1
|
Sandoval EYH, Gómez ZJD. Irisin and neuroinflammation: Challenges and opportunities. Exp Mol Pathol 2024; 140:104941. [PMID: 39467426 DOI: 10.1016/j.yexmp.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Irisin is a myokine that is cleaved from 5-domain type III fibronectin (FNDC5), and is known for its metabolic functions as it stimulates browning of white adipose tissue; similarly, effects on the central nervous system have been described, specifically in neurodevelopmental and neuroprotection processes. The purpose of this review is to describe recent information on the effects of irisin on neuroinflammation to contribute to the knowledge about the mechanisms by which irisin and exercise could generate benefits for some neurological diseases. The review conducted found several studies describing the effect of irisin on pathways such as STAT3, p38, cAMP/PKA/CREB, as well as effects on GFAP protein expression or apoptosis processes in both in vitro and in vivo models; likewise, these pathways are associated with better BDNF expression. Despite increasing information on this topic, it is still necessary to clarify the mechanisms by which irisin has effects on neuroinflammation and this could represent an opportunity to generate more treatments for diseases such as Alzheimer's, Parkinson's or Diabetes Mellitus.
Collapse
Affiliation(s)
| | - Zulma Janeth Dueñas Gómez
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Zhao S, Di Y, Fan H, Xu C, Li H, Wang Y, Wang W, Li C, Wang J. Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications. MOLECULAR BIOMEDICINE 2024; 5:60. [PMID: 39567444 PMCID: PMC11579273 DOI: 10.1186/s43556-024-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengyan Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haijing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. Mol Neurodegener 2024; 19:68. [PMID: 39385222 PMCID: PMC11465638 DOI: 10.1186/s13024-024-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aβ)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aβ pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Ann D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Amontree M, Nelson M, Stefansson L, Pak D, Maguire-Zeiss K, Turner RS, Conant K. Resveratrol differentially affects MMP-9 release from neurons and glia; implications for therapeutic efficacy. J Neurochem 2024; 168:1895-1908. [PMID: 38163875 DOI: 10.1111/jnc.16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Matthew Nelson
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Lara Stefansson
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Daniel Pak
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Rahimian R, Belliveau C, Simard S, Turecki G, Mechawar N. Perineuronal Net Alterations Following Early-Life Stress: Are Microglia Pulling Some Strings? Biomolecules 2024; 14:1087. [PMID: 39334854 PMCID: PMC11430691 DOI: 10.3390/biom14091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The extracellular matrix plays a key role in synapse formation and in the modulation of synaptic function in the central nervous system. Recent investigations have revealed that microglia, the resident immune cells of the brain, are involved in extracellular matrix remodeling under both physiological and pathological conditions. Moreover, the dysregulation of both innate immune responses and the extracellular matrix has been documented in stress-related psychopathologies as well as in relation to early-life stress. However, the dynamics of microglial regulation of the ECM and how it can be impacted by early-life adversity have been understudied. This brief review provides an overview of the recent literature on this topic, drawing from both animal model and human post mortem studies. Direct and indirect mechanisms through which microglia may regulate the extracellular matrix-including perineuronal nets-are presented and discussed in light of the interactions with other cell types.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
6
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
7
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308975. [PMID: 38947065 PMCID: PMC11213097 DOI: 10.1101/2024.06.15.24308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET+ participants, including TIMP3, which regulates brain Aβ production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Tara K. Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pamela C. L. Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Ann D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Babenko VA, Yakupova EI, Pevzner IB, Bocharnikov AD, Zorova LD, Fedulova KS, Grebenchikov OA, Kuzovlev AN, Grechko AV, Silachev DN, Rahimi-Moghaddam P, Plotnikov EY. Effects of Lithium Ions on tPA-Induced Hemorrhagic Transformation under Stroke. Biomedicines 2024; 12:1325. [PMID: 38927532 PMCID: PMC11201972 DOI: 10.3390/biomedicines12061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Thrombolytic therapy with the tissue plasminogen activator (tPA) is a therapeutic option for acute ischemic stroke. However, this approach is subject to several limitations, particularly the increased risk of hemorrhagic transformation (HT). Lithium salts show neuroprotective effects in stroke, but their effects on HT mechanisms are still unknown. In our study, we use the models of photothrombosis (PT)-induced brain ischemia and oxygen-glucose deprivation (OGD) to investigate the effect of Li+ on tPA-induced changes in brain and endothelial cell cultures. We found that tPA did not affect lesion volume or exacerbate neurological deficits but disrupted the blood-brain barrier. We demonstrate that poststroke treatment with Li+ improves neurological status and increases blood-brain barrier integrity after thrombolytic therapy. Under conditions of OGD, tPA treatment increased MMP-2/9 levels in endothelial cells, and preincubation with LiCl abolished this MMP activation. Moreover, we observed the effect of Li+ on glycolysis in tPA-treated endothelial cells, which we hypothesized to have an effect on MMP expression.
Collapse
Affiliation(s)
- Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexey D. Bocharnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- Advanced Engineering School “Intelligent Theranostics Systems”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Kseniya S. Fedulova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Oleg A. Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
9
|
Li W, Shi J, Yu Z, Garcia-Gabilondo M, Held A, Huang L, Deng W, Ning M, Ji X, Rosell A, Wainger BJ, Lo EH. SLC22A17 as a Cell Death-Linked Regulator of Tight Junctions in Cerebral Ischemia. Stroke 2024; 55:1650-1659. [PMID: 38738428 DOI: 10.1161/strokeaha.124.046736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jingfei Shi
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Aaron Held
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lena Huang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wenjun Deng
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mingming Ning
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xunming Ji
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
10
|
Ong CJ, Chatzidakis S, Ong JJ, Feske S. Updates in Management of Large Hemispheric Infarct. Semin Neurol 2024; 44:281-297. [PMID: 38759959 PMCID: PMC11210577 DOI: 10.1055/s-0044-1787046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
This review delves into updates in management of large hemispheric infarction (LHI), a condition affecting up to 10% of patients with supratentorial strokes. While traditional management paradigms have endured, recent strides in research have revolutionized the approach to acute therapies, monitoring, and treatment. Notably, advancements in triage methodologies and the application of both pharmacological and mechanical abortive procedures have reshaped the acute care trajectory for patients with LHI. Moreover, ongoing endeavors have sought to refine strategies for the optimal surveillance and mitigation of complications, notably space-occupying mass effect, which can ensue in the aftermath of LHI. By amalgamating contemporary guidelines with cutting-edge clinical trial findings, this review offers a comprehensive exploration of the current landscape of acute and ongoing patient care for LHI, illuminating the evolving strategies that underpin effective management in this critical clinical domain.
Collapse
Affiliation(s)
- Charlene J. Ong
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, Massachusetts
| | - Stefanos Chatzidakis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jimmy J. Ong
- Department of Neurology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
- Department of Neurology, Jefferson Einstein Hospital, Philadelphia, Pennsylvania
| | - Steven Feske
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, Massachusetts
| |
Collapse
|
11
|
Joya A, Plaza-García S, Padro D, Aguado L, Iglesias L, Garbizu M, Gómez-Vallejo V, Laredo C, Cossío U, Torné R, Amaro S, Planas AM, Llop J, Ramos-Cabrer P, Justicia C, Martín A. Multimodal imaging of the role of hyperglycemia following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:726-741. [PMID: 37728631 PMCID: PMC11197138 DOI: 10.1177/0271678x231197946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 09/21/2023]
Abstract
Hyperglycemia has been linked to worsening outcomes after subarachnoid hemorrhage (SAH). Nevertheless, the mechanisms involved in the pathogenesis of SAH have been scarcely evaluated so far. The role of hyperglycemia was assessed in an experimental model of SAH by T2 weighted, dynamic contrast-enhanced magnetic resonance imaging (T2W and DCE-MRI), [18F]BR-351 PET imaging and immunohistochemistry. Measures included the volume of bleeding, the extent of cerebral infarction and brain edema, blood brain barrier disruption (BBBd), neutrophil infiltration and matrix metalloprotease (MMP) activation. The neurofunctional outcome, neurodegeneration and myelinization were also investigated. The induction of hyperglycemia increased mortality, the size of the ischemic lesion, brain edema, neurodegeneration and worsened neurological outcome during the first 3 days after SAH in rats. In addition, these results show for the first time the exacerbating effect of hyperglycemia on in vivo MMP activation, Intercellular Adhesion Molecule 1 (ICAM-1) expression and neutrophil infiltration together with increased BBBd, bleeding volume and fibrinogen accumulation at days 1 and 3 after SAH. Notably, these data provide valuable insight into the detrimental effect of hyperglycemia on early BBB damage mediated by neutrophil infiltration and MMP activation that could explain the worse prognosis in SAH.
Collapse
Affiliation(s)
- Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Laura Aguado
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Leyre Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Maider Garbizu
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | - Carlos Laredo
- Institute of Neuroscience, Comprehensive Stroke Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Ramon Torné
- Institute of Neuroscience, Neurosurgery Department, Hospital Clinic of Barcelona, Spain
| | - Sergio Amaro
- Institute of Neuroscience, Comprehensive Stroke Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Anna M Planas
- Area of Neurosciences. Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carles Justicia
- Area of Neurosciences. Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
13
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
14
|
Xiao J, Huang J, Yolken RH. Elevated matrix Metalloproteinase-9 associated with reduced cerebellar perineuronal nets in female mice with toxoplasmosis. Brain Behav Immun Health 2024; 36:100728. [PMID: 38323226 PMCID: PMC10844038 DOI: 10.1016/j.bbih.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Brain infection by the parasite Toxoplasma gondii is thought to impair learning and memory, although the underlying mechanisms remain largely unknown. Recent studies suggest that perineuronal nets (PNNs) and their key regulator, matrix metalloproteinase-9 (MMP-9), have essential roles in synaptic plasticity associated with learning and memory. We investigated their roles in a chronic toxoplasmosis model using female mice. In mice with a high parasite burden of chronic infection, we found that MMP-9 expression was increased in the peripheral circulation and the brain. A correlation was found between the serum levels of MMP-9 and antibodies to the Toxoplasma matrix antigen MAG1, a surrogate marker for Toxoplasma tissue cysts in the brain. MMP-9 elevation was accompanied by increased expression of its endogenous regulators, TIMP-1 and NGAL. An increase in the levels of GSK-3α/β was observed, alongside a decrease in inhibitory GSK-3α/β (Ser-21/Ser-9) phosphorylation. MMP-9 expression was notably associated with the loss of PNNs but increased expression of the synaptic vesicle protein synaptophysin. There was a trend toward a negative correlation between MMP-9 and aggrecan expression, a critical PNN component. Together, these results suggest that chronic Toxoplasma infection can cause an increase in MMP-9 expression, resulting in the degradation of PNNs, which provides a possible mechanism for Toxoplasma-associated deficits in learning and memory.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jing Huang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
15
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
16
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
17
|
Pijet B, Kostrzewska-Księzyk A, Pijet-Kucicka M, Kaczmarek L. Matrix Metalloproteinase-9 Contributes to Epilepsy Development after Ischemic Stroke in Mice. Int J Mol Sci 2024; 25:896. [PMID: 38255970 PMCID: PMC10815104 DOI: 10.3390/ijms25020896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Epilepsy, a neurological disorder affecting over 50 million individuals globally, is characterized by an enduring predisposition and diverse consequences, both neurobiological and social. Acquired epilepsy, constituting 30% of cases, often results from brain-damaging injuries like ischemic stroke. With one third of epilepsy cases being resistant to existing drugs and without any preventive therapeutics for epileptogenesis, identifying anti-epileptogenic targets is crucial. Stroke being a leading cause of acquired epilepsy, particularly in the elderly, prompts the need for understanding post-stroke epileptogenesis. Despite the challenges in studying stroke-evoked epilepsy in rodents due to poor long-term survival rates, in this presented study the use of an animal care protocol allowed for comprehensive investigation. We highlight the role of matrix metalloproteinase-9 (MMP-9) in post-stroke epileptogenesis, emphasizing MMP-9 involvement in mouse models and its potential as a therapeutic target. Using a focal Middle Cerebral Artery occlusion model, this study demonstrates MMP-9 activation following ischemia, influencing susceptibility to seizures. MMP-9 knockout reduces epileptic features, while overexpression exacerbates them. The findings show that MMP-9 is a key player in post-stroke epileptogenesis, presenting opportunities for future therapies and expanding our understanding of acquired epilepsy.
Collapse
Affiliation(s)
- Barbara Pijet
- Laboratory of Neurobiology, Braincity, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland; (A.K.-K.)
| | | | | | | |
Collapse
|
18
|
Hochstetler A, Price G, Baohan A, Li M, Rodriguez Lara F, Lok J, Costine-Bartell B. Developmental Regulation of Matrix Metalloproteinases in Response to Multifactorial, Severe Traumatic Brain Injuries during Immaturity. Dev Neurosci 2024; 46:319-332. [PMID: 38190820 PMCID: PMC11228128 DOI: 10.1159/000536054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION A striking pattern in young children after severe TBI is when the entire cortical ribbon displays tissue damage: hemispheric hypodensity (HH). HH is often a result of abusive head trauma (AHT). We previously reported a model of HH in a gyrencephalic species where a combination of injuries consisting of (1) cortical impact, (2) midline shift, (3) subdural hematoma/subarachnoid hemorrhage, (4) traumatic seizures, and (5) brief apnea and hypoventilation resulted in extensive, hypoxic-ischemic-type injury. Importantly, this mechanism closely resembles that seen in children, with relative sparing of the contralateral cortex, thus ruling out a pure asphyxia mechanism. In this model, piglets of similar developmental stage to human toddlers (postnatal day 30, PND30) have extensive hypoxic-ischemic damage to the cortical ribbon with sparing of the contralateral hemisphere and deep gray matter areas. However, piglets of similar developmental stage to human infants (postnatal day 7, PND7) have less hypoxic-ischemic damage that is notably bilateral and patchy. We therefore sought to discover whether the extensive tissue damage observed in PND30 was due to a greater upregulation of matrix metalloproteinases (MMPs). MATERIALS AND METHODS In PND7 or PND30 piglets receiving AHT injuries (cortical impact, midline shift, subdural hematoma/subarachnoid hemorrhage, traumatic seizures, and brief apnea and hypoventilation) or a sham injury, the pattern of albumin extravasation and MMP-9 upregulation throughout the brain was determined via immunohistochemistry, brain tissue adjacent to the cortical impact where the tissue damage spreads was collected for Western blots, and the gelatinase activity was determined over time in peripheral plasma. EEG was recorded, and piglets survived up to 24 h after injury administration. RESULTS The pattern of albumin extravasation, indicating vasogenic edema, as well as increase in MMP-9, were both present at the same areas of hypoxic-ischemic tissue damage. Evidence from immunohistochemistry, Western blot, and zymogens demonstrate that MMP-2, -3, or -9 are constitutively expressed during immaturity and are not different between developmental stages; however, active forms are upregulated in PND30 but not PND7 after in response to AHT model injuries. Furthermore, peripheral active MMP-9 was downregulated after model injuries in PND7. CONCLUSIONS This differential response to AHT model injuries might confer protection to the PND7 brain. Additionally, we find that immature gyrencephalic species have a greater baseline and array of MMPs than previously demonstrated in rodent species. Treatment with an oral or intravenous broad-spectrum matrix metalloproteinase inhibitor might reduce the extensive spread of injury in PND30, but the exposure to metalloproteinase inhibitors must be acute as to not interfere with the homeostatic role of matrix metalloproteinases in normal postnatal brain development and plasticity as well as post-injury synaptogenesis and tissue repair.
Collapse
Affiliation(s)
- Alexandra Hochstetler
- Department of Neurosurgery, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - George Price
- Department of Neurosurgery, Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Baohan
- Department of Neurosurgery, Massachusetts General Hospital, Charlestown, MA, USA
| | - Melissa Li
- Department of Neurosurgery, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Josephine Lok
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Beth Costine-Bartell
- Department of Neurosurgery, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Shah SN, Knausenberger TBA, Pontifex MG, Connell E, Le Gall G, Hardy TA, Randall DW, McCafferty K, Yaqoob MM, Solito E, Müller M, Stachulski AV, Glen RC, Vauzour D, Hoyles L, McArthur S. Cerebrovascular damage caused by the gut microbe/host co-metabolite p-cresol sulfate is prevented by blockade of the EGF receptor. Gut Microbes 2024; 16:2431651. [PMID: 39582109 PMCID: PMC11591591 DOI: 10.1080/19490976.2024.2431651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
The gut microbiota-brain axis has been associated with the pathogenesis of numerous disorders, but the mechanism(s) underlying these links are generally poorly understood. Accumulating evidence indicates the involvement of gut microbe-derived metabolites. Circulating levels of the gut microbe/host co-metabolite p-cresol sulfate (pCS) correlate with cerebrovascular event risk in individuals with chronic kidney disease (CKD), but whether this relationship is mechanistic is unclear. We hypothesized that pCS would impair the function of the blood-brain barrier (BBB), the primary brain vasculature interface. We report that pCS exposure impairs BBB integrity in human cells in vitro and both acutely (≤6 hours) and chronically (28 days) in mice, enhancing tracer extravasation, disrupting barrier-regulating tight junction components and ultimately exerting a suppressive effect upon whole-brain transcriptomic activity. In vitro and in vivo mechanistic studies showed that pCS activated epidermal growth factor receptor (EGFR) signaling, sequentially activating the intracellular signaling proteins annexin A1 and STAT3 to induce mobilization of matrix metalloproteinase MMP-2/9 and disruption to the integrity of the BBB. This effect was confirmed as specific to the EGFR through the use of both pharmacological and RNA interference approaches. Confirming the translational relevance of this work, exposure of the cerebromicrovascular endothelia to serum from hemodialysis patients in vitro led to a significant increase in paracellular permeability, with the magnitude of permeabilization closely correlating with serum pCS, but not most other uremic toxin, content. Notably, this damaging effect of hemodialysis patient serum was prevented by pharmacological blockade of the EGFR. Our results define a pathway linking the co-metabolite pCS with BBB damage and suggest that targeting the EGFR may mitigate against cerebrovascular damage in CKD. This work further provides mechanistic evidence indicating the role of gut microbe-derived metabolites in human disease.
Collapse
Affiliation(s)
- Sita N. Shah
- Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | | | - Matthew G. Pontifex
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Emily Connell
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Gwénaëlle Le Gall
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Tom A.J. Hardy
- Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - David W. Randall
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Kieran McCafferty
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Muhammad M. Yaqoob
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Andrew V. Stachulski
- Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Robert C. Glen
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Lesley Hoyles
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
20
|
Chu MC, Mao WC, Wu HF, Chang YC, Lu TI, Lee CW, Chung YJ, Hsieh TH, Chang HS, Chen YF, Lin CH, Tang CW, Lin HC. Transient plasticity response is regulated by histone deacetylase inhibitor in oxygen-glucose deprivation condition. Pharmacol Rep 2023; 75:1200-1210. [PMID: 37695500 DOI: 10.1007/s43440-023-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The pathological form of synaptic plasticity, ischemic long-term potentiation (iLTP), induced by oxygen and glucose deprivation (OGD), is implicated in the acute phase of stroke with the potentiation of N-methyl-D-aspartate receptor (NMDAR). While there has been widespread attention on the excitatory system, a recent study reported that γ-aminobutyric acid (GABA)ergic system is also involved in iLTP. Valproic acid (VPA), a histone deacetylase inhibitor, protects against ischemic damage. However, whether VPA regulates early phase plasticity in ischemic stroke remains unknown. The present study aims to investigate the potential role and mechanism of VPA in ischemic stroke. METHODS A brief exposure of OGD on the hippocampal slices and the induction of photothrombotic ischemia (PTI) were used as ex vivo and in vivo models of ischemic stroke, respectively. RESULTS Using extracellular recordings, iLTP was induced in the hippocampal Schaffer collateral pathway following OGD exposure. VPA treatment abolished hippocampal iLTP via GABAA receptor enhancement and extracellular signal-regulated kinase (ERK) phosphorylation. Administration of VPA reduced brain infarct volume and motor dysfunction in mice with PTI. Moreover, VPA protected against ischemic injury by upregulating the GABAergic system and ERK phosphorylation, as well as by reducing of matrix metalloproteinase in a PTI-induced ischemic stroke model. CONCLUSIONS Together, this study revealed the protection of VPA in ex vivo OGD-induced pathological form of neuroplasticity and in vivo PTI-induced brain damage and motor dysfunction through rescuing GABAergic deficiency and the pathological hallmarks of ischemia.
Collapse
Affiliation(s)
- Ming-Chia Chu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chang Mao
- Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei City, Taiwan
| | - Yun-Chi Chang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-I Lu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
| | - Chia-Hsien Lin
- Department of Health Industry Management, Kainan University, Taoyuan, Taiwan
| | - Chih-Wei Tang
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan.
| |
Collapse
|
21
|
Gao Y, Fang C, Wang J, Ye Y, Li Y, Xu Q, Kang X, Gu L. Neuroinflammatory Biomarkers in the Brain, Cerebrospinal Fluid, and Blood After Ischemic Stroke. Mol Neurobiol 2023; 60:5117-5136. [PMID: 37258724 DOI: 10.1007/s12035-023-03399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.
Collapse
Affiliation(s)
- Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congcong Fang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianhui Kang
- Department of Anesthesia, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
22
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
23
|
Czuba-Pakuła E, Głowiński S, Wójcik S, Lietzau G, Zabielska-Kaczorowska M, Kowiański P. The extent of damage to the blood-brain barrier in the hypercholesterolemic LDLR -/-/Apo E -/- double knockout mice depends on the animal's age, duration of pathology and brain area. Mol Cell Neurosci 2023; 125:103860. [PMID: 37182573 DOI: 10.1016/j.mcn.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
One of the effects of hypercholesterolemia (Hch) exerted on the central nervous system (CNS) is damage to the blood-brain barrier (BBB). Increased permeability of BBB results from structural changes in the vascular wall, loss of the tight junctions and barrier function, as well as alterations in the concentration of proteins located in the layers of the vascular wall. These changes occur in the course of metabolic and neurodegenerative diseases. The important role in the course of these processes is attributed to agrin, matrix metalloproteinase-9, and aquaporin-4. In this study, we aimed to determine: 1) the extent of Hch-induced damage to the BBB during maturation, and 2) the distribution of the above-mentioned markers in the vascular wall. Immunohistochemical staining and confocal microscopy were used for vascular wall protein assessment. The size of BBB damage was studied based on perivascular leakage of fluorescently labeled dextran. Three- and twelve-month-old male LDLR-/-/Apo E-/- double knockout mice (EX) developing Hch were used in the study. Age-matched male wild-type (WT) C57BL/6 mice were used as a control group. Differences in the concentration of studied markers coexisted with BBB disintegration, especially in younger mice. A relationship between the maturation of the vascular system and reduction of the BBB damage was also observed. We conclude that the extent of BBB permeability depends on animal age, duration of Hch, and brain region. These may explain different susceptibility of various brain areas to Hch, and different presentation of this pathology depending on age and its duration.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Sebastian Głowiński
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland.
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland; Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| |
Collapse
|
24
|
You Y, Xu J, Liu Y, Li H, Xie L, Ma C, Sun Y, Tong S, Liang K, Zhou S, Ma F, Song Q, Xiao W, Fu K, Dai C, Li S, Lei J, Mei Q, Gao X, Chen J. Tailored Apoptotic Vesicle Delivery Platform for Inflammatory Regulation and Tissue Repair to Ameliorate Ischemic Stroke. ACS NANO 2023; 17:8646-8662. [PMID: 37099675 DOI: 10.1021/acsnano.3c01497] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Apoptotic vesicles (ApoVs) hold great promise for inflammatory regulation and tissue repair. However, little effort has been dedicated to developing ApoV-based drug delivery platforms, while the insufficient targeting capability of ApoVs also limits their clinical applications. This work presents a platform architecture that integrates apoptosis induction, drug loading, and functionalized proteome regulation, followed by targeting modification, enabling the creation of an apoptotic vesicle delivery system to treat ischemic stroke. Briefly, α-mangostin (α-M) was utilized to induce mesenchymal stem cell (MSC) apoptosis while being loaded onto MSC-derived ApoVs as an anti-oxidant and anti-inflammatory agent for cerebral ischemia/reperfusion injury. Matrix metalloproteinase activatable cell-penetrating peptide (MAP), a microenvironment-responsive targeting peptide, was modified on the surface of ApoVs to obtain the MAP-functionalized α-M-loaded ApoVs. Such engineered ApoVs targeted the injured ischemic brain after systemic injection and achieved an enhanced neuroprotective activity due to the synergistic effect of ApoVs and α-M. The internal protein payloads of ApoVs, upon α-M activation, were found engaged in regulating immunological response, angiogenesis, and cell proliferation, all of which contributed to the therapeutic effects of ApoVs. The findings provide a universal framework for creating ApoV-based therapeutic drug delivery systems for the amelioration of inflammatory diseases and demonstrate the potential of MSC-derived ApoVs to treat neural injury.
Collapse
Affiliation(s)
- Yang You
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Jianpei Xu
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yipu Liu
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Haichun Li
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Chuchu Ma
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yinzhe Sun
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Shiqiang Tong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Kaifan Liang
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Songlei Zhou
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Fenfen Ma
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
| | - Kaikai Fu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chengxiang Dai
- Daxing Research Institute, University of Science and Technology Beijing, 41 Yongda Road, Biomedical Industry Base, Zhongguancun Science and Technology Park, Daxing District, Beijing 102600, China
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Jigang Lei
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jun Chen
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
25
|
Chai YL, Rajeev V, Poh L, Selvaraji S, Hilal S, Chen CP, Jo DG, Koo EH, Arumugam TV, Lai MKP. Chronic cerebral hypoperfusion alters the CypA-EMMPRIN-gelatinase pathway: Implications for vascular dementia. J Cereb Blood Flow Metab 2023; 43:722-735. [PMID: 36537035 PMCID: PMC10108186 DOI: 10.1177/0271678x221146401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 03/21/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is postulated to underlie multiple pathophysiological processes in vascular dementia (VaD), including extracellular matrix dysfunction. While several extracellular matrix proteins, namely cyclophilin A (CypA), extracellular matrix metalloproteinase inducer (EMMPRIN) and gelatinases (matrix metalloproteinases, MMP-2 and -9) have been investigated in acute stroke, their involvement in CCH and VaD remains unclear. In this study, CypA-EMMPRIN-gelatinase proteins were analysed in a clinical cohort of 36 aged, cognitively unimpaired subjects and 48 VaD patients, as well as in a bilateral carotid artery stenosis mouse model of CCH. Lower CypA and higher EMMPRIN levels were found in both VaD serum and CCH mouse brain. Furthermore, gelatinases were differentially altered in CCH mice and VaD patients, with significant MMP-2 increase in CCH brain and serum, whilst serum MMP-9 was elevated in VaD but reduced in CCH, suggesting complex CypA-EMMPRIN-gelatinase regulatory mechanisms. Interestingly, subjects with cortical infarcts had higher serum MMP-2, while white matter hyperintensities, cortical infarcts and lacunes were associated with higher serum MMP-9. Taken together, our data indicate that perturbations of CypA-EMMPRIN signalling may be associated with gelatinase-mediated vascular sequelae, highlighting the potential utility of the CypA-EMMPRIN-gelatinase pathway as clinical biomarkers and therapeutic targets in VaD.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
- Memory, Aging and Cognition Centre,
National University Health System, Kent Ridge, Singapore
| | - Vismitha Rajeev
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
| | - Luting Poh
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
- Saw Swee Hock School of Public
Health, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
- Memory, Aging and Cognition Centre,
National University Health System, Kent Ridge, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan
University, Suwon, Republic of Korea
| | - Edward H Koo
- Department of Medicine, National
University of Singapore, Kent Ridge, Singapore
- Graduate School for Integrative
Sciences and Engineering, National University of Singapore, Kent Ridge,
Singapore
- Department of Neurosciences,
University of California San Diego, San Diego, CA, USA
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan
University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology
and Disease Research, Department of Microbiology, Anatomy, Physiology and
Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe
University, Bundoora, VIC, Australia
| | - Mitchell KP Lai
- Department of Pharmacology, Yong
Loo Lin School of Medicine, National University of Singapore, Kent Ridge,
Singapore
- Memory, Aging and Cognition Centre,
National University Health System, Kent Ridge, Singapore
| |
Collapse
|
26
|
Aguado L, Joya A, Garbizu M, Plaza-García S, Iglesias L, Hernández MI, Ardaya M, Mocha N, Gómez-Vallejo V, Cossio U, Higuchi M, Rodríguez-Antigüedad A, Freijo MM, Domercq M, Matute C, Ramos-Cabrer P, Llop J, Martín A. Therapeutic effect of α7 nicotinic receptor activation after ischemic stroke in rats. J Cereb Blood Flow Metab 2023:271678X231161207. [PMID: 36916034 PMCID: PMC10369150 DOI: 10.1177/0271678x231161207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Nicotinic acetylcholine α7 receptors (α7 nAChRs) have a well-known modulator effect in neuroinflammation. Yet, the therapeutical effect of α7 nAChRs activation after stroke has been scarcely evaluated to date. The role of α7 nAChRs activation with PHA 568487 on inflammation after brain ischemia was assessed with positron emission tomography (PET) using [18F]DPA-714 and [18F]BR-351 radiotracers after transient middle cerebral artery occlusion (MCAO) in rats. The assessment of brain oedema, blood brain barrier (BBB) disruption and neurofunctional progression after treatment was evaluated with T2 weighted and dynamic contrast-enhanced magnetic resonance imaging (T2 W and DCE-MRI) and neurological evaluation. The activation of α7 nAChRs resulted in a decrease of ischemic lesion, midline displacement and cell neurodegeneration from days 3 to 7 after ischemia. Besides, the treatment with PHA 568487 improved the neurofunctional outcome. Treated ischemic rats showed a significant [18F]DPA-714-PET uptake reduction at day 7 together with a decrease of activated microglia/infiltrated macrophages. Likewise, the activation of α7 receptors displayed an increase of [18F]BR-351-PET signal in ischemic cortical regions, which resulted from the overactivation of MMP-2. Finally, the treatment with PHA 568487 showed a protective effect on BBB disruption and blood brain vessel integrity after cerebral ischemia.
Collapse
Affiliation(s)
- Laura Aguado
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Leyre Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain
| | | | - María Ardaya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Naroa Mocha
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | | | - Unai Cossio
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Mari Mar Freijo
- Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain.,Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
28
|
Constantakis JW, Reed-McBain CA, Famakin B. Astrocyte innate immune activation and injury amplification following experimental focal cerebral ischemia. Neurochem Int 2023; 162:105456. [PMID: 36509233 DOI: 10.1016/j.neuint.2022.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022]
Abstract
Astrocytes are a distinct population of glial cells responsible for many homeostatic functions in normal neural architecture. In the healthy brain, astrocyte functions range from maintenance of the blood brain barrier to modulation of synaptic transmission and neuronal plasticity to glial scar formation post-ischemic injury. In humans, this group of cells exhibits far greater heterogeneity than previously thought-with distinct subpopulations that likely carry out specialized functions. Following ischemic injury, astrocytes take on a distinct phenotype-known as the reactive astrocyte. This phenotype is responsible for both the propagation and amelioration of neuronal injury during ischemia. Following ischemia, astrocytes undergo temporal and spatial-dependent changes in morphology, gene expression, hypertrophy and hyperplasia as a result of signaling within the local microenvironment of the penumbra compared to the core infarct. This elicits a cascade of downstream effects, including inflammation and activation of the innate immune system, which both propagates and ameliorates local injury within the brain parenchyma. This review will focus upon the double-edged sword-that are astrocytes and the innate immune system. We will discuss the role that astrocytes and the innate immune system play in amplifying secondary brain injury, as well as attenuating ischemic damage. Specifically, we will focus on molecular signaling and processes that could be targeted as potential therapeutic interventions.
Collapse
Affiliation(s)
- John W Constantakis
- Department of Neurology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Catherine A Reed-McBain
- Department of Dermatology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bolanle Famakin
- Department of Neurology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
29
|
Abdul Y, Jamil S, Li W, Ergul A. Cerebral microvascular matrix metalloproteinase-3 (MMP3) contributes to vascular injury after stroke in female diabetic rats. Neurochem Int 2023; 162:105462. [PMID: 36509234 PMCID: PMC9839584 DOI: 10.1016/j.neuint.2022.105462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Diabetes exacerbates hemorrhagic transformation (HT) after stroke and worsens clinical outcomes. Female patients with diabetes are at a greater risk of stroke and worsened recovery. We have shown that activation of matrix metalloprotease 3 (MMP3) in hyperglycemic settings mediates HT in male rats. In light of our recent findings that diabetic female rats develop greater HT, the current study was designed to test the hypotheses that: 1) cerebral microvascular MMP3 activation contributes to poor functional outcomes and increased hemorrhagic transformations (HT) after ischemic stroke, and 2) MMP3 inhibition can improve functional outcomes in female diabetic rats. Female control and diabetic Wistar rats were subjected to 60 min of middle cerebral artery occlusion (MCAO). One cohort of diabetic animals received a single dose of MMP3 inhibitor (UK356618; 15 mg/kg; iv) or vehicle after reperfusion. Neurobehavioral outcomes, brain infarct size, edema, HT, and MMPs were measured in brain tissue. Diabetic rats had significant neurological deficits on Day 3 after stroke. MMP3 expression and enzyme activity were significantly increased in both micro and macro vessels of diabetic animals. MMP3 inhibition improved functional outcomes and reduced brain edema and HT scores. In conclusion, cerebral endothelial MMP3 activation to vascular injury in female diabetic rats. Our findings identify MMP3 as a potential therapeutic target in diabetic stroke.
Collapse
Affiliation(s)
- Yasir Abdul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Sarah Jamil
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Weiguo Li
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Adviye Ergul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA.
| |
Collapse
|
30
|
Luo J, Liu K, Wang Y, Li H. Divergent roles of PD-L1 in immune regulation during ischemia-reperfusion injury. Front Immunol 2022; 13:1021452. [PMID: 36479124 PMCID: PMC9720307 DOI: 10.3389/fimmu.2022.1021452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a type of pathological injury that commonly arises in various diseases. Various forms of immune response are involved in the process of I/R injury. As a member of the B7 costimulatory molecule family, programmed death 1-ligand 1 (PD-L1) is an important target for immune regulation. Therefore, PD-L1 may be implicated in the regulation of I/R injury. This review briefly describes the immune response during I/R injury and how PD-L1 is involved in its regulation by focusing on findings from various I/R models. Despite the limited number of studies in this field of research, PD-L1 has shown sufficient potential as a clinical therapeutic target.
Collapse
Affiliation(s)
| | | | - Yong Wang
- *Correspondence: Yong Wang, ; Hongge Li,
| | - Hongge Li
- *Correspondence: Yong Wang, ; Hongge Li,
| |
Collapse
|
31
|
Markers of infection and inflammation are associated with post-thrombectomy mortality in acute stroke. Clin Neurol Neurosurg 2022; 222:107467. [DOI: 10.1016/j.clineuro.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022]
|
32
|
Choi W, Cho H, Kim G, Youn I, Key J, Han S. Targeted thrombolysis by magnetoacoustic particles in photothrombotic stroke model. Biomater Res 2022; 26:58. [PMID: 36273198 PMCID: PMC9587564 DOI: 10.1186/s40824-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant tissue plasminogen activator (rtPA) has a short half-life, and additional hemorrhagic transformation (HT) can occur when treatment is delayed. Here, we report the design and thrombolytic performance of 3 [Formula: see text]m discoidal polymeric particles loaded with rtPA and superparamagnetic iron oxide nanoparticles (SPIONs), referred to as rmDPPs, to address the HT issues of rtPA. METHODS The rmDPPs consisted of a biodegradable polymeric matrix, rtPA, and SPIONs and were synthesized via a top-down fabrication. RESULTS The rmDPPs could be concentrated at the target site with magnetic attraction, and then the rtPA could be released under acoustic stimulus. Therefore, we named that the particles had magnetoacoustic properties. For the in vitro blood clot lysis, the rmDPPs with magnetoacoustic stimuli could not enhance the lytic potential compared to the rmDPPs without stimulation. Furthermore, although the reduction of the infarcts in vivo was observed along with the magnetoacoustic stimuli in the rmDPPs, more enhancement was not achieved in comparison with the rtPA. A notable advantage of rmDPPs was shown in delayed administration of rmDPPs at poststroke. The late treatment of rmDPPs with magnetoacoustic stimuli could reduce the infarcts and lead to no additional HT issues, while rtPA alone could not show any favorable prognosis. CONCLUSION The rmDPPs may be advantageous in delayed treatment of thrombotic patients.
Collapse
Affiliation(s)
- Wonseok Choi
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hyeyoun Cho
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Gahee Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Divison of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea.
| | - Sungmin Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea. .,Divison of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage. Biomolecules 2022; 12:biom12101438. [PMID: 36291647 PMCID: PMC9599325 DOI: 10.3390/biom12101438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are recruited to the peri-haematomal environment where they phagocytose haematoma breakdown products and secrete inflammatory cytokines, which may trigger both protective and harmful responses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme characterised by increased expression of antioxidant, haem and heavy metal detoxification and proteostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can contribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Finally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of patients with ICH.
Collapse
|
34
|
Pathophysiology of Ischemic Stroke: Noncoding RNA Role in Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5815843. [PMID: 36132228 PMCID: PMC9484962 DOI: 10.1155/2022/5815843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
Stroke is a neurological disease that causes significant disability and death worldwide. Ischemic stroke accounts for 75% of all strokes. The pathophysiological processes underlying ischemic stroke include oxidative stress, the toxicity of excitatory amino acids, ion disorder, enhanced apoptosis, and inflammation. Noncoding RNAs (ncRNAs) may have a vital role in regulating the pathophysiological processes of ischemic stroke, as confirmed by the altered expression of ncRNAs in blood samples from acute ischemic stroke patients, animal models, and oxygen-glucose-deprived (OGD) cell models. Due to specific changes in expression, ncRNAs can potentially be biomarkers for the diagnosis, treatment, and prognosis of ischemic stroke. As an important brain cell component, glial cells mediate the occurrence and progression of oxidative stress after ischemic stroke, and ncRNAs are an irreplaceable part of this mechanism. This review highlights the impact of ncRNAs in the oxidative stress process of ischemic stroke. It focuses on specific ncRNAs that underlie the pathophysiology of ischemic stroke and have potential as diagnostic biomarkers and therapeutic targets.
Collapse
|
35
|
Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts. J Clin Med 2022; 11:jcm11144243. [PMID: 35888011 PMCID: PMC9323101 DOI: 10.3390/jcm11144243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Early stroke diagnosis remains a big challenge in healthcare partly due to the lack of reliable diagnostic blood biomarkers, which in turn leads to increased rates of mortality and disability. Current screening methods are optimised to identify patients with a high risk of cardio-vascular disease, especially among the elderly. However, in young adults and children, these methods suffer low sensitivity and specificity and contribute to further delays in their triage and diagnosis. Accordingly, there is an urgent need to develop reliable blood biomarkers for triaging patients suspected of stroke in all age groups, especially children and young adults. This review explores some of the existing blood biomarkers, as single biomarkers or biomarker panels, and examines their sensitivity and specificity for predicting stroke. A review was performed on PubMed and Web of Science for journal articles published in English during the period 2001 to 2021, which contained information regarding biomarkers of stroke. In this review article, we provide comparative information on the availability, clinical usefulness, and time-window periods of seven single blood biomarkers and five biomarker panels that have been used for predicting stroke in emergency situations. The outcomes of this review can be used in future research for developing more effective stroke biomarkers.
Collapse
|
36
|
Simani L, Ramezani M, Mohammadi E, Abbaszadeh F, Karimialavijeh E, Pakdaman H. Association of Changed Serum Brain Biomarkers With Perihematomal Edema and Early Clinical Outcome in Primary ICH Patients. Neurologist 2022; 27:168-172. [PMID: 34855658 DOI: 10.1097/nrl.0000000000000400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perihematomal edema (PHE) following primary intracranial hemorrhages (ICHs) affects the patient outcome. Also, serum biomarkers such as S100 calcium-binding protein B (S100B) and glial fibrillary acidic protein (GFAP) have been associated with ICHs outcome. We aimed to investigate the association between these biomarkers and PHE in ICH patients. METHODS In this cross-sectional study, patients with primary ICH between January 2020 and August 2020 were evaluated. All participants underwent spiral brain computed tomography scans upon admission, and 48 to 72 hours later and quantification of initial hematoma volume was performed. Serum level of matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), GFAP, and S100B on admission were measured by enzyme-linked immunosorbent assays. Acute clinical outcome was assessed by the modified-Rankin scale, National Institute of Health Stroke Scale (NIHSS), and ICH score. RESULTS Thirty-seven ICH patients (21 patients with a favorable outcome and 16 unfavorable) were studied. Compared with survival patients, nonsurvivor patients showed a higher serum level of MMP-9, VEGF, GFAP, and S100B ( P <0.05). Scores of absolute PHE, edema expansion distance, and PHE growth rate in the nonsurvivor group were higher than the survivors ( P <0.001). The regression model revealed that MMP-9, VEGF, ICH score, and hematoma volume were associated with the PHE growth rate. S100B and ICH score were associated with edema expansion distance. CONCLUSIONS Our data showed that the serum level of molecular biomarkers was associated with higher PHE volume and PHE scores were higher in nonsurvival patients, suggesting it may have a pathogenic role in developing PHE after ICH.
Collapse
Affiliation(s)
- Leila Simani
- Skull Base Research Center
- Brain Mapping Research Center, Loghman Hakim Hospital
| | - Mahtab Ramezani
- Skull Base Research Center
- Brain Mapping Research Center, Loghman Hakim Hospital
| | | | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS)
| | | | | |
Collapse
|
37
|
Simani L, Ramezani M, Ahmadi N, Abazari F, Raminfard S, Shojaei M, Zoghi A, Karimialavijeh E, Hossein Aghamiri S, Pakdaman H. The effect of atorvastatin on the blood-brain barrier biomarkers in acute intracerebral hemorrhage, a pilot clinical trial. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
39
|
Wlodarek L, Alibhai FJ, Wu J, Li SH, Li RK. Stroke-Induced Neurological Dysfunction in Aged Mice Is Attenuated by Preconditioning with Young Sca-1+ Stem Cells. Stem Cells 2022; 40:564-576. [PMID: 35291015 PMCID: PMC9216491 DOI: 10.1093/stmcls/sxac019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022]
Abstract
AIMS To date, stroke remains one of the leading causes of death and disability worldwide. Nearly three-quarters of all strokes occur in the elderly (>65 years old), and a vast majority of these individuals develop debilitating cognitive impairments that can later progress into dementia. Currently, there are no therapies capable of reversing the cognitive complications which arise following a stroke. Instead, current treatment options focus on preventing secondary injuries, as opposed to improving functional recovery. METHODS We reconstituted aged (20-month old) mice with Sca-1+ bone marrow (BM) hematopoietic stem cells isolated from aged or young (2-month old) EGFP+ donor mice. Three months later the chimeric aged mice underwent cerebral ischemia/reperfusion by bilateral common carotid artery occlusion (BCCAO), after which cognitive function was evaluated. Immunohistochemical analysis was performed to evaluate host and recipient cells in the brain following BCCAO. RESULTS Young Sca-1+ cells migrate to the aged brain and give rise to beneficial microglial-like cells that ameliorate stroke-induced loss of cognitive function on tasks targeting the hippocampus and cerebellum. We also found that young Sca-1+ cell-derived microglial-like cells possess neuroprotective properties as they do not undergo microgliosis upon migrating to the ischemic hippocampus, whereas the cells originating from old Sca-1+ cells proliferate extensively and skew toward a pro-inflammatory phenotype following injury. CONCLUSIONS This study provides a proof-of-principle demonstrating that young BM Sca-1+ cells play a pivotal role in reversing stroke-induced cognitive impairments and protect the aged brain against secondary injury by attenuating the host cell response to injury.
Collapse
Affiliation(s)
- Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, Department weof Physiology, University of Toronto, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, Department weof Physiology, University of Toronto, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Zhang Y, Guo X, Peng Z, Liu C, Ren L, Liang J, Wang P. Nicotinamide Mononucleotide Adenylyltransferase 1 Regulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption Through NAD +/SIRT1 Signaling Pathway. Mol Neurobiol 2022; 59:4879-4891. [PMID: 35657458 DOI: 10.1007/s12035-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms of blood-brain barrier (BBB) disruption in the early stage after ischemic stroke are poorly understood. In the present study, we investigated the potential role of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) in ischemia-induced BBB damage using an animal middle cerebral artery occlusion (MCAO) model of ischemic stroke. Recombinant human NMNAT1 (rh-NMNAT1) was administered intranasally and Sirtuin 1 (SIRT1) siRNA was administered by intracerebroventricular injection. Our results indicate that rh-NMNAT1 reduced infarct volume, improved functional outcome, and decreased BBB permeability in mice after ischemic stroke. Furthermore, rh-NMNAT1 prevented the loss of tight junction proteins (occludin and claudin-5) and reduced cell apoptosis in ischemic microvessels. NMNAT1-mediated BBB permeability was correlated with the elevation of nicotinamide adenine dinucleotide (NAD+)/NADH ratio and SIRT1 level in brain microvascular endothelial cells. In addition, rh-NMNAT1 treatment significantly decreased the levels of acetylated nuclear factor-κB, acetylated p53, and matrix metalloproteinase-9 in ischemic microvessels. Moreover, the protective effects of rh-NMNAT1 could be reversed by SIRT1 siRNA. In conclusion, these findings indicate that rh-NMNAT1 protects BBB integrity after cerebral ischemia via the NAD+/SIRT1 signaling pathway in brain microvascular endothelial cells. NMNAT1 may be a novel potential therapeutic target for reducing BBB disruption after ischemic stroke.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xun Guo
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhifeng Peng
- Department of Physiology, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Chang Liu
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lili Ren
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
41
|
Zhang M, Meng X, Pan Y, Wang Y, Zhao X, Liu L, Li J, Yan H, Liu X, Zhang H, Pang L, Wang Y. Predictive values of Baseline MMP9 Levels in Peripheral Blood on 3-Month outcomes of high-risk patients with minor stroke or TIA. Eur J Neurol 2022; 29:2976-2986. [PMID: 35357766 DOI: 10.1111/ene.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To explore the relationship between baseline levels of matrix metalloproteinase 9 (MMP9) in peripheral blood and the outcomes in patients with acute minor stroke and transient ischemic attack (TIA). METHODS We assessed data from patients with acute minor ischemic stroke or TIA who were included in the CHANCE trial. Baseline level of MMP9 in peripheral blood is classified into five quintiles. We assessed the relationship between the baseline MMP9 and outcomes of stroke recurrence, composite vascular events, and poor functional outcomes within 90 days after stroke onset. RESULTS Of the 3014 patients included, 295 (9.79%) had recurrent stroke, 289 (9.59%) had recurrent ischemic stroke, 297 (9.85%) had combined vascular events, and 199 (6.64%) had poor functional outcomes within 90 days. Using MMP9 concentrations near HR = 1 (Q3) in restricted cubic splines as the reference. The result showed that, compared to patients in Q3 group, patients in the highest quintile (Q5 group) had an increased risk of poor functional outcomes at 90 days after adjusted the risk factors and confounders (P = 0.030), may be associated with an increased risk of combined vascular events (P = 0.052). Using Cox regression models or logistic regression models with restricted cubic spline, we also observed that higher MMP9 ratios were associated with an increased risk of stroke recurrence, combined events, and poor functional outcomes at a range of concentrations. CONCLUSIONS For patients with acute minor stroke or TIA, higher baseline MMP9 level was associated with an increased risk of poor functional outcomes, might be related to stroke recurrence and combined vascular events.
Collapse
Affiliation(s)
- Min Zhang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) /Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China, 832002
| | - Xia Meng
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Yilong Wang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Xingquan Zhao
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Liping Liu
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Jiejie Li
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Hongyi Yan
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Hui Zhang
- Shihezi University School of Medicine, Shihezi, Xinjiang, China, 832000
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) /Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China, 832002.,Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China, 524033
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| |
Collapse
|
42
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
43
|
Mohamud Yusuf A, Hagemann N, Ludewig P, Gunzer M, Hermann DM. Roles of Polymorphonuclear Neutrophils in Ischemic Brain Injury and Post-Ischemic Brain Remodeling. Front Immunol 2022; 12:825572. [PMID: 35087539 PMCID: PMC8787127 DOI: 10.3389/fimmu.2021.825572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023] Open
Abstract
Following ischemic stroke, polymorphonuclear neutrophils (PMNs) are rapidly recruited to the ischemic brain tissue and exacerbate stroke injury by release of reactive oxygen species (ROS), proteases and proinflammatory cytokines. PMNs may aggravate post-ischemic microvascular injury by obstruction of brain capillaries, contributing to reperfusion deficits in the stroke recovery phase. Thus, experimental studies which specifically depleted PMNs by delivery of anti-Ly6G antibodies or inhibited PMN brain entry, e.g., by CXC chemokine receptor 2 (CXCR2) or very late antigen-4 (VLA-4) blockade in the acute stroke phase consistently reduced neurological deficits and infarct volume. Although elevated PMN responses in peripheral blood are similarly predictive for large infarcts and poor stroke outcome in human stroke patients, randomized controlled clinical studies targeting PMN brain infiltration did not improve stroke outcome or even worsened outcome due to serious complications. More recent studies showed that PMNs have decisive roles in post-ischemic angiogenesis and brain remodeling, most likely by promoting extracellular matrix degradation, thereby amplifying recovery processes in the ischemic brain. In this minireview, recent findings regarding the roles of PMNs in ischemic brain injury and post-ischemic brain remodeling are summarized.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| |
Collapse
|
44
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
45
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
46
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Xiong Y, Liu J, Xu Y, Xie S, Zhou X, Cheng S. Butylphthalide Combined With Conventional Treatment Attenuates MMP-9 Levels and Increases VEGF Levels in Patients With Stroke: A Prospective Cohort Study. Front Neurol 2021; 12:686199. [PMID: 34987460 PMCID: PMC8720749 DOI: 10.3389/fneur.2021.686199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose: Butylphtalide increases the vascular endothelial growth factor (VEGF) and decreases matrix metalloproteinase (MMP)-9 in animal models of stroke and might be of use in the management of stroke. To explore whether butylphthalide combined with conventional treatment can change the levels of MMP-9 and VEGF and the National Institutes of Health Stroke Scale (NIHSS) scores of patients with stroke. Methods: This was a prospective cohort study involving inpatients admitted to the Jiangxi Provincial People's Hospital (January–June 2019) due to acute cerebral infarction. The patients received conventional treatments with or without butylphthalide. The changes in the NIHSS scores were compared between groups. Plasma MMP-9 and VEGF were measured by enzyme-linked immunosorbent assay. Results: A total of 24 patients were included in the conventional treatment group and 46 in the butylphthalide group. The butylphthalide group showed lower MMP-9 (130 ± 59 vs. 188 ± 65, p = 0.001) and higher VEGF (441 ± 121 vs. 378 ± 70, p = 0.034) levels on day 6 compared with the conventional treatment group. The changes in MMP-9 and VEGF were significant, starting on day 3 in the butylphthalide group but on day 6 in the conventional treatment group. There were no differences between the two groups in the NIHSS scores at admission and at discharge (p > 0.05). The overall response rate was higher in the butylphthalide group compared with the conventional treatment group (63.0 vs. 37.5%, p = 0.042). Conclusion: Butylphthalide combined with conventional treatment can decrease MMP-9 levels and increase VEGF levels. The patients showed the reduced NIHSS scores, possibly suggesting some improvement in prognosis after stroke. Still, the conclusions need to be confirmed in a larger sample and in different etiological subtypes of stroke.
Collapse
Affiliation(s)
- Yingqiong Xiong
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Juanjuan Liu
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yang Xu
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shu Xie
- Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi People's Hospital, Nanchang, China
| | - Shaomin Cheng
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- *Correspondence: Shaomin Cheng
| |
Collapse
|
48
|
Dong R, Huang R, Shi X, Xu Z, Mang J. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered 2021; 12:12274-12293. [PMID: 34898370 PMCID: PMC8810201 DOI: 10.1080/21655979.2021.2006966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide. As the most common type of stroke cases, treatment effectiveness is still limited despite intensive research. Recently, traditional Chinese medicine has attracted attention because of potential benefits for stroke treatment. Among these, luteolin, a natural plant flavonoid compound, offers neuroprotection following against ischemic stroke, although the specific mechanisms are unknown. Here we used network pharmacology, molecular docking, and experimental verification to explore the mechanisms whereby luteolin can benefit stroke recovery. The pharmacological and molecular properties of luteolin were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The potential targets of luteolin and ischemic stroke were collected from interrogating public databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed by Funrich and Database for Annotation, Visualization and Integrated Discovery respectively, a luteolin-target-pathway network constructed using Cytoscape, Autodock vina was used for molecular docking simulation with Discovery Studio was used to visualize and analyze the docked conformations. Lastly, we employed an in vitro model of stroke injury to evaluate the effects of luteolin on cell survival and expression of the putative targets. From 95 candidate luteolin target genes, our analysis identified six core targets . KEGG analysis of the candidate targets identified that luteolin provides therapeutic effects on stroke through TNF signaling and other pathways. Our experimental analyses confirmed the conclusions analyzed above. In summary, the molecular and pharmacological mechanisms of luteolin against stroke are indicated in our study from a systematic perspective.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University
| |
Collapse
|
49
|
Pan R, Yu S, Zhang H, Timmins GS, Weaver J, Yang Y, Zhou X, Liu KJ. Endogenous zinc protoporphyrin formation critically contributes to hemorrhagic stroke-induced brain damage. J Cereb Blood Flow Metab 2021; 41:3232-3247. [PMID: 34187233 PMCID: PMC8669275 DOI: 10.1177/0271678x211028475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemorrhagic stroke is a leading cause of death. The causes of intracerebral hemorrhage (ICH)-induced brain damage are thought to include lysis of red blood cells, hemin release and iron overload. These mechanisms, however, have not proven very amenable to therapeutic intervention, and so other mechanistic targets are being sought. Here we report that accumulation of endogenously formed zinc protoporphyrin (ZnPP) also critically contributes to ICH-induced brain damage. ICH caused a significant accumulation of ZnPP in brain tissue surrounding hematoma, as evidenced by fluorescence microscopy of ZnPP, and further confirmed by fluorescence spectroscopy and supercritical fluid chromatography-mass spectrometry. ZnPP formation was dependent upon both ICH-induced hypoxia and an increase in free zinc accumulation. Notably, inhibiting ferrochelatase, which catalyzes insertion of zinc into protoporphyrin, greatly decreased ICH-induced endogenous ZnPP generation. Moreover, a significant decrease in brain damage was observed upon ferrochelatase inhibition, suggesting that endogenous ZnPP contributes to the damage in ICH. Our findings reveal a novel mechanism of ICH-induced brain damage through ferrochelatase-mediated formation of ZnPP in ICH tissue. Since ferrochelatase can be readily inhibited by small molecules, such as protein kinase inhibitors, this may provide a promising new and druggable target for ICH therapy.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Song Yu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Graham S Timmins
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - John Weaver
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
50
|
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021; 18:2472-2488. [PMID: 34413489 PMCID: PMC8546068 DOI: 10.1038/s41423-021-00751-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Collapse
Affiliation(s)
- Joshua D. Crapser
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Miguel A. Arreola
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kate I. Tsourmas
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kim N. Green
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| |
Collapse
|