1
|
Mitsis A, Myrianthefs M, Sokratous S, Karmioti G, Kyriakou M, Drakomathioulakis M, Tzikas S, Kadoglou NPE, Karagiannidis E, Nasoufidou A, Fragakis N, Ziakas A, Kassimis G. Emerging Therapeutic Targets for Acute Coronary Syndromes: Novel Advancements and Future Directions. Biomedicines 2024; 12:1670. [PMID: 39200135 PMCID: PMC11351818 DOI: 10.3390/biomedicines12081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Acute coronary syndrome (ACS) remains a major cause of morbidity and mortality worldwide, requiring ongoing efforts to identify novel therapeutic targets to improve patient outcomes. This manuscript reviews promising therapeutic targets for ACS identified through preclinical research, including novel antiplatelet agents, anti-inflammatory drugs, and agents targeting plaque stabilization. Preclinical studies have expounded these agents' efficacy and safety profiles in mitigating key pathophysiological processes underlying ACS, such as platelet activation, inflammation, and plaque instability. Furthermore, ongoing clinical trials are evaluating the efficacy and safety of these agents in ACS patients, with potential implications for optimizing ACS management. Challenges associated with translating preclinical findings into clinical practice, including patient heterogeneity and trial design considerations, are also discussed. Overall, the exploration of emerging therapeutic targets offers promising avenues for advancing ACS treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Stefanos Sokratous
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Georgia Karmioti
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michaela Kyriakou
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michail Drakomathioulakis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Efstratios Karagiannidis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Athina Nasoufidou
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| |
Collapse
|
2
|
Kim TI, Kostiuk V, Olson SL, Curci JA, Matsumura JS, Baxter BT, Blackwelder WC, Terrin ML, Guzman RJ. Effect of Doxycycline on Progression of Arterial Calcification in the Noninvasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (N-TA(3)CT). Ann Vasc Surg 2024; 104:1-9. [PMID: 37356652 PMCID: PMC10748791 DOI: 10.1016/j.avsg.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Doxycycline has been shown to prevent arterial calcification via attenuation of matrix metalloproteinases (MMP) in preclinical models. We assessed the effects of doxycycline on progression of arterial calcification in patients enrolled in the Non-Invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (N-TA3CT). METHODS Two hundred and sixty-one patients were randomized to 100 mg doxycycline twice daily or placebo. Arterial calcification was measured in abdominal vessels on noncontrast computed tomography scans. Patients with baseline computed tomography scan and 1 or more follow-up scans within the 2-year study were included for analysis. For individual arteries, mean change in iliofemoral artery calcification over time was calculated via linear regression. Serum MMP-3 and MMP-9 levels were measured at baseline and 6 months. RESULTS Sixty-five patients in the doxycycline and 66 in the placebo arm were included in this analysis. Baseline characteristics between the groups were similar. The unadjusted mean change in iliofemoral calcium score per year trended toward higher values in patients treated with doxycycline compared with placebo (322 ± 399 units/year vs. 217 ± 307 units/year, P = 0.09). After 6 months, changes in serum MMP-3 and MMP-9 levels were not significantly different between study arms. CONCLUSIONS In patients with small aortic aneurysm, treatment with doxycycline 100 mg twice daily did not decrease circulating levels of the matrix degrading enzymes MMP-3 and 9 or alter the progression of arterial calcification.
Collapse
Affiliation(s)
- Tanner I Kim
- Department of Surgery, John A Burns School of Medicine, University of Hawaii, Honolulu, HI
| | - Valentyna Kostiuk
- Division of Vascular Surgery and Endovascular Therapy, Yale School of Medicine, New Haven, CT
| | - Sydney L Olson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John A Curci
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jon S Matsumura
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Bernard T Baxter
- Division of Vascular Surgery, University of Nebraska School of Medicine, Omaha, NE
| | - William C Blackwelder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Michael L Terrin
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Raul J Guzman
- Division of Vascular Surgery and Endovascular Therapy, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
3
|
Gresele P, Falcinelli E, Momi S, Petito E, Sebastiano M. Platelets and Matrix Metalloproteinases: A Bidirectional Interaction with Multiple Pathophysiologic Implications. Hamostaseologie 2021; 41:136-145. [PMID: 33860521 DOI: 10.1055/a-1393-8339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Platelets contain and release several matrix metalloproteinases (MMPs), a highly conserved protein family with multiple functions in organism defense and repair. Platelet-released MMPs as well as MMPs generated by other cells within the cardiovascular system modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathological thrombus formation by platelet-released and/or by locally generated MMPs. However, it is becoming increasingly clear that platelets play a role not only in hemostasis but also in immune response, inflammation and allergy, atherosclerosis, and cancer development, and MMPs seem to contribute importantly to this role. A deeper understanding of these mechanisms may open the way to novel therapeutic approaches to the inhibition of their pathogenic effects and lead to significant advances in the treatment of cardiovascular, inflammatory, and neoplastic disorders.
Collapse
Affiliation(s)
- P Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - E Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - S Momi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - E Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - M Sebastiano
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J Cardiovasc Transl Res 2021; 14:647-660. [PMID: 33420681 DOI: 10.1007/s12265-020-10091-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.
Collapse
|
5
|
The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm 2020; 2020:3872367. [PMID: 33082709 PMCID: PMC7557896 DOI: 10.1155/2020/3872367] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the MMP family and has been widely investigated. Excessive MMP-9 expression can enhance extracellular matrix degradation and promote plaque instability. Studies have demonstrated that MMP-9 levels are higher in vulnerable plaques than in stable plaques. Additionally, several human studies have demonstrated that MMP-9 may be a predictor of atherosclerotic plaque instability and a risk factor for future adverse cardiovascular and cerebrovascular events. MMP-9 deficiency or blocking MMP-9 expression can inhibit plaque inflammation and prevent atherosclerotic plaque instability. All of these results suggest that MMP-9 may be a useful predictive biomarker for vulnerable atherosclerotic plaques, as well as a therapeutic target for preventing atherosclerotic plaque instability. In this review, we describe the structure, function, and regulation of MMP-9. We also discuss the role of MMP-9 in predicting and preventing atherosclerotic plaque instability.
Collapse
|
6
|
Ertugrul G, Keles D, Oktay G, Aktan S. Matrix metalloproteinase-2 and -9 activity levels increase in cutaneous lupus erythematosus lesions and correlate with disease severity. Arch Dermatol Res 2018; 310:173-179. [DOI: 10.1007/s00403-018-1811-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
|
7
|
Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816:93-106. [DOI: 10.1016/j.ejphar.2017.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
|
8
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
10
|
Jung JJ, Razavian M, Kim HY, Ye Y, Golestani R, Toczek J, Zhang J, Sadeghi MM. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice. Sci Rep 2016; 6:32659. [PMID: 27619752 PMCID: PMC5020643 DOI: 10.1038/srep32659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E−/− mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE−/− mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Hye-Yeong Kim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Yunpeng Ye
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Reza Golestani
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
11
|
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53:1-16. [PMID: 27327039 PMCID: PMC7196926 DOI: 10.1159/000446703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of atherosclerotic disease continues to increase, and despite significant reductions in major cardiovascular events with current medical interventions, an additional therapeutic window exists. Atherosclerotic plaque growth is a complex integration of cholesterol penetration, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) migration, and neovascular invasion. A family of matrix-degrading proteases, the matrix metalloproteinases (MMPs), contributes to all phases of vascular remodeling. The contribution of specific MMPs to endothelial cell integrity and VSMC migration in atherosclerotic lesion initiation and progression has been confirmed by the increased expression of these proteases in plasma and plaque specimens. Endogenous blockade of MMPs by the tissue inhibitors of metalloproteinases (TIMPs) may attenuate proteolysis in some regions, but the progression of matrix degeneration suggests that MMPs predominate in atherosclerotic plaque, precipitating vulnerability. Plaque neovascularization also contributes to instability and, coupling the known role of MMPs in angiogenesis to that of atherosclerotic plaque growth, interest in targeting MMPs to facilitate plaque stabilization continues to accumulate. This article aims to review the contributions of MMPs and TIMPs to atherosclerotic plaque expansion, neovascularization, and rupture vulnerability with an interest in promoting targeted therapies to improve plaque stabilization and decrease the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, S.C., USA
| | | | | |
Collapse
|
12
|
Palomino-Morales R, Torres C, Perales S, Linares A, Alejandre MJ. Inhibition of extracellular matrix production and remodeling by doxycycline in smooth muscle cells. J Pharmacol Sci 2016; 132:218-223. [PMID: 27107823 DOI: 10.1016/j.jphs.2016.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/05/2016] [Accepted: 03/16/2016] [Indexed: 01/02/2023] Open
Abstract
Alterations in the extracellular matrix (ECM) production and remodeling of smooth muscle cells (SMCs) have been implicated in processes related to the differentiation in atherosclerosis. Due to the anti-atherosclerotic properties of the tetracyclines, we aimed to investigate whether cholesterol supplementation changes the effect of doxycycline over the ECM proteins synthesis and whether isoprenylated proteins and Rho A protein activation are affected. SMC primary culture isolated from chicks exposed to atherogenic factors in vivo (a cholesterol-rich diet, SMC-Ch), comparing it with control cultures isolated after a standard diet (SMC-C). After treatment with 20 nM doxycycline, [H3]-proline and [H3]-mevalonate incorporation were used to measure the synthesis of collagen and isoprenylated proteins, respectively. Real-time PCR was assessed to determine col1a2, col2a1, col3a1, fibronectin, and mmp2 gene expression and the pull-down technique was applied to determine the Rho A activation state. A higher synthesis of collagens and isoprenylated proteins in SMC-Ch than in SMC-C was determined showing that doxycycline inhibits ECM production and remodeling in both SMC types of cultures. Moreover, preliminary results about the effect of doxycycline on protein isoprenylation and Rho A protein activation led us to discuss the possibility that membrane G-protein activation pathways could mediate the molecular mechanism.
Collapse
Affiliation(s)
- Rogelio Palomino-Morales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071, University of Granada, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071, University of Granada, Spain
| | - Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071, University of Granada, Spain.
| | - Ana Linares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071, University of Granada, Spain
| | - Maria Jose Alejandre
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071, University of Granada, Spain
| |
Collapse
|
13
|
Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. Int J Cardiol 2015; 197:147-53. [PMID: 26134371 DOI: 10.1016/j.ijcard.2015.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/24/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The TIPTOP (Early Short-term Doxycycline Therapy In Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction to Prevent The Ominous Progression to Adverse Remodelling) trial demonstrated that a timely, short-term therapy with doxycycline is able to reduce LV dilation, and both infarct size and severity in patients treated with primary percutaneous intervention (pPCI) for a first ST-elevation myocardial infarction (STEMI) and left ventricular (LV) dysfunction. In this secondary, pre-defined analysis of the TIPTOP trial we evaluated the relationship between doxycycline and plasma levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). METHODS In 106 of the 110 (96%) patients enrolled in the TIPTOP trial, plasma MMPs and TIMPs were measured at baseline, and at post-STEMI days 1, 7, 30 and 180. To evaluate the remodeling process, 2D-Echo studies were performed at baseline and at 6months. A (99m)Tc-SPECT was performed to evaluate the 6-month infarct size and severity. RESULTS Doxycycline therapy was independently related to higher plasma TIMP-2 levels at day 7 (p<0.05). Plasma TIMP-2 levels above the median value at day 7 were correlated with the 6-month smaller infarct size (3% [0%-16%] vs. 12% [0%-30%], p=0.002) and severity (0.55 [0.44-0.64] vs. 0.45 [0.29-0.60], p=0.002), and LV dilation (-1ml/m(2) [from -7ml/m(2) to 9ml/m(2)] vs. 3ml/m(2) [from -2ml/m(2) to 19ml/m(2)], p=0.04), compared to their counterpart. CONCLUSIONS In this clinical setting, doxycycline therapy results in higher plasma levels of TIMP-2 which, in turn, inversely correlate with 6month infarct size and severity as well as LV dilation.
Collapse
|
14
|
Goktolga U, Cavkaytar S, Altinbas SK, Tapisiz OL, Tapisiz A, Erdem O. Effect of the non-specific matrix metalloproteinase inhibitor Doxycycline on endometriotic implants in an experimental rat model. Exp Ther Med 2015; 9:1813-1818. [PMID: 26136898 DOI: 10.3892/etm.2015.2304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate the possible therapeutic effects of Doxycycline (Dox) on endometriotic lesions in an experimental rat model. Thirty-seven female Wistar albino rats with surgically induced endometriosis were randomized and divided into four groups. The rats were administered 5 mg/kg/day oral Dox in Group 1 (low-dose Dox group, n=9), 20 mg/kg/day oral Dox in Group 2 (high-dose Dox group, n=10) and 1 mg/kg single dose, subcutaneous leuprolide acetate in Group 3 (leuprolide acetate group, n=9). The rats in Group 4 (control group, n=9) were given no medication. The rats received medication for three weeks and were then sacrificed to evaluate the morphological and histological features of the implants. Matrix metalloproteinase (MMP)-9 immunoreactivity of the implants was also evaluated. The size of the endometriotic implants decreased in Groups 1-3 but statistically significant differences were not observed among the groups. The mean surface area of the endometriotic implants decreased from 69.3±30.8 to 52.1±27.0 mm² in Group 1 (P>0.05), from 60.2±18.9 to 38.6±28.7 mm² in Group 2 (P>0.05) and from 58.1±33.1 to 26±9.0 mm² in Group 3 (P=0.03). The epithelial MMP-9 immunohistochemical score was significantly higher in Group 1 and lower in Group 3 when compared with the control group (Group 4) (P=0.042 and P=0.014, respectively). When the stromal MMP-9 immunohistochemical and histopathological scores of the endometriotic implants were compared, no statistically significant differences were found among the groups. Although there was no statistically significant difference, Dox reduced the endometriotic implant area in the rat endometriosis model. Further studies are required to investigate the potential efficacy of Dox in endometriosis due to its widespread use and tolerability.
Collapse
Affiliation(s)
- Umit Goktolga
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Sabri Cavkaytar
- Department of Obstetrics and Gynecology, Zekai Tahir Burak Women's Health Education and Research Hospital, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Sadiman Kiykac Altinbas
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Omer Lutfi Tapisiz
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Anil Tapisiz
- Department of Pediatric Infectious Diseases, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozlem Erdem
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Mouchtouris N, Jabbour PM, Starke RM, Hasan DM, Zanaty M, Theofanis T, Ding D, Tjoumakaris SI, Dumont AS, Ghobrial GM, Kung D, Rosenwasser RH, Chalouhi N. Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab 2015; 35:167-75. [PMID: 25407267 PMCID: PMC4426734 DOI: 10.1038/jcbfm.2014.179] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/05/2014] [Accepted: 09/22/2014] [Indexed: 01/01/2023]
Abstract
Cerebral arteriovenous malformations (AVMs) entail a significant risk of intracerebral hemorrhage owing to the direct shunting of arterial blood into the venous vasculature without the dissipation of the arterial blood pressure. The mechanisms involved in the growth, progression and rupture of AVMs are not clearly understood, but a number of studies point to inflammation as a major contributor to their pathogenesis. The upregulation of proinflammatory cytokines induces the overexpression of cell adhesion molecules in AVM endothelial cells, resulting in enhanced recruitment of leukocytes. The increased leukocyte-derived release of metalloproteinase-9 is known to damage AVM walls and lead to rupture. Inflammation is also involved in altering the AVM angioarchitecture via the upregulation of angiogenic factors that affect endothelial cell proliferation, migration and apoptosis. The effects of inflammation on AVM pathogenesis are potentiated by certain single-nucleotide polymorphisms in the genes of proinflammatory cytokines, increasing their protein levels in the AVM tissue. Furthermore, studies on metalloproteinase-9 inhibitors and on the involvement of Notch signaling in AVMs provide promising data for a potential basis for pharmacological treatment of AVMs. Potential therapeutic targets and areas requiring further investigation are highlighted.
Collapse
Affiliation(s)
- Nikolaos Mouchtouris
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Pascal M Jabbour
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Robert M Starke
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - David M Hasan
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| | - Mario Zanaty
- 1] Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA [2] Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| | - Thana Theofanis
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Dale Ding
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stavropoula I Tjoumakaris
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Aaron S Dumont
- Department of Neurological Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - George M Ghobrial
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - David Kung
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Robert H Rosenwasser
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Nohra Chalouhi
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Salminen A, Åström P, Metso J, Soliymani R, Salo T, Jauhiainen M, Pussinen PJ, Sorsa T. Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity. FASEB J 2014; 29:1435-45. [PMID: 25550459 DOI: 10.1096/fj.14-262956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/29/2014] [Indexed: 11/11/2022]
Abstract
Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. However, no differences were observed in the apoA-I levels or serum cholesterol efflux capacities between the mouse groups. Proteolytic modification of apoA-I by MMP-8 may impair the first steps of reverse cholesterol transport, leading to increased accumulation of cholesterol in the vessel walls. Eventually, inhibition of MMPs by doxycycline may reduce the risk for atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Aino Salminen
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pirjo Åström
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jari Metso
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rabah Soliymani
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tuula Salo
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Matti Jauhiainen
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pirkko J Pussinen
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Timo Sorsa
- *Institute of Dentistry, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Biomedicum, Helsinki, Finland; Meilahti Clinical Proteomics Core Unit, Department of Biochemistry and Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland; and Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
17
|
Johnson JL. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 2014; 103:452-60. [PMID: 25053639 DOI: 10.1093/cvr/cvu171] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After a period of relative senescence in the field of vascular smooth muscle cell (VSMC) research with particular regards to atherosclerosis, the last few years has witnessed a resurgence, with extensive research re-assessing potential molecular mechanisms and pathways that modulate VSMC behaviour within the atherosclerotic-prone vessel wall and the atherosclerotic plaque itself. Attention has focussed on the pathological contribution of VSMC in plaque calcification; systemic and local mediators such as inflammatory molecules and lipoproteins; autocrine and paracrine regulators which affect cell-cell and cell to matrix contacts alongside cytoskeletal changes. In this brief focused review, recent insights that have been gained into how a myriad of recently identified factors can influence the pathological behaviour of VSMC and their subsequent contribution to atherosclerotic plaque development and progression has been discussed. An overriding theme is the mechanisms involved in the alterations of VSMC function during atherosclerosis.
Collapse
Affiliation(s)
- Jason Lee Johnson
- Laboratory of Cardiovascular Pathology, School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
18
|
Shehwaro N, Langlois AL, Gueutin V, Gauthier M, Casenave M, Izzedine H. [Doxycycline or how to create new with the old?]. Therapie 2014; 69:129-41. [PMID: 24926631 DOI: 10.2515/therapie/2013069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
Abstract
Tetracyclines are broad-spectrum antibiotics that interfere with protein synthesis. They were first widely prescribed by dermatologists in the early 1950s in the treatment of acne. More recently, their biological actions on inflammation, proteolysis, angiogenesis, apoptosis, metal chelation, ionophoresis, and bone metabolism were studied. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade components of the extracellular matrix (ECM). MMPs have direct or indirect effects on the vascular endothelium and the vascular relaxation/contraction system. The therapeutic effects of tetracyclines and analogues were studied in rosacea, bullous dermatoses, neutrophilic diseases, pyoderma gangrenosum, sarcoidosis, aortic aneurysms, cancer metastasis, periodontitis and autoimmune diseases autoimmune diseases such as rheumatoid arthritis and scleroderma. In addition, downregulation of MMP using doxycycline could be beneficial in reducing vascular dysfunction mediated by MMPs and progressive damage of the vascular wall. We review the nonantibiotic properties of doxycycline and its potential clinical applications.
Collapse
|
19
|
Tilakaratne A, Soory M. Anti-inflammatory Actions of Adjunctive Tetracyclines and Other Agents in Periodontitis and Associated Comorbidities. Open Dent J 2014; 8:109-24. [PMID: 24976875 PMCID: PMC4073587 DOI: 10.2174/1874210601408010109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/08/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023] Open
Abstract
The non-antimicrobial properties of tetracyclines such as anti-inflammatory, proanabolic and anti-catabolic actions make them effective pharmaceuticals for the adjunctive management of chronic inflammatory diseases. An over-exuberant inflammatory response to an antigenic trigger in periodontitis and other chronic inflammatory diseases could contribute to an autoimmune element in disease progression. Their adjunctive use in managing periodontitis could have beneficial effects in curbing excessive inflammatory loading from commonly associated comorbidities such as CHD, DM and arthritis. Actions of tetracyclines and their derivatives include interactions with MMPs, tissue inhibitors of MMPs, growth factors and cytokines. They affect the sequence of inflammation with implications on immunomodulation, cell proliferation and angiogenesis; these actions enhance their scope, in treating a range of disease entities. Non-antimicrobial chemically modified tetracyclines (CMTs) sustain their diverse actions in organ systems which include anti-inflammatory, anti-apoptotic, anti-proteolytic actions, inhibition of angiogenesis and tumor metastasis. A spectrum of biological actions in dermatitis, periodontitis, atherosclerosis, diabetes, arthritis, inflammatory bowel disease, malignancy and prevention of bone resorption is particularly relevant to minocycline. Experimental models of ischemia indicate their specific beneficial effects. Parallel molecules with similar functions, improved Zn binding and solubility have been developed for reducing excessive MMP activity. Curbing excessive MMP activity is particularly relevant to periodontitis, and comorbidities addressed here, where specificity is paramount. Unique actions of tetracyclines in a milieu of excessive inflammatory stimuli make them effective therapeutic adjuncts in the management of chronic inflammatory disorders. These beneficial actions of tetracyclines are relevant to the adjunctive management of periodontitis subjects presenting with commonly prevalent comorbidities addressed here.
Collapse
Affiliation(s)
- Aruni Tilakaratne
- Department of Oral Medicine and Periodontology, Faculty of Dental Science, University of Peradeniya, Sri-Lanka
| | - Mena Soory
- Periodontology King's College London Dental Institute, Denmark Hill, London SE5 9RW, UKB
| |
Collapse
|
20
|
Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 2014; 5:316-29. [PMID: 24723256 DOI: 10.1007/s12975-014-0343-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.
Collapse
|
21
|
Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Collapse
|
22
|
Dong M, Zhong L, Chen WQ, Ji XP, Zhang M, Zhao YX, Li L, Yao GH, Zhang PF, Zhang C, Zhang L, Zhang Y. Doxycycline stabilizes vulnerable plaque via inhibiting matrix metalloproteinases and attenuating inflammation in rabbits. PLoS One 2012; 7:e39695. [PMID: 22737253 PMCID: PMC3380900 DOI: 10.1371/journal.pone.0039695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022] Open
Abstract
Enhanced matrix metalloproteinases (MMPs) activity is implicated in the process of atherosclerotic plaque instability. We hypothesized that doxycycline, a broad MMPs inhibitor, was as effective as simvastatin in reducing the incidence of plaque disruption. Thirty rabbits underwent aortic balloon injury and were fed a high-fat diet for 20 weeks. At the end of week 8, the rabbits were divided into three groups for 12-week treatment: a doxycycline-treated group that received oral doxycycline at a dose of 10 mg/kg/d, a simvastatin-treated group that received oral simvastatin at a dose of 5 mg/kg/d, and a control group that received no treatment. At the end of week 20, pharmacological triggering was performed to induce plaque rupture. Biochemical, ultrasonographic, pathologic, immunohistochemical and mRNA expression studies were performed. The results showed that oral administration of doxycycline resulted in a significant increase in the thickness of the fibrous cap of the aortic plaque whereas there was a substantial reduction of MMPs expression, local and systemic inflammation, and aortic plaque vulnerability. The incidence of plaque rupture with either treatment (0% for both) was significantly lower than that for controls (56.0%, P<0.05). There was no significant difference between doxycycline-treated group and simvastatin-treated group in any serological, ultrasonographic, pathologic, immunohistochemical and mRNA expression measurement except for the serum lipid levels that were higher with doxycycline than with simvastatin treatment. In conclusion, doxycycline at a common antimicrobial dose stabilizes atherosclerotic lesions via inhibiting matrix metalloproteinases and attenuating inflammation in a rabbit model of vulnerable plaque. These effects were similar to a large dose of simvastatin and independent of serum lipid levels.
Collapse
Affiliation(s)
- Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Lin Zhong
- Yu Huang Ding Hospital, Yantai, Shandong, China
| | - Wen Qiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Xiao Ping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yu Xia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Li Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Gui Hua Yao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Peng Fei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- * E-mail: (LZ); (CZ); (YZ)
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- * E-mail: (LZ); (CZ); (YZ)
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- * E-mail: (LZ); (CZ); (YZ)
| |
Collapse
|
23
|
Activator protein-1 (AP-1) signalling in human atherosclerosis: results of a systematic evaluation and intervention study. Clin Sci (Lond) 2012; 122:421-8. [PMID: 22092038 PMCID: PMC3259695 DOI: 10.1042/cs20110234] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Animal studies implicate the AP-1 (activator protein-1) pro-inflammatory pathway as a promising target in the treatment of atherosclerotic disease. It is, however, unclear whether these observations apply to human atherosclerosis. Therefore we evaluated the profile of AP-1 activation through histological analysis and tested the potential benefit of AP-1 inhibition in a clinical trial. AP-1 activation was quantified by phospho-c-Jun nuclear translocation (immunohistochemistry) on a biobank of aortic wall samples from organ donors. The effect of AP-1 inhibition on vascular parameters was tested through a double blind placebo-controlled cross-over study of 28 days doxycycline or placebo in patients with symptomatic peripheral artery disease. Vascular function was assessed by brachial dilation as well as by plasma samples analysed for hs-CRP (high-sensitivity C-reactive protein), IL-6 (interleukin-6), IL-8, ICAM-1 (intercellular adhesion molecule-1), vWF (von Willebrand factor), MCP-1 (monocyte chemoattractant protein-1), PAI-1 (plasminogen activator inhibitor-1) and fibrinogen. Histological evaluation of human atherosclerosis showed minimal AP-1 activation in non-diseased arterial wall (i.e. vessel wall without any signs of atherosclerotic disease). A gradual increase of AP-1 activation was found in non-progressive and progressive phases of atherosclerosis respectively (P<0.044). No significant difference was found between progressive and vulnerable lesions. The expression of phospho-c-Jun diminished as the lesion stabilized (P<0.016) and does not significantly differ from the normal aortic wall (P<0.33). Evaluation of the doxycycline intervention only revealed a borderline-significant reduction of circulating hs-CRP levels (-0.51 μg/ml, P=0.05) and did not affect any of the other markers of systemic inflammation and vascular function. Our studies do not characterize AP-1 as a therapeutic target for progressive human atherosclerotic disease.
Collapse
|
24
|
Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012; 56:232-44. [PMID: 22326338 DOI: 10.1016/j.vph.2012.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 10/25/2022]
Abstract
The matrix metalloproteinases (MMPs) are 23 secreted or cell surface proteases that act together and with other protease classes to turn over the extracellular matrix, cleave cell surface proteins and alter the function of many secreted bioactive molecules. In the vasculature MMPs influence the migration proliferation and apoptosis of vascular smooth muscle, endothelial cells and inflammatory cells, thereby affecting intima formation, atherosclerosis and aneurysms, as substantiated in clinical and mouse knockout and transgenic studies. Prominent counterbalancing roles for MMPs in tissue destruction and repair emerge from these experiments. Naturally occurring tissue inhibitors of MMPs (TIMPs), pleiotropic mediators such as tetracyclines, chemically-synthesised small molecular weight MMP inhibitors (MMPis) and inhibitory antibodies have all shown effects in animal models of vascular disease but only doxycycline has been evaluated extensively in patients. A limitation of broad specificity MMPis is that they prevent both matrix degradation and tissue repair functions of different MMPs. Hence MMPis with more restricted specificity have been developed and recent studies in models of atherosclerosis accurately replicate the phenotypes of the corresponding gene knockouts. This review documents the established actions of MMPs and their inhibitors in vascular pathologies and considers the prospects for translating these findings into new treatments.
Collapse
|
25
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
26
|
Singh LP, Mishra A, Saha D, Swarnakar S. Doxycycline blocks gastric ulcer by regulating matrix metalloproteinase-2 activity and oxidative stress. World J Gastroenterol 2011; 17:3310-21. [PMID: 21876619 PMCID: PMC3160535 DOI: 10.3748/wjg.v17.i28.3310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 12/19/2010] [Accepted: 12/26/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury.
METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol, and activity of doxycycline was tested by administration 30 min prior to ethanol. Similarly, the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model. The activities and expression of MMPs were examined by zymography and Western blot analysis.
RESULTS: Gastric injury in rats as judged by elevated ulcer indices following exposure to ulcerogen, either indomethacin or ethanol, was reversed significantly by doxycycline. Indomethacin-induced ulcerated gastric tissues exhibited about 12-fold higher proMMP-9 activity and about 5-fold higher proMMP-3 activity as compared to control tissues. Similarly, ethanol induced about 22-fold and about 6-fold higher proMMP-9 and proMMP-3 activities, respectively, in rat gastric tissues. Both proMMP-9 and MMP-3 activities were markedly decreased by doxycycline in ulcerogen treated rat gastric tissues. In contrast, the reduced MMP-2 activity in ulcerated tissues was increased by doxycycline during ulcer prevention. On the other hand, doxycycline inhibited significantly proMMP-9, -2 and -3 activities in vitro. In addition, doxycycline reduced oxidative load in gastric tissues and scavenged H2O2in vitro. Our results suggest a novel regulatory role of doxycycline on MMP-2 activity in addition to inhibitory action on MMP-9 and MMP-3 during prevention of gastric ulcers.
CONCLUSION: This is the first demonstration of dual action of doxycycline, that is, regulation of MMP activity and reduction of oxidative stress in arresting gastric injury.
Collapse
|
27
|
Zeng S, Zhou X, Tu Y, Yao M, Han ZQ, Gao F, Li YM. Long-Term MMP Inhibition by Doxycycline Exerts Divergent Effect on Ventricular Extracellular Matrix Deposition and Systolic Performance in Stroke-Prone Spontaneously Hypertensive Rats. Clin Exp Hypertens 2011; 33:316-24. [DOI: 10.3109/10641963.2010.549262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Johnson JL, Devel L, Czarny B, George SJ, Jackson CL, Rogakos V, Beau F, Yiotakis A, Newby AC, Dive V. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 2011; 31:528-35. [PMID: 21212406 DOI: 10.1161/atvbaha.110.219147] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Matrix metalloproteinase (MMP)-12 has been implicated in plaque progression and instability and is also amenable to selective inhibition. In this study, we investigated the influence of a greater than 10-fold selective synthetic MMP-12 inhibitor on plaque progression in the apolipoprotein E knockout mouse model of atherosclerosis. METHODS AND RESULTS A phosphinic peptide (RXP470.1) that is a potent, selective murine MMP-12 inhibitor significantly reduced atherosclerotic plaque cross-sectional area by approximately 50% at 4 different vascular sites in male and female apolipoprotein E knockout mice fed a Western diet. Furthermore, RXP470.1 treatment resulted in less complex plaques with increased smooth muscle cell:macrophage ratio, less macrophage apoptosis, increased cap thickness, smaller necrotic cores, and decreased incidence of calcification. Additional in vitro and in vivo findings indicate that attenuated monocyte/macrophage invasion and reduced macrophage apoptosis probably underlie the beneficial effects observed on atherosclerotic plaque progression with MMP-12 inhibitor treatment. CONCLUSIONS Our data demonstrate that a selective MMP-12 inhibitor retards atherosclerosis development and results in a more fibrous plaque phenotype in mice. Our study provides proof of principle to motivate translational work on MMP-12 inhibitor therapy in humans.
Collapse
Affiliation(s)
- Jason L Johnson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
AIM To investigate levels of matrix metalloproteinases 2 and 9, and of their tissue inhibitor (i.e. tissue inhibitor matrix metalloproteinase 1), in the serum of patients with tympanosclerosis. MATERIALS AND METHOD We included 40 patients (age range 13-63 years) who had undergone surgery in the ENT department of Izmir Atatürk Training and Research Hospital between 2002 and 2007. Twenty had uncomplicated chronic otitis media and 20 had tympanosclerosis. We also included as the control group 20 individuals with no history of previous otic complaints or systemic or infectious disease. Serum levels of serum matrix metalloproteinases 2 and 9 and of tissue inhibitor matrix metalloproteinase 1 were measured in all subjects and compared. RESULT Significantly higher levels of serum matrix metalloproteinases 2 and 9 were found in the tympanosclerosis group, compared with the chronic otitis media and control groups. There was no statistically significant difference in tissue inhibitor matrix metalloproteinase 1 level between the three groups. CONCLUSION Tympanosclerosis surgery has poor success rates, since the pathological process is still active. We suggest that high levels of matrix metalloproteinases may play a role in the continuation of the disease process.
Collapse
|
30
|
Ohshima S, Fujimoto S, Petrov A, Nakagami H, Haider N, Zhou J, Tahara N, Osako MK, Fujimoto A, Zhu J, Murohara T, Edwards DS, Narula N, Wong ND, Chandrashekhar Y, Morishita R, Narula J. Effect of an antimicrobial agent on atherosclerotic plaques: assessment of metalloproteinase activity by molecular imaging. J Am Coll Cardiol 2010; 55:1240-1249. [PMID: 20298932 DOI: 10.1016/j.jacc.2009.11.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Technetium-99m-labeled matrix metalloproteinase inhibitor (MPI) was used for the noninvasive assessment of matrix metalloproteinase (MMP) activity in atherosclerotic plaques after minocycline (MC) intervention. BACKGROUND MMP activity in atherosclerosis contributes to plaque instability. Some antimicrobial agents may attenuate MMP activity. METHODS Atherosclerotic lesions were produced in 38 rabbits with a high cholesterol diet for 4 months; 5 groups of rabbits, in the fourth month, received fluvastatin (FS) (n = 6), low-dose MC (n = 7), high-dose MC (n = 7), a combination of low-dose MC and FS (n = 6), or no intervention (n = 12); 8 unmanipulated rabbits were used as disease controls. Micro-single-photon emission computed tomography imaging was performed in all animals after intravenous MPI administration, followed by pathologic characterization of the aorta. A cell culture study evaluated the effect of MC on MMP production by activated human monocytes. RESULTS MPI uptake was visualized best in untreated atherosclerotic animals (percent injected dose per gram MPI uptake, 0.11 +/- 0.04%). MPI uptake was reduced in the FS (0.06 +/- 0.01%; p < 0.0001), high-dose MC (0.05 +/- 0.01%; p < 0.0001), and MC-FS (0.05 +/- 0.005%; p < 0.0001) groups. Low-dose MC did not resolve MPI uptake significantly (0.08 +/- 0.02; p = 0.167). There was no incremental benefit of the combination of MC and FS. MPI uptake showed a significant correlation with plaque MMP-2, and MMP-9 activity. MMP-9 release from tumor necrosis factor-alpha-activated macrophages was abrogated by incubation with MC. CONCLUSIONS Molecular imaging of MMP activity in atherosclerotic plaque allows for the study of the efficacy of therapeutic interventions. MC administration resulted in substantial reduction in plaque MMP activity and histologically verified plaque stabilization. MC was found to be equally effective as FS.
Collapse
Affiliation(s)
- Satoru Ohshima
- University of California Irvine School of Medicine, Irvine, California
| | | | - Artiom Petrov
- University of California Irvine School of Medicine, Irvine, California.
| | | | - Nezam Haider
- University of California Irvine School of Medicine, Irvine, California
| | - Jun Zhou
- University of California Irvine School of Medicine, Irvine, California
| | - Nobuhiro Tahara
- University of California Irvine School of Medicine, Irvine, California
| | | | - Ai Fujimoto
- University of California Irvine School of Medicine, Irvine, California
| | - Jie Zhu
- University of California Irvine School of Medicine, Irvine, California
| | | | | | - Navneet Narula
- University of California Irvine School of Medicine, Irvine, California
| | - Nathan D Wong
- University of California Irvine School of Medicine, Irvine, California
| | | | | | - Jagat Narula
- University of California Irvine School of Medicine, Irvine, California
| |
Collapse
|
31
|
Kanematsu Y, Kanematsu M, Kurihara C, Tsou TL, Nuki Y, Liang EI, Makino H, Hashimoto T. Pharmacologically induced thoracic and abdominal aortic aneurysms in mice. Hypertension 2010; 55:1267-74. [PMID: 20212272 PMCID: PMC2859958 DOI: 10.1161/hypertensionaha.109.140558] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic aneurysms are common among the elderly population. A large majority of aortic aneurysms are located at two distinct aneurysm-prone regions, the abdominal aorta and thoracic aorta involving the ascending aorta. In this study, we combined two factors that are associated with human aortic aneurysms, hypertension and degeneration of elastic lamina, to induce an aortic aneurysm in mice. Roles of hemodynamic conditions in the formation of aortic aneurysms were assessed using two different methods for inducing hypertension and antihypertensive agents. In 9-week-old C57BL/6J male mice, hypertension was induced by angiotensin II or deoxycorticosterone acetate-salt hypertension; degeneration of elastic lamina was induced by infusion of beta-aminopropionitrile, a lysyl oxidase inhibitor. Irrespective of the methods for inducing hypertension, mice developed thoracic and abdominal aortic aneurysms (38% to 50% and 30 to 49%, respectively). Aneurysms were found at the two aneurysm-prone regions with site-specific morphological and histological characteristics. Treatment with an antihypertensive agent, amlodipine, normalized blood pressure and dramatically reduced aneurysm formation in the mice that received angiotensin II and beta-aminopropionitrile. However, treatment with captopril, an angiotensin-converting enzyme inhibitor, did not affect blood pressure or the incidence of aortic aneurysms in the mice that received deoxycorticosterone acetate-salt and beta-aminopropionitrile. In summary, we have shown that a combination of hypertension and pharmacologically induced degeneration of elastic laminas can induce both thoracic and abdominal aortic aneurysms with site-specific characteristics. The aneurysm formation in this model depended on hypertension but not on direct effects of angiotensin II to the vascular wall.
Collapse
Affiliation(s)
- Yasuhisa Kanematsu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Starke RM, Komotar RJ, Hwang BY, Hahn DK, Otten ML, Hickman ZL, Garrett MC, Sisti MB, Lavine SD, Meyers PM, Solomon RA, Connolly ES. Systemic Expression of Matrix Metalloproteinase-9 in Patients With Cerebral Arteriovenous Malformations. Neurosurgery 2010; 66:343-8; discussion 348. [DOI: 10.1227/01.neu.0000363599.72318.ba] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
OBJECTIVE
Increased expression angiogenic factors, such as matrix metalloproteinases (MMPs), are associated with the formation of cerebral arteriovenous malformations (AVMs). The objective of this study was to determine plasma levels of MMP-9 of patients with AVMs.
METHODS
Blood samples were drawn from 15 patients with AVMs before treatment, 24 hours postembolization, 24 hours postresection, and 30 days postresection. Blood samples were also obtained from 30 healthy controls. Plasma MMP-9 concentrations were measured via enzyme-linked immunosorbent assay.
RESULTS
The mean plasma MMP-9 level in AVM patients at baseline was significantly higher than in control patients: 108.04 ± 16.11 versus 41.44 ± 2.44 ng/mL, respectively. The mean plasma MMP-9 level 1 day after embolization increased to 172.35 ± 53.76 ng/mL, which was not significantly elevated over pretreatment levels. One day after resection, plasma MMP-9 levels increased significantly over pretreatment levels to 230.97 ± 51.00 ng/mL. Mean plasma MMP-9 concentrations 30 days after resection decreased to 92.8 ± 18.7 ng/mL, which was not different from pretreatment levels but was still significantly elevated over control levels. MMP-9 levels did not correlate with patient sex, age, presentation, or AVM size.
CONCLUSION
Plasma MMP-9 levels are significantly elevated over controls at baseline, increase significantly immediately after surgery, and decrease to pretreatment levels during follow-up.
Collapse
Affiliation(s)
- Robert M. Starke
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia (Starke)
| | - Ricardo J. Komotar
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Brian Y. Hwang
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - David K. Hahn
- Department of Neurosurgery, Northwestern University, Chicago, Illinois (Hahn)
| | - Marc L. Otten
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Zachary L. Hickman
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Matthew C. Garrett
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Michael B. Sisti
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Sean D. Lavine
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Philip M. Meyers
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - Robert A. Solomon
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| | - E. Sander Connolly
- Department of Neurosurgery, Columbia University, New York, New York (Komotar) (Hwang) (Otten) (Hickman) (Garrett) (Sisti) (Lavine) (Meyers) (Solomon) (Connolly)
| |
Collapse
|
33
|
Cheng YC, Kao WHL, Mitchell BD, O'Connell JR, Shen H, McArdle PF, Gibson Q, Ryan KA, Shuldiner AR, Pollin TI. Genome-wide association scan identifies variants near Matrix Metalloproteinase (MMP) genes on chromosome 11q21-22 strongly associated with serum MMP-1 levels. ACTA ACUST UNITED AC 2009; 2:329-37. [PMID: 20031604 DOI: 10.1161/circgenetics.108.834986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Matrix metalloproteinase (MMP)-1 may play a role in cardiovascular disease susceptibility by influencing plaque rupture via its ability to degrade extracellular collagens. METHODS AND RESULTS We performed a genome-wide association analysis of circulating MMP-1 levels using 500 K single-nucleotide polymorphisms (SNPs) to identify genes influencing variation in serum MMP-1 levels in 778 healthy Amish adults. Serum MMP-1 levels, logarithm transformed, and adjusted for age and sex, were screened for association with SNPs using mixed-model variance components to account for familial relatedness. Median MMP-1 level was 3.05 ng/mL (interquartile range: 1.82 to 5.04 ng/mL) with an estimated heritability of 81% (P<0.0001). Serum MMP-1 levels were strongly associated with a cluster of 179 SNPs extending over an 11.5-megabase region on chromosome 11q. The peak association was with rs495366 (P = 5.73 x 10(-34)), located within the region between MMP-1 and MMP-3 and having a minor allele frequency of 0.36. Two other SNPs within the 11q region, rs12289128 and rs11226373, were strongly associated with MMP-1 levels after accounting for rs495366 (P < or = 10(-7)). These 3 SNPs explained 31% of the variance in MMP-1 levels after adjusting for age and sex. CONCLUSIONS This study provides strong evidence that the serum MMP-1 level is highly heritable and that SNPs near MMPs on chromosome 11q explain a significant portion of the variation in MMP-1 levels. Identification of the genetic variants that influence MMP-1 levels may provide insights into genetic mechanisms of cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Ching Cheng
- Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Akkaya P, Onalan G, Haberal N, Bayraktar N, Mülayim B, Zeyneloglu HB. Doxycycline causes regression of endometriotic implants: a rat model. Hum Reprod 2009; 24:1900-8. [PMID: 19401321 DOI: 10.1093/humrep/dep106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Doxycycline (Dox) has a number of non-antibiotic properties. One of them is the inhibition of matrix metalloproteinase (MMP) activity. The aim of this study was to assess the effects of Dox in a rat endometriosis model. METHODS Endometriosis was surgically induced in 40 rats by transplanting of endometrial tissue. After 3 weeks, repeat laparotomies were performed to check the implants and the animals were randomized into four groups: Group I, low-dose Dox (5 mg/kg/day); Group II, high-dose Dox (40 mg/kg/day); Group III, leuprolide acetate 1 mg/kg single dose, s.c.; and Group VI (controls), no medication. The treatment, initiated on the day of surgery and continuing for 3 weeks, was administered to the study groups. Three weeks later, the rats were euthanized and the implants were evaluated morphologically and histologically for immunoreactivity of MMP-2 and -9, and interleukin-6 (IL-6) concentration in the peritoneal fluid was assayed. RESULTS Treatment with leuprolide acetate, or high-dose or low-dose Dox caused significant decreases in the implant areas compared with the controls (P = 0.03, P = 0.006, and P = 0.001, respectively). IL-6 levels in peritoneal fluid decreased in Group I (P = 0.02) and Group III (P < 0.05). MMP H scores were significantly lower in the group that received low-dose Dox in both epithelial and stromal MMP-2 and -9 immunostaining when compared with the control group [P = 0.048, P = 0.002, P = 0.007 and P = 0.002, respectively, MMP-2 (epithelia), MMP-2 (stroma), MMP-9 (epithelia) and MMP-9 (stroma)]. CONCLUSIONS Low-dose Dox caused regression of endometriosis in this experimental rat model.
Collapse
Affiliation(s)
- Pinar Akkaya
- Obstetrics and Gynecology, Baskent University School of Medicine, Kubilay Sok no. 36 Maltepe, 06570 Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
35
|
Nordon IM, Hinchliffe RJ, Holt PJ, Loftus IM, Thompson MM. Review of Current Theories for Abdominal Aortic Aneurysm Pathogenesis. Vascular 2009; 17:253-63. [DOI: 10.2310/6670.2009.00046] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerotic plaques are a feature of abdominal aortic aneurysms (AAAs). Atherosclerosis and AAA appear to share similar risk factors. These observations have led to the conclusion that AAAs are a consequence of advanced atherosclerosis. This review explores current theories regarding the pathogenesis of AAA and their implications for treatment. A systematic literature search was conducted using the search terms abdominal aortic aneurysm, atherosclerosis, pathogenesis, and systemic disease. Articles were categorized according to the association of AAAs with atherosclerosis, arteriomegaly, peripheral aneurysm, systemic expression, genetics, autoimmunity, oxidative stress, and systemic disease. Twenty-nine articles reporting changes in the systemic vasculature associated with AAA and 12 articles examining the shared risk factor hypothesis were identified. There is insufficient evidence to confirm that AAAs are the result of advanced atherosclerosis. The bulk of evidence points to AAA disease being a systemic disease of the vasculature, with a predetermined genetic susceptibility leading to a phenotype governed by environmental factors.
Collapse
Affiliation(s)
- Ian M. Nordon
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Robert J. Hinchliffe
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Peter J. Holt
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Ian M. Loftus
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Matthew M. Thompson
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| |
Collapse
|
36
|
Fiotti N, Altamura N, Moretti M, Wassermann S, Zacchigna S, Farra R, Dapas B, Consoloni L, Giacca M, Grassi G, Giansante C. Short term effects of doxycycline on matrix metalloproteinases 2 and 9. Cardiovasc Drugs Ther 2008; 23:153-9. [PMID: 19052856 DOI: 10.1007/s10557-008-6150-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the short term effects of Doxycycline on MMP-2 and MMP-9. METHODS Short term effects of Doxycycline (100 mg B.I.D.) on plasma levels of MMP-2 and MMP-9 were investigated in 20 healthy subjects; the effects of Doxy, Acetylsalicylic acid, Nitrates, and Enalapril on MMP-9 release from were assessed in isolated polymorphonuclear cells. RESULTS In plasma, MMP-9 activity was reduced (-22%, 95% CI -32/-11; P = 0.002) starting at 12 h after doxy; in vitro, MMP-9 released from stimulated neutrophils was reduced by Doxy (-28%, 95% CI -43/-14; P = 0.001), inhibiting degranulation, and by nitrates (-52%, 95% CI -76/-28 P = 0.005), increasing three times both pro- and active-MMP-9 bound to neutrophils (P = 0.007 and 0.040, respectively). CONCLUSIONS Doxy decreases MMP-9 plasma levels by around 20%, within the first 12 h. The mechanism leading to such reduction seems due to the inhibition of PMN degranulation.
Collapse
Affiliation(s)
- Nicola Fiotti
- S C Clinica Medica Generale e Terapia Medica, Dipartimento di Scienze Cliniche, Morfologiche e Tecnologiche, Università degli Studi di Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Plaque Biology: Interesting Science or Pharmacological Treasure Trove? Eur J Vasc Endovasc Surg 2008; 36:507-16. [DOI: 10.1016/j.ejvs.2008.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 11/21/2022]
|
38
|
The Effect of Topical Doxycycline in the Prevention of Experimental Tympanosclerosis. Laryngoscope 2008; 118:1051-6. [DOI: 10.1097/mlg.0b013e31816770ba] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Frenzel T, Lee CZ, Kim H, Quinnine NJ, Hashimoto T, Lawton MT, Guglielmo BJ, McCulloch CE, Young WL. Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc Dis 2008; 25:157-63. [PMID: 18212521 DOI: 10.1159/000113733] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tetracyclines may be useful in preventing pathological vascular remodeling, thus decreasing the risk of spontaneous hemorrhage from brain vascular malformations. METHODS Arteriovenous malformation (AVM) and intracranial aneurysm patients undergoing noninvasive management were treated with minocycline or doxycycline (200 mg/day) up to 2 years in a prospective open-label safety pilot trial. The primary outcome was to compare dose-limiting intolerance, defined as treatment-related dose reduction or withdrawal between the agents. RESULTS Twenty-six patients with AVMs (n = 12) or aneurysms (n = 14) were recruited. Adverse event rates were similar to other reported trials of these agents; 4 of 13 (31%) minocycline and 3 of 13 (23%) doxycycline patients had dose-limiting intolerance (hazard ratio = 3.1, 95% CI = 0.52-18.11, log rank p = 0.70). CONCLUSIONS It is feasible to propose a long-term trial to assess the potential benefit of tetracycline therapy to decrease hemorrhagic risk in brain vascular malformations.
Collapse
Affiliation(s)
- Tim Frenzel
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Serum Matrix Metalloproteinase-2 Levels Indicate Blood–CSF Barrier Damage in Patients with Infectious Meningitis. Inflammation 2008; 31:99-104. [DOI: 10.1007/s10753-007-9054-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
41
|
Gorelick PB. Chapter 63 The future of stroke prevention by risk factor modification. ACTA ACUST UNITED AC 2008; 94:1261-76. [DOI: 10.1016/s0072-9752(08)94063-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
42
|
Rodríguez JA, Orbe J, Páramo JA. Metaloproteasas, remodelado vascular y syndromes aterotrombóticos. Rev Esp Cardiol 2007; 60:959-67. [PMID: 17915152 DOI: 10.1157/13109649] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Defects in the synthesis and breakdown of the extracellular matrix (ECM) are now seen as key processes in the development of atherosclerosis and its thrombotic complications. Correlations have been observed between circulating levels of ECM biomarkers and the clinical manifestations of and risk factors for atherosclerosis. Several matrix metalloproteinases (MMPs), endopeptidases that can degrade the ECM, such as MMP-9 and MMP-10, play important roles in the pathophysiology of atherothrombosis and contribute to the expansion of abdominal aortic aneurysms. Moreover, they may also be useful biomarkers of atherosclerotic risk and serve as predictors of coronary and cerebrovascular disease recurrence. Although at present the effect of tissue inhibitors of MMPs (TIMPs) on cardiovascular disease prognosis is still uncertain, the ECM could be a promising therapeutic target in atherothrombotic disease, and several MMP inhibitors are currently undergoing clinical trials.
Collapse
Affiliation(s)
- José A Rodríguez
- Laboratorio de Aterosclerosis, Area de Ciencias Cardiovasculares, CIMA-Universidad de Navarra, Pamplona, España.
| | | | | |
Collapse
|
43
|
Naini AE, Harandi AA, Moghtaderi J, Bastani B, Amiran A. Doxycycline: a pilot study to reduce diabetic proteinuria. Am J Nephrol 2007; 27:269-73. [PMID: 17429196 DOI: 10.1159/000101726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/07/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Activity of matrix metalloproteinases (MMPs), the enzymes primarily responsible for the deposition of extracellular matrix proteins, contributes to the pathogenesis of diabetic proteinuria. We evaluated the effect of doxycycline, a potent nonselective MMPs inhibitor, on reduction of proteinuria in diabetic patients. MATERIAL AND METHODS In a self-control clinical trial, 35 patients with overt diabetic nephropathy (proteinuria >300 mg/24 h) received oral doxycycline 100 mg/day for 2 months. Twenty-four-hour urine volume, Cr and protein excretion were measured at baseline, after 1 and 2 months of treatment, and after 4 months of its discontinuation. Treatment-related side effects were closely monitored and documented. RESULTS Mean (+/-SD) 24-hour urine protein was 888 +/- 419 mg at baseline, 884 +/- 368 mg after 1 month, and 643 +/- 386 mg after the 2 months of doxycycline treatment. There was statistically significant reduction in proteinuria at 2 months of treatment vs. at the baseline (p < 0.001). Mean 24-hour urine protein excretion increased to 1,021 +/- 422 mg 4 months after doxycycline was discontinued. The changes in serum sodium, potassium, BUN and Cr concentrations, and blood pressure measurements during the 2 months of treatment and follow-up period were not statistically significant. CONCLUSION Proteinuria in patients with diabetic nephropathy can be reduced with low dose doxycycline therapy over a 2-month period of drug administration. Further studies are necessary to determine the long-term effect, the optimal dose, and the optimal duration of this potentially novel therapy.
Collapse
Affiliation(s)
- Afsoon Emami Naini
- Division of Nephrology, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | | | | | | |
Collapse
|
44
|
Li R, Luo X, Archer DF, Chegini N. RETRACTED: Doxycycline alters the expression of matrix metalloproteases in the endometrial cells exposed to ovarian steroids and pro-inflammatory cytokine. J Reprod Immunol 2007; 73:118-129. [PMID: 17010446 DOI: 10.1016/j.jri.2006.08.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/06/2006] [Accepted: 08/14/2006] [Indexed: 11/23/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Editors following an investigation by the Office of Research Integrity (ORI) at the Department of Health and Human Services. The investigation confirmed that the data presented has been falsified by the last author.
Collapse
Affiliation(s)
- Rongxiu Li
- Department of OB/GYN, University of Florida, Gainesville, FL, USA
| | - Xiaoping Luo
- Department of OB/GYN, University of Florida, Gainesville, FL, USA
| | | | - Nasser Chegini
- Department of OB/GYN, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
45
|
Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007; 5:265-82. [PMID: 17338671 DOI: 10.1586/14779072.5.2.265] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerotic plaque rupture, with subsequent occlusive thrombosis, is the underlying cause of most cases of sudden cardiac death. Matrix metalloproteinases (MMPs) are thought to mediate the progression of stable atherosclerotic lesions to an unstable phenotype that is prone to rupture through the destruction of strength-giving extracellular matrix (ECM) proteins. Smooth muscle cells secrete and deposit ECM proteins and are, therefore, considered protective against atherosclerotic plaque destabilization. However, similar to inflammatory cells (e.g., macrophages), smooth muscle cells release numerous MMPs that are capable of digesting ECM proteins. Thus, the interaction of smooth muscle cells and MMPs in atherosclerotic plaques is complex and not fully understood. Recently, research into the roles of MMPs and their endogenous inhibitors (tissue inhibitors of metalloproteinases), and their effects on smooth muscle behavior during plaque destabilization has been aided by the development of reproducible animal models of plaque instability. A plethora of studies has demonstrated that MMPs directly modulate smooth muscle behavior with both beneficial and deleterious effects on atherosclerotic plaque stability, in addition to their canonical effects on ECM remodeling. Consequently, broad-spectrum MMP inhibition may inhibit plaque-stabilizing mechanisms, such as smooth muscle cell growth, while conversely retarding ECM destruction and subsequent rupture. Hence the development of selective MMP inhibitors, that spare inhibitory effects on smooth muscle cell function, may be useful therapies to prevent plaque rupture and in this regard MMP-12 appears to be a particularly attractive target.
Collapse
Affiliation(s)
- Jason Lee Johnson
- University of Bristol, Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
46
|
Lee CZ, Yao JS, Huang Y, Zhai W, Liu W, Guglielmo BJ, Lin E, Yang GY, Young WL. Dose-response effect of tetracyclines on cerebral matrix metalloproteinase-9 after vascular endothelial growth factor hyperstimulation. J Cereb Blood Flow Metab 2006; 26:1157-64. [PMID: 16395286 DOI: 10.1038/sj.jcbfm.9600268] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Brain arteriovenous malformations (BAVMs) are a potentially life-threatening disorder. Matrix metalloproteinase (MMP)-9 activity was greatly increased in BAVM tissue specimens. Doxycycline was shown to decrease cerebral MMP-9 activities and angiogenesis induced by vascular endothelial growth factor (VEGF). In the present study, we determined the dose-response effects of doxycycline and minocycline on cerebral MMP-9 using our mouse model with VEGF focal hyperstimulation delivered with adenoviral vector (AdVEGF) in the brain. Mice were treated with doxycycline or minocycline, respectively, at 1, 5, 10, 30, 50, or 100 mg/kg/day through drinking water for 1 week. Our results have shown that MMP-9 messenger ribonucleic acid (mRNA) expression was inhibited by doxycycline starting at 10 mg/kg/day (P<0.02). Minocycline showed more potent inhibition on MMP-9 mRNA expression, starting at 1 (P<0.005) and further at more than 30 (P<0.001) mg/kg/day. At the enzymatic activity level, doxycycline started to suppress MMP-9 activity at 5 mg/kg/day (P<0.001), while minocycline had an effect at a lower dose, 1 mg/kg/day (P<0.02). The inhibition of cerebral MMP-9 mRNA and activity were highly correlated with drug levels in the brain tissue. We also assessed the potential relevant signaling pathway in vitro to elucidate the mechanisms underlying the MMP-9 inhibition by tetracyclines. In vitro, minocycline, but not doxycycline, inhibits MMP-9, at least in part, via the extracellular signaling-related kinase 1/2 (ERK1/2)-mediated pathway. This study provided the evidence that the tetracyclines inhibit stimulated cerebral MMP-9 at multiple levels and are effective at very low doses, offering great potential for therapeutic use.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Blotting, Western
- Brain/metabolism
- Brain Chemistry/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Doxycycline/metabolism
- Doxycycline/pharmacology
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Gelatin/metabolism
- Intracranial Arteriovenous Malformations/enzymology
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice
- Minocycline/metabolism
- Minocycline/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Stimulation, Chemical
- Tetracyclines/metabolism
- Tetracyclines/pharmacology
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Chanhung Z Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Franco C, Ho B, Mulholland D, Hou G, Islam M, Donaldson K, Bendeck MP. Doxycycline alters vascular smooth muscle cell adhesion, migration, and reorganization of fibrillar collagen matrices. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1697-709. [PMID: 16651635 PMCID: PMC1606579 DOI: 10.2353/ajpath.2006.050613] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Remodeling of injured blood vessels is dependent on smooth muscle cells and matrix metalloproteinase activity. Doxycycline is a broad spectrum matrix metalloproteinase inhibitor that is under investigation for the treatment of acute coronary syndromes and aneurysms. In the present study, we examine the mechanisms by which doxycycline inhibits smooth muscle cell responses using a series of in vitro assays that mimic critical steps in pathological vascular remodeling. Doxycycline treatment dramatically increased smooth muscle cell adhesion to the substrate, as evidenced by interference reflection microscopy and immunostaining for paxillin and phosphotyrosine. Cell aggregation was also potentiated after treatment with doxycycline. Treatment with 104 mumol/L doxycycline reduced thymidine uptake by 58% compared with untreated cells (P < 0.05) and inhibited closure of a scrape wound made in a smooth muscle cell monolayer by 20% (P < 0.05). Contraction of a three-dimensional collagen gel was used as an in vitro model for constrictive vessel remodeling, demonstrating that treatment with 416 mumol/L doxycycline for 12 hours inhibited collagen gel remodeling by 37% relative to control (P < 0.05). In conclusion, we have shown that doxycycline treatment leads to dramatically increased smooth muscle cell adhesion, which in turn might limit responses in pathological vascular remodeling.
Collapse
Affiliation(s)
- Christopher Franco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
48
|
Turu MM, Krupinski J, Catena E, Rosell A, Montaner J, Rubio F, Alvarez-Sabin J, Cairols M, Badimon L. Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound. Atherosclerosis 2006; 187:161-9. [PMID: 16259988 DOI: 10.1016/j.atherosclerosis.2005.08.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/24/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Carotid atherosclerotic plaque remodelling and increased risk of symptomatic plaque rupture seem to be partially mediated by matrix metalloproteinases (MMPs). In this study, we have investigated whether different MMPs are related to carotid atherosclerosis or to recent ischaemic brain disease. Eighty-four consecutive patients undergoing carotid endarterectomy for symptomatic and asymptomatic disease were studied. Plaques were analysed by ultrasound and later by morphology. Plasma MMP-2, MMP-8 and MMP-9 levels were quantified by ELISA. MMP expression and activity in carotid plaques was analysed by Western blotting and in situ zymography. Results were analysed with respect to plaque stability, morphology, symptomatic disease, presence of vascular risk factors and plasma markers of acute inflammation as high sensitivity C-reactive protein (hsCRP), fibrinogen, D-dimer and white blood cell counts. Patients with hypoechogenic plaques on ultrasound had more plasma MMP-8 (p = 0.04) and increased MMP activity as assessed by in situ zymography. Asymptomatic patients with plaque progression had more active intraplaque MMP-8 than asymptomatic patients without plaque progression. Presence of recent intraplaque haemorrhage or past history of CAD was related to increased activity of MMPs as assessed by in situ zymography (p < 0.01, CI 95% 0.8-1.0). Plasma MMP-8 and MMP-9, but not MMP-2 levels, decrease with time after ischaemic stroke. Patients with hypertension had more intraplaque active MMP-9 than normotensive (p = 0.03, CI 95% 0.7-1.0). Hypoechogenic carotid plaques had increased MMP activity and asymptomatic patients with plaque progression show increase intraplaque MMP-8 levels.
Collapse
Affiliation(s)
- Marta Miguel Turu
- Cardiovascular Research Center, IIBB/CSIC-HSCSP-UAB, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND AND PURPOSE The simplistic view of atherosclerosis as a disorder of pathological lipid deposition has been redefined by the more complex concept of an ongoing inflammatory response. SUMMARY OF REVIEW Apolipoprotein E and low-density lipoprotein (LDL)-receptor-deficient mice develop accelerated atherosclerosis allowing in-depth pathophysiological investigations. Atherosclerotic plaques in these mice contain large numbers of T cells and macrophages. Crossbreeding apolipoprotein E-deficient mice with T-cell-deficient mice and mice with impaired macrophage function (osteopetrotic op/op mice) disclosed the important impact of immune cells on atherosclerotic lesion development. In contrast to the detrimental role of T cells and macrophages, B cells appear to be atheroprotective. These basic experimental findings have partly been confirmed in studies of the human carotid artery system. Inflammation is not only instrumental in the development of human atheromatous plaques, but, importantly, plays a crucial role in the destabilization of internal carotid artery plaques, thus converting chronic atherosclerosis into an acute thrombo-embolic disorder. Humoral factors involved in internal carotid artery destabilization include cytokines, cyclooxygenase-2, matrix metalloproteinases, and tissue factor. Antibodies to oxidized LDL can reflect disease activity on one hand, but can also confer atheroprotection. Novel MRI techniques may aid in the in vivo assessment of acute plaque inflammation in humans. CONCLUSIONS The impact of inflammation on the development of atherosclerotic plaques and their destabilization opens new avenues for treatment. The effects of statins, acetylsalicyclic acid and angiotensin-converting enzyme inhibitors on stroke prevention may partly be attributable to their profound anti-inflammatory actions. Vaccination against modified LDL and heat shock proteins halt plaque progression in experimental atherosclerosis. Their potential for prevention of human atherosclerosis is currently under investigation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/etiology
- Atherosclerosis/immunology
- Atherosclerosis/physiopathology
- Autoantibodies/immunology
- Carotid Artery Diseases/complications
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/pathology
- Crosses, Genetic
- Cytokines/antagonists & inhibitors
- Cytokines/physiology
- Endothelium, Vascular/injuries
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Heart Transplantation
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Inflammation/complications
- Inflammation/drug therapy
- Lipoproteins, LDL/immunology
- Macrophages/pathology
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Knockout
- Mice, SCID
- Models, Animal
- Osteopetrosis/genetics
- Osteopetrosis/immunology
- Postoperative Complications/immunology
- Postoperative Complications/pathology
- Protease Inhibitors/therapeutic use
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Stroke/etiology
- Stroke/prevention & control
- T-Lymphocytes/pathology
- Thromboembolism/etiology
- Thromboembolism/prevention & control
- Vaccination
- Vasculitis/complications
- Vasculitis/drug therapy
- Vasculitis/physiopathology
Collapse
Affiliation(s)
- Guido Stoll
- Department of Neurology, Julius-Maximilians-Universität, Würzburg, Germany.
| | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Disturbances of the synthesis and breakdown of the extracellular matrix of arterial walls have emerged as key features of the atherosclerotic process. Altered levels of circulating extracellular matrix markers have frequently been observed in relation to manifestations of atherosclerotic disease and its risk factors. RECENT FINDINGS Research has been focused on the matrix-degrading metalloproteinases, their tissue inhibitors, and procollagen peptides. The most promising matrix metalloproteinase is matrix metalloproteinase-9, which has been observed to predict rapid coronary artery narrowing, ischemic heart disease incidence, abdominal aortic aneurysm expansion, worse outcome in stroke patients, and cardiovascular death. The use of tissue inhibitors of metalloproteinases for prognostication is uncertain thus far. The procollagen marker with most prognostic potential is the marker for type III collagen turnover rate, the N-terminal propeptide PIIINP, higher levels of which predict an adverse outcome after a myocardial infarction and in chronic heart failure, and portend abdominal aortic aneurysm expansion and risk of rupture. Also, the marker for type I collagen synthesis, the C-terminal propeptide PICP, predicts adverse outcomes following myocardial infarction and in chronic heart failure. Extracellular matrix remodeling is also a promising therapeutic target, being favorably affected by several conventional cardiovascular drugs and select dietary interventions. Synthetic matrix metalloproteinase inhibitors are also under development. SUMMARY Circulating matrix markers have emerged as candidate biomarkers for predicting risk of subsequent atherosclerotic events. Future large longitudinal observational and intervention studies will determine the role of matrix biomarkers in diagnosis and prognostication, and as targets for intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Johan Sundström
- Department of Medical Sciences and Public Health & Caring Sciences, Section of Geriatrics, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|