1
|
Saito S, Tsukamoto H, Karaki M, Kunimatsu N, Ogoh S. Effect of prolonged sitting on dynamic cerebral autoregulation in the anterior and posterior cerebral circulations. Exp Physiol 2024. [PMID: 39449571 DOI: 10.1113/ep092178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Individuals who experience prolonged sitting daily are reported to be at risk of developing cerebrovascular disease, which is associated, in part, with attenuation in cerebral blood flow regulation. However, the effect of prolonged sitting on dynamic cerebral autoregulation (dCA), a crucial mechanism of cerebral blood flow regulation, remains unclear. Additionally, cerebrovascular disease occurs heterogeneously within cerebral arteries. The purpose of the present study was to examine the hypothesis that prolonged sitting attenuates dCA in the cerebral circulation heterogeneously. Twelve young, healthy participants were instructed to maintain a seated position for 4 h without moving their lower limbs. Mean arterial pressure and mean blood velocities of the middle cerebral artery (MCA Vm) and the posterior cerebral artery (PCA Vm) were measured continuously throughout the experiment. The dCA was assessed using transfer function analysis (TFA) with mean arterial pressure and either MCA Vm or PCA Vm. In the MCA, very low-frequency TFA-normalized gain decreased significantly during 4 h of prolonged sitting (P = 0.029), indicating an improvement rather than attenuation in dCA, despite a significant reduction in MCA Vm after 4 h of continuous sitting (P = 0.039). In the PCA, PCA Vm remained stable throughout the 4 h sitting period (P = 0.923), and all TFA parameters remained unchanged throughout the 4 h of sitting. Contrary to our hypothesis, these results suggest that the dCA in both the MCA and the PCA was well stabilized in healthy young individuals during acute prolonged sitting.
Collapse
Affiliation(s)
- Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
| | | | - Marino Karaki
- Graduate School of Health and Sport Sciences, hukyo University, Aichi, Japan
| | - Narumi Kunimatsu
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| |
Collapse
|
2
|
Brunelli N, Altamura C, Marcosano M, Rossi SS, Costa CM, Fallacara A, Bach-Pages M, Silvestrini M, Mallio CA, Vernieri F. Cerebral vasomotor reactivity in the acute phase and after 6 months in non-disabling stroke/TIA: A prospective cohort study. J Stroke Cerebrovasc Dis 2024; 33:107841. [PMID: 38945417 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND AND AIM Cerebral Vasomotor Reactivity (VMR) is a property of cerebral hemodynamics that protects from cerebrovascular disease. We aimed to explore the VMR longitudinal changes in patients with acute non-disabling stroke/Transient Ischemic Attack (TIA) to understand its implication in stroke ethiopatogenesis. METHODS VMR by Transcranial Doppler Breath Holding test was performed at 48-72 h from stroke onset (T1) and after 6 months (T2) on MCA of the non-affected hemisphere and PCA of the affected hemisphere. RESULTS We consecutively enrolled 124 patients with a median age of 66.0 (IQR 54.75-74.25) years with a median NIHSS 2 (IQR 1-3). Both MCA (1.38 %/s SD 0.58) and PCA (1.35 %/s SD 0.75) BHI at T1 did not differ among different stroke subtypes (p=0.067 and p=0.350; N=124). MCA and PCA BHI decreased from T1 to T2 (respectively 1.39 %/s SD 0.56 vs 1.18%/s SD 0.44 and 1.30 %/s SD 0.69 vs 1.20 %/s SD 0.51; N=109) regardless of ethiopatogenesis (respectively p<0.0001 and p=0.111). CONCLUSION The VMR is higher in acute phase than at 6 months in patients with non-disabling stroke/TIA, regardless of etiopathogenesis. The higher VMR in acute phase could be sustained by an increased Cerebral Blood Flow due to collateral circulation activation supporting the ischemic zone.
Collapse
Affiliation(s)
- Nicoletta Brunelli
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | - Claudia Altamura
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | - Marilena Marcosano
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | - Sergio Soeren Rossi
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | | | | | - Marcel Bach-Pages
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy; Unit of Radiology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Rome, Italy.
| | - Fabrizio Vernieri
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| |
Collapse
|
3
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
4
|
Peng Q, Liu X, Ai M, Huang L, Li L, Liu W, Zhao C, Hu C, Zhang L. Cerebral autoregulation-directed optimal blood pressure management reduced the risk of delirium in patients with septic shock. JOURNAL OF INTENSIVE MEDICINE 2024; 4:376-383. [PMID: 39035614 PMCID: PMC11258506 DOI: 10.1016/j.jointm.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 07/23/2024]
Abstract
Background When resuscitating patients with septic shock, cerebrovascular reactivity parameters are calculated by monitoring regional cerebral oxygen saturation (rSO2) using near-infrared spectroscopy to determine the optimal blood pressure. Here, we aimed to analyze the impact of cerebral autoregulation-directed optimal blood pressure management on the incidence of delirium and the prognosis of patients with septic shock. Methods This prospective randomized controlled clinical study was conducted in the Xiangya Hospital of Central South University, China. Fifty-one patients with septic shock (December 2020-May 2022) were enrolled and randomly allocated to the experimental (n=26) or control group (n=25). Using the ICM+ software, we monitored the dynamic changes in rSO2 and mean arterial pressure (MAP) and calculated the cerebrovascular reactivity parameter tissue oxygen reactivity index to determine the optimal blood pressure to maintain normal cerebral autoregulation function during resuscitation in the experimental group. The control group was treated according to the Surviving Sepsis Campaign Guidelines. Differences in the incidence of delirium and 28-day mortality between the two groups were compared, and the risk factors were analyzed. Results The 51 patients, including 39 male and 12 female, had a mean age of (57.0±14.9) years. The incidence of delirium was 40.1% (23/51), and the 28-day mortality rate was 29.4% (15/51). The mean MAP during the first 24 h of intensive care unit (ICU) admission was higher ([84.5±12.2] mmHg vs. [77.4±11.8] mmHg, P=0.040), and the incidence of delirium was lower (30.8% vs. 60.0%, P=0.036) in the experimental group than in the control group. The use of cerebral autoregulation-directed optimal blood pressure (odds ratio [OR]=0.090, 95% confidence interval [CI]: 0.009 to 0.923, P=0.043) and length of ICU stay (OR=1.473, 95% CI: 1.093 to 1.985, P=0.011) were risk factors for delirium during septic shock. Vasoactive drug dose (OR=8.445, 95% CI: 1.26 to 56.576, P=0.028) and partial pressure of oxygen (PaO2) (OR=0.958, 95% CI: 0.921 to 0.996, P=0.032) were the risk factors for 28-day mortality. Conclusions The use of cerebral autoregulation-directed optimal blood pressure management during shock resuscitation reduces the incidence of delirium in patients with septic shock. Trial Registration ClinicalTrials.gov ldentifer: NCT03879317.
Collapse
Affiliation(s)
- Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xia Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilin Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Srichawla BS. Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning. World J Crit Care Med 2024; 13:91397. [PMID: 38855276 PMCID: PMC11155497 DOI: 10.5492/wjccm.v13.i2.91397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 06/03/2024] Open
Abstract
Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
6
|
Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. Br J Anaesth 2024; 132:1260-1273. [PMID: 38471987 DOI: 10.1016/j.bja.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Cerebral blood flow (CBF) autoregulation is the physiologic process whereby blood supply to the brain is kept constant over a range of cerebral perfusion pressures ensuring a constant supply of metabolic substrate. Clinical methods for monitoring CBF autoregulation were first developed for neurocritically ill patients and have been extended to surgical patients. These methods are based on measuring the relationship between cerebral perfusion pressure and surrogates of CBF or cerebral blood volume (CBV) at low frequencies (<0.05 Hz) of autoregulation using time or frequency domain analyses. Initially intracranial pressure monitoring or transcranial Doppler assessment of CBF velocity was utilised relative to changes in cerebral perfusion pressure or mean arterial pressure. A more clinically practical approach utilising filtered signals from near infrared spectroscopy monitors as an estimate of CBF has been validated. In contrast to the traditional teaching that 50 mm Hg is the autoregulation threshold, these investigations have found wide interindividual variability of the lower limit of autoregulation ranging from 40 to 90 mm Hg in adults and 20-55 mm Hg in children. Observational data have linked impaired CBF autoregulation metrics to adverse outcomes in patients with traumatic brain injury, ischaemic stroke, subarachnoid haemorrhage, intracerebral haemorrhage, and in surgical patients. CBF autoregulation monitoring has been described in both cardiac and noncardiac surgery. Data from a single-centre randomised study in adults found that targeting arterial pressure during cardiopulmonary bypass to above the lower limit of autoregulation led to a reduction of postoperative delirium and improved memory 1 month after surgery compared with usual care. Together, the growing body of evidence suggests that monitoring CBF autoregulation provides prognostic information on eventual patient outcomes and offers potential for therapeutic intervention. For surgical patients, personalised blood pressure management based on CBF autoregulation data holds promise as a strategy to improve patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Eric L Vu
- Department of Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth M Brady
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charles W Hogue
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Olsen MH, Riberholt CG, Berg RMG, Møller K. Myths and methodologies: Assessment of dynamic cerebral autoregulation by the mean flow index. Exp Physiol 2024; 109:614-623. [PMID: 38376110 PMCID: PMC10988760 DOI: 10.1113/ep091327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The mean flow index-usually referred to as Mx-has been used for assessing dynamic cerebral autoregulation (dCA) for almost 30 years. However, concerns have arisen regarding methodological consistency, construct and criterion validity, and test-retest reliability. Methodological nuances, such as choice of input (cerebral perfusion pressure, invasive or non-invasive arterial pressure), pre-processing approach and artefact handling, significantly influence mean flow index values, and previous studies correlating mean flow index with other established dCA metrics are confounded by inherent methodological flaws like heteroscedasticity, while the mean flow index also fails to discriminate individuals with presumed intact versus impaired dCA (discriminatory validity), and its prognostic performance (predictive validity) across various conditions remains inconsistent. The test-retest reliability, both within and between days, is generally poor. At present, no single approach for data collection or pre-processing has proven superior for obtaining the mean flow index, and caution is advised in the further use of mean flow index-based measures for assessing dCA, as current evidence does not support their clinical application.
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
| | - Christian Gunge Riberholt
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Department of Brain and Spinal Cord Injury, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
| | - Ronan M. G. Berg
- Department of Clinical Physiology and Nuclear MedicineCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Centre for Physical Activity ResearchCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital − RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Chen Y, Ma Y, Qin J, Wei X, Yang Y, Yuan Y, Yan F, Huo X, Han L. Blood pressure variability predicts poor outcomes in acute stroke patients without thrombolysis: a systematic review and meta-analysis. J Neurol 2024; 271:1160-1169. [PMID: 38036920 DOI: 10.1007/s00415-023-12054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Stroke is a significant medical condition, and blood pressure stands out as the most prevalent treatable risk factor associated with it. Researches link blood pressure variability (BPV) with stroke; however, the specific relationship between with the outcomes of stroke patients remains unclear. As blood pressure variability and mean blood pressure are interrelated, it remains uncertain whether BPV adds additional information to understanding the outcome of acute stroke patients. OBJECTIVE To systematically review studies investigating the association between blood pressure variability and prognosis in acute stroke patients. METHODS Embase, PubMed, Web of Science, and the Cochrane Library were searched for English language full-text articles from the inception to 1 January 2023. Stroke patients aged ≥ 18 years were included in this analysis. Stroke types were not restricted. RESULTS This meta-analysis shows that higher systolic blood pressure variability is linked to a higher risk of poor outcome, including function disability, mortality, early neurological deterioration, and stroke recurrence, among acute stroke patients without thrombolysis. A higher diastolic blood pressure variability is linked with to a higher risk of mortality and functional disability. CONCLUSIONS This review reveals that blood pressure variability is a novel and clinically relevant risk factor for stroke patients' outcome. Future studies should investigate how best to measure and define BPV in acute stroke. Larger studies are warranted to provide more robust evidence in this area.
Collapse
Affiliation(s)
- Yajing Chen
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yuxia Ma
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu Province, China.
| | - Jiangxia Qin
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoqin Wei
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yiyi Yang
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yue Yuan
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Fanghong Yan
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou, No.130 Jianlan New Village, Lanzhou, Gansu Province, China
| | - Lin Han
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China.
- Department of Nursing, Gansu Provincial Hospital, No. 204 Donggang West Road, Lanzhou, Gansu Province, China.
| |
Collapse
|
9
|
Sainbhi AS, Marquez I, Gomez A, Stein KY, Amenta F, Vakitbilir N, Froese L, Zeiler FA. Regional disparity in continuously measured time-domain cerebrovascular reactivity indices: a scoping review of human literature. Physiol Meas 2023; 44:07TR02. [PMID: 37336236 DOI: 10.1088/1361-6579/acdfb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Objective: Cerebral blood vessels maintaining relatively constant cerebral blood flow (CBF) over wide range of systemic arterial blood pressure (ABP) is referred to as cerebral autoregulation (CA). Impairments in CA expose the brain to pressure-passive flow states leading to hypoperfusion and hyperperfusion. Cerebrovascular reactivity (CVR) metrics refer to surrogate metrics of pressure-based CA that evaluate the relationship between slow vasogenic fluctuations in cerebral perfusion pressure/ABP and a surrogate for pulsatile CBF/cerebral blood volume.Approach: We performed a systematically conducted scoping review of all available human literature examining the association between continuous CVR between more than one brain region/channel using the same CVR index.Main Results: In all the included 22 articles, only handful of transcranial doppler (TCD) and near-infrared spectroscopy (NIRS) based metrics were calculated for only two brain regions/channels. These metrics found no difference between left and right sides in healthy volunteer, cardiac surgery, and intracranial hemorrhage patient studies. In contrast, significant differences were reported in endarterectomy, and subarachnoid hemorrhage studies, while varying results were found regarding regional disparity in stroke, traumatic brain injury, and multiple population studies.Significance: Further research is required to evaluate regional disparity using NIRS-based indices and to understand if NIRS-based indices provide better regional disparity information than TCD-based indices.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Arthursson H, Kjellberg G, Tovedal T, Lennmyr F. Cerebral oxygenation and autoregulation during rewarming on cardiopulmonary bypass. Perfusion 2023; 38:523-529. [PMID: 35038948 PMCID: PMC10026164 DOI: 10.1177/02676591211064961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rewarming on cardiopulmonary bypass (CPB) is associated with increased metabolic demands; however, it remains unclear whether cerebral autoregulation is affected during this phase. This RCT aims to describe the effects of 20% supranormal, compared to normal CPB flow, on monitoring signs of inadequate perfusion, oxygenation, and disturbed cerebral autoregulation, during the rewarming phase of CPB. METHOD Thirty two patients scheduled for coronary artery bypass grafting were allocated to a Control group (n = 16) receiving a CPB pump flow corresponding to preoperatively measured cardiac output, and an Intervention group (n = 16) receiving the corresponding CPB pump flow increased by 20% during rewarming. Cerebral Oximetry Index (COx) was calculated with the aid of Near Infrared Spectroscopy. RESULTS Twenty five patients were included in the data. Results show a median COx value of 0.0 (IQR -0.33-0.5) (Control) and 0.0 (IQR -0.15-0.25) (Intervention), respectively; p = .85 with individual variations within groups. The median cerebral perfusion pressure (CPP) was 55 (52-58) (Control) and 61 (54-66) mmHg (Intervention); p = .08. No significant difference in rSO2 values was observed between the groups (58.5% (50-61) versus 64% (58-68); p = .06). CONCLUSION The present study showed no difference between increased and normal CPB pump flow with respect to cerebral autoregulation during rewarming. Large variations in cerebral autoregulation were seen at individual level.
Collapse
Affiliation(s)
- Henrik Arthursson
- Department of Thoracic Surgery and Anesthesiology, 151670Uppsala University Hospital, Uppsala, Sweden
| | - Gunilla Kjellberg
- Department of Thoracic Surgery and Anesthesiology, 151670Uppsala University Hospital, Uppsala, Sweden
| | - Thomas Tovedal
- Department of Thoracic Surgery and Anesthesiology, 151670Uppsala University Hospital, Uppsala, Sweden
| | - Fredrik Lennmyr
- Department of Thoracic Surgery and Anesthesiology, 151670Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
11
|
Johnson AC. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023; 54:673-685. [PMID: 36848422 PMCID: PMC9991081 DOI: 10.1161/strokeaha.122.038263] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
The incidence of age-related dementia is increasing as the world population ages and due to lack of effective treatments for dementia. Vascular contributions to cognitive impairment and dementia are increasing as the prevalence of pathologies associated with cerebrovascular disease rise, including chronic hypertension, diabetes, and ischemic stroke. The hippocampus is a bilateral deep brain structure that is central to learning, memory, and cognitive function and highly susceptible to hypoxic/ischemic injury. Compared with cortical brain regions such as the somatosensory cortex, less is known about the function of the hippocampal vasculature that is critical in maintaining neurocognitive health. This review focuses on the hippocampal vascular supply, presenting what is known about hippocampal hemodynamics and blood-brain barrier function during health and disease, and discusses evidence that supports its contribution to vascular cognitive impairment and dementia. Understanding vascular-mediated hippocampal injury that contributes to memory dysfunction during healthy aging and cerebrovascular disease is essential to develop effective treatments to slow cognitive decline. The hippocampus and its vasculature may represent one such therapeutic target to mitigate the dementia epidemic.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
12
|
Mankoo A, Roy S, Davies A, Panerai RB, Robinson TG, Brassard P, Beishon LC, Minhas JS. The role of the autonomic nervous system in cerebral blood flow regulation in stroke: A review. Auton Neurosci 2023; 246:103082. [PMID: 36870192 DOI: 10.1016/j.autneu.2023.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Stroke is a pathophysiological condition which results in alterations in cerebral blood flow (CBF). The mechanism by which the brain maintains adequate CBF in presence of fluctuating cerebral perfusion pressure (CPP) is known as cerebral autoregulation (CA). Disturbances in CA may be influenced by a number of physiological pathways including the autonomic nervous system (ANS). The cerebrovascular system is innervated by adrenergic and cholinergic nerve fibers. The role of the ANS in regulating CBF is widely disputed owing to several factors including the complexity of the ANS and cerebrovascular interactions, limitations to measurements, variation in methods to assess the ANS in relation to CBF as well as experimental approaches that can or cannot provide insight into the sympathetic control of CBF. CA is known to be impaired in stroke however the number of studies investigating the mechanisms by which this occurs are limited. This literature review will focus on highlighting the assessment of the ANS and CBF via indices derived from the analyses of heart rate variability (HRV), and baroreflex sensitivity (BRS), and providing a summary of both clinical and animal model studies investigating the role of the ANS in influencing CA in stroke. Understanding the mechanisms by which the ANS influences CBF in stroke patients may provide the foundation for novel therapeutic approaches to improve functional outcomes in stroke patients.
Collapse
Affiliation(s)
- Alex Mankoo
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Sankanika Roy
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom.
| | - Aaron Davies
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Ronney B Panerai
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Thompson G Robinson
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada; Research center of the Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
| | - Lucy C Beishon
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Jatinder S Minhas
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
13
|
Yang J, Ruesch A, Kainerstorfer JM. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:015002. [PMID: 36699625 PMCID: PMC9868286 DOI: 10.1117/1.nph.10.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Cerebrovascular impedance (CVI) is related to cerebral autoregulation (CA), which is the mechanism of the brain to maintain near-constant cerebral blood flow (CBF) despite changes in cerebral perfusion pressure (CPP). Changes in blood vessel impedance enable the stabilization of blood flow. Due to the interplay between CVI and CA, assessment of CVI may enable quantification of CA and may serve as a biomarker for cerebral health. AIM We developed a method to quantify CVI based on a combination of diffuse correlation spectroscopy (DCS) and continuous wave (CW) near-infrared spectroscopy (NIRS). Data on healthy human volunteers were used to validate the method. APPROACH A combined high-speed DCS-NIRS system was developed, allowing for simultaneous, noninvasive blood flow, and volume measurements in the same tissue compartment. Blood volume was used as a surrogate measurement for blood pressure and CVI was calculated as the spectral ratio of blood volume and blood flow changes. This technique was validated on six healthy human volunteers undergoing postural changes to elicit CVI changes. RESULTS Averaged across the six subjects, a decrease in CVI was found for a head of bed (HOB) tilting of - 40 deg . These impedance changes were reversed when returning to the horizontal (0 deg) HOB baseline. CONCLUSIONS We developed a combined DCS-NIRS system, which measures CBF and volume changes, which we demonstrate can be used to measure CVI. Using CVI as a metric of CA may be beneficial for assessing cerebral health, especially in patients where CPP is altered.
Collapse
Affiliation(s)
- Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Alexander Ruesch
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
14
|
Becker S, Klein F, König K, Mathys C, Liman T, Witt K. Assessment of dynamic cerebral autoregulation in near-infrared spectroscopy using short channels: A feasibility study in acute ischemic stroke patients. Front Neurol 2022; 13:1028864. [PMID: 36479048 PMCID: PMC9719939 DOI: 10.3389/fneur.2022.1028864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/04/2022] [Indexed: 10/07/2023] Open
Abstract
Introduction In acute ischemic stroke, progressive impairment of cerebral autoregulation (CA) is frequent and associated with unfavorable outcomes. Easy assessment of cerebral blood flow and CA in stroke units bedside tools like near-infrared spectroscopy (NIRS) might improve early detection of CA deterioration. This study aimed to assess dynamic CA with multichannel CW-NIRS in acute ischemic stroke (AIS) patients compared to agematched healthy controls. Methods CA reaction was amplified by changes in head of bed position. Long- and short channels were used to monitor systemic artery pressure- and intracranial oscillations simultaneously. Gain and phase shift in spontaneous low- and very low-frequency oscillations (LFO, VLFO) of blood pressure were assessed. Results A total of 54 participants, 27 with AIS and 27 age-matched controls were included. Gain was significantly lower in the AIS group in the LFO range (i) when the upper body was steadily elevated to 30. and (ii) after its abrupt elevation to 30°. No other differences were found between groups. Discussion This study demonstrates the feasibility of NIRS short channels to measure CA in AIS patients in one single instrument. A lower gain in AIS might indicate decreased CA activity in this pilot study, but further studies investigating the role of NIRS short channels in AIS are needed.
Collapse
Affiliation(s)
- Sabeth Becker
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Franziska Klein
- Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Department of Psychology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Katja König
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelical Hospital, Oldenburg, Germany
- Research Centre Neurosensory Science, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Thomas Liman
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
- Institute of Radiology and Neuroradiology, Evangelical Hospital, Oldenburg, Germany
| |
Collapse
|
15
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
16
|
D'Andrea A, Fabiani D, Cante L, Caputo A, Sabatella F, Riegler L, Alfano G, Russo V. Transcranial Doppler ultrasound: Clinical applications from neurological to cardiological setting. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1212-1223. [PMID: 36218211 DOI: 10.1002/jcu.23344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Transcranial Doppler (TCD) ultrasonography is a rapid, noninvasive, real-time, and low-cost imaging technique. It is performed with a low-frequency (2 MHz) probe in order to evaluate the cerebral blood flow (CBF) and its pathological alterations, through specific acoustic windows. In the recent years, TCD use has been expanded across many clinical settings. Actually, the most widespread indication for TCD exam is represented by the diagnosis of paradoxical embolism, due to patent foramen ovale, in young patients with cryptogenic stroke. In addition, TCD has also found useful applications in neurological care setting, including the following: cerebral vasospasm following acute subarachnoid hemorrhage, brain trauma, cerebrovascular atherosclerosis, and evaluation of CBF and cerebral autoregulation after an ischemic stroke event. The present review aimed to describe the most recent evidences of TCD utilization from neurological to cardiological setting.
Collapse
Affiliation(s)
- Antonello D'Andrea
- Cardiology Unit, Umberto I Hospital, University of Campania "Luigi Vanvitelli", Nocera Inferiore, Italy
| | - Dario Fabiani
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Luigi Cante
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Adriano Caputo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Francesco Sabatella
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| | - Lucia Riegler
- Cardiology Unit, Umberto I Hospital, University of Campania "Luigi Vanvitelli", Nocera Inferiore, Italy
| | - Gabriele Alfano
- Cardiology Unit, Umberto I Hospital, University of Campania "Luigi Vanvitelli", Nocera Inferiore, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, Naples, Italy
| |
Collapse
|
17
|
Sympathovagal imbalance in early ischemic stroke is linked to impaired cerebral autoregulation and increased infarct volumes. Auton Neurosci 2022; 241:102986. [DOI: 10.1016/j.autneu.2022.102986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022]
|
18
|
Al-Kawaz M, Cho SM, Gottesman RF, Suarez JI, Rivera-Lara L. Impact of Cerebral Autoregulation Monitoring in Cerebrovascular Disease: A Systematic Review. Neurocrit Care 2022; 36:1053-1070. [PMID: 35378665 DOI: 10.1007/s12028-022-01484-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Cerebral autoregulation (CA) prevents brain injury by maintaining a relatively constant cerebral blood flow despite fluctuations in cerebral perfusion pressure. This process is disrupted consequent to various neurologic pathologic processes, which may result in worsening neurologic outcomes. Herein, we aim to highlight evidence describing CA changes and the impact of CA monitoring in patients with cerebrovascular disease, including ischemic stroke, intracerebral hemorrhage (ICH), and aneurysmal subarachnoid hemorrhage (aSAH). The study was preformed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. English language publications were identified through a systematic literature conducted in Ovid Medline, PubMed, and Embase databases. The search spanned the dates of each database's inception through January 2021. We selected case-control studies, cohort observational studies, and randomized clinical trials for adult patients (≥ 18 years) who were monitored with continuous metrics using transcranial Doppler, near-infrared spectroscopy, and intracranial pressure monitors. Of 2799 records screened, 48 studies met the inclusion criteria. There were 23 studies on ischemic stroke, 18 studies on aSAH, 5 studies on ICH, and 2 studies on systemic hypertension. CA impairment was reported after ischemic stroke but generally improved after tissue plasminogen activator administration and successful mechanical thrombectomy. Persistent impairment in CA was associated with hemorrhagic transformation, malignant cerebral edema, and need for hemicraniectomy. Studies that investigated large ICHs described bilateral CA impairment up to 12 days from the ictus, especially in the presence of small vessel disease. In aSAH, impairment of CA was associated with angiographic vasospasm, delayed cerebral ischemia, and poor functional outcomes at 6 months. This systematic review highlights the available evidence for CA disruption during cerebrovascular diseases and its possible association with long-term neurological outcome. CA may be disrupted even before acute stroke in patients with untreated chronic hypertension. Monitoring CA may help in establishing individualized management targets in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Mais Al-Kawaz
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sung-Min Cho
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Jose I Suarez
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lucia Rivera-Lara
- Division of Stroke and Neurocritical Care, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
19
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
20
|
Nogueira RC, Aries M, Minhas JS, H Petersen N, Xiong L, Kainerstorfer JM, Castro P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J Cereb Blood Flow Metab 2022; 42:430-453. [PMID: 34515547 PMCID: PMC8985432 DOI: 10.1177/0271678x211045222] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute stroke is associated with high morbidity and mortality. In the last decades, new therapies have been investigated with the aim of improving clinical outcomes in the acute phase post stroke onset. However, despite such advances, a large number of patients do not demonstrate improvement, furthermore, some unfortunately deteriorate. Thus, there is a need for additional treatments targeted to the individual patient. A potential therapeutic target is interventions to optimize cerebral perfusion guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). This narrative led to the development of the INFOMATAS (Identifying New targets FOr Management And Therapy in Acute Stroke) project, designed to foster interventions directed towards understanding and improving hemodynamic aspects of the cerebral circulation in acute cerebrovascular disease states. This comprehensive review aims to summarize relevant studies on assessing dCA in patients suffering acute ischemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage. The review will provide to the reader the most consistent findings, the inconsistent findings which still need to be explored further and discuss the main limitations of these studies. This will allow for the creation of a research agenda for the use of bedside dCA information for prognostication and targeted perfusion interventions.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil
| | - Marcel Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nils H Petersen
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
| | - Pedro Castro
- Department of Neurology, Faculty of Medicine of University of Porto, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
21
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
22
|
Pham T, Fernandez C, Blaney G, Tgavalekos K, Sassaroli A, Cai X, Bibu S, Kornbluth J, Fantini S. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics. Front Neurol 2021; 12:745987. [PMID: 34867729 PMCID: PMC8637213 DOI: 10.3389/fneur.2021.745987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Cerebral autoregulation limits the variability of cerebral blood flow (CBF) in the presence of systemic arterial blood pressure (ABP) changes. Monitoring cerebral autoregulation is important in the Neurocritical Care Unit (NCCU) to assess cerebral health. Here, our goal is to identify optimal frequency-domain near-infrared spectroscopy (FD-NIRS) parameters and apply a hemodynamic model of coherent hemodynamics spectroscopy (CHS) to assess cerebral autoregulation in healthy adult subjects and NCCU patients. Methods: In five healthy subjects and three NCCU patients, ABP oscillations at a frequency around 0.065 Hz were induced by cyclic inflation-deflation of pneumatic thigh cuffs. Transfer function analysis based on wavelet transform was performed to measure dynamic relationships between ABP and oscillations in oxy- (O), deoxy- (D), and total- (T) hemoglobin concentrations measured with different FD-NIRS methods. In healthy subjects, we also obtained the dynamic CBF-ABP relationship by using FD-NIRS measurements and the CHS model. In healthy subjects, an interval of hypercapnia was performed to induce cerebral autoregulation impairment. In NCCU patients, the optical measurements of autoregulation were linked to individual clinical diagnoses. Results: In healthy subjects, hypercapnia leads to a more negative phase difference of both O and D oscillations vs. ABP oscillations, which are consistent across different FD-NIRS methods and are highly correlated with a more negative phase difference CBF vs. ABP. In the NCCU, a less negative phase difference of D vs. ABP was observed in one patient as compared to two others, indicating a better autoregulation in that patient. Conclusions: Non-invasive optical measurements of induced phase difference between D and ABP show the strongest sensitivity to cerebral autoregulation. The results from healthy subjects also show that the CHS model, in combination with FD-NIRS, can be applied to measure the CBF-ABP dynamics for a better direct measurement of cerebral autoregulation.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Cristianne Fernandez
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Xuemei Cai
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Steve Bibu
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Joshua Kornbluth
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
23
|
Lee H, Yun HJ, Ding Y. Timing is everything: Exercise therapy and remote ischemic conditioning for acute ischemic stroke patients. Brain Circ 2021; 7:178-186. [PMID: 34667901 PMCID: PMC8459690 DOI: 10.4103/bc.bc_35_21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise is a promising rehabilitative strategy for acute ischemic stroke. Preclinical trials suggest that exercise restores cerebral blood circulation and re-establishes the blood–brain barrier’s integrity with neurological function and motor skill improvement. Clinical trials demonstrated that exercise improves prognosis and decreases complications after ischemic events. Due to these encouraging findings, early exercise rehabilitation has been quickly adopted into stroke rehabilitation guidelines. Unfortunately, preclinical trials have failed to warn us of an adverse effect. Trials with very early exercise rehabilitation (within 24 h of ischemic attack) found an inferior prognosis at 3 months. It was not immediately clear as to why exercise was detrimental when performed very early while it was ameliorative just a few short days later. This review aimed to explore the potential mechanisms of harm seen in very early exercise administered to acute ischemic stroke patients. To begin, the mechanisms of exercise’s benefit were transposed onto the current understanding of acute ischemic stroke’s pathogenesis, specifically during the acute and subacute phases. Then, exercise rehabilitation’s mechanisms were compared to that of remote ischemic conditioning (RIC). This comparison may reveal how RIC may be providing clinical benefit during the acute phase of ischemic stroke when exercise proved to be harmful.
Collapse
Affiliation(s)
- Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
24
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
25
|
Castro P, Serrador J, Rocha I, Chaves PC, Sorond F, Azevedo E. Heart failure patients have enhanced cerebral autoregulation response in acute ischemic stroke. J Thromb Thrombolysis 2021; 50:753-761. [PMID: 32488831 DOI: 10.1007/s11239-020-02166-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cerebrovascular effects of a failing heart-pump are largely unknown. Chronic heart failure (HF) might cause pre-conditioning effect on cerebral hemodynamics but not study so far in acute stroke. We aimed to investigate if HF induces effects in dynamic cerebral autoregulation (CA), within 6 h of symptom-onset through chronic stage of ischemic stroke. We enrolled 50 patients with acute ischemic stroke. Groups with (N = 8) and without HF and 20 heathy controls were compared. Arterial blood pressure (Finometer) and cerebral blood flow velocity (transcranial Doppler) were monitored within 6 and at 24 h from symptom-onset and at 3 months. We assessed dynamic CA by transfer function analysis and cardiac disease markers. HF associated with higher phase (better dynamic CA) at ischemic hemisphere within 6 (p = 0.042) and at 24 h (p = 0.006) but this effect was not evident at 3 months (p > 0.05). Gain and coherence trends were similar between groups. We found a positive correlation between phase and admission troponin I levels (Spearman's r = 0.348, p = 0.044). Our findings advances on the knowledge of how brain and heart interact in acute ischemic stroke by showing a sustained dynamic cerebral autoregulation response in HF patients mainly with severe aortic valve disease. Understanding the physiological mechanisms that govern this complex interplay can be useful to find novel therapeutic targets which can improve outcome in ischemic stroke.
Collapse
Affiliation(s)
- Pedro Castro
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal. .,Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - Jorge Serrador
- Veterans Biomedical Institute and War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Healthcare System, East Orange, USA.,New Jersey Medical School, Newark, NJ, USA
| | - Isabel Rocha
- Cardiovascular Autonomic Function Lab, Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Paulo Castro Chaves
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal
| | - Farzaneh Sorond
- Division of Stroke and Neurocritical, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elsa Azevedo
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200-319, Porto, Portugal.,Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
26
|
Sebök M, van Niftrik CHB, Wegener S, Luft A, Regli L, Fierstra J. Agreement of novel hemodynamic imaging parameters for the acute and chronic stages of ischemic stroke: a matched-pair cohort study. Neurosurg Focus 2021; 51:E12. [PMID: 34198249 DOI: 10.3171/2021.4.focus21125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In symptomatic patients with cerebrovascular steno-occlusive disease, impaired blood oxygenation level-dependent cerebrovascular reactivity (BOLD-CVR) and increased flow velocity of the P2 segment of the posterior cerebral artery (PCA-P2) on transcranial Doppler (TCD) ultrasonography have been introduced as emerging clinical imaging parameters to identify patients at high risk for recurrent ischemic events. Since hemodynamic physiology differs between the acute and chronic stages of ischemic stroke, the authors sought to investigate whether those parameters have merit for both the acute and chronic stages of ischemic stroke. METHODS From a prospective database, patients who underwent BOLD-CVR and TCD examinations in the acute stroke stage (< 10 days) were matched to patients in the chronic stroke stage (> 3 months). A linear regression analysis for both groups was performed between ipsilateral PCA-P2 systolic flow velocity and BOLD-CVR of the ipsilateral (affected) hemisphere, the ipsilateral middle cerebral artery (MCA) territory, and the ipsilateral steal volume (i.e., paradoxical BOLD-CVR response). The resulting slopes and intercepts were statistically compared to evaluate differences between groups. RESULTS Forty matched patient pairs were included. Regression analysis showed no significant difference for either the intercept (p = 0.84) or the slope (p = 0.85) between PCA-P2 flow velocity and BOLD-CVR as measured for the ipsilateral (affected) hemisphere. Similarly, no significant difference was seen between PCA-P2 flow velocity and BOLD-CVR of the ipsilateral MCA territory (intercept, p = 0.72; slope, p = 0.36) or between PCA-P2 flow velocity and steal volume (intercept, p = 0.59; slope, p = 0.34). CONCLUSIONS The study results indicated that the relationship between ipsilateral PCA-P2 systolic flow velocity and BOLD-CVR remains the same during the acute and chronic stages of ischemic stroke. This provides further support that these novel hemodynamic imaging parameters may have merit to assess the risk for recurrent ischemic events for a wide ischemic stroke population. PCA-P2 systolic flow velocity, in particular, may be a highly practical screening tool, independent of ischemic stroke stage.
Collapse
Affiliation(s)
- Martina Sebök
- Departments of1Neurosurgery and.,2Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | | | - Susanne Wegener
- 2Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.,3Neurology, and
| | - Andreas Luft
- 2Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.,3Neurology, and
| | - Luca Regli
- Departments of1Neurosurgery and.,2Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Jorn Fierstra
- Departments of1Neurosurgery and.,2Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
27
|
Nogueira RC, Beishon L, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral Autoregulation in Ischemic Stroke: From Pathophysiology to Clinical Concepts. Brain Sci 2021; 11:511. [PMID: 33923721 PMCID: PMC8073938 DOI: 10.3390/brainsci11040511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke (IS) is one of the most impacting diseases in the world. In the last decades, new therapies have been introduced to improve outcomes after IS, most of them aiming for recanalization of the occluded vessel. However, despite this advance, there are still a large number of patients that remain disabled. One interesting possible therapeutic approach would be interventions guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). Supportive hemodynamic therapies aiming to optimize perfusion in the ischemic area could protect the brain and may even extend the therapeutic window for reperfusion therapies. However, the knowledge of how to implement these therapies in the complex pathophysiology of brain ischemia is challenging and still not fully understood. This comprehensive review will focus on the state of the art in this promising area with emphasis on the following aspects: (1) pathophysiology of CA in the ischemic process; (2) methodology used to evaluate CA in IS; (3) CA studies in IS patients; (4) potential non-reperfusion therapies for IS patients based on the CA concept; and (5) the impact of common IS-associated comorbidities and phenotype on CA status. The review also points to the gaps existing in the current research to be further explored in future trials.
Collapse
Affiliation(s)
- Ricardo C. Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Neurology, Hospital Nove de Julho, São Paulo 01409-002, Brazil
| | - Lucy Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
28
|
Lam MY, Haunton VJ, Nath M, Panerai RB, Robinson TG. The effect of head positioning on cerebral hemodynamics: Experiences in mild ischemic stroke. J Neurol Sci 2020; 419:117201. [PMID: 33137635 DOI: 10.1016/j.jns.2020.117201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE It is generally agreed that optimal head positioning is an important consideration in acute stroke management regime. However, there is limited literature investigating the effect of head positioning changes on cerebrovascular physiology in acute ischemic stroke (AIS). We aim to assess cerebral autoregulation (CA) and associated hemodynamic responses during gradual head positioning (GHP) changes, between AIS and controls. METHODS Cerebral blood flow velocity (CBFV, transcranial Doppler), blood pressure (BP, Finometer) and end-tidal CO2 (capnography) were recorded between lying flat (0°) and sitting up (30°) head position, in 16 controls (8 women, mean age 57 ± 16 yrs) and 15 AIS patients (7 women, 69 ± 8 yrs). AIS patients carried out three visits at 13.3 ± 6.9 h, 4.8 ± 3.2 days and 93.9 ± 11.5 days from symptom onset, respectively. RESULTS AIS patients were significantly hypertensive (p = 0.005), hypocapnic (p < 0.001), and had lower CBFV (p = 0.02) compared to controls, in both head positions. When comparing 5-min FLAT to SIT head position, reductions in BP (both AIS and controls, p < 0.001) and CBFV (controls only: dominant hemisphere p = 0.001 and non-dominant hemisphere p = 0.05) were demonstrated. Of note, a reduction in autoregulation index was observed in AIS, after 5-min SIT head positioning, at all 3 visits (p = 0.018). CONCLUSION Key hemodynamic changes were demonstrated when the head position changes from 5-min FLAT to SIT head position (GHP) in mildly affected stroke patients. Importantly, these were associated with non-significant changes in CBFV but reduced measures of CA following AIS, which may be relevant in determining the optimal head position and the ideal timing of mobilisation. Clinical Trial Registration - URL: http://www.clinicaltrials.gov. Unique Identifier: NCT02932540.
Collapse
Affiliation(s)
- Man Y Lam
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom.
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom; National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Mintu Nath
- Medical Statistics Team, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom; National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, LE1 5WW Leicester, United Kingdom; National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
29
|
The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients. Brain Sci 2020; 10:brainsci10090582. [PMID: 32842651 PMCID: PMC7564038 DOI: 10.3390/brainsci10090582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
(1) Background: Larger blood pressure variability (BPv) in the first 3 h post-stroke onset increases pathophysiological effects such as infarct size, and leads to greater risk of disability, comorbidities and mortality at 90 days. However, there is limited information on the relationship between systemic and cerebral haemodynamic and variability parameters. (2) Objectives: This study determined the effect of a gradual change in head position (GHP) on cerebral blood flow velocity variability (CBFVv) and mean arterial blood pressure variability (MABPv), in healthy controls and acute ischaemic stroke (AIS) patients. Methods: CBFVv and MABPv were expressed as standard deviation (SD) and coefficient of variation. A total of 16 healthy controls (mean age 57 ± 16 years) were assessed over two visits, 12 ± 8 days apart, and 15 AIS patients (mean age 69 ± 8.5 years) were assessed over three visits (V1: 13.3 ± 6.9 h, V2: 4.9 ± 3.2 days and V3: 93.9 ± 11.5 days post-stroke). (3) Results: In response to GHP, MABPv does not initially increase, but over time MABPv showed a significant increase in response to GHP in AIS (visits 2 and 3) and controls (visit 2). Additionally, in response to GHP in AIS, CBFVv increased in the affected hemisphere. Lastly, in AIS, a significant correlation between CBFVv and MABPv, assessed by SD, was seen in the unaffected hemisphere, whereas this relationship was not demonstrated in the affected hemisphere. (4) Conclusions: To our knowledge, this is the first study to analyse the relationship between CBFVv and MABPv. Shedding light on the effect of head position on the relationship between cerebral blood flow and blood pressure is important to improve our understanding of the underlying effects of cerebral autoregulation impairment. This early mechanistic study provides evidence supporting supine head positioning in healthy controls and stroke patients, through demonstration of a reduction of MABPv and increase in CBFVv.
Collapse
|
30
|
Nogueira RC, Lam MY, Llwyd O, Salinet ASM, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral autoregulation and response to intravenous thrombolysis for acute ischemic stroke. Sci Rep 2020; 10:10554. [PMID: 32601359 PMCID: PMC7324382 DOI: 10.1038/s41598-020-67404-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
We hypothesized that knowledge of cerebral autoregulation (CA) status during recanalization therapies could guide further studies aimed at neuroprotection targeting penumbral tissue, especially in patients that do not respond to therapy. Thus, we assessed CA status of patients with acute ischemic stroke (AIS) during intravenous r-tPA therapy and associated CA with response to therapy. AIS patients eligible for intravenous r-tPA therapy were recruited. Cerebral blood flow velocities (transcranial Doppler) from middle cerebral artery and blood pressure (Finometer) were recorded to calculate the autoregulation index (ARI, as surrogate for CA). National Institute of Health Stroke Score was assessed and used to define responders to therapy (improvement of ≥ 4 points on NIHSS measured 24–48 h after therapy). CA was considered impaired if ARI < 4. In 38 patients studied, compared to responders, non-responders had significantly lower ARI values (affected hemisphere: 5.0 vs. 3.6; unaffected hemisphere: 5.4 vs. 4.4, p = 0.03) and more likely to have impaired CA (32% vs. 62%, p = 0.02) during thrombolysis. In conclusion, CA during thrombolysis was impaired in patients who did not respond to therapy. This variable should be investigated as a predictor of the response to therapy and to subsequent neurological outcome.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, 01246-904, Brazil. .,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil.
| | - Man Y Lam
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK
| | - Osian Llwyd
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK
| | - Angela S M Salinet
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, 01246-904, Brazil
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, 01246-904, Brazil
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE3 9QP, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE3 9QP, UK
| |
Collapse
|
31
|
The Effect of Stroke on Middle Cerebral Artery Blood Flow Velocity Dynamics During Exercise. J Neurol Phys Ther 2020; 43:212-219. [PMID: 31449179 PMCID: PMC6744289 DOI: 10.1097/npt.0000000000000289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Previous work demonstrates that older adults have a lower response in the middle cerebral artery velocity (MCAv) to an acute bout of moderate-intensity exercise when compared with young adults. However, no information exists regarding MCAv response to exercise after stroke. We tested whether MCAv response to an acute bout of moderate-intensity exercise differed between participants 3 months after stroke and an age- and sex-matched control group of older adults (CON). A secondary objective was to compare MCAv response between the stroke- and non-stroke-affected MCAv. METHODS Using transcranial Doppler ultrasound, we recorded MCAv during a 90-second baseline (BL) followed by a 6-minute moderate-intensity exercise bout using a recumbent stepper. Heart rate (HR), end-tidal CO2 (PETCO2), and beat-to-beat mean arterial blood pressure (MAP) were additional variables of interest. The MCAv response measures included BL, peak response amplitude (Amp), time delay (TD), and time constant (τ). RESULTS The Amp was significantly lower in the stroke-affected MCAv compared with CON (P < 0.01) and in the nonaffected MCAv compared with CON (P = 0.03). No between-group differences were found between TD and τ. No significant differences were found during exercise for PETCO2 and MAP while HR was lower in participants with stroke (P < 0.01). Within the group of participants with stroke, no differences were found between the stroke-affected and non-stroke-affected sides for any measures. DISCUSSION AND CONCLUSIONS Resolution of the dynamic response profile has the potential to increase our understanding of the cerebrovascular control mechanisms and test cerebrovascular response to physical therapy-driven interventions such as exercise.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A284).
Collapse
|
32
|
Song X, Zhao X, Liebeskind DS, Xu W, Zhang J, Wei C, Xu Y, Wang L, Zheng Z, Wu J. Associations between systemic blood pressure parameters and intraplaque hemorrhage in symptomatic intracranial atherosclerosis: a high-resolution MRI-based study. Hypertens Res 2020; 43:688-695. [PMID: 32037397 DOI: 10.1038/s41440-020-0411-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022]
Abstract
The associations between blood pressure parameters and intracranial vulnerable plaques have not been fully elucidated. The purpose of this study was to investigate the associations between systemic blood pressure parameters, as well as their variability, and intraplaque hemorrhage (IPH) in stroke patients with intracranial atherosclerosis. We retrospectively analyzed the high-resolution MRI data set of intracranial atherosclerosis from a comprehensive stroke center. The atherosclerotic plaque burden and presence of IPH in each vessel were obtained from vessel wall imaging. Blood pressure parameters in the first week of admission were used. The systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and their variability (standard deviation [SD] and coefficient of variation [CV]) were compared between the IPH (+) and IPH (-) groups. Logistic regression analysis was used to demonstrate the correlations between different blood pressure parameters and IPH. The results indicated that SBP and PP were associated with multiple plaques and severe luminal stenosis after adjusting for confounders, with OR = 1.071, 95% CI: (1.044-1.098) and OR = 1.039, 95% CI: (1.019-1.060) for SBP and OR = 1.058, 95% CI: (1.027-1.089) and OR = 1.044, 95% CI: (1.019-1.070) for PP, respectively. SBP was associated with IPH after adjusting for cardiovascular risk factors, with OR = 1.021, 95% CI: (1.003-1.038), but not after correcting for plaque burden, with OR = 1.014, 95% CI: (0.996-1.032). No associations between blood pressure variability and atherosclerotic plaque burden or IPH were detected in this study. In conclusion, SBP is associated with IPH after adjusting for cardiovascular risk factors but not after further correction for atherosclerotic plaque burden. The association between blood pressure variability and intracranial atherosclerosis requires further study.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xihai Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - David S Liebeskind
- Neurovascular Imaging Research Core and Stroke Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wendeng Xu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chenming Wei
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yilan Xu
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lixue Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China. .,Tsinghua University Hospital, Beijing, China.
| |
Collapse
|
33
|
Increased blood pressure variability during the subacute phase of ischemic stroke is associated with poor functional outcomes at 3 months. Sci Rep 2020; 10:811. [PMID: 31964961 PMCID: PMC6972830 DOI: 10.1038/s41598-020-57661-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023] Open
Abstract
Thus far, it is well known that increased blood pressure variability may exacerbate stroke outcomes. Blood pressure in the acute phase would be influenced by both reactive hypertension to stroke and intrinsic blood pressure reactivity. Thus, we aimed to evaluate the association between blood pressure variability and outcomes at 3 months using ambulatory blood pressure monitoring in ischemic stroke patients in the subacute phase after reactive hypertension subsided. We retrospectively examined 626 consecutive patients with acute ischemic stroke who underwent 24-hour ambulatory blood pressure monitoring during the subacute phase of stroke (median, 9 days from onset). The variability in blood pressure was evaluated by assessing the standard deviation and coefficient of variation of systolic and diastolic blood pressure. The primary outcome was functional status at 3 months. A poor outcome was defined as a modified Rankin scale score of 3 or more and a good outcome as 2 or less. We assessed the functional outcome at 3 months in 497 patients (79.4%). The mean systolic and diastolic blood pressure levels were not associated with functional outcome. The multivariable analysis revealed that increases in the standard deviations of systolic and diastolic blood pressure, coefficient of variation of diastolic blood pressure, and morning blood pressure surge were associated with poor outcome. Blood pressure variability during the subacute phase of ischemic stroke can be a useful prognostic indicator of poor functional outcome at 3 months in patients with acute ischemic stroke.
Collapse
|
34
|
Elting JW, Sanders ML, Panerai RB, Aries M, Bor-Seng-Shu E, Caicedo A, Chacon M, Gommer ED, Van Huffel S, Jara JL, Kostoglou K, Mahdi A, Marmarelis VZ, Mitsis GD, Müller M, Nikolic D, Nogueira RC, Payne SJ, Puppo C, Shin DC, Simpson DM, Tarumi T, Yelicich B, Zhang R, Claassen JAHR. Assessment of dynamic cerebral autoregulation in humans: Is reproducibility dependent on blood pressure variability? PLoS One 2020; 15:e0227651. [PMID: 31923919 PMCID: PMC6954074 DOI: 10.1371/journal.pone.0227651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/22/2019] [Indexed: 01/02/2023] Open
Abstract
We tested the influence of blood pressure variability on the reproducibility of dynamic cerebral autoregulation (DCA) estimates. Data were analyzed from the 2nd CARNet bootstrap initiative, where mean arterial blood pressure (MABP), cerebral blood flow velocity (CBFV) and end tidal CO2 were measured twice in 75 healthy subjects. DCA was analyzed by 14 different centers with a variety of different analysis methods. Intraclass Correlation (ICC) values increased significantly when subjects with low power spectral density MABP (PSD-MABP) values were removed from the analysis for all gain, phase and autoregulation index (ARI) parameters. Gain in the low frequency band (LF) had the highest ICC, followed by phase LF and gain in the very low frequency band. No significant differences were found between analysis methods for gain parameters, but for phase and ARI parameters, significant differences between the analysis methods were found. Alternatively, the Spearman-Brown prediction formula indicated that prolongation of the measurement duration up to 35 minutes may be needed to achieve good reproducibility for some DCA parameters. We conclude that poor DCA reproducibility (ICC<0.4) can improve to good (ICC > 0.6) values when cases with low PSD-MABP are removed, and probably also when measurement duration is increased.
Collapse
Affiliation(s)
- Jan Willem Elting
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Marit L. Sanders
- Department of Geriatric Medicine, Radboudumc Alzheimer Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences and Leicester Biomedical Research Centre in Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
| | - Marcel Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Edson Bor-Seng-Shu
- Department of Neurology, Hospital das Clinicas University of Sao Paulo, Sao Paulo, Brazil
| | - Alexander Caicedo
- Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Max Chacon
- Departemento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Erik D. Gommer
- Department of Clinical Neurophysiology, University of Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Van Huffel
- Department of Electronic Engineering, Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - José L. Jara
- Departemento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Kyriaki Kostoglou
- Department of Electrical, Computer and Software Engineering, McGill University, Montreal, Canada
| | - Adam Mahdi
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Vasilis Z. Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | | | - Martin Müller
- Department of Neurology, Luzerner Kantonsspital, Luzern, Switzerland
| | - Dragana Nikolic
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| | - Ricardo C. Nogueira
- Department of Neurology, Hospital das Clinicas University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen J. Payne
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Corina Puppo
- Departamento de Emergencia, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Dae C. Shin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - David M. Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| | - Takashi Tarumi
- The Institute for Exercise and Environmental Medicine, Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bernardo Yelicich
- Departamento de Emergencia, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Rong Zhang
- The Institute for Exercise and Environmental Medicine, Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | |
Collapse
|
35
|
Marmarelis VZ, Shin DC, Oesterreich M, Mueller M. Quantification of dynamic cerebral autoregulation and CO 2 dynamic vasomotor reactivity impairment in essential hypertension. J Appl Physiol (1985) 2020; 128:397-409. [PMID: 31917625 DOI: 10.1152/japplphysiol.00620.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of dynamic cerebral autoregulation (DCA) in essential hypertension has received considerable attention because of its clinical importance. Several studies have examined the dynamic relationship between spontaneous beat-to-beat arterial blood pressure data and contemporaneous cerebral blood flow velocity measurements (obtained via transcranial Doppler at the middle cerebral arteries) in the form of a linear input-output model using transfer function analysis. This analysis is more reliable when the contemporaneous effects of changes in blood CO2 tension are also taken into account, because of the significant effects of CO2 dynamic vasomotor reactivity (DVR) upon cerebral flow. In this article, we extract such input-output predictive models from spontaneous time series hemodynamic data of 24 patients with essential hypertension and 20 normotensive control subjects under resting conditions, using the novel methodology of principal dynamic modes (PDMs) that achieves improved estimation accuracy over previous methods for relatively short and noisy data. The obtained data-based models are subsequently used to compute indexes and markers that quantify DCA and DVR in each subject or patient and therefore can be used to assess the effects of essential hypertension. These model-based DCA and DVR indexes were properly defined to capture the observed effects of DCA and VR and found to be significantly different (P < 0.05) in the hypertensive patients. We also found significant differences between patients and control subjects in the relative contribution of three PDMs to the model output prediction, a finding that offers the prospect of identifying the physiological mechanisms affected by essential hypertension when the PDMs are interpreted in terms of specific physiological mechanisms.NEW & NOTEWORTHY This article presents novel model-based methodology for obtaining diagnostic indexes of dynamic cerebral autoregulation and dynamic vasomotor reactivity in hypertension.
Collapse
Affiliation(s)
- Vasilis Z Marmarelis
- Biomedical Simulations Resource Center, University of Southern California, Los Angeles, California
| | - Dae C Shin
- Biomedical Simulations Resource Center, University of Southern California, Los Angeles, California
| | | | - Martin Mueller
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| |
Collapse
|
36
|
Salinet AS, Silva NC, Caldas J, de Azevedo DS, de-Lima-Oliveira M, Nogueira RC, Conforto AB, Texeira MJ, Robinson TG, Panerai RB, Bor-Seng-Shu E. Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: Influence of severity? J Cereb Blood Flow Metab 2019; 39:2277-2285. [PMID: 30117360 PMCID: PMC6827118 DOI: 10.1177/0271678x18794835] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We aimed to assess cerebral autoregulation (CA) and neurovascular coupling (NVC) in stroke patients of differing severity comparing responses to healthy controls and explore the association between CA and NVC with functional outcome. Patients admitted with middle cerebral artery (MCA) stroke and healthy controls were recruited. Stroke severity was defined by the National Institutes of Health Stroke Scale (NIHSS) scores: ≤4 mild, 5-15 moderate and ≥16 severe. Transcranial Doppler ultrasound and Finometer recorded MCA cerebral blood flow velocity (CBFv) and blood pressure, respectively, over 5 min baseline and 1 min passive movement of the elbow to calculate the autoregulation index (ARI) and CBFv amplitude responses to movement. All participants were followed up for three months. A total of 87 participants enrolled in the study, including 15 mild, 27 moderate and 13 severe stroke patients, and 32 control subjects. ARI was lower in the affected hemisphere (AH) of moderate and severe stroke groups. Decreased NVC was seen bilaterally in all stroke groups. CA and NVC correlated with stroke severity and functional outcome. CBFv regulation is significantly impaired in acute stroke, and further compromised with increasing stroke severity. Preserved CA and NVC in the acute period were associated with improved three-month functional outcome.
Collapse
Affiliation(s)
- Angela Sm Salinet
- Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil.,Engineering, Modelling and Applied Social Sciences Centre, Federal ABC University, Sao Bernardo do Campo, Sao Paulo, Brazil
| | - Nathália Cc Silva
- Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil
| | - Juliana Caldas
- Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil
| | - Daniel S de Azevedo
- Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil
| | - Marcelo de-Lima-Oliveira
- Neurosurgical Division, Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil
| | - Adriana B Conforto
- Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil.,Brain Institute, Albert Einstein Israelite Hospital, São Paulo, Brazil
| | - Manoel J Texeira
- Engineering, Modelling and Applied Social Sciences Centre, Federal ABC University, Sao Bernardo do Campo, Sao Paulo, Brazil
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Edson Bor-Seng-Shu
- Neurosurgical Division, Neurology Department, School of Medicine, University of São Paulo, Hospital das Clinicas, São Paulo, Brazil
| |
Collapse
|
37
|
Intharakham K, Beishon L, Panerai RB, Haunton VJ, Robinson TG. Assessment of cerebral autoregulation in stroke: A systematic review and meta-analysis of studies at rest. J Cereb Blood Flow Metab 2019; 39:2105-2116. [PMID: 31433714 PMCID: PMC6827119 DOI: 10.1177/0271678x19871013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynamic cerebral autoregulation (dCA) has been shown to be impaired in cerebrovascular diseases, but there is a lack of consistency across different studies and the different metrics that have been proposed for assessment. We performed a systematic review and meta-analyses involving assessment of dCA in ischemic and hemorrhagic stroke. Thirty-three articles describing assessment of dCA with transfer function analysis (TFA) were included, with meta-analyses performed for derived parameters of gain, phase and autoregulation index (ARI). A total of 1233 patients were pooled from 12 studies on acute ischemic stroke (AIS) and two studies on intracerebral hemorrhage (ICH). In comparison with controls, TFA phase of AIS was significantly reduced (nine studies), in both hemispheres (P < 0.0001). TFA gain provided inconsistent results, with reduced values in relation to controls, for both hemispheres. The ARI (six studies) was reduced compared to controls, in both hemispheres (P < 0.005). In ICH, gain showed higher values compared to controls for the unaffected (P = 0.01), but not for the affected hemisphere. Meta-analyses in AIS have demonstrated that phase and the ARI index can show highly significant differences in comparison with healthy controls, while ICH have been limited by the scarcity of studies and the diversity of units adopted for gain.
Collapse
Affiliation(s)
| | - Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
38
|
Lam MY, Haunton VJ, Robinson TG, Panerai RB. Dynamic cerebral autoregulation measurement using rapid changes in head positioning: experiences in acute ischemic stroke and healthy control populations. Am J Physiol Heart Circ Physiol 2019; 316:H673-H683. [DOI: 10.1152/ajpheart.00550.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ideal technique for dynamic cerebral autoregulation (dCA) assessment in critically ill patients should provide considerable variability in blood pressure (BP) but without the need for patient cooperation. We proposed using rapid head positioning (RHP) over spontaneous BP fluctuations for dCA assessment in patients with acute ischemic stroke (AIS). Cerebral blood velocity (transcranial Doppler), beat-to-beat BP (Finometer), and end-tidal CO2 (capnography) were recorded during 5-min baseline and RHP in 16 controls (8 women and 8 men, mean age: 57 ± 16 yr) and 15 patients with AIS (7 women and 8 men, mean age: 69 ± 8 yr) at two (12 ± 8 days) and three visits (13.3 ± 6.9 h, 4.8 ± 3.2 days, and 93.9 ± 11.5 days from the symptom onset), respectively. All participants were able to complete the RHP protocol without difficulty. Compared with controls, patients with AIS were hypocapnic (all visits, P < 0.0024) and hypertensive ( visit 1, P = 0.011), although BP gradually reduced after the acute phase. RHP demonstrated greater beat-to-beat BP variability (BPV) in controls ( visits 1 and 2, P < 0.001) but not in patients with AIS at any visit. Compared with controls, a reduced autoregulation index (ARI) was demonstrated in patients with AIS, at visit 2 for the baseline recording but not at other visits or during RHP. The area under the receiver-operating curve was 0.53 and 0.54 for baseline and RHP, respectively. The RHP paradigm required minimal patient cooperation and could be considered a feasible alternative for assessing dCA, mainly in conditions leading to increased BPV. The lack of BPV increase in AIS with RHP deserves further investigation. NEW & NOTEWORTHY This study used rapid head positioning (RHP) to enhance blood pressure (BP) variability (BPV) to improve BP signal-to-noise ratio and reliability of dynamic cerebral autoregulation (dCA). RHP was well accepted by controls and acute ischemic stroke (AIS); the increased BPV induced in controls was not observed in AIS, suggesting BPV at rest was already elevated. RHP did not improve detection of impaired CA in AIS; further work is needed to understand the different responses observed.
Collapse
Affiliation(s)
- Man Y. Lam
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria J. Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G. Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
39
|
Ma H, Guo ZN, Jin H, Yan X, Liu J, Lv S, Zhang P, Sun X, Yang Y. Preliminary Study of Dynamic Cerebral Autoregulation in Acute Ischemic Stroke: Association With Clinical Factors. Front Neurol 2018; 9:1006. [PMID: 30534111 PMCID: PMC6275286 DOI: 10.3389/fneur.2018.01006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/06/2018] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose: Dynamic cerebral autoregulation (dCA) is probably impaired in the acute and even subacute phases after acute ischemic stroke (AIS); however, the relationship between relevant clinical factors and dCA after AIS has not been investigated. The identification of possible determinants may therefore provide potential therapeutic targets to improve dCA in AIS. Methods: This study enrolled 67 consecutive patients diagnosed with AIS within 3 days from symptom onset. Serial measurements were performed 1–3 days (measurement 1) and 7–10 days (measurement 2) after the onset. Middle cerebral artery blood flow velocities and simultaneous arterial blood pressure (ABP) were recorded continuously with transcranial Doppler combined with a servo-controlled finger plethysmograph. Transfer function analysis was used to derive dCA parameters, phase difference (PD), and coherence in low-frequency range (0.06–0.12 Hz). Univariate and multivariate linear regression analyses were conducted to determine the relationship between clinical factors and PD within the two time points of measurements. Multivariate logistic regression was performed to reveal the relationship between PD and clinical outcomes. Results: Bilateral PD was significantly lower (indicating impaired dCA) in AIS patients, both in measurement 1 and measurement 2 when compared with those of healthy controls (all P < 0.001). After controlling for relevant clinical factors, in measurement 1, age (β = −0.29, P = 0.01), recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis (β = 0.25, P = 0.034), subtype of large-artery atherosclerosis (LAA) (β = −0.31, P = 0.007), and uric acid level (β = −0.32, P = 0.009) were significant independent predictors of ipsilateral PD. In measurement 2, subtype of LAA (β = −0.28, P = 0.049) and uric acid level (β = −0.43, P = 0.005) were still significant predictive values for ipsilateral PD. After adjusting for age and National Institutes of Health Stroke Scale at admission, ipsilateral PD >35.37° in measurement 2 was independent predictor of good clinical outcomes (adjusted OR = 6.97, 95% CI: 1.27–38.14, P = 0.03). Conclusion: DCA was sustained to be bilaterally impaired in the acute and even subacute phase after AIS. Patients who receiving rt-PA thrombolysis tended to have a better dCA in the acute phase. Increasing age, subtype of LAA, and higher uric acid level had prognostic value for disturbed autoregulation. A relatively preserved dCA may predict good clinical outcomes.
Collapse
Affiliation(s)
- Hongyin Ma
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Xiuli Yan
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Shan Lv
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Selb J, Wu KC, Sutin J, Lin PY(I, Farzam P, Bechek S, Shenoy A, Patel AB, Boas DA, Franceschini MA, Rosenthal ES. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients. NEUROPHOTONICS 2018; 5:045005. [PMID: 30450363 PMCID: PMC6233866 DOI: 10.1117/1.nph.5.4.045005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/24/2018] [Indexed: 05/13/2023]
Abstract
Monitoring of cerebral blood flow (CBF) and autoregulation are essential components of neurocritical care, but continuous noninvasive methods for CBF monitoring are lacking. Diffuse correlation spectroscopy (DCS) is a noninvasive diffuse optical modality that measures a CBF index ( CBF i ) in the cortex microvasculature by monitoring the rapid fluctuations of near-infrared light diffusing through moving red blood cells. We tested the feasibility of monitoring CBF i with DCS in at-risk patients in the Neurosciences Intensive Care Unit. DCS data were acquired continuously for up to 20 h in six patients with aneurysmal subarachnoid hemorrhage, as permitted by clinical care. Mean arterial blood pressure was recorded synchronously, allowing us to derive autoregulation curves and to compute an autoregulation index. The autoregulation curves suggest disrupted cerebral autoregulation in most patients, with the severity of disruption and the limits of preserved autoregulation varying between subjects. Our findings suggest the potential of the DCS modality for noninvasive, long-term monitoring of cerebral perfusion, and autoregulation.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng Wu
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jason Sutin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Pei-Yi (Ivy) Lin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Sophia Bechek
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Apeksha Shenoy
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Aman B. Patel
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to: Maria Angela Franceschini, E-mail:
| | - Eric S. Rosenthal
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| |
Collapse
|
41
|
Truijen J, Rasmussen LS, Kim YS, Stam J, Stok WJ, Pott FC, van Lieshout JJ. Cerebral autoregulatory performance and the cerebrovascular response to head-of-bed positioning in acute ischaemic stroke. Eur J Neurol 2018; 25:1365-e117. [PMID: 29935041 PMCID: PMC6220945 DOI: 10.1111/ene.13737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
Abstract
Background and purpose Cerebrovascular responses to head‐of‐bed positioning in patients with acute ischaemic stroke are heterogeneous, questioning the applicability of general recommendations on head positioning. Cerebral autoregulation is impaired to various extents after acute stroke, although it is unknown whether this affects cerebral perfusion during posture change. We aimed to elucidate whether the cerebrovascular response to head position manipulation depends on autoregulatory performance in patients with ischaemic stroke. Methods The responses of bilateral transcranial Doppler ultrasound‐determined cerebral blood flow velocity (CBFV) and local cerebral blood volume (CBV), assessed by near‐infrared spectroscopy of total hemoglobin tissue concentration ([total Hb]), to head‐of‐bed lowering from 30° to 0° were determined in 39 patients with acute ischaemic stroke and 17 reference subjects from two centers. Cerebrovascular autoregulatory performance was expressed as the phase difference of the arterial pressure‐to‐CBFV transfer function. Results Following head‐of‐bed lowering, CBV increased in the reference subjects only ([total Hb]: + 2.1 ± 2.0 vs. + 0.4 ± 2.6 μM; P < 0.05), whereas CBFV did not change in either group. CBV increased upon head‐of‐bed lowering in the hemispheres of patients with autoregulatory performance <50th percentile compared with a decrease in the hemispheres of patients with better autoregulatory performance ([total Hb]: +1.0 ± 1.3 vs. −0.5 ± 1.0 μM; P < 0.05). The CBV response was inversely related to autoregulatory performance (r = −0.68; P < 0.001) in the patients, whereas no such relation was observed for CBFV. Conclusion This study is the first to provide evidence that cerebral autoregulatory performance in patients with acute ischaemic stroke affects the cerebrovascular response to changes in the position of the head.
Collapse
Affiliation(s)
- J Truijen
- Department of Internal Medicine, Waterlandziekenhuis, Purmerend.,Medical Biology, Laboratory for Cardiovascular Physiology, AMC Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L S Rasmussen
- Bispebjerg Hospital Research Unit for Anesthesia and Intensive Care, University of Copenhagen, Copenhagen, Denmark
| | - Y S Kim
- Medical Biology, Laboratory for Cardiovascular Physiology, AMC Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Nephrology, VU University Medical Center, Amsterdam
| | - J Stam
- Stroke Unit, Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam
| | - W J Stok
- Medical Biology, Laboratory for Cardiovascular Physiology, AMC Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - F C Pott
- Bispebjerg Hospital Research Unit for Anesthesia and Intensive Care, University of Copenhagen, Copenhagen, Denmark
| | - J J van Lieshout
- Medical Biology, Laboratory for Cardiovascular Physiology, AMC Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, The Medical School, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, UK
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Cerebral autoregulation (CA) is a mechanism that maintains cerebral blood flow constant despite fluctuations in systemic arterial blood pressure. This review will focus on recent studies that measured CA non-invasively in acute cerebrovascular events, a feature unique to the transcranial Doppler ultrasound. We will summarize the rationale for CA assessment in acute cerebrovascular disorders and specifically evaluate the existing data on the value of CA measures in relation to clinical severity, guiding management decisions, and prognostication. RECENT FINDINGS Existing data suggest that CA is generally impaired in various cerebrovascular disorders. In patients with small vessel ischemic stroke, CA has been shown to be impaired in both hemispheres, whereas in large territorial strokes, CA impairment has been limited to the affected hemisphere. In these latter patients, impaired CA is also predictive of secondary complications such as hemorrhagic transformation and cerebral edema, hence worse functional outcome. In patients with carotid stenosis, impaired CA may also be associated with a higher ipsilateral hemispheric stroke risk. CA is also strongly linked to outcome in patients with intracranial hemorrhage. In patients with intraparenchymal hemorrhage, CA impairment correlated with clinical and imaging severity, whereas in those with subarachnoid hemorrhage, CA measures have a predictive value for development of delayed cerebral ischemia and radiographic vasospasm. Assessment of CA is increasingly more accessible in acute cerebrovascular disorders and promises to be a valuable measure in guiding hemodynamic management and predicting secondary complication, thus enhancing the care of these patients in the acute setting.
Collapse
Affiliation(s)
- Pedro Castro
- Department of Neurology, São João Hospital Center, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Farzaneh Sorond
- Department of Neurology, Division of Stroke and Neurocritical, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 12-140, Chicago, IL, 60611, USA.
| |
Collapse
|
43
|
Parthasarathy AB, Gannon KP, Baker WB, Favilla CG, Balu R, Kasner SE, Yodh AG, Detre JA, Mullen MT. Dynamic autoregulation of cerebral blood flow measured non-invasively with fast diffuse correlation spectroscopy. J Cereb Blood Flow Metab 2018; 38:230-240. [PMID: 29231781 PMCID: PMC5951022 DOI: 10.1177/0271678x17747833] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022]
Abstract
Cerebral autoregulation (CA) maintains cerebral blood flow (CBF) in the presence of systemic blood pressure changes. Brain injury can cause loss of CA and resulting dysregulation of CBF, and the degree of CA impairment is a functional indicator of cerebral tissue health. Here, we demonstrate a new approach to noninvasively estimate cerebral autoregulation in healthy adult volunteers. The approach employs pulsatile CBF measurements obtained using high-speed diffuse correlation spectroscopy (DCS). Rapid thigh-cuff deflation initiates a chain of responses that permits estimation of rates of dynamic autoregulation in the cerebral microvasculature. The regulation rate estimated with DCS in the microvasculature (median: 0.26 s-1, inter quartile range: 0.19 s-1) agrees well (R = 0.81, slope = 0.9) with regulation rates measured by transcranial Doppler ultrasound (TCD) in the proximal vasculature (median: 0.28 s-1, inter quartile range: 0.10 s-1). We also obtained an index of systemic autoregulation in concurrently measured scalp microvasculature. Systemic autoregulation begins later than cerebral autoregulation and exhibited a different rate (0.55 s-1, inter quartile range: 0.72 s-1). Our work demonstrates the potential of diffuse correlation spectroscopy for bedside monitoring of cerebral autoregulation in the microvasculature of patients with brain injury.
Collapse
Affiliation(s)
- Ashwin B Parthasarathy
- Department of Physics and Astronomy,
University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical Engineering,
University of South Florida, Tampa, FL, USA
| | - Kimberly P Gannon
- Department of Neurology, University of
Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Department of Anesthesiology and
Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ramani Balu
- Department of Neurology, University of
Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kasner
- Department of Neurology, University of
Pennsylvania, Philadelphia, PA, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy,
University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of
Pennsylvania, Philadelphia, PA, USA
| | - Michael T Mullen
- Department of Neurology, University of
Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Comparing Different Recording Lengths of Dynamic Cerebral Autoregulation: 5 versus 10 Minutes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7803426. [PMID: 29662898 PMCID: PMC5831790 DOI: 10.1155/2018/7803426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/31/2017] [Indexed: 11/30/2022]
Abstract
We compared the dynamic cerebral autoregulation (dCA) indices between 5- and 10-minute data lengths by analyzing 37 patients with ischemic stroke and 51 controls in this study. Correlation coefficient (Mx) and transfer function analysis were applied for dCA analysis. Mx and phase shift in all frequency bands were not significantly different between 5- and 10-minute recordings [mean difference: Mx = 0.02; phase shift of very low frequency (0.02–0.07 Hz) = 0.3°, low frequency (0.07–0.20 Hz) = 0.6°, and high frequency (0.20–0.50 Hz) = 0.1°]. However, the gains in all frequency bands of a 5-minute recording were slightly but significantly higher than those of a 10-minute recording (mean difference of gain: very low frequency = 0.05 cm/s/mmHg, low frequency = 0.11 cm/s/mmHg, and high frequency = 0.14 cm/s/mmHg). The intraclass correlation coefficients between all dCA indices of 5- and 10-minute recordings were favorable, especially in Mx (0.93), phase shift in very low frequency (0.87), and gain in very low frequency (0.94). The areas under the receiver operating characteristic curve for stroke diagnosis between 5- and 10-minute recordings were not different. We concluded that dCA assessed by using a 5-minute recording is not significantly different from that using a 10-minute recording in the clinical application.
Collapse
|
45
|
Zoghi A, Petramfar P, Nikseresht A, Sakhaee E. Investigation of ischemic and demyelinating lesions by cerebral vasoreactivity based on transcranial Doppler sonography: a comparative study. Neuropsychiatr Dis Treat 2018; 14:2323-2328. [PMID: 30254443 PMCID: PMC6141114 DOI: 10.2147/ndt.s150062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Variations of cerebral blood flow in response to hypoxia and hyperoxia in different disease conditions can provide new insights into disease etiopathogenesis. This study aimed to determine the characteristics of cerebral vasoreactivity for ischemia and demyelination. MATERIALS AND METHODS This case-control study included: 28 patients with lacunar infarctions verified by history, physical examination, and MRI; 28 age- and sex-matched healthy controls; 28 patients with relapsing-remitting multiple sclerosis (MS), based on McDonald criteria; and 28 age- and sex-matched healthy controls for the MS group. Transcranial Doppler sonography was undertaken in all subjects to calculate the mean flow velocity (MFV) of the right middle cerebral artery (MCA) and, after a breath-holding (BH) maneuver, the breath-holding index (BHI) was determined. RESULTS There was no significant difference of BHI and changes of MFV of the MCA in MS patients compared to controls (1.02 ± 0.4 vs 1.02 ± 0.3, p = 0.993; and 16.8 ± 8.1 vs 11.3 ± 10.8, p = 0.057). BHI in patients with lacunar infarctions was significantly lower (0.8 ± 0.4 vs 1.2 ± 0.3, p < 0.001) compared to controls. The BHI (p = 0.040) and variations of MFV of MCA (p = 0.007) in MS patients were significantly higher than in patients with lacunar infarctions. The vasoreactivity of demyelinating lesions was higher than that of ischemic ones. CONCLUSION Therefore, cerebral vasoreactivity determined by transcranial Doppler could be utilized for differentiating demyelinating from ischemic lesions.
Collapse
Affiliation(s)
- Anahita Zoghi
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Petramfar
- Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Alireza Nikseresht
- Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Ehsan Sakhaee
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Abstract
Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Cristina Duque
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Steven K Feske
- Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
47
|
Bindra J, Pham P, Aneman A, Chuan A, Jaeger M. Non-invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using Near Infrared Spectroscopy and the Finometer Photoplethysmograph. Neurocrit Care 2017; 24:442-7. [PMID: 26490778 DOI: 10.1007/s12028-015-0200-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Near infrared spectroscopy (NIRS) enables continuous monitoring of dynamic cerebrovascular autoregulation, but this methodology relies on invasive blood pressure monitoring (iABP). We evaluated the agreement between a NIRS based autoregulation index calculated from invasive blood pressure monitoring, and an entirely non-invasively derived autoregulation index from continuous non-invasive blood pressure monitoring (nABP) using the Finometer photoplethysmograph. METHODS Autoregulation was calculated as the moving correlation coefficient between iABP and rSO2 (iTOx) or nABP and rSO2 (nTOx). The blood pressure range where autoregulation is optimal was also determined for invasive (iABPOPT) and non-invasive blood pressure measurements (nABPOPT). RESULTS 102 simultaneous bilateral measurements of iTOx and nTOx were performed in 19 patients (median 2 per patient, range 1-9) with different acute pathologies (sepsis, cardiac arrest, head injury, stroke). Average iTOx was 0.01 ± 0.13 and nTOx was 0.01 ± 0.11. The correlation between iTOx and nTOx was r = 0.87, p < 0.001, 95 % agreement ± 0.12, bias = 0.005. The interhemispheric asymmetry of autoregulation was similarly assessed with iTOx and nTOx (r = 0.81, p < 0.001). Correlation between iABPOPT and nABPOPT was r = 0.47, p = 0.003, 95 % agreement ± 32.1 mmHg, bias = 5.8 mmHg. Coherence in the low frequency spectrum between iABP and nABP was 0.86 ± 0.08 and gain was 1.32 ± 0.77. CONCLUSIONS The results suggest that dynamic cerebrovascular autoregulation can be continuously assessed entirely non-invasively using nTOx. This allows for autoregulation assessment using spontaneous blood pressure fluctuations in conditions where iABP is not routinely monitored. The nABPOPT might deviate from iABPOPT, likely because of discordance between absolute nABP and iABP readings.
Collapse
Affiliation(s)
- Jessica Bindra
- University of New South Wales, South Western Sydney Clinical School, Locked Bag 7103, Liverpool BC, NSW, 1871, Australia
| | - Paul Pham
- University of New South Wales, South Western Sydney Clinical School, Locked Bag 7103, Liverpool BC, NSW, 1871, Australia
| | - Anders Aneman
- University of New South Wales, South Western Sydney Clinical School, Locked Bag 7103, Liverpool BC, NSW, 1871, Australia.,Department of Intensive Care Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - Alwin Chuan
- University of New South Wales, South Western Sydney Clinical School, Locked Bag 7103, Liverpool BC, NSW, 1871, Australia.,Department of Anaesthesia, Liverpool Hospital, Liverpool, NSW, Australia
| | - Matthias Jaeger
- University of New South Wales, South Western Sydney Clinical School, Locked Bag 7103, Liverpool BC, NSW, 1871, Australia. .,Department of Neurosurgery, Wollongong Hospital, Wollongong, NSW, Australia.
| |
Collapse
|
48
|
Ku HL, Wang JK, Lee HC, Lane TJ, Liu IC, Chen YC, Lee YT, Lin IC, Lin CP, Hu CJ, Chi NF. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study. Schizophr Res 2017; 188:63-67. [PMID: 28108227 DOI: 10.1016/j.schres.2017.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation.
Collapse
Affiliation(s)
- Hsiao-Lun Ku
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jiunn-Kae Wang
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of Sleep Medicine, College of Medicine, Taipei, Taiwan
| | - Timothy Joseph Lane
- Brain and Consciousness Research Center, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Graduate Institute of Humanities in Medicine, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan; Institute of European and American Studies, Academia Sinica, Taipei, Taiwan; Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - I-Chao Liu
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Chan Chen
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yao-Tung Lee
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - I-Cheng Lin
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chia-Pei Lin
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cerebrovascular Research Center, Taipei Medical University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cerebrovascular Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Siegel JS, Shulman GL, Corbetta M. Measuring functional connectivity in stroke: Approaches and considerations. J Cereb Blood Flow Metab 2017; 37:2665-2678. [PMID: 28541130 PMCID: PMC5536814 DOI: 10.1177/0271678x17709198] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent research has demonstrated the importance of global changes to the functional organization of brain network following stroke. Resting functional magnetic resonance imaging (R-fMRI) is a non-invasive tool that enables the measurement of functional connectivity (FC) across the entire brain while placing minimal demands on the subject. For these reasons, it is a uniquely appealing tool for studying the distant effects of stroke. However, R-fMRI studies rely on a number of premises that cannot be assumed without careful validation in the context of stroke. Here, we describe strategies to identify and mitigate confounds specific to R-fMRI research in cerebrovascular disease. Five main topics are discussed: (a) achieving adequate co-registration of lesioned brains, (b) identifying and removing hemodynamic lags in resting BOLD, (c) identifying other vascular disruptions that affect the resting BOLD signal, (d) selecting an appropriate control cohort, and (e) acquiring sufficient fMRI data to reliably identify FC changes. For each topic, we provide guidelines for steps to improve the interpretability and reproducibility of FC-stroke research. We include a table of confounds and approaches to identify and mitigate each. Our recommendations extend to any research using R-fMRI to study diseases that might alter cerebrovascular flow and dynamics or brain anatomy.
Collapse
Affiliation(s)
- Joshua S Siegel
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA.,2 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA.,3 Department of Psychology, Washington University School of Medicine, St. Louis, USA.,4 Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, USA.,5 Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
50
|
Hori D, Nomura Y, Ono M, Joshi B, Mandal K, Cameron D, Kocherginsky M, Hogue CW. Optimal blood pressure during cardiopulmonary bypass defined by cerebral autoregulation monitoring. J Thorac Cardiovasc Surg 2017; 154:1590-1598.e2. [PMID: 29042040 DOI: 10.1016/j.jtcvs.2017.04.091] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We sought to define the lower and upper limits of cerebral blood flow autoregulation and the optimal blood pressure during cardiopulmonary bypass. We further sought to identify variables predictive of these autoregulation end points. METHODS Cerebral autoregulation was monitored continuously with transcranial Doppler in 614 patients during cardiopulmonary bypass enrolled in 3 investigations. A moving Pearson's correlation coefficient was calculated between cerebral blood flow velocity and mean arterial pressure to generate the variable mean velocity index. Optimal mean arterial pressure was defined as the mean arterial pressure with the lowest mean velocity index indicating the best autoregulation. The lower and upper limits of cerebral blood flow autoregulation were defined as the mean arterial pressure at which mean velocity index was increasingly pressure passive (ie, mean velocity index ≥0.4) with declining or increasing blood pressure, respectively. RESULTS The mean (± standard deviation) lower and upper limits of cerebral blood flow autoregulation, and optimal mean arterial pressure were 65 ± 12 mm Hg, 84 ± 11 mm Hg, and 78 ± 11 mm Hg, respectively, after adjusting for study enrollment. In 17% of patients, though, the lower limit of cerebral autoregulation was above this optimal mean arterial pressure, whereas in 29% of patients the upper limit of autoregulation was below the population optimal mean arterial pressure. Variables associated with optimal mean arterial pressure based on multivariate regression analysis were nonwhite race (increased 2.7 mm Hg; P = .034), diuretics use (decreased 1.9 mm Hg; P = .049), prior carotid endarterectomy (decreased 5.5 mm Hg; P = .019), and duration of cardiopulmonary bypass (decreased 1.28 per 60 minutes of cardiopulmonary bypass). The product of the duration and magnitude that mean arterial pressure during cardiopulmonary bypass was below the lower limit of cerebral autoregulation was associated with the risk for stroke (P = .02). CONCLUSIONS Real-time monitoring of autoregulation may improve individualizing mean arterial pressure during cardiopulmonary bypass and improving patient outcomes.
Collapse
Affiliation(s)
- Daijiro Hori
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yohei Nomura
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Masahiro Ono
- Department of Cardiac Surgery, The Texas Heart Institute, Houston, Tex
| | - Brijen Joshi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Kaushik Mandal
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Duke Cameron
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Md
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Charles W Hogue
- Department of Anesthesiology and the Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|