, Montal V, van den Brink H, Pegueroles J, Carmona‐Iragui M, Videla L, Maure Blesa L, Benejam B, Arranz J, Valldeneu S, Barroeta I, Fernández S, Ribas L, Alcolea D, González‐Ortiz S, Bargalló N, Biessels GJ, Blesa R, Lleó A, Coutinho AM, Leite CC, Bejanin A, Fortea J. Cortical microinfarcts in adults with Down syndrome assessed with 3T-MRI. Alzheimers Dement 2024; 20:3906-3917. [PMID: 38644660 PMCID: PMC11180852 DOI: 10.1002/alz.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Cortical microinfarcts (CMI) were attributed to cerebrovascular disease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS) while hypertension is rare, yet no studies have assessed CMI in DS. METHODS We included 195 adults with DS, 63 with symptomatic sporadic Alzheimer's disease (AD), and 106 controls with 3T magnetic resonance imaging. We assessed CMI prevalence in each group and CMI association with age, AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition in DS. RESULTS CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was clustered in the parietal lobes, and was associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. DISCUSSION In DS, CMI are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic CAA phenotype. HIGHLIGHTS This is the first study to assess cortical microinfarcts (assessed with 3T magnetic resonance imaging) in adults with Down syndrome (DS). We studied the prevalence of cortical microinfarcts in DS and its relationship with age, the Alzheimer's disease (AD) clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition. The prevalence of cortical microinfarcts was 11.8% in DS and increased with age and along the AD clinical continuum. Cortical microinfarcts were clustered in the parietal lobes, and were associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. In DS, cortical microinfarcts are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic phenotype of cerebral amyloid angiopathy.
Collapse
|
8
|
Sveikata L, Zotin MCZ, Schoemaker D, Ma Y, Perosa V, Chokesuwattanaskul A, Charidimou A, Duering M, Gurol EM, Assal F, Greenberg SM, Viswanathan A. Association of Long-Term Blood Pressure Variability with Cerebral Amyloid Angiopathy-related Brain Injury and Cognitive Decline. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.24.24303071. [PMID: 38464316 PMCID: PMC10925352 DOI: 10.1101/2024.02.24.24303071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction Long-term systolic blood pressure variability (BPV) has been proposed as a novel risk factor for dementia, but the underlying mechanisms are largely unknown. We aimed to investigate the association between long-term blood pressure variability (BPV), brain injury, and cognitive decline in patients with mild cognitive symptoms and cerebral amyloid angiopathy (CAA), a well-characterized small-vessel disease that causes cognitive decline in older adults. Methods Using a prospective memory clinic cohort, we enrolled 102 participants, of whom 52 with probable CAA. All underwent a 3-tesla research MRI at baseline and annual neuropsychological evaluation over 2 years, for which standardized z-scores for four cognitive domains were calculated. BPV was assessed using a coefficient of variation derived from serial outpatient BP measurements (median 12) over five years. We measured the peak width of skeletonized mean diffusivity (PSMD) as a marker of white matter integrity, and other neuroimaging markers of CAA, including lacunes and cortical cerebral microinfarcts. Using regression models, we evaluated the association of BPV with microstructural brain injury and whether CAA modified this association. We also examined the association of BPV with subsequent cognitive decline. Results Systolic BPV was dose-dependently associated with PSMD (estimate=0.22, 95% CI: 0.06, 0.39, p=0.010), independent of age, sex, mean BP, common vascular risk factors, brain atrophy, and CAA severity. The presence of probable CAA strengthened the association between BPV and PSMD (estimate=9.33, 95% CI: 1.32, 17.34, p for interaction = 0.023). Higher BPV correlated with greater ischemic injury (lobar lacunes and cortical cerebral microinfarcts) and a decline in global cognition and processing speed (estimate=-0.30, 95% CI: -0.55, -0.04, p=0.022). Discussion Long-term BPV has a dose-dependent association with alterations in white matter integrity, lobar lacunes, and cortical cerebral microinfarcts, and predicts cognitive decline. Controlling BPV is a potential strategic approach to prevent cognitive decline, especially in early-stage CAA.
Collapse
Affiliation(s)
- Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Clinical Neurosciences, Geneva University Hospital and Faculty of Medicine, University of Geneva, Switzerland
| | - Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Center for Imaging Sciences and Medical Physics. Department of Medical Imaging, Hematology and Clinical Oncology. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dorothee Schoemaker
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Anthipa Chokesuwattanaskul
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Cognitive Clinical and Computational Neuroscience Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andreas Charidimou
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Edip M. Gurol
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Frédéric Assal
- Department of Clinical Neurosciences, Geneva University Hospital and Faculty of Medicine, University of Geneva, Switzerland
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
9
|
Zedde M, Grisendi I, Assenza F, Vandelli G, Napoli M, Moratti C, Lochner P, Seiffge DJ, Piazza F, Valzania F, Pascarella R. The Venular Side of Cerebral Amyloid Angiopathy: Proof of Concept of a Neglected Issue. Biomedicines 2023; 11:2663. [PMID: 37893037 PMCID: PMC10604278 DOI: 10.3390/biomedicines11102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Small vessel diseases (SVD) is an umbrella term including several entities affecting small arteries, arterioles, capillaries, and venules in the brain. One of the most relevant and prevalent SVDs is cerebral amyloid angiopathy (CAA), whose pathological hallmark is the deposition of amyloid fragments in the walls of small cortical and leptomeningeal vessels. CAA frequently coexists with Alzheimer's Disease (AD), and both are associated with cerebrovascular events, cognitive impairment, and dementia. CAA and AD share pathophysiological, histopathological and neuroimaging issues. The venular involvement in both diseases has been neglected, although both animal models and human histopathological studies found a deposition of amyloid beta in cortical venules. This review aimed to summarize the available information about venular involvement in CAA, starting from the biological level with the putative pathomechanisms of cerebral damage, passing through the definition of the peculiar angioarchitecture of the human cortex with the functional organization and consequences of cortical arteriolar and venular occlusion, and ending to the hypothesized links between cortical venular involvement and the main neuroimaging markers of the disease.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Gabriele Vandelli
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - David J. Seiffge
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
10
|
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023; 22:632-642. [PMID: 37236210 DOI: 10.1016/s1474-4422(23)00114-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mariel G Kozberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gisela M Terwindt
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marieke J H Wermer
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Steven M Greenberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Hua J, Dong J, Chen GC, Shen Y. Trends in cognitive function before and after stroke in China. BMC Med 2023; 21:204. [PMID: 37280632 DOI: 10.1186/s12916-023-02908-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND While cognitive impairment after stroke is common, cognitive trends before stroke are poorly understood, especially among the Chinese population who have a relatively high stroke burden. We aimed to model the trajectories of cognitive function before and after new-onset stroke among Chinese. METHODS A total of 13,311 Chinese participants aged ≥ 45 years and without a history of stroke were assessed at baseline between June 2011 and March 2012 and in at least one cognitive test between 2013 (wave 2) and 2018 (wave 4). Cognitive function was assessed using a global cognition score, which included episodic memory, visuospatial abilities, and a 10-item Telephone Interview of Cognitive Status (TICS-10) test to reflect calculation, attention, and orientation abilities. RESULTS During the 7-year follow-up, 610 (4.6%) participants experienced a first stroke. Both stroke and non-stroke groups showed declined cognitive function during follow-up. After adjustment for covariates, there was no significant difference in pre-stroke cognitive trajectories between stroke patients and stroke-free participants. The stroke group showed an acute decline in episodic memory (- 0.123 SD), visuospatial abilities (- 0.169 SD), and global cognition (- 0.135 SD) after stroke onset. In the years following stroke, the decline rate of the TICS-10 test was higher than the rate before stroke (- 0.045 SD/year). CONCLUSIONS Chinese stroke patients had not experienced steeper declines in cognition before stroke compared with stroke-free individuals. Incident stroke was associated with acute declines in global cognition, episodic memory, visuospatial abilities, and accelerated declines in calculation, attention, and orientation abilities.
Collapse
Affiliation(s)
- Jianian Hua
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianye Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, Suzhou Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
12
|
Sin MK, Cheng Y, Roseman JM, Zamrini E, Ahmed A. Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults. J Clin Med 2023; 12:3807. [PMID: 37298002 PMCID: PMC10253407 DOI: 10.3390/jcm12113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cerebral microinfarcts are associated with cognitive impairment and dementia. Small vessel diseases such as cerebral arteriolosclerosis and cerebral amyloid angiography (CAA) have been found to be associated with microinfarcts. Less is known about the associations of these vasculopathies with the presence, numbers, and location of microinfarcts. These associations were examined in the clinical and autopsy data of 842 participants in the Adult Changes in Thought (ACT) study. Both vasculopathies were categorized by severity (none, mild, moderate, and severe) and region (cortical and subcortical). Odds ratios (OR) and 95% CIs for microinfarcts associated with arteriolosclerosis and CAA adjusted for possible modifying covariates such as age at death, sex, blood pressure, APOE genotype, Braak, and CERAD were estimated. 417 (49.5%) had microinfarcts (cortical, 301; subcortical, 249), 708 (84.1%) had cerebral arteriolosclerosis, 320 (38%) had CAA, and 284 (34%) had both. Ors (95% CI) for any microinfarct were 2.16 (1.46-3.18) and 4.63 (2.90-7.40) for those with moderate (n = 183) and severe (n = 124) arteriolosclerosis, respectively. Respective Ors (95% CI) for the number of microinfarcts were 2.25 (1.54-3.30) and 4.91 (3.18-7.60). Similar associations were observed for cortical and subcortical microinfarcts. Ors (95% Cis) for the number of microinfarcts associated with mild (n = 75), moderate (n = 73), and severe (n = 15) amyloid angiopathy were 0.95 (0.66-1.35), 1.04 (0.71-1.52), and 2.05 (0.94-4.45), respectively. Respective Ors (95% Cis) for cortical microinfarcts were 1.05 (0.71-1.56), 1.50 (0.99-2.27), and 1.69 (0.73-3.91). Respective Ors (95% Cis) for subcortical microinfarcts were 0.84 (0.55-1.28), 0.72 (0.46-1.14), and 0.92 (0.37-2.28). These findings suggest a significant association of cerebral arteriolosclerosis with the presence, number, and location (cortical and subcortical) of microinfarcts, and a weak and non-significant association of CAA with each microinfarct, highlighting the need for future research to better understand the role of small vessel diseases in the pathogenesis of cerebral microinfarcts.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - Yan Cheng
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (E.Z.); (A.A.)
| | - Jeffrey M. Roseman
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Edward Zamrini
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (E.Z.); (A.A.)
- Division of Neurology, Irvine Clinical Research, Irvine, CA 92614, USA
- Health and Aging, VA Medical Center, Washington, DC 20060, USA
| | - Ali Ahmed
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (E.Z.); (A.A.)
- Health and Aging, VA Medical Center, Washington, DC 20060, USA
- School of Medicine, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
13
|
Turana Y, Shen R, Nathaniel M, Chia Y, Li Y, Kario K. Neurodegenerative diseases and blood pressure variability: A comprehensive review from HOPE Asia. J Clin Hypertens (Greenwich) 2022; 24:1204-1217. [PMID: 36196471 PMCID: PMC9532897 DOI: 10.1111/jch.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Asia has an enormous number of older people and is the primary contributor to the rise in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The therapy of many neurodegenerative diseases has not yet progressed to the point where it is possible to alter the course of the disease. Mid-life hypertension is an important predictor of later-life cognitive impairment and brain neurodegenerative conditions. These findings highlight the pivotal role of preventing and managing hypertension as a risk factor for neurodegenerative disease. Autonomic dysfunction, neuropsychiatric and sleep disturbances can arise in neurodegenerative diseases, resulting in blood pressure variability (BPV). The BPV itself can worsen the progression of the disease. In older people with neurodegenerative disease and hypertension, it is critical to consider 24-h blood pressure monitoring and personalized blood pressure therapy.
Collapse
Affiliation(s)
- Yuda Turana
- School of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaNorth JakartaJakartaIndonesia
- Master Study Program in Biomedical SciencesSchool of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaNorth JakartaJakartaIndonesia
| | - Robert Shen
- School of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaNorth JakartaJakartaIndonesia
- Master Study Program in Biomedical SciencesSchool of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaNorth JakartaJakartaIndonesia
| | - Michael Nathaniel
- School of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaNorth JakartaJakartaIndonesia
| | - Yook‐Chin Chia
- Department of Medical SciencesSchool of Medical and Life SciencesSunway UniversityBandar SunwayMalaysia
- Department of Primary Care MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Yan Li
- Department of Cardiovascular MedicineShanghai Key Lab of HypertensionShanghai Institute of HypertensionNational Research Centre for Translational MedicineRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Kazuomi Kario
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| |
Collapse
|
14
|
Gerstenecker A, Norling AM, Jacob A, Lazar RM. Silent Brain Infarction, Delirium, and Cognition in Three Invasive Cardiovascular Procedures: a Systematic Review. Neuropsychol Rev 2022; 33:474-491. [PMID: 35804216 DOI: 10.1007/s11065-022-09548-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/09/2022] [Indexed: 12/19/2022]
Abstract
Silent brain infarctions (SBIs) are brain lesions noted on neuroimaging that are not associated with clinical symptoms. SBIs are associated with a number of vascular risk factors and are common following invasive cardiovascular procedures such as atrial fibrillation (AF) ablation, coronary artery bypass graft (CABG), and transcatheter aortic valve replacement (TAVR). Although not eliciting signs of clinical stroke, SBIs are associated with increased frailty, and motor and mood features. Less is known, however, about the relationship between SBI, cognition, and delirium following invasive cardiac procedures and most investigations into these relationships have been reported in large-scale epidemiological studies. In the current paper, we conducted a systematic review to evaluate evidence of a relationship between SBI, delirium, and cognitive decline following CABG, AF ablation, and TAVR. Twenty studies met inclusion criteria. In general, our review identified conflicting results for each cardiac procedure, with some studies suggesting a relationship between SBI, cognitive impairment, and delirium, whereas others showed no relationship between SBI, cognitive impairment, and delirium. Potential reasons for this discrepancy as well as suggestions for future research are discussed.
Collapse
Affiliation(s)
- Adam Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexandra Jacob
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Choi WJ, Li Y, Wang RK, Kim JK. Automated counting of cerebral penetrating vessels using optical coherence tomography images of a mouse brain in vivo. Med Phys 2022; 49:5225-5235. [PMID: 35616390 DOI: 10.1002/mp.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
RATIONALE AND OBJECTIVES Penetrating blood vessels emanating from cortical surface vasculature and lying deep in the cortex are essential vascular conduits for the shuttling of blood from superficial pial vessels to the capillary beds in parenchyma for the nourishment of neuronal brain tissues. Locating and counting the penetrating vessels is beneficial for the quantification of a course of ischemia in blood occlusive events such as stroke. This paper seeks to demonstrate and validate a method for automated penetrating vessel counting that uses optical coherence tomography (OCT). MATERIALS AND METHODS This paper proposes an OCT method that effectively identifies and grades the cortical penetrating vessels in perfusion. The key to the proposed method is the harnessing of vascular features found in the penetrating vessels, which are distinctive from those of other vessels. In particular, with an increase in the light attenuation and flow turbulence, the contrast in the mean projection of the OCT datacube decreases, whereas that in the maximum projection of the Doppler frequency variance datacube increases. By multiplying the inversion of the former with the latter, its binary thresholding is sufficient to highlight the penetrating vessels and allows for their counting over the projection image. RESULTS A computational method that leverages the decrease in mean OCT projection intensity and the increase in Doppler frequency variance at the penetrating vessel is developed. It successfully identifies and counts penetrating vessels with a high accuracy of over 87%. The penetrating vessel density is observed to be significantly reduced in the mouse model of focal ischemic stroke. CONCLUSION The OCT analysis is effective for counting penetrating blood vessels in mice brains and may be applied to the rapid diagnosis and treatment of stroke in stroke models of small animals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jun Ki Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Seoul, 05505, Korea.,Asan Institute for Life Science, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| |
Collapse
|
16
|
Gupta A, Uthayaseelan K, Uthayaseelan K, Kadari M, Subhan M, Saji Parel N, Krishna PV, Sange I. Alzheimer's Disease and Stroke: A Tangled Neurological Conundrum. Cureus 2022; 14:e25005. [PMID: 35712342 PMCID: PMC9194877 DOI: 10.7759/cureus.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/05/2022] Open
|
17
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
18
|
Kapasi A, Yu L, Petyuk V, Arfanakis K, Bennett DA, Schneider JA. Association of small vessel disease with tau pathology. Acta Neuropathol 2022; 143:349-362. [PMID: 35044500 PMCID: PMC8858293 DOI: 10.1007/s00401-021-02397-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that small vessel disease (SVD) is a risk factor for clinical dementia and may contribute to AD neuropathological changes. Watershed brain regions are located at the most distal areas between arterial territories, making them vulnerable to SVD-related changes. We examined the association of pathologic markers of SVD, specifically arteriolosclerosis in watershed brain regions, with AD pathologic changes. Participants (N = 982; mean age-at-death = 90; 69% women) were enrolled as part of one of two cohort studies of aging and dementia. At autopsy, neuropathological evaluation included semi-quantitative grading of arteriolosclerosis pathology from 2 cortical watershed regions: the anterior watershed (AWS) and posterior watershed (PWS), densities for cortical β-amyloid and tau-tangle pathology, and other common age-related pathologies. Linear regression models examined the association of watershed arteriolosclerosis pathology with β-amyloid and tau-tangle burden. In follow-up analyses, available ex-vivo MRI and proteomics data in a subset of decedents were leveraged to examine the association of whole brain measure of WMH, as a presumed MRI marker of SVD, with β-amyloid and tau-tangle burden, as well as to examine the association of watershed arteriolosclerosis with proteomic tau. Watershed arteriolosclerosis was common, with 45% of older persons having moderate-to-severe arteriolosclerosis pathology in the AWS region, and 35% in the PWS. In fully adjusted models that controlled for demographics and common age-related pathologies, an increase in severity of PWS arteriolosclerosis was associated with a higher burden of tau-tangle burden, specifically neocortical tau burden, but not with β-amyloid. AWS arteriolosclerosis was not associated with β-amyloid or tau pathology. Ex-vivo WMH was associated with greater tau-tangle pathology burden but not β-amyloid. Furthermore, PWS arteriolosclerosis was associated with higher abundance of tau phosphopeptides, that promote formation of tau aggregates. These data provide compelling evidence that SVD, specifically posterior watershed arteriolosclerosis pathology, is linked with tau pathological changes in the aging brain.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| | - L Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - V Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - K Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
19
|
Lecordier S, Pons V, Rivest S, ElAli A. Multifocal Cerebral Microinfarcts Modulate Early Alzheimer’s Disease Pathology in a Sex-Dependent Manner. Front Immunol 2022; 12:813536. [PMID: 35173711 PMCID: PMC8841345 DOI: 10.3389/fimmu.2021.813536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) constitutes a major cause of dementia, affecting more women than men. It is characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles (NFTs) formation, associated with a progressive cognitive decline. Evidence indicates that AD onset increases the prevalence of cerebral microinfarcts caused by vascular pathologies, which occur in approximately in half of AD patients. In this project, we postulated that multifocal cerebral microinfarcts decisively influence early AD-like pathology progression in a sex dependent manner in young APP/PS1 mice. For this purpose, we used a novel approach to model multifocal microinfarcts in APP/PS1 mice via the sporadic occlusions of the microvasculature. Our findings indicate that microinfarcts reduced Aβ deposits without affecting soluble Aβ levels in the brain of male and female APP/PS1 mice, while causing rapid and prolonged cognitive deficits in males, and a mild and transient cognitive decline in females. In male APP/PS1 mice, microinfarcts triggered an acute hypoperfusion followed by a chronic hyperperfusion. Whereas in female APP/PS1 mice, microinfarcts caused an acute hypoperfusion, which was recovered in the chronic phase. Microinfarcts triggered a robust microglial activation and recruitment of peripheral monocytes to the lesion sites and Aβ plaques more potently in female APP/PS1 mice, possibly accounting for the reduced Aβ deposition. Finally, expression of Dickkopf-1 (DKK1), which plays a key role in mediating synaptic and neuronal dysfunction in AD, was strongly induced at the lesion sites of male APP/PS1 mice, while its expression was reduced in females. Our findings suggest that multifocal microinfarcts accelerate AD pathology more potently in young males compared to young females independently upon Aβ pathology via modulation of neurovascular coupling, inflammatory response, and DKK1 expression. Our results suggest that the effects of microinfarcts should be taken into consideration in AD diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Vincent Pons
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Ayman ElAli,
| |
Collapse
|
20
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
21
|
Rundek T, Tolea M, Ariko T, Fagerli EA, Camargo CJ. Vascular Cognitive Impairment (VCI). Neurotherapeutics 2022; 19:68-88. [PMID: 34939171 PMCID: PMC9130444 DOI: 10.1007/s13311-021-01170-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular cognitive impairment (VCI) is predominately caused by vascular risk factors and cerebrovascular disease. VCI includes a broad spectrum of cognitive disorders, from mild cognitive impairment to vascular dementia caused by ischemic or hemorrhagic stroke, and vascular factors alone or in a combination with neurodegeneration including Alzheimer's disease (AD) and AD-related dementia. VCI accounts for at least 20-40% of all dementia diagnosis. Growing evidence indicates that cerebrovascular pathology is the most important contributor to dementia, with additive or synergistic interactions with neurodegenerative pathology. The most common underlying mechanism of VCI is chronic age-related dysregulation of CBF, although other factors such as inflammation and cardiovascular dysfunction play a role. Vascular risk factors are prevalent in VCI and if measured in midlife they predict cognitive impairment and dementia in later life. Particularly, hypertension, high cholesterol, diabetes, and smoking at midlife are each associated with a 20 to 40% increased risk of dementia. Control of these risk factors including multimodality strategies with an inclusion of lifestyle modification is the most promising strategy for treatment and prevention of VCI. In this review, we present recent developments in age-related VCI, its mechanisms, diagnostic criteria, neuroimaging correlates, vascular risk determinants, and current intervention strategies for prevention and treatment of VCI. We have also summarized the most recent and relevant literature in the field of VCI.
Collapse
Affiliation(s)
- Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Magdalena Tolea
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Taylor Ariko
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A Fagerli
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J Camargo
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Barbeau-Meunier CA, Bernier M, Côté S, Gilbert G, Bocti C, Whittingstall K. Sexual dimorphism in the cerebrovascular network: Brain MRI shows lower arterial density in women. J Neuroimaging 2021; 32:337-344. [PMID: 34861082 DOI: 10.1111/jon.12951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Accumulating evidence suggests that there is a sexual dimorphism in brain health, with women exhibiting greater disability following strokes of comparable size and having a higher prevalence of cognitive impairment later in life. Despite the critical implication of the cerebrovascular architecture in brain perfusion and brain health, it remains unclear whether structural differences in vessel density exist across the sexes. METHODS In this study, we used high-density MRI imaging to characterize the intracerebral arterial and venous density of 28 (14 women) sex-matched healthy young volunteers in vivo. Using an in-house vessel segmentation algorithm, we quantified and compared these vascular features across the cortical and subcortical deep gray matter, white matter, and periventricular white matter. RESULTS We found that, on average, women have reduced intracerebral arterial density in comparison to men (F 2.34 ± 0.48%, M 2.67 ± 0.39%; p<.05). This difference was most pronounced in the subcortical deep gray matter (F 1.78 ± 0.53%, M 2.38 ± 0.82%; p<.05) and periventricular white matter (F 0.68 ± 0.15%, M 1.14 ± 0.33%; p<.0005), indicating a potential sex-specific vulnerability to hypoperfusion in areas critical to core cerebral functions. In contrast, venous density did not exhibit a significant difference between sexes. CONCLUSIONS While this research remains exploratory, it raises important pathophysiological considerations for brain health, adverse cerebrovascular events, and dementia across the sexes. Our findings also highlight the need to take into account sex differences when investigating cerebral characteristics in humans.
Collapse
Affiliation(s)
| | - Michaël Bernier
- Martinos Center - MGH - Harvard Medical School, Charlestown, Massachusetts, USA
| | - Samantha Côté
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, Ontario, Canada
| | - Christian Bocti
- Research Center on Aging, Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Whittingstall
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
23
|
Bèchet NB, Shanbhag NC, Lundgaard I. Glymphatic pathways in the gyrencephalic brain. J Cereb Blood Flow Metab 2021; 41:2264-2279. [PMID: 33641515 PMCID: PMC8393296 DOI: 10.1177/0271678x21996175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
Identification of the perivascular compartment as the point of exchange between cerebrospinal fluid (CSF) and interstitial fluid mediating solute clearance in the brain, named the glymphatic system, has emerged as an important clearance pathway for neurotoxic peptides such as amyloid-beta. However, the foundational science of the glymphatic system is based on rodent studies. Here we investigated whether the glymphatic system exists in a large mammal with a highly gyrified brain. CSF penetration into the brain via perivascular pathways, a hallmark of glymphatic function, was seen throughout the gyrencephalic cortex and subcortical structures, validating the conservation of the glymphatic system in a large mammal. Macroscopic CSF tracer distribution followed the sulci and fissures showing that these folds enhance CSF dispersion. Three-dimensional renditions from light sheet microscopy showed a PVS influx density 4-fold larger in the pig brain than in mice. This demonstrates the existence of an advanced solute transport system in the gyrencephalic brain that could be utilised therapeutically for enhancing waste clearance.
Collapse
Affiliation(s)
- Nicholas Burdon Bèchet
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Skaaraas GHES, Melbye C, Puchades MA, Leung DSY, Jacobsen Ø, Rao SB, Ottersen OP, Leergaard TB, Torp R. Cerebral Amyloid Angiopathy in a Mouse Model of Alzheimer's Disease Associates with Upregulated Angiopoietin and Downregulated Hypoxia-Inducible Factor. J Alzheimers Dis 2021; 83:1651-1663. [PMID: 34459401 PMCID: PMC8609707 DOI: 10.3233/jad-210571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Vascular pathology is a common feature in patients with advanced Alzheimer’s disease, with cerebral amyloid angiopathy (CAA) and microvascular changes commonly observed at autopsies and in genetic mouse models. However, despite a plethora of studies addressing the possible impact of CAA on brain vasculature, results have remained contradictory, showing reduced, unchanged, or even increased capillary densities in human and rodent brains overexpressing amyloid-β in Alzheimer’s disease and Down’s syndrome. Objective: We asked if CAA is associated with changes in angiogenetic factors or receptors and if so, whether this would translate into morphological alterations in pericyte coverage and vessel density. Methods: We utilized the transgenic mice carrying the Arctic (E693G) and Swedish (KM670/6701NL) amyloid precursor protein which develop severe CAA in addition to parenchymal plaques. Results: The main finding of the present study was that CAA in Tg-ArcSwe mice is associated with upregulated angiopoietin and downregulated hypoxia-inducible factor. In the same mice, we combined immunohistochemistry and electron microscopy to quantify the extent of CAA and investigate to which degree vessels associated with amyloid plaques were pathologically affected. We found that despite a severe amount of CAA and alterations in several angiogenetic factors in Tg-ArcSwe mice, this was not translated into significant morphological alterations like changes in pericyte coverage or vessel density. Conclusion: Our data suggest that CAA does not impact vascular density but might affect capillary turnover by causing changes in the expression levels of angiogenetic factors.
Collapse
Affiliation(s)
| | - Christoffer Melbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Doreen Siu Yi Leung
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Shreyas B Rao
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ole Petter Ottersen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Scheffler M, Salomir R, Maturana E, Montandon ML, Kövari EV, Haller S. Identification of hippocampal cortical microinfarcts on postmortem 3-T magnetic resonance imaging. Neuroradiology 2021; 63:1569-1573. [PMID: 33909116 PMCID: PMC8376696 DOI: 10.1007/s00234-021-02717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Cortical microinfarcts (CMI) are increasingly recognized in the neurological community as a biomarker related to cognitive impairment and dementia. If their radiological depiction has been largely described in experimental settings using ultra-high-field magnetic resonance imaging (MRI), less is known about their visibility on routinely used 3-T MRI. In this radiologic-pathologic correlation study, using 3-T post-mortem MRI, we searched for hippocampal CMI, in a double-blinded fashion, and found that only 4/36, or 11%, were clearly demonstrated on both radiological and histopathological exams.
Collapse
Affiliation(s)
- Max Scheffler
- Division of Radiology, Geneva University Hospitals, Chemin du Pont-Bochet 3, 1226, Thonex, Switzerland.
| | - Rares Salomir
- Image Guided Interventions Laboratory, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.,Division of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Enrique Maturana
- Division of Radiology, Geneva University Hospitals, Chemin du Pont-Bochet 3, 1226, Thonex, Switzerland
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Route de Loëx 151, 1233, Bernex, Switzerland.,Department of Psychiatry, Geneva University Hospitals, Chemin du Petit Bel-Air 2, 1225, Chene-Bourg, Switzerland
| | - Enikö V Kövari
- Department of Psychiatry, Geneva University Hospitals, Chemin du Petit Bel-Air 2, 1225, Chene-Bourg, Switzerland
| | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201, Geneva, Switzerland.,Radiology, Department of Surgical Sciences, Uppsala University, 75236, Sjukhusvägen, Sweden
| |
Collapse
|
26
|
Kapasi A, Leurgans SE, Arvanitakis Z, Barnes LL, Bennett DA, Schneider JA. Aβ (Amyloid Beta) and Tau Tangle Pathology Modifies the Association Between Small Vessel Disease and Cortical Microinfarcts. Stroke 2021; 52:1012-1021. [PMID: 33567873 DOI: 10.1161/strokeaha.120.031073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE There is increasing recognition of the importance of cortical microinfarcts to overall brain health, cognition, and Alzheimer dementia. Cerebral small vessel pathologies are associated with microinfarcts and frequently coexist with Alzheimer disease; however, the extent to which Aβ (amyloid beta) and tau pathology modulates microvascular pathogenesis is not fully understood. Study objective was to examine the relationship of small vessel pathologies, arteriolosclerosis, and cerebral amyloid angiopathy, with cortical microinfarcts in people with differing levels of Aβ or tau tangle burden. METHODS Participants were 1489 autopsied older people (mean age at death, 89 years; 67% women) from 1 of 3 ongoing clinical-pathological cohort studies of aging. Neuropathological evaluation identified cortical Aβ and tau tangle burden using immunohistochemistry in 8 brain regions, provided semiquantitative grading of cerebral vessel pathologies, and identified the presence of cortical microinfarcts. Logistic regression models adjusted for demographics and atherosclerosis and examined whether Aβ or tau tangle burden modified relations between small vessel pathologies and cortical microinfarcts. RESULTS Cortical microinfarcts were present in 17% of older people, moderate-to-severe cerebral amyloid angiopathy pathology in 36%, and arteriolosclerosis in 34%. In logistic regression models, we found interactions with Aβ and tau tangles, reflecting that the association between arteriolosclerosis and cortical microinfarcts was stronger in the context of greater Aβ (estimate, 0.15; SE=0.07; P=0.02) and tau tangle burden (estimate, 0.13; SE=0.06; P=0.02). Interactions also emerged for cerebral amyloid angiopathy, suggesting that the association between cerebral amyloid angiopathy and cortical microinfarcts is more robust in the presence of higher Aβ (estimate, 0.27; SE=0.07; P<0.001) and tangle burden (estimate, 0.16; SE=0.06; P=0.005). CONCLUSIONS These findings suggest that in the presence of elevated Aβ or tangle pathology, small vessel pathologies are associated with greater microvascular tissue injury, highlighting a potential link between neurodegenerative and vascular mechanisms.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Pathology (A.K., J.A.S.), Rush University Medical Center, Chicago, IL
| | - S E Leurgans
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Z Arvanitakis
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - L L Barnes
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - D A Bennett
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - J A Schneider
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Pathology (A.K., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
27
|
Dake MD, De Marco M, Blackburn DJ, Wilkinson ID, Remes A, Liu Y, Pikkarainen M, Hallikainen M, Soininen H, Venneri A. Obesity and Brain Vulnerability in Normal and Abnormal Aging: A Multimodal MRI Study. J Alzheimers Dis Rep 2021; 5:65-77. [PMID: 33681718 PMCID: PMC7903016 DOI: 10.3233/adr-200267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: How the relationship between obesity and MRI-defined neural properties varies across distinct stages of cognitive impairment due to Alzheimer’s disease is unclear. Objective: We used multimodal neuroimaging to clarify this relationship. Methods: Scans were acquired from 47 patients clinically diagnosed with mild Alzheimer’s disease dementia, 68 patients with mild cognitive impairment, and 57 cognitively healthy individuals. Voxel-wise associations were run between maps of gray matter volume, white matter integrity, and cerebral blood flow, and global/visceral obesity. Results: Negative associations were found in cognitively healthy individuals between obesity and white matter integrity and cerebral blood flow of temporo-parietal regions. In mild cognitive impairment, negative associations emerged in frontal, temporal, and brainstem regions. In mild dementia, a positive association was found between obesity and gray matter volume around the right temporoparietal junction. Conclusion: Obesity might contribute toward neural tissue vulnerability in cognitively healthy individuals and mild cognitive impairment, while a healthy weight in mild Alzheimer’s disease dementia could help preserve brain structure in the presence of age and disease-related weight loss.
Collapse
Affiliation(s)
- Manmohi D Dake
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Matteo De Marco
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Anne Remes
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Yawu Liu
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Maria Pikkarainen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Merja Hallikainen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
Ferro DA, Mutsaerts HJ, Hilal S, Kuijf HJ, Petersen ET, Petr J, van Veluw SJ, Venketasubramanian N, Yeow TB, Biessels GJ, Chen C. Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion. J Cereb Blood Flow Metab 2020; 40:1869-1878. [PMID: 31558107 PMCID: PMC7430096 DOI: 10.1177/0271678x19877403] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cerebral cortical microinfarcts (CMIs) are small ischemic lesions associated with cognitive impairment and dementia. CMIs are frequently observed in cortical watershed areas suggesting that hypoperfusion contributes to their development. We investigated if presence of CMIs was related to a decrease in cerebral perfusion, globally or specifically in cortex surrounding CMIs. In 181 memory clinic patients (mean age 72 ± 9 years, 51% male), CMI presence was rated on 3-T magnetic resonance imaging (MRI). Cerebral perfusion was assessed from cortical gray matter of the anterior circulation using pseudo-continuous arterial spin labeling parameters cerebral blood flow (CBF) (perfusion in mL blood/100 g tissue/min) and spatial coefficient of variation (CoV) (reflecting arterial transit time (ATT)). Patients with CMIs had a 12% lower CBF (beta = -.20) and 22% higher spatial CoV (beta = .20) (both p < .05) without a specific regional pattern on voxel-based CBF analysis. CBF in a 2 cm region-of-interest around the CMIs did not differ from CBF in a reference zone in the contralateral hemisphere. These findings show that CMIs in memory clinic patients are primarily related to global reductions in cerebral perfusion, thus shedding new light on the etiology of vascular brain injury in dementia.
Collapse
Affiliation(s)
- Doeschka A Ferro
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henri Jjm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saima Hilal
- Department of Radiology and Nuclear Medicine & Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Susanne J van Veluw
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, USA
| | | | | | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Brain Protection in the Endo-Management of Proximal Aortic Aneurysms. HEARTS 2020. [DOI: 10.3390/hearts1020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurological brain injury (NBI) remains the most feared complication following thoracic endovascular aortic repair (TEVAR), and can manifest as clinically overt stroke and/or more covert injury, detected only on explicit neuropsychological testing. Microembolic signals (MES) detected on transcranial Doppler (TCD) monitoring of the cerebral arteries during TEVAR and the high prevalence and incidence of new ischaemic infarcts on diffusion-weighted magnetic resonance imaging (DW-MRI) suggests procedure-related solid and gaseous cerebral microembolisation to be an important cause of NBI. Any intervention that can reduce the embolic burden during TEVAR may, therefore, help mitigate the risk of stroke and the covert impact of ischaemic infarcts to the function of the brain. This perspective article provides an understanding of the mechanism of stroke and reviews the available evidence regarding potential neuroprotective strategies that target high-risk procedural steps of TEVAR to reduce periprocedural cerebral embolisation.
Collapse
|
30
|
Potential Role of Venular Amyloid in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2020; 21:ijms21061985. [PMID: 32183293 PMCID: PMC7139584 DOI: 10.3390/ijms21061985] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Insurmountable evidence has demonstrated a strong association between Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), along with various other cerebrovascular diseases. One form of CAA, which is the accumulation of amyloid-beta peptides (Aβ) along cerebral vessel walls, impairs perivascular drainage pathways and contributes to cerebrovascular dysfunction in AD. To date, CAA research has been primarily focused on arterial Aβ, while the accumulation of Aβ in veins and venules were to a lesser extent. In this review, we describe preclinical models and clinical studies supporting the presence of venular amyloid and potential downstream pathological mechanisms that affect the cerebrovasculature in AD. Venous collagenosis, impaired cerebrovascular pulsatility, and enlarged perivascular spaces are exacerbated by venular amyloid and increase Aβ deposition, potentially through impaired perivascular clearance. Gaining a comprehensive understanding of the mechanisms involved in venular Aβ deposition and associated pathologies will give insight to how CAA contributes to AD and its association with AD-related cerebrovascular disease. Lastly, we suggest that special consideration should be made to develop Aβ-targeted therapeutics that remove vascular amyloid and address cerebrovascular dysfunction in AD.
Collapse
|
31
|
Robison LS, Francis N, Popescu DL, Anderson ME, Hatfield J, Xu F, Anderson BJ, Van Nostrand WE, Robinson JK. Environmental Enrichment: Disentangling the Influence of Novelty, Social, and Physical Activity on Cerebral Amyloid Angiopathy in a Transgenic Mouse Model. Int J Mol Sci 2020; 21:E843. [PMID: 32012921 PMCID: PMC7038188 DOI: 10.3390/ijms21030843] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 11/16/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is the deposition of amyloid protein in the cerebral vasculature, a common feature in both aging and Alzheimer's disease (AD). However, the effects of environmental factors, particularly cognitive stimulation, social stimulation, and physical activity, on CAA pathology are poorly understood. These factors, delivered in the form of the environmental enrichment (EE) paradigm in rodents, have been shown to have beneficial effects on the brain and behavior in healthy aging and AD models. However, the relative importance of these subcomponents on CAA pathology has not been investigated. Therefore, we assessed the effects of EE, social enrichment (SOC), and cognitive enrichment (COG) compared to a control group that was single housed without enrichment (SIN) from 4 to 8 months of age in wild-type mice (WT) and Tg-SwDI mice, a transgenic mouse model of CAA that exhibits cognitive/behavioral deficits. The results show that individual facets of enrichment can affect an animal model of CAA, though the SOC and combined EE conditions are generally the most effective at producing physiological, cognitive/behavioral, and neuropathological changes, adding to a growing literature supporting the benefits of lifestyle interventions.
Collapse
Affiliation(s)
- Lisa S. Robison
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA; (L.S.R.); (N.F.); (D.L.P.); (M.E.A.); (B.J.A.)
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Nikita Francis
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA; (L.S.R.); (N.F.); (D.L.P.); (M.E.A.); (B.J.A.)
- George & Anne Ryan Institute for Neuroscience, 130 Flagg Road, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (F.X.); (W.E.V.N.)
| | - Dominique L. Popescu
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA; (L.S.R.); (N.F.); (D.L.P.); (M.E.A.); (B.J.A.)
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, 700 Butler Drive, Providence, RI 02906, USA
| | - Maria E. Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA; (L.S.R.); (N.F.); (D.L.P.); (M.E.A.); (B.J.A.)
- Department of Psychology, Farmingdale State College, 2350 Broadhollow Rd, Farmingdale, NY 11735, USA
| | - Joshua Hatfield
- George & Anne Ryan Institute for Neuroscience, 130 Flagg Road, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (F.X.); (W.E.V.N.)
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, 130 Flagg Road, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (F.X.); (W.E.V.N.)
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Brenda J. Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA; (L.S.R.); (N.F.); (D.L.P.); (M.E.A.); (B.J.A.)
| | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience, 130 Flagg Road, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (F.X.); (W.E.V.N.)
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - John K. Robinson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA; (L.S.R.); (N.F.); (D.L.P.); (M.E.A.); (B.J.A.)
- George & Anne Ryan Institute for Neuroscience, 130 Flagg Road, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (F.X.); (W.E.V.N.)
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Department of Psychology, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
32
|
Zhou TL, Kroon AA, van Sloten TT, van Boxtel MPJ, Verhey FRJ, Schram MT, Köhler S, Stehouwer CDA, Henry RMA. Greater Blood Pressure Variability Is Associated With Lower Cognitive Performance. Hypertension 2019; 73:803-811. [PMID: 30739535 DOI: 10.1161/hypertensionaha.118.12305] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An increasing number of individuals will face age-related cognitive difficulties because life expectancy has increased. It is, therefore, important to identify modifiable risk factors for cognitive impairment. Very short-term to mid-term blood pressure variability (BPV) may be such a factor because it may cause cerebral ischemia. To this end, we investigated whether greater systolic and diastolic BPV are cross-sectionally associated with memory function (n=1804), information processing speed (n=1793), and executive function (n=1780) in 40- to 75-year-old individuals from The Maastricht Study. A composite BPV-index was derived by standardizing within-visit, 24-hour, and 7-day BPV. We performed linear regression with adjustments for age, sex, educational level, 24-hour systolic or diastolic pressure, and cardiovascular risk factors. We found that a 1-SD greater systolic BPV was not associated with information processing speed (β [SD difference], -0.10; 95% CI, -0.14 to 0.06), or executive function (-0.09; 95% CI, -0.20 to 0.02) but was marginally associated with lower memory function (-0.11; 95% CI, -0.21 to 0.00). A 1-SD greater diastolic BPV was associated with lower information processing speed (-0.10; 95% CI, -0.20 to -0.00) and executive function (-0.12; 95% CI, -0.22 to -0.01) and marginally associated with lower memory function (-0.09; 95% CI, -0.20 to 0.01). These effects on cognitive performance are equivalent to ≈3 additional years of aging. In conclusion, greater very short-term to mid-term diastolic and, to a lesser extent, systolic BPV may be a modifiable risk factor for cognitive deterioration in 40- to 75-year-old, community-dwelling individuals.
Collapse
Affiliation(s)
- Tan Lai Zhou
- From the Department of Internal Medicine (T.L.Z., A.A.K., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University, the Netherlands
| | - Abraham A Kroon
- From the Department of Internal Medicine (T.L.Z., A.A.K., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University, the Netherlands
| | - Thomas T van Sloten
- CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University, the Netherlands.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France (T.T.v.S.).,Department of Epidemiology and Department of Arterial Mechanics, INSERM, UMR-S970, Paris Cardiovascular Research Center, France (T.T.v.S.)
| | - Martin P J van Boxtel
- Department of Psychiatry and Neuropsychology, Alzheimer Centre Limburg (M.P.J.v.B., F.R.J.V., S.K.), Maastricht University Medical Centre, the Netherlands.,MHeNs School for Mental Health and Neuroscience (M.P.J.v.B., F.R.J.V., S.K.), Maastricht University, the Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centre Limburg (M.P.J.v.B., F.R.J.V., S.K.), Maastricht University Medical Centre, the Netherlands.,MHeNs School for Mental Health and Neuroscience (M.P.J.v.B., F.R.J.V., S.K.), Maastricht University, the Netherlands
| | - Miranda T Schram
- From the Department of Internal Medicine (T.L.Z., A.A.K., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,Heart and Vascular Centre (M.T.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University, the Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, Alzheimer Centre Limburg (M.P.J.v.B., F.R.J.V., S.K.), Maastricht University Medical Centre, the Netherlands.,MHeNs School for Mental Health and Neuroscience (M.P.J.v.B., F.R.J.V., S.K.), Maastricht University, the Netherlands
| | - Coen D A Stehouwer
- From the Department of Internal Medicine (T.L.Z., A.A.K., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University, the Netherlands
| | - Ronald M A Henry
- From the Department of Internal Medicine (T.L.Z., A.A.K., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,Heart and Vascular Centre (M.T.S., R.M.A.H.), Maastricht University Medical Centre, the Netherlands.,CARIM School for Cardiovascular Diseases (T.L.Z., A.A.K., T.T.v.S., M.T.S., C.D.A.S., R.M.A.H.), Maastricht University, the Netherlands
| |
Collapse
|
33
|
Min M, Shi T, Sun C, Liang M, Zhang Y, Tian S, Sun Y. The association between orthostatic hypotension and cognition and stroke: a meta-analysis of prospective cohort studies. Blood Press 2019; 29:3-12. [DOI: 10.1080/08037051.2019.1689808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Min Min
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Chenyu Sun
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yun Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shun Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
van Veluw SJ, Scherlek AA, Freeze WM, Ter Telgte A, van der Kouwe AJ, Bacskai BJ, Frosch MP, Greenberg SM. Different microvascular alterations underlie microbleeds and microinfarcts. Ann Neurol 2019; 86:279-292. [PMID: 31152566 DOI: 10.1002/ana.25512] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of amyloid β (Aβ) in the walls of cortical vessels and the accrual of microbleeds and microinfarcts over time. The relationship between CAA severity and microbleeds and microinfarcts as well as the sequence of events that lead to lesion formation remain poorly understood. METHODS We scanned intact formalin-fixed hemispheres of 12 CAA cases with magnetic resonance imaging (MRI), followed by histopathological examination in predefined areas and serial sectioning in targeted areas with multiple lesions. RESULTS In total, 1,168 cortical microbleeds and 472 cortical microinfarcts were observed on ex vivo MRI. Increasing CAA severity at the whole-brain or regional level was not associated with the number of microbleeds or microinfarcts. However, locally, the density of Aβ-positive cortical vessels was lower surrounding a microbleed compared to a simulated control lesion, and higher surrounding microinfarcts. Serial sectioning revealed that for (n = 28) microbleeds, both Aβ (4%) and smooth muscle cells (4%) were almost never present in the vessel wall at the site of bleeding, but Aβ was frequently observed upstream or downstream (71%), as was extensive fibrin(ogen) buildup (87%). In contrast, for (n = 22) microinfarcts, vascular Aβ was almost always observed at the core of the lesion (91%, p < 0.001) as well as upstream or downstream (82%), but few vessels associated with microinfarcts had intact smooth muscle cells (9%). INTERPRETATION These observations provide a model for how a single neuropathologic process such as CAA may result in hemorrhagic or ischemic brain lesions potentially through 2 different mechanistic pathways. ANN NEUROL 2019;86:279-292.
Collapse
Affiliation(s)
- Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ashley A Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Whitney M Freeze
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,Department of Psychiatry and Neuropsychology, Maastricht University, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Annemieke Ter Telgte
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andre J van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Brian J Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Matthew P Frosch
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,Neuropathology Service, C. S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Ferro D, Heinen R, de Brito Robalo B, Kuijf H, Biessels GJ, Reijmer Y. Cortical Microinfarcts and White Matter Connectivity in Memory Clinic Patients. Front Neurol 2019; 10:571. [PMID: 31231301 PMCID: PMC6560058 DOI: 10.3389/fneur.2019.00571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 02/04/2023] Open
Abstract
Background and purpose: Cerebral microinfarcts (CMIs) are associated with cognitive impairment and dementia. CMIs might affect cognitive performance through disruption of cerebral networks. We investigated in memory clinic patients whether cortical CMIs are clustered in specific brain regions and if presence of cortical CMIs is associated with reduced white matter (WM) connectivity in tracts projecting to these regions. Methods:164 memory clinic patients with vascular brain injury with a mean age of 72 ± 11 years (54% male) were included. All underwent 3 tesla MRI, including a diffusion MRI and cognitive testing. Cortical CMIs were rated according to established criteria and their spatial location was marked. Diffusion imaging-based tractography was used to reconstruct WM connections and voxel based analysis (VBA) to assess integrity of WM directly below the cortex. WM connectivity and integrity were compared between patients with and without cortical CMIs for the whole brain and regions with a high CMI burden. Results:30 patients (18%) had at least 1 cortical CMI [range 1–46]. More than 70% of the cortical CMIs were located in the superior frontal, middle frontal, and pre- and postcentral brain regions (covering 16% of the cortical surface). In these high CMI burden regions, presence of cortical CMIs was not associated with WM connectivity after correction for conventional neuroimaging markers of vascular injury. WM connectivity in the whole brain and WM voxels directly underneath the cortical surface did not differ between patients with and without cortical CMIs. Conclusion:Cortical CMIs displayed a strong local clustering in highly interconnected frontal, pre- and postcentral brain regions. Nevertheless, WM connections projecting to these regions were not disproportionally impaired in patients with compared to patients without cortical CMIs. Alternative mechanisms, such as focal disturbances in cortical structure and functioning, may better explain CMI associated cognitive impairment.
Collapse
Affiliation(s)
- Doeschka Ferro
- Brain Center, University Medical Center Utrecht, Department of Neurology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Rutger Heinen
- Brain Center, University Medical Center Utrecht, Department of Neurology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Bruno de Brito Robalo
- Brain Center, University Medical Center Utrecht, Department of Neurology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Hugo Kuijf
- Image Sciences Institute, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Geert Jan Biessels
- Brain Center, University Medical Center Utrecht, Department of Neurology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Yael Reijmer
- Brain Center, University Medical Center Utrecht, Department of Neurology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|
36
|
Zheng F, Yan L, Zhong B, Yang Z, Xie W. Progression of cognitive decline before and after incident stroke. Neurology 2019; 93:e20-e28. [PMID: 31127071 DOI: 10.1212/wnl.0000000000007716] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/13/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the trajectory of cognitive decline before and after incident stroke. METHODS By using data from the English Longitudinal Study of Ageing, we studied 9,278 participants without dementia with no history of stroke who underwent cognitive assessment at baseline (wave 1) and at least 1 other time point (waves 2-7). We used linear mixed models to analyze repeated measures and longitudinal data. RESULTS Among the 9,278 participants (56.8% women, mean age 63.1 ± 10.3 years), 471 (5.1%) incident stroke events were identified. Compared with stroke-free participants, multivariable-adjusted rates of prestroke cognitive decline in global cognition, memory, semantic fluency, and temporal orientation of participants who later experienced an incident stroke were increased by -0.029 , -0.016, -0.022, and -0.024 SD/y, respectively. Among the 471 stroke survivors, the multivariable-adjusted acute changes in the 4 cognitive domains were -0.257, -0.150, -0.121, and -0.272 SD, respectively. In the years after stroke, global cognition declined over time and was steeper than its prestroke slope, that is, by -0.064 SD/y after multivariable adjustment. The rates of memory, semantic fluency, and temporal orientation decline were -0.046, -0.033, and -0.037 SD/y, respectively. CONCLUSIONS Accelerated prestroke cognitive decline and poststroke cognitive decline were associated with incident stroke over a follow-up period of 12 years. Attention should be paid to the long-term cognitive problems of stroke survivors, and intervention and management of major vascular risk factors should start from early life or midlife to reduce the risk of cerebrovascular disease and the associated cognitive impairment.
Collapse
Affiliation(s)
- Fanfan Zheng
- From the Brainnetome Center (F.Z.), Institute of Automation, Chinese Academy of Sciences, Beijing, China; Institute of Cognitive Neuroscience (F.Z.), University College London; Department of Epidemiology and Biostatistics (L.Y., Z.Y., W.X.), School of Public Health, Imperial College London, UK; Department of Geriatric Psychiatry (B.Z.), Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan; and Peking University Clinical Research Institute (W.X.), Peking University Health Science Center, Beijing, China
| | - Li Yan
- From the Brainnetome Center (F.Z.), Institute of Automation, Chinese Academy of Sciences, Beijing, China; Institute of Cognitive Neuroscience (F.Z.), University College London; Department of Epidemiology and Biostatistics (L.Y., Z.Y., W.X.), School of Public Health, Imperial College London, UK; Department of Geriatric Psychiatry (B.Z.), Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan; and Peking University Clinical Research Institute (W.X.), Peking University Health Science Center, Beijing, China
| | - Baoliang Zhong
- From the Brainnetome Center (F.Z.), Institute of Automation, Chinese Academy of Sciences, Beijing, China; Institute of Cognitive Neuroscience (F.Z.), University College London; Department of Epidemiology and Biostatistics (L.Y., Z.Y., W.X.), School of Public Health, Imperial College London, UK; Department of Geriatric Psychiatry (B.Z.), Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan; and Peking University Clinical Research Institute (W.X.), Peking University Health Science Center, Beijing, China
| | - Zhenchun Yang
- From the Brainnetome Center (F.Z.), Institute of Automation, Chinese Academy of Sciences, Beijing, China; Institute of Cognitive Neuroscience (F.Z.), University College London; Department of Epidemiology and Biostatistics (L.Y., Z.Y., W.X.), School of Public Health, Imperial College London, UK; Department of Geriatric Psychiatry (B.Z.), Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan; and Peking University Clinical Research Institute (W.X.), Peking University Health Science Center, Beijing, China
| | - Wuxiang Xie
- From the Brainnetome Center (F.Z.), Institute of Automation, Chinese Academy of Sciences, Beijing, China; Institute of Cognitive Neuroscience (F.Z.), University College London; Department of Epidemiology and Biostatistics (L.Y., Z.Y., W.X.), School of Public Health, Imperial College London, UK; Department of Geriatric Psychiatry (B.Z.), Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan; and Peking University Clinical Research Institute (W.X.), Peking University Health Science Center, Beijing, China.
| |
Collapse
|
37
|
Parfenov VA, Ostroumova OD, Ostroumova TM, Kochetkov AI, Fateeva VV, Khacheva KK, Khakimova GR, Epstein OI. Vascular cognitive impairment: pathophysiological mechanisms, insights into structural basis, and perspectives in specific treatments. Neuropsychiatr Dis Treat 2019; 15:1381-1402. [PMID: 31190841 PMCID: PMC6535085 DOI: 10.2147/ndt.s197032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
Vascular cognitive impairment (VCI) and vascular dementia are the most common forms of cognitive disorder associated with cerebrovascular disease and related to increased morbidity and mortality among the older population. Growing evidence suggests the contribution of blood-pressure variability, cardiac arrhythmia, hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, vascular remodeling and stiffness, different angiopathies, neural tissue homeostasis, and systemic metabolic disorders to the pathophysiology of VCI. In this review, we focus on factors contributing to cerebrovascular disease, neurovascular unit alterations, and novel approaches to cognitive improvement in patients with cognitive decline. One of the important factors associated with the neuronal causes of VCI is the S100B protein, which can affect the expression of cytokines in the brain, support homeostasis, and regulate processes of differentiation, repair, and apoptosis of the nervous tissue. Since the pathological basis of VCI is complex and diverse, treatment affecting the mechanisms of cognitive disorders should be developed. The prospective role of a novel complex drug consisting of released-active antibodies to S100 and to endothelial NO synthase in VCI treatment is highlighted.
Collapse
Affiliation(s)
- Vladimir A Parfenov
- Department of Neurology, Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Olga D Ostroumova
- Laboratory of Clinical Pharmacology and therapy, Federal State Budgetary Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Health of the Russian Federation, Russian Clinical and Research Center of Gerontology, Moscow, Russia.,Department of Clinical Pharmacology, Internal Medicine and Propaedeutics I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana M Ostroumova
- Department of Neurology, Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Alexey I Kochetkov
- Laboratory of Clinical Pharmacology and therapy, Federal State Budgetary Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Health of the Russian Federation, Russian Clinical and Research Center of Gerontology, Moscow, Russia
| | - Victoria V Fateeva
- Medical Information Department, OOO NPF Materia Medica Holding, Moscow, Russian Federation
| | - Kristina K Khacheva
- Medical Information Department, OOO NPF Materia Medica Holding, Moscow, Russian Federation
| | - Gulnara R Khakimova
- Research and Analytical Division of Scientific Research and Development Department, Moscow, Russian Federation
| | - Oleg I Epstein
- Laboratory of Physiologicaly Active Substances, Department of Molecular and Cellular Pathophysiology, Research Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
38
|
de la Monte SM. The Full Spectrum of Alzheimer's Disease Is Rooted in Metabolic Derangements That Drive Type 3 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:45-83. [PMID: 31062325 PMCID: PMC9996398 DOI: 10.1007/978-981-13-3540-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The standard practice in neuropathology is to diagnose Alzheimer's disease (AD) based on the distribution and abundance of neurofibrillary tangles and Aβ deposits. However, other significant abnormalities including neuroinflammation, gliosis, white matter degeneration, non-Aβ microvascular disease, and insulin-related metabolic dysfunction require further study to understand how they could be targeted to more effectively remediate AD. This review addresses non-Aβ and non-pTau AD-associated pathologies, highlighting their major features, roles in neurodegeneration, and etiopathic links to deficits in brain insulin and insulin-like growth factor signaling and cognitive impairment. The discussion delineates why AD with its most characteristic clinical and pathological phenotypic profiles should be regarded as a brain form of diabetes, i.e., type 3 diabetes, and entertains the hypothesis that type 3 diabetes is just one of the categories of insulin resistance diseases that can occur independently or overlap with one or more of the others, including type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Neurology, Neuropathology, and Neurosurgery, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI, USA.
| |
Collapse
|
39
|
Ostroumova OD, Chernyaeva MS. Antihypertension drugs in prevention of cognition disorder and dementia: focus on calcium channel blockers and diuretics. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2018. [DOI: 10.15829/1728-8800-2018-5-79-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Arterial hypertension is associated with elevated risk of cognition decline and vascular dementia development, as the Alzheimer disease development. Therefore, antihypertension therapy might be of preventive value. The review is focused on literary data that witness on, despite controversial, evidence of cerebroprotective action of the range of antihypertension medications. Especially, dihydropyridine calcium antagonists, diuretics and some blockers of renin-angiotensin-aldosterone system. These act not only via blood pressure decrease, but due to additional specific neuroprotective mechanisms. This makes it to consider calcium antagonists and diuretics as a major component of systemic hypertension management, incl. elderly and senile patients, aiming to prevent cognition decline and dementia of various types development.Nitrendipine, among the calcium channels antagonists, and indapamide among diuretics have acquired the broadest evidence that points on their cerebroprotective properties.
Collapse
Affiliation(s)
- O. D. Ostroumova
- Evdokimov Moscow State University of Medicine and Dentistry (MSUMD); Sechenov First Moscow State University of the Ministry of Health (the Sechenov University)
| | | |
Collapse
|
40
|
Ferro DA, van Veluw SJ, Koek HL, Exalto LG, Biessels GJ. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment. J Alzheimers Dis 2018; 60:1443-1450. [PMID: 29036822 DOI: 10.3233/jad-170481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. OBJECTIVE To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). METHOD 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. RESULT Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CONCLUSION CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.
Collapse
Affiliation(s)
- Doeschka A Ferro
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Susanne J van Veluw
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lieza G Exalto
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
41
|
Kapasi A, Leurgans SE, James BD, Boyle PA, Arvanitakis Z, Nag S, Bennett DA, Buchman AS, Schneider JA. Watershed microinfarct pathology and cognition in older persons. Neurobiol Aging 2018; 70:10-17. [PMID: 29935416 DOI: 10.1016/j.neurobiolaging.2018.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
Brain microinfarcts are common in aging and are associated with cognitive impairment. Anterior and posterior watershed border zones lie at the territories of the anterior, middle, and posterior cerebral arteries, and are more vulnerable to hypoperfusion than brain regions outside the watershed areas. However, little is known about microinfarcts in these regions and how they relate to cognition in aging. Participants from the Rush Memory and Aging Project, a community-based clinical-pathologic study of aging, underwent detailed annual cognitive evaluations. We examined 356 consecutive autopsy cases (mean age-at-death, 91 years [SD = 6.16]; 28% men) for microinfarcts from 3 watershed brain regions (2 anterior and 1 posterior) and 8 brain regions outside the watershed regions. Linear regression models were used to examine the association of cortical watershed microinfarcts with cognition, including global cognition and 5 cognitive domains. Microinfarcts in any region were present in 133 (37%) participants, of which 50 had microinfarcts in watershed regions. Persons with multiple microinfarcts in cortical watershed regions had lower global cognition (estimate = -0.56, standard error (SE) = 0.26, p = 0.03) and lower cognitive function in the specific domains of working memory (estimate = -0.58, SE = 0.27, p = 0.03) and visuospatial abilities (estimate = -0.57, SE = 0.27, p = 0.03), even after controlling for microinfarcts in other brain regions, demographics, and age-related pathologies. Neither the presence nor multiplicity of microinfarcts in brain regions outside the cortical watershed regions were related to global cognition or any of the 5 cognitive domains. These findings suggest that multiple microinfarcts in watershed regions contribute to age-related cognitive impairment.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Bryan D James
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sukriti Nag
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
42
|
Miyata M, Kakeda S, Yoneda T, Ide S, Watanabe K, Moriya J, Korogi Y. Signal Change of Acute Cortical and Juxtacortical Microinfarction on Follow-Up MRI. AJNR Am J Neuroradiol 2018; 39:834-840. [PMID: 29599171 DOI: 10.3174/ajnr.a5606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Although the clinical importance of cortical microinfarcts has become well-recognized recently, the evolution of cortical microinfarcts on MR imaging is not fully understood. The aim of this study was to examine the temporal changes in acute cortical microinfarcts using susceptibility-weighted imaging and conventional MR imaging. MATERIALS AND METHODS Patients with acute infarcts located in the cortical and/or juxtacortical region measuring ≤10 mm in axial diameter based on diffusion-weighted imaging who had a follow-up 3T MR imaging were retrospectively included in the study. All lesions did not show hypointensity on initial T2*WI. For cortical and/or juxtacortical microinfarcts detected on initial DWI, 2 neuroradiologists evaluated the follow-up MR imaging (T2WI, FLAIR, T2*WI, and SWI) and assessed lesion signal intensities and locations (cortical microinfarcts or microinfarcts with juxtacortical white matter involvement). RESULTS On initial DWI, 2 radiologists observed 180 cortical and/or juxtacortical microinfarcts in 35 MR imaging examinations in 25 patients; on follow-up, the neuroradiologists identified 29 cortical microinfarcts (16%) on T2WI, 9 (5%) on FLAIR, 4 (2%) on T2*, and 97 (54%) on SWI. All cortical microinfarcts detected with any follow-up MR imaging showed hyperintensity on T2WI/FLAIR and/or hypointensity on T2*WI and SWI. CONCLUSIONS SWI revealed conversion (paramagnetic susceptibility changes) of acute cortical microinfarcts, suggesting that a substantial number of cortical microinfarcts may contain hemorrhagic components.
Collapse
Affiliation(s)
- M Miyata
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - S Kakeda
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - T Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences (T.Y.), Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - S Ide
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - K Watanabe
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - J Moriya
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Y Korogi
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
43
|
Kim J, Na HK, Shin JH, Kim HJ, Seo SW, Seong JK, Na DL. Atrophy patterns in cerebral amyloid angiopathy with and without cortical superficial siderosis. Neurology 2018; 90:e1751-e1758. [PMID: 29678935 DOI: 10.1212/wnl.0000000000005524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/26/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate differential atrophy patterns based on the presence of cortical superficial siderosis (cSS) and the role of cSS in predicting amyloid positivity in memory clinic patients fulfilling the diagnostic criteria for probable cerebral amyloid angiopathy (CAA). METHODS We retrospectively collected data from 44 cognitively impaired patients with probable CAA who underwent 3-dimensional, T1-weighted MRIs (cSS+, n = 27; cSS-, n = 17). Amyloid-positive patients with Alzheimer disease (AD) (n = 56) and amyloid-negative cognitively normal participants (n = 34) were recruited as controls. Among the patients with CAA who underwent amyloid-PET scans (75.0%), we investigated whether amyloid-negative cases were unevenly distributed based on cSS presentation. APOE genotypes, Mini-Mental State Examination scores, and cortical atrophy pattern along with hippocampal volume were compared across groups. RESULTS Ten patients with probable CAA presented amyloid negativity and all of them belonged to the cSS- group (58.8%). Compared to the cSS- group, the cSS+ group presented higher APOE ε4 frequency, worse memory dysfunction, and lower hippocampal volume. Compared with cognitively normal participants, the cSS+ group exhibited atrophy in the precuneus, posterior cingulate, parietotemporal, superior frontal, and medial temporal areas, a pattern similar to AD-specific atrophy. The cSS- group exhibited atrophy in the parietotemporal, superior frontal, and precentral regions. CONCLUSION Our findings imply that the current version of the Boston criteria may not be sufficient enough to remove non-CAA cases from a cognitively impaired population, especially in the absence of cSS. Patients with probable CAA presenting cSS appear to reflect a CAA phenotype that shares pathologic hallmarks with AD, providing insight into the CAA-to-AD continuum.
Collapse
Affiliation(s)
- Joonho Kim
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Han Kyu Na
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Jeong-Hyeon Shin
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Joon-Kyung Seong
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea.
| | - Duk L Na
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Microinfarcts and blood pressure trajectories: response to Dr Niu et al. J Hum Hypertens 2018; 32:385. [PMID: 29610473 DOI: 10.1038/s41371-018-0058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 11/09/2022]
|
45
|
Naschitz JE. Blood pressure management in older people: balancing the risks. Postgrad Med J 2018; 94:348-353. [PMID: 29555655 DOI: 10.1136/postgradmedj-2017-135493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Guidelines of arterial hypertension treatment based on individualised expected outcomes are not available for frail older persons. In this paper, we review the evidence, concerning management of arterial blood pressure (BP) in frail older patients. We focused on the best affordable methods for BP measurement; the age-related optimum BP; specific BP goals in agreement with the patients' general heath, frailty status, orthostatic and postprandial hypotension; balancing the benefits against risks of antihypertensive treatment. Lenient BP goals are generally recommended for older persons with moderate or severe frailty, multimorbidity and limited life expectancy. To this aim, there may be a need for deintensification of antihypertensive treatment.
Collapse
Affiliation(s)
- Jochanan E Naschitz
- Bait Balev Nesher and The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Hartmann DA, Hyacinth HI, Liao FF, Shih AY. Does pathology of small venules contribute to cerebral microinfarcts and dementia? J Neurochem 2018; 144:517-526. [PMID: 28950410 PMCID: PMC5869083 DOI: 10.1111/jnc.14228] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Microinfarcts are small, but strikingly common, ischemic brain lesions in the aging human brain. There is mounting evidence that microinfarcts contribute to vascular cognitive impairment and dementia, but the origins of microinfarcts are unclear. Understanding the vascular pathologies that cause microinfarcts may yield strategies to prevent their occurrence and reduce their deleterious effects on brain function. Current thinking suggests that cortical microinfarcts arise from the occlusion of penetrating arterioles, which are responsible for delivering oxygenated blood to small volumes of tissue. Unexpectedly, pre-clinical studies have shown that the occlusion of penetrating venules, which drain deoxygenated blood from cortex, lead to microinfarcts that appear identical to those resulting from arteriole occlusion. Here we discuss the idea that cerebral venule pathology could be an overlooked source for brain microinfarcts in humans. This article is part of the Special Issue "Vascular Dementia". Cover Image for this Issue: doi: 10.1111/jnc.14167.
Collapse
Affiliation(s)
- David A. Hartmann
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hyacinth I. Hyacinth
- Aflac Cancer and Blood Disorder Center, Children’s Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andy Y. Shih
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
47
|
O'Hare C, Kenny RA, Aizenstein H, Boudreau R, Newman A, Launer L, Satterfield S, Yaffe K, Rosano C. Cognitive Status, Gray Matter Atrophy, and Lower Orthostatic Blood Pressure in Older Adults. J Alzheimers Dis 2018; 57:1239-1250. [PMID: 28339397 DOI: 10.3233/jad-161228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Associations between orthostatic blood pressure and cognitive status (CS) have been described with conflicting results. OBJECTIVE We hypothesize that long-term exposure to lower orthostatic blood pressure is related to having worse CS later in life and that atrophy of regions involved in central regulation of autonomic function mediate these associations. METHODS Three-to-four measures of orthostatic blood pressure were obtained from 1997-2003 in a longitudinal cohort of aging, and average systolic orthostatic blood pressure response (ASOBPR) was computed as % change in systolic blood pressure from sit-to-stand measured at one minute post stand. CS was determined in 2010-2012 by clinician-adjudication (n = 240; age = 87.1±2.6; 59% women; 37% black) with a subsample also undergoing concurrent structural neuroimaging (n = 129). Gray matter volume of regions related to autonomic function was measured. Multinomial regression was used to compare ASOBPR in those who were cognitively intact versus those with a diagnosis of mild cognitive impairment or dementia, controlling for demographics, trajectories of seated blood pressure, incident cardiovascular risk/events and medications measured from 1997 to 2012. Models were repeated in the subsample with neuroimaging, before and after adjustment for regional gray matter volume. RESULTS There was an inverse association between ASOBPR and probability of dementia diagnosis (9% lower probability for each % point higher ASOBPR: OR 0.91, CI95% = 0.85-0.98; p = 0.01). Associations were similar in the subgroup with neuroimaging before and after adjustment for regional gray matter volume. CONCLUSION ASOBPR may be an early marker of risk of dementia in older adults living in the community.
Collapse
Affiliation(s)
- Celia O'Hare
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | - Rose-Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | | | - Robert Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Anne Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.,San Francisco VA Medical Center, University of California, San Francisco, CA, USA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | | |
Collapse
|
48
|
Shih AY, Hyacinth HI, Hartmann DA, van Veluw SJ. Rodent Models of Cerebral Microinfarct and Microhemorrhage. Stroke 2018; 49:803-810. [PMID: 29459393 DOI: 10.1161/strokeaha.117.016995] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Andy Y Shih
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.).
| | - Hyacinth I Hyacinth
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.)
| | - David A Hartmann
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.)
| | - Susanne J van Veluw
- From the Department of Neuroscience (A.Y.S., D.A.H.) and Center for Biomedical Imaging (A.Y.S.), Medical University of South Carolina, Charleston, SC; Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, GA (H.I.H.); and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (S.J.v.V.)
| |
Collapse
|
49
|
Fisher M, Kapur K, Soo S, Lyou Y, Schreiber SS, Kim MJ. Disseminated Microinfarctions with Cerebral Microbleeds. J Stroke Cerebrovasc Dis 2018; 27:e95-e97. [PMID: 29395640 DOI: 10.1016/j.jstrokecerebrovasdis.2017.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022] Open
Abstract
Disseminated microinfarctions are uncommonly encountered in clinical practice. Here we describe a patient with long-standing cerebral microbleeds who developed acute cognitive decline in the setting of acute hypotension. Magnetic resonance imaging showed acute disseminated microinfarctions, with no change in microbleeds. This case emphasizes the important relationship between ischemic and hemorrhagic microvascular disease of the brain, especially in the setting of acute blood pressure changes compounding preexisting microvascular injury.
Collapse
Affiliation(s)
| | | | - Sylvia Soo
- Department of Neurology, Harbor-UCLA Medical Center, Torrance, California
| | - Yung Lyou
- Division of Hematology-Oncology, Department of Medicine, UC Irvine, Irvine, California
| | | | - Michael J Kim
- Department of Radiological Sciences, UC Irvine, Irvine, California; VA Medical Center Long Beach, Long Beach, California
| |
Collapse
|
50
|
Huang CW, Hsu SW, Chang YT, Huang SH, Huang YC, Lee CC, Chang WN, Lui CC, Chen NC, Chang CC. Cerebral Perfusion Insufficiency and Relationships with Cognitive Deficits in Alzheimer's Disease: A Multiparametric Neuroimaging Study. Sci Rep 2018; 8:1541. [PMID: 29367598 PMCID: PMC5784155 DOI: 10.1038/s41598-018-19387-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022] Open
Abstract
Micro- or macro-circulatory insufficiency has a negative impact in patients with Alzheimer’s disease (AD). This study used arterial spin-labeled magnetic resonance imaging (ASL-MRI) and ethylcysteinate dimer single-photon emission computed tomography (ECD-SPECT) in 50 patients with AD and 30 age-matched controls to investigate how hypoperfusion patterns were associated with gray matter atrophy and clinical data. All participants completed 3DT1-MRI, ECD-SPECT and ASL-MRI examinations. Medial temporal cortex (MTC) volumes were correlated with regional signals showing significantly lower relative cerebral blood flow (rCBF) in ASL-MRI or perfusion index (PI) in ECD-SPECT. Neurobehavioral scores served as the outcome measures. Regions with lower PI showed spatial similarities with atrophy in the medial, anterior and superior temporal lobes, posterior cingulate cortex and angular gyrus, while regions showing lower rCBF were localized to the distal branches of posterior cerebral artery territories (posterior parietal and inferior temporal lobe) and watershed areas (angular gyrus, precuneus, posterior cingulate gyrus and middle frontal cortex). rCBF values in watershed areas correlated with MTC volumes and language composite scores. Precuneus and angular gyrus hypoperfusion were associated with the corresponding cortical atrophy. Macro- or micro-vasculature perfusion integrities and cortical atrophy determined the overall perfusion imaging topography and contributed differently to the clinical outcomes.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Cheng Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Chung Lui
- Department of Radiology, Division of medical imaging, E-Da Cancer Hospital and I-Shou University, Kaohsiung, Taiwan
| | - Na-Ching Chen
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|