1
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
2
|
Zhang L, Cui H, Hu W, Meng X, Zhang C. Targeting MAD2B as a strategy for ischemic stroke therapy. J Adv Res 2024:S2090-1232(24)00269-8. [PMID: 38972542 DOI: 10.1016/j.jare.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Post-stroke cognitive impairment is one of the major causes of disability due to cerebral ischemia. MAD2B is an inhibitor of Cdh1/APC, and loss of Cdh1/APC function in mature neurons increases ROCK2 activity, leading to changes in synaptic plasticity and memory loss in mouse neurons. Whether MAD2B regulates learning memory capacity through ROCK2 in cerebral ischemia is not known. OBJECTIVES We investigated the role and mechanism of MAD2B in cerebral ischemia-induced cognitive dysfunction. METHODS The expression of MAD2B and its downstream related molecules was detected by immunoblotting and intervened with neuroprotectants after middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R). We constructed MAD2B-cKO-specific knockout mice, knocked down and overexpressed MAD2B in mouse hippocampus by lentiviral injection in brain stereotaxis, modeled cerebral ischemia by using MCAO, and explored the role of MAD2B in post-stroke cognitive impairment (PSCI) by animal behaviors such as Y-maze and Novel object recognition test. Then the expression of MAD2B/ROCK2, downstream molecules and apoptosis-related molecules was detected. Finally, ROCK2 expression was intervened using its inhibitor and shRNA-ROCK2 lentivirus. RESULTS The expression of MAD2B and its downstream molecules increased after MCAO and OGD/R. Nonetheless, this expression underwent a decline post-therapy with neuroprotective agents. Deletion of MAD2B in the hippocampus ameliorated memory and learning deficits and improved motor coordination in MCAO mice. Conversely, the overexpression of MAD2B in the hippocampus exacerbated learning and memory deficits. Deletion of MAD2B resulted in the downregulation of ROCK2/LIMK1/cofilin. It effectively reduced ischemia-induced upregulation of BAX and cleaved caspase-3, which could be reversed by MAD2B overexpression. Inhibition or knockdown of ROCK2 expression in primary cultured neurons led to the downregulation of LIMK1/cofilin expression and reduced the expression of apoptosis-associated molecules induced by ischemia. CONCLUSIONS Our findings suggest that MAD2B affects neuronal apoptosis via Rock2, which affects neurological function and cerebral infarction.
Collapse
Affiliation(s)
- Lijing Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengzhen Cui
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wandi Hu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Yamashita T, Abe K. Update on Antioxidant Therapy with Edaravone: Expanding Applications in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2945. [PMID: 38474192 PMCID: PMC10932469 DOI: 10.3390/ijms25052945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| |
Collapse
|
4
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
5
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
6
|
Synthesis of 4-Aminopyrazol-5-ols as Edaravone Analogs and Their Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227722. [PMID: 36431823 PMCID: PMC9699072 DOI: 10.3390/molecules27227722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
One of the powerful antioxidants used clinically is Edaravone (EDA). We synthesized a series of new EDA analogs, 4-aminopyrazol-5-ol hydrochlorides, including polyfluoroalkyl derivatives, via the reduction of 4-hydroxyiminopyrazol-5-ones. The primary antioxidant activity of the compounds in comparison with EDA was investigated in vitro using ABTS, FRAP, and ORAC tests. In all tests, 4-Amino-3-pyrazol-5-ols were effective. The lead compound, 4-amino-3-methyl-1-phenylpyrazol-5-ol hydrochloride (APH), showed the following activities: ABTS, 0.93 TEAC; FRAP, 0.98 TE; and ORAC, 4.39 TE. APH and its NH-analog were not cytotoxic against cultured normal human fibroblasts even at 100 μM, in contrast to EDA. According to QM calculations, 4-aminopyrazolols were characterized by lower gaps, IP, and η compared to 4-hydroxyiminopyrazol-5-ones, consistent with their higher antioxidant activities in ABTS and FRAP tests, realized by the SET mechanism. The radical-scavenging action evaluated in the ORAC test occurred by the HAT mechanism through OH bond breaking in all compounds, directly dependent on the dissociation energy of the OH bond. All the studied compounds demonstrated the absence of anticholinesterase activity and moderate inhibition of CES by some 4-aminopyrazolols. Thus, the lead compound APH was found to be a good antioxidant with the potential to be developed as a novel therapeutic drug candidate in the treatment of diseases associated with oxidative stress.
Collapse
|
7
|
Rahimi Kakavandi N, Asadi T, Hooshangi Shayesteh MR, Baeeri M, Rahimifard M, Baghaei A, Noruzi M, Sharifzadeh M, Abdollahi M. The electrocardiographic, hemodynamic, echocardiographic, and biochemical evaluation of treatment with edaravone on acute cardiac toxicity of aluminum phosphide. Front Pharmacol 2022; 13:1032941. [PMID: 36278198 PMCID: PMC9581139 DOI: 10.3389/fphar.2022.1032941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aluminum phosphide (AlP) poisoning can be highly fatal due to its severe toxicity to the heart. Based on the evidence, edaravone (EDA) has protective effects on various pathological conditions of the heart. This research aimed to examine the potential protective effects of EDA on AlP-induced cardiotoxicity in rats. The rats were divided into six groups, including almond oil (control), normal saline, AlP (LD50), and AlP + EDA (20, 30, and 45 mg/kg). Thirty minutes following AlP poisoning, the electrocardiographic (ECG), blood pressure (BP), and heart rate (HR) parameters were examined for 180 min. The EDA was injected 60 min following the AlP poisoning intraperitoneally. Also, 24 h after poisoning, echocardiography was carried out to evaluate the ejection fraction (EF), stroke volume (SV), and cardiac output (CO). The biochemical and molecular parameters, such as the activities of the mitochondrial complexes, reactive oxygen species (ROS), apoptosis and necrosis, and troponin I and lactate levels, were also examined after 12 and 24 h in the heart tissue. According to the results, AlP-induced ECG abnormalities, decrease in blood pressure, heart rate, SV, EF%, and CO were significantly improved with EDA at doses of 30 and 45 mg/kg. Likewise, EDA significantly improved complex I and IV activity, apoptosis and necrosis, ROS, troponin I, and lactate levels following AlP-poisoning (p < 0.05). Also, the mean survival time was increased following EDA treatment, which can be attributed to the EDA’s protective effects against diverse underlying mechanisms of phosphine-induced cardiac toxicity. These findings suggest that EDA, by ameliorating heart function and modulating mitochondrial activity, might relieve AlP-induced cardiotoxicity. Nonetheless, additional investigations are required to examine any potential clinical advantages of EDA in this toxicity.
Collapse
Affiliation(s)
- Nader Rahimi Kakavandi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tayebeh Asadi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Baghaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzieh Noruzi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mohammad Abdollahi,
| |
Collapse
|
8
|
Exploring the effects of edaravone in rats with contrast-induced acute kidney injury. Life Sci 2022; 309:121006. [PMID: 36174711 DOI: 10.1016/j.lfs.2022.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
AIMS Oxidative stress and inflammatory response play a vital role in the pathogenesis of contrast-induced acute kidney injury (CI-AKI). This study investigated the effects of edaravone in rats with CI-AKI. MAIN METHODS Male Sprague Dawley rats were randomly assigned into four groups (n = 11-14/group): control, edaravone (30 mg/kg/day intraperitoneally (IP)), CI-AKI, and edaravone with CI-AKI. The induction of CI-AKI was performed by dehydration and the administration of contrast media (iohexol) and inhibitors of prostaglandin (indomethacin) and nitric oxide synthesis (L-NAME: N-nitro L-arginine methyl ester). Edaravone was administered for two weeks before the induction of CI-AKI. Serum creatinine and urea, renal oxidative stress and inflammatory biomarkers, and histopathological alterations were evaluated after 48 h of contrast exposure. KEY FINDINGS Rats with CI-AKI showed a significant increase in serum creatinine and urea. The levels of antioxidant biomarkers including glutathione peroxidase, superoxide dismutase and reduced glutathione were significantly decreased in CI-AKI group versus control. Pre-treatment of rats with edaravone normalized kidney function and protected the kidney from oxidative damage as demonstrated by normalization of previous biomarkers. Furthermore, edaravone partially ameliorated renal histopathological alterations relative to the CI-AKI group, notably in the nephrons. No changes were observed in inflammatory biomarkers including tumour necrosis factor-alpha and interleukin-6 among all groups. SIGNIFICANCE The current findings suggest that edaravone could be a potential strategy to ameliorate developing CI-AKI possibly by improving renal antioxidant capacity. Further studies are warranted to expand the current understanding of the use of edaravone in the various models of AKI.
Collapse
|
9
|
Vaid V, Jindal R. Sustained release of edaravone from (2-hydroxypropyl)-β-cyclodextrin mediated tamarind kernel powder/kappa-carrageenan hydrogel: Microwave-assisted synthesis and optimization using experimental design. Int J Biol Macromol 2022; 219:246-261. [PMID: 35932803 DOI: 10.1016/j.ijbiomac.2022.07.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022]
Abstract
In the current study, a sustained release formulation made of natural polysaccharide tamarind kernel powder/kappa-carrageenan and (2-hydroxypropyl)-β-cyclodextrin (2-Hp-β-CD) was chosen to increase drug effectiveness. A kappa-carrageenan and tamarind kernel powder 3-D hydrogel network was synthesized with the aid of microwave irradiations. The ICs complexes were prepared using a physical mixture (PM), kneading (KM), and microwave (MW) approach and were then successfully loaded into the hydrogel. The synthesis of ICs was verified as a true IC using DSC, SEM, FTIR, 1H NMR, and 2D NMR ROESY. A study on the in vitro sustained release of EV at pH 2, 7, and 7.4 was conducted at 37 °C. The microwave (MW) method was the most effective method for preparing true ICs of EV and 2-Hp-β-CD for sustained drug release, as evidenced by the drug release data, which indicated that PM and KM displayed a burst release of the drug. Ritger-Peppas and Peppas-Sahlin were essential models for drug release. A phase solubility analysis was done to evaluate the IC's stoichiometry and complexation constant. Studies on drug release have shown that 2-Hp-β-CD was effective at causing pH-responsive sustained drug release.
Collapse
Affiliation(s)
- Vasudha Vaid
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr. BR Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| | - Rajeev Jindal
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr. BR Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| |
Collapse
|
10
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
11
|
Williams RM, Shah J, Mercer E, Tian HS, Thompson V, Cheung JM, Dorso M, Kubala JM, Gudas LJ, de Stanchina E, Jaimes EA, Heller DA. Kidney-Targeted Redox Scavenger Therapy Prevents Cisplatin-Induced Acute Kidney Injury. Front Pharmacol 2022; 12:790913. [PMID: 35046813 PMCID: PMC8762298 DOI: 10.3389/fphar.2021.790913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-induced acute kidney injury (CI-AKI) is a significant co-morbidity of chemotherapeutic regimens. While this condition is associated with substantially lower survival and increased economic burden, there is no pharmacological agent to effectively treat CI-AKI. The disease is hallmarked by acute tubular necrosis of the proximal tubular epithelial cells primarily due to increased oxidative stress. We investigated a drug delivery strategy to improve the pharmacokinetics of an approved therapy that does not normally demonstrate appreciable efficacy in CI-AKI, as a preventive intervention. In prior work, we developed a kidney-selective mesoscale nanoparticle (MNP) that targets the renal proximal tubular epithelium. Here, we found that the nanoparticles target the kidneys in a mouse model of CI-AKI with significant damage. We evaluated MNPs loaded with the reactive oxygen species scavenger edaravone, currently used to treat stroke and ALS. We found a marked and significant therapeutic benefit with edaravone-loaded MNPs, including improved renal function, which we demonstrated was likely due to a decrease in tubular epithelial cell damage and death imparted by the specific delivery of edaravone. The results suggest that renal-selective edaravone delivery holds potential for the prevention of acute kidney injury among patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ryan M. Williams
- The City College of New York Department of Biomedical Engineering, New York, NY, United States
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Janki Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elizabeth Mercer
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Helen S. Tian
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Vanessa Thompson
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin M. Cheung
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Madeline Dorso
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| | - Jaclyn M. Kubala
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | | | - Edgar A. Jaimes
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
12
|
Chen C, Li M, Lin L, Chen S, Chen Y, Hong L. Clinical effects and safety of edaravone in treatment of acute ischaemic stroke: A meta-analysis of randomized controlled trials. J Clin Pharm Ther 2021; 46:907-917. [PMID: 33638896 PMCID: PMC8359409 DOI: 10.1111/jcpt.13392] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Edaravone is a new antioxidant and hydroxyl radical scavenger. Although there is evidence that it improves clinical outcomes of patients with acute ischaemic stroke (AIS), it is not yet widely accepted for treatment of AIS in Western countries. We further investigated the efficacy and safety of edaravone through this meta-analysis of randomized controlled clinical trials (RCTs). METHOD Pubmed, Embase, Web of Science and Cochrane Library were screened up to December 2020 for original articles from SCI journals that published in English. RCTs that compared edaravone versus placebo or no intervention in adult patients and reported the efficacy or safety of edaravone were regarded as eligible. Mortality was regarded as the primary outcome and the improvement of neurological impairment was regarded as the secondary outcome. Safety evaluation was conducted according to the incidence of adverse events. Review Manager 5.3 was employed to perform the assessment of the risk of bias and data synthesis. The Cochrane risk of bias tool for randomized controlled trials was employed to assess the risk of bias. RESULTS AND DISCUSSION Seven randomized controlled trials with 2069 patients were included. For the incidence of mortality, the pooled RR for studies that evaluated edaravone after three-month follow-up was 0.55 (95% Cl, 0.43-0.7, I2 = 0, P < 0.01). The pooled RR for improvement of neurological impairment at the three months follow-up was 1.54 (95% CI, 1.27-1.87, I2 = 0, P < 0.01) in four RCTs. On subgroup analysis of studies that were conducted in Asia, the RR was 1.56 (95% CI, 1.27-1.90, I2 = 0%; P < 0.01); the pooled RR for studies that conducted in Europe was 1.32 (95% CI, 0.64-2.72; P = 0.45); the pooled RR for studies that used edaravone for two weeks was 1.42 (95% CI, 1.10 to 1.83, I2 = 0%; P < 0.01); the pooled RR for studies that used edaravone for one week was 1.64 (95% CI, 1.24-2.16, I2 = 0%; P < 0.01); the pooled RR for studies that conducted in patients with mean age equal to or over 60 years was 1.52 (95% CI, 1.24-1.87, I2 = 0%; P < 0.01); and the pooled RR for studies that conducted in patients with mean age less than 60 was 1.80 (95% CI, 1.05-3.08, I2 = 0%; P = 0.03). For the incidence of any treatment-related adverse events, the pooled RR for studies that evaluated edaravone during treatment was 0.83 (95% CI, 0.51-1.34, I2 = 0, P = 0.43). The difference of the incidence of any treatment-related adverse events between two groups was not statistically significant. WHAT IS NEW AND CONCLUSION The limited studies indicate that edaravone can improve neurological impairment with a survival benefit at three-month follow-up, regardless of the mean age and course of treatment. It is worthy of promotion in the clinical treatment of AIS in Asian countries. More well-designed RCTs with larger sample sizes are needed to determine the benefits of edaravone in patients from Western countries.
Collapse
Affiliation(s)
- Chongyue Chen
- Department of Emergency Intensive Care UnitThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Mingkai Li
- Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Liling Lin
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Shuying Chen
- Department of NeurologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Yongru Chen
- Department of Emergency Intensive Care UnitThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Liekai Hong
- Department of CardiovascularThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
13
|
Fan SR, Ren TT, Yun MY, Lan R, Qin XY. Edaravone attenuates cadmium-induced toxicity by inhibiting oxidative stress and inflammation in ICR mice. Neurotoxicology 2021; 86:1-9. [PMID: 34174317 DOI: 10.1016/j.neuro.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023]
Abstract
The neurotoxicity caused by cadmium (Cd) is well known in humans and experimental animals. However, there is no effective treatment for its toxicity. In this study, we established Cd toxicity models in cultured cells or mice to investigate the detoxification effect of edaravone (Eda). We found that Eda protected GL261 cells from Cd toxicity and prevented the loss of cell viability. In Cd-exposed mice, liver, kidney and testicular damage, as well as cognitive dysfunction were observed. Oxidative stress and inflammatory responses, such as decreased SOD and CAT, increased LDH and MDA, and abnormal changes in the inflammatory factors TNF-α, IL-1β, IL-6 and IL-10 were detected in serum and brain tissue. Eda protected mice from Cd-induced toxicity and abrogated oxidative stress and inflammatory responses. Also, Eda prevented inflammatory activation of microglia and astrocytes and was accompanied by restoration of the neuronal marker protein MAP2, indicating restoration of neuronal function. In addition, the BDNF-TrkB/Akt and Notch/HES-1 signaling axes were involved in the response of Eda to the elimination of Cd toxicity. In conclusion, Eda does contribute to the clearance of Cd-induced toxicity.
Collapse
Affiliation(s)
- Sheng-Rui Fan
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Teng-Teng Ren
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Miao-Ying Yun
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
14
|
Shakkour Z, Issa H, Ismail H, Ashekyan O, Habashy KJ, Nasrallah L, Jourdi H, Hamade E, Mondello S, Sabra M, Zibara K, Kobeissy F. Drug Repurposing: Promises of Edaravone Target Drug in Traumatic Brain Injury. Curr Med Chem 2021; 28:2369-2391. [PMID: 32787753 DOI: 10.2174/0929867327666200812221022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Edaravone is a potent free-radical scavenger that has been in the market for more than 30 years. It was originally developed in Japan to treat strokes and has been used there since 2001. Aside from its anti-oxidative effects, edaravone demonstrated beneficial effects on proinflammatory responses, nitric oxide production, and apoptotic cell death. Interestingly, edaravone has shown neuroprotective effects in several animal models of diseases other than stroke. In particular, edaravone administration was found to be effective in halting amyotrophic lateral sclerosis (ALS) progression during the early stages. Accordingly, after its success in Phase III clinical studies, edaravone has been approved by the FDA as a treatment for ALS patients. Considering its promises in neurological disorders and its safety in patients, edaravone is a drug of interest that can be repurposed for traumatic brain injury (TBI) treatment. Drug repurposing is a novel approach in drug development that identifies drugs for purposes other than their original indication. This review presents the biochemical properties of edaravone along with its effects on several neurological disorders in the hope that it can be adopted for treating TBI patients.
Collapse
Affiliation(s)
- Zaynab Shakkour
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Helene Ismail
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Ohanes Ashekyan
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Karl John Habashy
- Faculty of Medicine, American, University of Beirut, Beirut, Lebanon
| | - Leila Nasrallah
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hussam Jourdi
- Biology & Environmental Sciences Division at University of Balamand, Souk El Gharb, Aley, Lebanon
| | - Eva Hamade
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mirna Sabra
- Faculty of Medicine, Lebanese University, Neuroscience Research Center (NRC), Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| |
Collapse
|
15
|
Osakada Y, Yamashita T, Morihara R, Matsumoto N, Sasaki R, Tadokoro K, Nomura E, Kawahara Y, Omote Y, Hishikawa N, Takemoto M, Ohta Y, Suruga Y, Nagase T, Takasugi Y, Inoue S, Watanabe K, Deguchi K, Tokunaga K, Sasada S, Kobayashi K, Maeoka R, Fukutome K, Takahashi K, Ohnishi H, Kuga Y, Ohnishi H, Abe K. 4-Hydroxyl-2-Nonenal Localized Expression Pattern in Retrieved Clots is Associated with Large Artery Atherosclerosis in Stroke Patients. J Stroke Cerebrovasc Dis 2021; 30:105583. [PMID: 33412400 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The relationship between stroke etiology and clot pathology remains controversial. MATERIALS AND METHODS We performed histological analysis of clots retrieved from 52 acute ischemic stroke patients using hematoxylin and eosin staining and immunohistochemistry (CD42b and oxidative/hypoxic stress markers). The correlations between clot composition and the stroke etiological group (i.e., cardioembolic, cryptogenic, or large artery atherosclerosis) were assessed. RESULTS Of the 52 clots analyzed, there were no significant differences in histopathologic composition (e.g., white blood cells, red blood cells, fibrin, and platelets) between the 3 etiological groups (P = .92). By contrast, all large artery atherosclerosis clots showed a localized pattern with the oxidative stress marker 4-hydroxyl-2-nonenal (P < .01). From all 52 clots, 4-hydroxyl-2-nonenal expression patterns were localized in 28.8% of clots, diffuse in 57.7% of clots, and no signal in 13.5% of clots. CONCLUSIONS A localized pattern of 4-hydroxyl-2-nonenal staining may be a novel and effective marker for large artery atherosclerosis (sensitivity 100%, specificity 82%).
Collapse
Affiliation(s)
- Yosuke Osakada
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan; Department of Neurology, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Yuko Kawahara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan
| | - Yasuki Suruga
- Department of Neurosurgery, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan.
| | - Takayuki Nagase
- Department of Neurosurgery, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan.
| | - Yuji Takasugi
- Department of Neurosurgery, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan
| | - Satoshi Inoue
- Department of Neurosurgery, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan
| | - Kyoichi Watanabe
- Department of Neurosurgery, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan.
| | - Kentaro Deguchi
- Department of Neurology, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan.
| | - Koji Tokunaga
- Department of Neurosurgery, Okayama City Hospital, 3-20-1 Kitanagase Omotecho, Kita-ku, Okayama 700-8557, Japan.
| | - Susumu Sasada
- Department of Neurosurgery, Tsuyama Chuo Hospital, 1756 Kawasaki Tsuyama, Okayama 708-0841, Japan
| | - Kazuki Kobayashi
- Department of Neurosurgery, Tsuyama Chuo Hospital, 1756 Kawasaki Tsuyama, Okayama 708-0841, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan.
| | - Kenji Fukutome
- Department of Neurosurgery, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan.
| | - Kenkichi Takahashi
- Department of Neurosurgery, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan.
| | - Hiroyuki Ohnishi
- Department of Neurosurgery, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan.
| | - Yoshihiro Kuga
- Department of Neurosurgery, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan.
| | - Hideyuki Ohnishi
- Department of Neurosurgery, Ohnishi Neurological Center, 1661-1 Eigashima Okubocho, Akashi, Hyogo 674-0064, Japan.
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
16
|
Feng L, Liang N, Li T, Yang Q, Jiang P, Guo S, Zhang C, Gao Y. Efficacy and safety of edaravone for acute intracerebral haemorrhage: protocol for a systematic review and meta-analysis. BMJ Open 2020; 10:e039366. [PMID: 32819956 PMCID: PMC7440699 DOI: 10.1136/bmjopen-2020-039366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Intracerebral haemorrhage (ICH) is a life-threatening condition with no effective internal treatment options. However, edaravone is a promising therapeutic agent, although its beneficial effects are inconclusive based on previous systematic reviews and meta-analyses. While several trials in the last 8 years have reported the favourable long-term functional outcomes, a few reports indicated edaravone to be associated with an increase in adverse events. METHODS AND ANALYSIS This protocol was performed in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols. We will perform the comprehensive and manual search for published articles, ongoing trials, dissertations and grey literature. The following databases will be searched from inception to 23 April 2020: Medline, Embase, the Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Chinese scientific periodical database of VIP INFORMATION, Wanfang Data and SinoMed, with no language restrictions. All randomised controlled trials that (1) compared edaravone with placebo or no treatment, and (2) compared edaravone plus routine treatment or cointervention with routine treatment or cointervention for treating acute ICH will be included. Mortality and long-term dependency will be the primary outcomes. The incidence of adverse events will be assessed for safety evaluation. Two reviewers in pairs will independently carry out the article selection, data extraction and quality assessment. Assessment of the risk of bias and data synthesis will be performed using software Review Manager V.5.3. Finally, we will use the Grading of Recommendations Assessment, Development and Evaluation approach to evaluate the quality of the overall evidence. ETHICS AND DISSEMINATION There are no ethical considerations associated with this updated systematic review and meta-analysis. The findings will be disseminated in peer-reviewed journals or conference presentations. PROSPERO REGISTRATION NUMBER CRD42019147801.
Collapse
Affiliation(s)
- Luda Feng
- Department of Neurology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Li
- Department of Neurology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qinyu Yang
- Department of Neurology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ping Jiang
- Department of Neurology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Shengnan Guo
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chi Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Taira Y, Yamashita T, Bian Y, Shang J, Matsumoto N, Sasaki R, Tadokoro K, Nomura E, Tsunoda K, Omote Y, Takemoto M, Hishikawa N, Ohta Y, Abe K. Antioxidative effects of a novel dietary supplement Neumentix in a mouse stroke model. J Stroke Cerebrovasc Dis 2020; 29:104818. [PMID: 32439352 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND During an acute stroke, reactive oxygen species are overproduced and the endogenous antioxidative defense systems are disrupted. Therefore, antioxidative therapy can be a promising scheme to reduce the severity of stroke. Neumentix is a novel antioxidative supplement produced from a patented mint line and contains a high content of rosmarinic acid (RA). Although Neumentix has proven diverse efficacy and safety in clinical trials, its effect on strokes is unclear. METHODS Mice that were treated with Neumentix or vehicle for 14 days underwent transient middle cerebral artery occlusion (tMCAO) for 60 min. Mice were sacrificed 5 days after tMCAO. RESULTS Neumentix preserved body weight after tMCAO, showed a high antioxidative effect in serum, and reduced infarction volume compared to the vehicle. The expression of 4-hydroxy-2-nonenal, Nε-(carboxymethyl) lysine, and 8-hydroxy-2'-deoxyguanosine was reduced in Neumentix-treated mice. CONCLUSION The antioxidative effect of Neumentix was confirmed. This is the first report to demonstrate the antioxidative effect of Neumentix on strokes.
Collapse
Affiliation(s)
- Yuki Taira
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Toru Yamashita
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Yuting Bian
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Jingwei Shang
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Namiko Matsumoto
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Ryo Sasaki
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Koh Tadokoro
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Emi Nomura
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Keiichiro Tsunoda
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Yoshio Omote
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Mami Takemoto
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Nozomi Hishikawa
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Yasuyuki Ohta
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Koji Abe
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan.
| |
Collapse
|
18
|
Sasaki R, Yamashita T, Tadokoro K, Matsumoto N, Nomura E, Omote Y, Takemoto M, Hishikawa N, Ohta Y, Abe K. Direct arterial damage and neurovascular unit disruption by mechanical thrombectomy in a rat stroke model. J Neurosci Res 2020; 98:2018-2026. [PMID: 32557772 DOI: 10.1002/jnr.24671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022]
Abstract
Mechanical thrombectomy (MT) is a standard treatment for acute ischemic stroke that could cause hemorrhagic complications. We aimed to evaluate the pathology of MT-induced arterial damage and neurovascular unit (NVU) disruption in relation to tissue-type plasminogen activator (tPA) injection for acute ischemic stroke. We induced transient middle cerebral artery occlusion in male SHR/Izm rats for 2 hr. This was followed by reperfusion with/without tPA (3 mg/kg) and "rough suture" insertion that mimicked MT once or thrice (MT1 or MT3). Compared with the control group, the tPA + MT3 group presented with an increase in the cerebral infarct and hemorrhage with severer IgG leakage. Moreover, structural damage reaching the tunica media was detected in the MT3 and tPA + MT3 groups. The tPA + MT3 group presented with increased matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression with some MMP9-positive cells expressing a neutrophil marker myeloperoxidase. Furthermore, basal lamina detachment from astrocyte foot processes was observed in the tPA + MT1 and tPA + MT3 groups. These findings suggest that MT causes direct arterial damage, as well as VEGF and MMP9 upregulation, which results in NVU disruption and hemorrhagic complications in acute ischemic stroke, especially when combined with tPA.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
19
|
Shi X, Ohta Y, Nakano Y, Liu X, Tadokoro K, Feng T, Nomura E, Tsunoda K, Sasaki R, Matsumoto N, Osakada Y, Bian Y, Bian Z, Omote Y, Takemoto M, Hishikawa N, Yamashita T, Abe K. Neuroprotective effect of CuATSM in mice stroke model by ameliorating oxidative stress. Neurosci Res 2020; 166:55-61. [PMID: 32461139 DOI: 10.1016/j.neures.2020.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/09/2022]
Abstract
Cu-diacetyl-bis (N4-methylthiosemicarbazone) (CuATSM) has both anti-oxidative and anti-inflammatory activities, but its therapeutic efficacy for oxidative stress has not been thoroughly investigated in acute ischemic stroke. Here, the present study was designed to assess the efficacies of CuATSM in acute ischemic stroke by comparing with the standard neuroprotective reagent edaravone. Mice were subjected to transient middle cerebral occlusion (tMCAO) for 60 min, and then intravenously administrated with CuATSM (1.5 mg/kg) or edaravone (3 mg/kg) just after the reperfusion, and examined at 1 and 3 d. Compared with the vehicle group, CuATSM treatment decreased infarct volumes and oxidative stress at 3d after tMCAO, which was further enhanced by combined CuATSM + edaravone treatment as compared with single CuATSM group, but not improve neurobehaviors. The present study demonstrated that CuATSM showed strong antioxidative and neuroprotective effects in acute ischemic stroke, which was enhanced by the combination with edaravone.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Keiichiro Tsunoda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yosuke Osakada
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
20
|
Guo Z, Wu HT, Li XX, Yu Y, Gu RZ, Lan R, Qin XY. Edaravone protects rat astrocytes from oxidative or neurotoxic inflammatory insults by restoring Akt/Bcl-2/Caspase-3 signaling axis. IBRO Rep 2020; 8:122-128. [PMID: 32382683 PMCID: PMC7200465 DOI: 10.1016/j.ibror.2020.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are the major glia cells in the central nervous system (CNS). Increasing evidence indicates that more than to be safe-guard and supporting cells for neurons, astrocytes play a broad spectrum of neuroprotective and pathological functions. Thus, they are compelling models to decipher mechanistic insights of glia cells to CNS insults and for the development of drugs. Edaravone is a free radical scavenger with the capacity to eliminate hydroxyl radicals and lipid peroxides. In this study, we examined the neuroprotective effects of edaravone in rat astrocytes challenged by hydrogen peroxide (H2O2) or bacterial lipopolysaccharides (LPS), respectively. We discovered that edaravone attenuated H2O2-induced oxidative stress by reactivating the Akt signaling axis and antagonistically restoring the expression of apoptosis associated regulators such as Bcl-2 and Caspase-3. Consistently, inhibition of Akt signaling by LY294002 attenuated the anti-oxidative activity of edaravone. In addition, edaravone mitigated LPS-induced morphological changes in astrocytes and alleviated the inflammatory activation and expression of TNF-α, IL-1β, IL-6 and NOS2. In summary, our data suggested that edavarone effectively protects astrocytes from oxidative stress or infectious insults, which may pave a new avenue for its application in preclinical research and human disease therapeutics.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- C1q, complement component 1q
- CNS, central nervous system
- GFAP
- GFAP, glial fibrillary acidic protein
- H2O2, hydrogen peroxide
- IL-1α, interleukin 1 alpha
- IL-1β, interleukin 1beta
- IL-6, interleukin 6
- LPS, lipopolysaccharides
- NOS2, nitric oxide synthase 2
- TLRs, Toll-like receptors
- TNF-α
- TNF-α, tumor necrosis factor alpha
- edaravone
- free radical scavenger
- oxidative stress
- pro-inflammatory factors
Collapse
Affiliation(s)
- Zhe Guo
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.,The Emergency Department, the Third Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Huan-Tong Wu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xi-Xi Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yun Yu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Run-Ze Gu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiao-Yan Qin
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
21
|
Kawasaki H, Ito Y, Kitabayashi C, Tanaka A, Nishioka R, Yamazato M, Ishizawa K, Nagai T, Hirayama M, Takahashi K, Yamamoto T, Araki N. Effects of Edaravone on Nitric Oxide, Hydroxyl Radicals and Neuronal Nitric Oxide Synthase During Cerebral Ischemia and Reperfusion in Mice. J Stroke Cerebrovasc Dis 2019; 29:104531. [PMID: 31882337 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effects of edaravone on nitric oxide (NO) production, hydroxyl radical (OH-) metabolism, and neuronal nitric oxide synthase (nNOS) expression during cerebral ischemia and reperfusion. METHODS Edaravone (3 mg/kg) was administered intravenously to 14 C57BL/6 mice just before reperfusion. Eleven additional mice received saline (controls). NO production and OH- metabolism were continuously monitored using bilateral striatal in vivo microdialysis. OH- formation was monitored using the salicylate trapping method. Forebrain ischemia was produced in all mice by bilateral occlusion of the common carotid artery for 10 minutes. Levels of NO metabolites, nitrite (NO2-) and nitrate (NO3-), were determined using the Griess reaction. Brain sections were immunostained with an anti-nNOS antibody and the fractional area density of nNOS-immunoreactive pixels to total pixels determined. RESULTS Blood pressure and regional cerebral blood flow were not significantly different between the edaravone and control groups. The levels of NO2- did not differ significantly between the 2 groups. The level of NO3- was significantly higher in the edaravone group compared with the control group after reperfusion. 2,3-dihydroxybenzoic acid levels were lower in the edaravone group compared with those in the control group after reperfusion. Immunohistochemistry showed nNOS expression in the edaravone group to be significantly lower than that in the control group 96 hours after reperfusion. CONCLUSIONS These in vivo data indicate that edaravone may have a neuroprotective effect by reducing levels of OH- metabolites, increasing NO production and decreasing nNOS expression in brain cells.
Collapse
Affiliation(s)
- Hitoshi Kawasaki
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Yasuo Ito
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Chika Kitabayashi
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Ai Tanaka
- Department of Neurology, Tottori Medical Center, Tottori, Japan
| | - Ryoji Nishioka
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan; Department of Rehabilitation, Inzai General Hospital, Inzai, Chiba, Japan
| | - Masamizu Yamazato
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan; Department of Neurology, Higashimatsuyama Medical Association Hospital, Higashimatsuyama, Saitama, Japan
| | - Keisuke Ishizawa
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan; Department of Pathology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Toshinori Nagai
- Department of Pathology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Makiko Hirayama
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Kazushi Takahashi
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Nobuo Araki
- Department of Neurology, Saitama Medical University, Moroyama, Saitama, Japan.
| |
Collapse
|
22
|
Chronic cerebral hypoperfusion alters amyloid-β transport related proteins in the cortical blood vessels of Alzheimer’s disease model mouse. Brain Res 2019; 1723:146379. [DOI: 10.1016/j.brainres.2019.146379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
23
|
Yamashita T, Shang J, Nakano Y, Morihara R, Sato K, Takemoto M, Hishikawa N, Ohta Y, Abe K. In vivo direct reprogramming of glial linage to mature neurons after cerebral ischemia. Sci Rep 2019; 9:10956. [PMID: 31358888 PMCID: PMC6662847 DOI: 10.1038/s41598-019-47482-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/17/2019] [Indexed: 01/23/2023] Open
Abstract
The therapeutic effect of in vivo direct reprogramming on ischemic stroke has not been evaluated. In the present study, a retroviral solution (1.5–2.0 × 107 /ul) of mock pMX-GFP (n = 13) or pMX-Ascl1/Sox2/NeuroD1 (ASN) (n = 14) was directly injected into the ipsilateral striatum and cortex 3 days after 30 min of transient cerebral ischemia. The reprogrammed cells first expressed neuronal progenitor marker Dcx 7 and 21 days after viral injection, then expressed mature neuronal marker NeuN. This was accompanied by morphological changes, including long processes and synapse-like structures, 49 days after viral injection. Meanwhile, therapeutic improvement was not detected both in clinical scores or infarct volume. The present study provides a future novel self-repair strategy for ischemic stroke with beneficial modifications of the inducer-suppressor balance.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
24
|
Xu J, Wang Y, Wang A, Gao Z, Gao X, Chen H, Zhou J, Zhao X, Wang Y. Safety and efficacy of Edaravone Dexborneol versus edaravone for patients with acute ischaemic stroke: a phase II, multicentre, randomised, double-blind, multiple-dose, active-controlled clinical trial. Stroke Vasc Neurol 2019; 4:109-114. [PMID: 31709115 PMCID: PMC6812637 DOI: 10.1136/svn-2018-000221] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Edaravone Dexborneol is a novel neuroprotective agent that comprised edaravone and (+)-borneol, a food additive with an anti-inflammatory effect in animal ischaemic stroke models. This study aims to assess the safety and efficacy of Edaravone Dexborneol compared with edaravone in treating patients with acute ischaemic stroke (AIS). Methods In this multicentre, randomised, double-blind, multiple-dose, active-controlled, phase II clinical trial, patients with AIS within 48 hours after stroke onset were randomly assigned (1:1:1:1) to low-dose (12.5 mg), medium-dose (37.5 mg) or high-dose (62.5 mg) Edaravone Dexborneol groups, and an active control group with edaravone (30 mg) by 30 min intravenous infusion every 12 hours, for 14 consecutive days. The primary efficacy outcome was the proportion of modified Rankin Scale (mRS)score ≤1 at 90 days and National Institutes of Health Stroke Scale (NIHSS) score change from baseline to 14 days after randomisation. The safety outcome included any adverse event during 90 days after treatment. Results Of 385 patients included in the efficacy analysis, 94 were randomised to low-dose group, 97 to medium-dose group, 98 to high-dose group and 96 to the control group. No significant difference was observed among the four groups on mRS score (mRS ≤1, p=0.4054) at 90 days or NIHSS score change at 14 days (p=0.6799). However, a numerically higher percentage of patients with mRSscore ≤1 at 90 days in the medium-dose (69.39%) and high-dose (65.63%) groups was observed than in the control group (60.64%). No significant difference in severe adverse events was found among the four groups (p=0.3815). Conclusions Compared with edaravone alone, Edaravone Dexborneol was safe and well tolerated at all doses, although no significant improvement in functional outcomes was observed at 90days. Trial registration number NCT01929096.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiqiang Gao
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoping Gao
- Department of Neurology, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Huisheng Chen
- Department of Neurology, General Hospital, PLA Shenyang Military Region, Shenyang, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
25
|
Gurung AB, Pamay P, Tripathy D, Biswas K, Chatterjee A, Joshi SR, Bhattacharjee A. Bioprospection of anti-inflammatory phytochemicals suggests rutaecarpine and quinine as promising 15-lipoxygenase inhibitors. J Cell Biochem 2019; 120:13598-13613. [PMID: 30937959 DOI: 10.1002/jcb.28634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
15-Lipoxygenase (15-LOX) belongs to the family of nonheme iron containing enzymes that catalyzes the peroxidation of polyunsaturated fatty acids (PUFAs) to generate eicosanoids that play an important role in signaling pathways. The role of 15-LOX has been demonstrated in atherosclerosis as well as other inflammatory diseases. In the present study, drug-like compounds were first screened from a set of anti-inflammatory phytochemicals based on Lipinski's rule of five (ROF) and in silico toxicity filters. Two lead compounds-quinine (QUIN) and rutaecarpine (RUT) were shortlisted by analyzing molecular interactions and binding energies of the filtered compounds with the target using molecular docking. Molecular dynamics simulation studies indicate stable trajectories of apo_15-LOX and docked complexes (15-LOX_QUIN and 15-LOX_RUT). In vitro 15-LOX inhibition studies shows that both QUIN and RUT have lower inhibitory concentration (IC50 ) value than the control (quercetin). Both QUIN and RUT exhibit moderate antioxidant activities. The cell viability study of these compounds suggests no significant toxicity in HEK-293 cell lines. Further, QUIN and RUT both did not show any inhibition against selected Gram-positive and Gram-negative bacterial species. Thus, based on our present findings, rutaecarpine and quinine may be suggested as promising 15-LOX inhibitor for the prevention of the atherosclerosis development.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Pezaiwi Pamay
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Debabrata Tripathy
- Genetics and Molecular biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Koel Biswas
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Anupam Chatterjee
- Genetics and Molecular biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India.,Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
26
|
Ohta Y, Nomura E, Shang J, Feng T, Huang Y, Liu X, Shi X, Nakano Y, Hishikawa N, Sato K, Takemoto M, Yamashita T, Abe K. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res 2018; 97:607-619. [DOI: 10.1002/jnr.24368] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| |
Collapse
|
27
|
Mondal NK, Behera J, Kelly KE, George AK, Tyagi PK, Tyagi N. Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int 2018; 122:120-138. [PMID: 30472160 DOI: 10.1016/j.neuint.2018.11.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
The objectives of this study are to identify the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion (I/R) injury and the therapeutic potential of tetrahydrocurcumin (THC) to mitigate mitochondrial dysfunction in experimental stroke model. In our study, 8-10 weeks old male C57BL/6 wild-type mice were subjected to middle cerebral artery occlusion (MCAO) for 40 min, followed by reperfusion for 72 h. THC (25mg/kg-BW/day) was injected intraperitoneally once daily for 3 days after 4 h of ischemia. The experimental groups were: (i) sham, (ii) I/R and (iii) I/R + THC. We noticed that THC treatment in ischemic mice significantly improved the functional capacity and motor co-ordination along with reduced neuroscore, infarct volume, brain edema and microvascular leakage in brain parenchyma. The study revealed that level of total homocysteine (tHcy), homocysteine metabolizing enzymes, mitochondrial oxidative stress were significantly altered in I/R mice compared to sham. We also observed alteration in mitochondrial transition pore, ATP production and O2 consumption in the ischemic brain as compared to sham. Further, elevated matrix metalloproteinases-9 (MMP-9) activity and reduced tight junction protein expressions intensified the brain vascular impairment in I/R mice compared to sham. Interestingly, we found that levels of mitophagy markers, fusion and fission proteins were significantly altered. However THC treatment in I/R mice almost normalized the above functional and molecular changes. Mechanistic study demonstrated that DNA Methyltransferase 1 (DNMT1) expression was higher and was associated with reduced mitochondrial tissue inhibitor of metalloproteinases 2 (TIMP-2) expression through hyper-methylation of CpG island of TIMP-2 promoter in I/R mice compared to sham. However, administration of epigenetic inhibitor, 5-Azacytidine (5-Aza) abrogated I/R induced hyper-methylation of TIMP-2 promoter and maintaining the extracellular matrix (ECM) integrity. In conclusion, this study suggests that THC epigenetically ameliorates mitochondrial dysfunction in brain vasculature during Ischemic Stroke.
Collapse
Affiliation(s)
- Nandan K Mondal
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Surgery, Baylor College of Medicine, Texas Heart Institute, Houston, TX, 77030, USA
| | - Jyotirmaya Behera
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kimberly E Kelly
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Pranav K Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
28
|
Shi X, Ohta Y, Shang J, Morihara R, Nakano Y, Fukui Y, Liu X, Feng T, Huang Y, Sato K, Takemoto M, Hishikawa N, Yamashita T, Suzuki E, Hasumi K, Abe K. Neuroprotective effects of SMTP-44D in mice stroke model in relation to neurovascular unit and trophic coupling. J Neurosci Res 2018; 96:1887-1899. [PMID: 30242877 DOI: 10.1002/jnr.24326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Stachybotrys microspora triprenyl phenol (SMTP)-44D has both anti-oxidative and anti-inflammatory activities, but its efficacy has not been proved in relation to the pathological changes of neurovascular unit (NVU) and neurovascular trophic coupling (NVTC) in ischemic stroke. Here, the present study was designed to assess the efficacies of SMTP-44D, moreover, compared with the standard neuroprotective reagent edaravone in ischemic brains. ICR mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min, SMTP-44D (10 mg/kg) or edaravone (3 mg/kg) was intravenously administrated through subclavian vein just after the reperfusion, and these mice were examined at 1, 3, and 7 d after reperfusion. Compared with the vehicle group, SMTP-44D treatment revealed obvious ameliorations in clinical scores and infarct volume, meanwhile, markedly suppressed the accumulations of 4-HNE, 8-OHdG, nitrotyrosine, RAGE, TNF-α, Iba-1, and cleaved caspase-3 after tMCAO. In addition, SMTP-44D significantly prevented the dissociation of NVU and improved the intensity of NAGO/BDNF and the number of BDNF/TrkB and BDNF/NeuN double positive cells. These effects of SMTP-44D in reducing oxidative and inflammatory stresses were similar to or stronger than those of edaravone. The present study demonstrated that SMTP-44D showed strong anti-oxidative, anti-inflammatory, and anti-apoptotic effects, moreover, the drug also significantly improved the NVU damage and NVTC in the ischemic brain.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
29
|
Affiliation(s)
- Brian Raymer
- Medicine Design, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Samit K. Bhattacharya
- Medicine Design, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y. Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg 2018; 5:213-221. [PMID: 29988669 PMCID: PMC6028804 DOI: 10.1002/ams2.343] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/12/2023] Open
Abstract
It is well known that acute ischemic stroke (AIS) and subsequent reperfusion produce lethal levels of reactive oxygen species (ROS) in neuronal cells, which are generated in mitochondria. Mitochondrial ROS production is a self-amplifying process, termed "ROS-induced ROS release". Furthermore, the mitochondrial permeability transition pore (MPTP) is deeply involved in this process, and its opening could cause cell death. Edaravone, a free radical scavenger, is the only neuroprotective agent for AIS used in Japan. It captures and reduces excessive ROS, preventing brain damage. Cyclosporine A (CsA), an immunosuppressive agent, is a potential neuroprotective agent for AIS. It has been investigated that CsA prevents cellular death by suppressing MPTP opening. In this report, we will outline the actions of edaravone and CsA as neuroprotective agents in AIS, focusing on their relationship with ROS and MPTP.
Collapse
Affiliation(s)
- Shohei Matsumoto
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Michihiro Murozono
- Department of AnesthesiologyTokyo Medical University Ibaraki Medical CenterIbarakiJapan
| | - Masahiro Kanazawa
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Takeshi Nara
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Takuro Ozawa
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Yasuo Watanabe
- General Health Medical CenterYokohama University of PharmacyKanagawaJapan
| |
Collapse
|
31
|
Ito R, Ito M, Asano Y, Murakumo A, Yamamoto N, Horiguchi A. Availability of a Magnetic Method for Hepatocyte Transplantation. Transplant Proc 2018; 50:1525-1531. [PMID: 29880382 DOI: 10.1016/j.transproceed.2018.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/17/2018] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Hepatocyte transplantation is a promising alternate for the treatment of hepatic diseases. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in the quantity sufficient and the quality required for biotherapy. Isolated fresh hepatocytes include damaged cells that are also early apoptotic cells, which is not ideal for hepatocyte transplantation. However, this does not reflect cell viability, although it is considered that it adversely affects cell survival after transplantation. We aimed to harvest these hepatocytes and filter the apoptotic cells using a magnetic method to provide a transplantation source. MATERIALS AND METHODS Rat hepatocytes were isolated from caudate lobes using manual enzymatic perfusion. The hepatocyte yield was 5.3 ± 0.66 × 109 cells/g of liver tissue, with a viability of 82.3 ± 3.5%. Two samples of hepatocytes were freshly isolated, one using the magnetic method, and the other without. The magnetic method was performed using DynaMag-15 Magnet, and Annexin V Antibody was used on the early apoptotic cells. We evaluated the viability and plate efficiency of the cells after 24 hours at 37°C. Hepatocytes were isolated using cell separation method, and 30 × 106 cells were mixed with 1.0 mL of Dulbecco's Modified Eagle's Medium (DMEM) and directly injected into the spleen of Lewis rats (150-250 g) using 24-gauge needles. Blood samples were collected on days 0, 3, 7, and 14, and the blood albumin level was measured using enzyme-linked immunosorbent assay (ELISA):G1, control (medium injection); G2, fresh hepatocyte transplant using the magnetic method; and G3, fresh hepatocyte transplant without the magnetic method. RESULTS The viability was 84.9 ± 2% for fresh hepatocytes and 80.7 ± 1.2% for hepatocytes isolated using the magnetic method. The magnetic method does not damage the cells (73.5 ± 2% vs 35.2 ± 2% after 24 hours), preserving hepatocyte. The albumin level accepted significantly increased in the magnet-treated group compared with the nonmagnet group. Simultaneously, the spleen in which these hepatocytes were transplanted could be used to observe the hepatocytes; the cells were transplanted 14 days later, and the magnet-treated group had significantly higher levels of hepatocytes than the nonmagnet group. CONCLUSION We developed an effective technique for hepatocyte isolation for short-term preservation. As a result, we believe that transplantation not only improves the cell transplantation effect but also allows the cells to be stored efficiently using the magnetic method. These results demonstrate the usefulness of hepatocyte hypothermic preservation for cell transplantation.
Collapse
Affiliation(s)
- R Ito
- Fujita Health University, Department of Surgery, Toyoake, Japan
| | - M Ito
- Fujita Health University, Department of Surgery, Toyoake, Japan.
| | - Y Asano
- Fujita Health University, Department of Surgery, Toyoake, Japan
| | - A Murakumo
- Fujita Health University, Department of Surgery, Toyoake, Japan
| | - N Yamamoto
- Fujita Health University, Institute for Comprehensive Medical Science, Toyoake, Japan
| | - A Horiguchi
- Fujita Health University, Department of Surgery, Toyoake, Japan
| |
Collapse
|
32
|
Abe K. [An early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development]. Rinsho Shinkeigaku 2018; 58:141-165. [PMID: 29491329 DOI: 10.5692/clinicalneurol.cn-001095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present review focuses an early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development. In relation to foreign previous reports, five topics are introduced and discussed on ALS with dementia, ALS/Parkinsonism dementia complex (ALS/PDC), familial ALS (FALS), spinal bulbar muscular atrophy (SBMA), and multisystem involvement especially in cerebellar system of ALS including ALS/SCA (spinocerebellar ataxia) crossroad mutation Asidan. This review found the great contribution of Japanese reports on the above five topics, and confirmed the great development of ALS-related diseases over the past 120 years.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Okayama University Medical School
| |
Collapse
|
33
|
Takase H, Liang AC, Miyamoto N, Hamanaka G, Ohtomo R, Maki T, Pham LDD, Lok J, Lo EH, Arai K. Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci Lett 2018; 668:120-125. [PMID: 29337010 PMCID: PMC5829007 DOI: 10.1016/j.neulet.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) play critical roles in maintaining the number of oligodendrocytes in white matter. Previously, we have shown that oxidative stress dampens oligodendrocyte regeneration after white matter damage, while a clinically proven radical scavenger, edaravone, supports oligodendrocyte repopulation. However, it is not known how edaravone exerts this beneficial effect against oxidative stress. Using in vivo and in vitro experiments, we have examined whether edaravone exhibits direct OPC-protective effects. For in vivo experiments, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. OPC damage was observed on day 14 after the onset of cerebral hypoperfusion, and edaravone was demonstrated to decrease OPC death in cerebral white matter. In vitro experiments also confirmed that edaravone reduced oxidative-stress-induced OPC death. Because white matter damage is a major hallmark of many neurological diseases, and OPCs are instrumental in white matter repair after injury, our current study supports the idea that radical scavengers may provide a potential therapeutic approach for white matter related diseases.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
34
|
Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3804979. [PMID: 29770166 PMCID: PMC5892600 DOI: 10.1155/2018/3804979] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury) has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage.
Collapse
|
35
|
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2017; 62:20-38. [PMID: 29371752 PMCID: PMC5773834 DOI: 10.3164/jcbn.17-62] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS.
Collapse
Affiliation(s)
- Kazutoshi Watanabe
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiko Tanaka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| | - Satoshi Yuki
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 17-10 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Manabu Hirai
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 3-2-10 Dosho-machi, Chuo-ku, Osaka 541-8505, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| |
Collapse
|
36
|
Ramesh N, Pandey UB. Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Front Mol Neurosci 2017; 10:263. [PMID: 28878620 PMCID: PMC5572252 DOI: 10.3389/fnmol.2017.00263] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in diseased neurons is the mislocalization of disease-associated proteins and the formation of cytoplasmic aggregates of these proteins and their interactors due to defective protein quality control. This apparent imbalance in the cellular protein homeostasis could be a crucial factor in causing motor neuron death in the later stages of the disease in patients. Autophagy is a major protein degradation pathway that is involved in the clearance of protein aggregates and damaged organelles. Abnormalities in autophagy have been observed in numerous neurodegenerative disorders, including ALS. In this review, we discuss the contribution of autophagy dysfunction in various in vitro and in vivo models of ALS. Furthermore, we examine the crosstalk between autophagy and other cellular stresses implicated in ALS pathogenesis and the therapeutic implications of regulating autophagy in ALS.
Collapse
Affiliation(s)
- Nandini Ramesh
- Department of Human Genetics, University of Pittsburgh Graduate School of Public HealthPittsburgh, PA, United States.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburgh, PA, United States
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public HealthPittsburgh, PA, United States.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| |
Collapse
|
37
|
Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress. Antioxidants (Basel) 2017; 6:antiox6030051. [PMID: 28698499 PMCID: PMC5618079 DOI: 10.3390/antiox6030051] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson's disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively), collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and nitric oxide synthase (NOS). Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA) used routinely in the treatment of Parkinson's disease (not as a free radical scavenger), and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1). Although they share the targets in reversing the cytotoxic effects of H₂O₂, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein) with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.
Collapse
|
38
|
Neuroprotective Effects of a Novel Antioxidant Mixture Twendee X in Mouse Stroke Model. J Stroke Cerebrovasc Dis 2017; 26:1191-1196. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/31/2022] Open
|
39
|
Nakano Y, Yamashita T, Li Q, Sato K, Ohta Y, Morihara R, Hishikawa N, Abe K. Time-dependent change of in vivo optical imaging of oxidative stress in a mouse stroke model. J Neurosci Res 2017; 95:2030-2039. [PMID: 28276088 DOI: 10.1002/jnr.24047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/26/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in cellular defense against oxidative stress damage after ischemic stroke. In the present study, we examined the time-dependent change of in vivo optical imaging of oxidative stress after stroke with Keap1-dependent oxidative stress detector (OKD) mice. OKD mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 45 min, and in vivo optical signals were detected during the pre-operative period, 12 h, 1 d, 3 d, and 7 d after tMCAO. Ex vivo imaging was performed immediately after obtaining in vivo optical signals at 1 d after tMCAO. Immunohistochemical analyses and infarct volume were also examined after in vivo imaging at each period. The in vivo signals showed a peak at 1 d after tMCAO that was slightly correlated to infarct volume. The strong ex vivo signals, which were detected in the peri-ischemic area, corresponded to endogenous Nrf2 expression. Moreover, endogenous Nrf2 expression was detected mainly in neurons followed by oligodendrocytes and pericytes, but only slightly in astrocytes, microglia, endothelial cells. The present study successfully demonstrated the temporal change of in vivo imaging of oxidative stress after tMCAO, which is consistent with strong expression of endogenous Nrf2 in the peri-ischemic area with a similar time course. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yumiko Nakano
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Qian Li
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
40
|
Yuan W, Chen Q, Zeng J, Xiao H, Huang ZH, Li X, Lei Q. 3'-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury. Neural Regen Res 2017; 12:235-241. [PMID: 28400805 PMCID: PMC5361507 DOI: 10.4103/1673-5374.200807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein (an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly elevated the mitochondrial membrane potential, increased mitochondrial superoxide dismutase and glutathione peroxidase activities, and decreased mitochondrial malondialdehyde levels. 3′-Daidzein sulfonate sodium improved the structural integrity of the blood-brain barrier and reduced blood-brain barrier permeability. These findings confirmed that 3′-daidzein sulfonate sodium has a protective effect on mitochondrial functions after cerebral ischemia/reperfusion injury, improves brain energy metabolism, and provides protection against blood-brain barrier damage.
Collapse
Affiliation(s)
- Wa Yuan
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Qin Chen
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jing Zeng
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hai Xiao
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Zhi-Hua Huang
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Xiao Li
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Qiong Lei
- Gannan Medical University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
41
|
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2:153-163. [PMID: 30276293 PMCID: PMC6126224 DOI: 10.4103/2394-8108.195279] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
42
|
Yamamoto Y. Plasma marker of tissue oxidative damage and edaravone as a scavenger drug against peroxyl radicals and peroxynitrite. J Clin Biochem Nutr 2016; 60:49-54. [PMID: 28163382 PMCID: PMC5281530 DOI: 10.3164/jcbn.16-63] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
The percentage of the plasma oxidized form of coenzyme Q10 in the total amount of coenzyme Q10 (%CoQ10) is a useful marker of oxidative stress in the circulation. Plasma free fatty acids and their composition can be used as markers of tissue oxidative damage, as demonstrated in patients suffering from a wide variety of diseases and in humans and rats under oxidative stress. Edaravone was approved for the treatment of stroke in Japan in 2001 and its mechanism of action is based on scavenging lipid peroxyl radicals. In 2015, edaravone was also approved for the treatment of ALS patients. Edaravone functions therapeutically as a scavenger of peroxynitrite, as demonstrated by the finding that its administration raises plasma uric acid levels and decreases 3-nitrotyrosine in cerebrospinal fluid.
Collapse
Affiliation(s)
- Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982 Japan
| |
Collapse
|
43
|
Fujiwara N, Som AT, Pham LDD, Lee BJ, Mandeville ET, Lo EH, Arai K. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model. Neurosci Lett 2016; 633:7-13. [PMID: 27589890 DOI: 10.1016/j.neulet.2016.08.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/17/2016] [Accepted: 08/26/2016] [Indexed: 01/27/2023]
Abstract
A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-h after an ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-h after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy.
Collapse
Affiliation(s)
- Norio Fujiwara
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Angel T Som
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Brian J Lee
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
44
|
Yamamoto Y, Kuwahara T, Watanabe K, Watanabe K. Antioxidant activity of 3-methyl-1-phenyl-2-pyrazolin-5-one. Redox Rep 2016; 2:333-8. [DOI: 10.1080/13510002.1996.11747069] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
Edaravone improves survival and neurological outcomes after CPR in a ventricular fibrillation model of rats. Am J Emerg Med 2016; 34:1944-1949. [PMID: 27424212 DOI: 10.1016/j.ajem.2016.06.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Overproduction of free radicals is a main factor contributing to cerebral injury after cardiac arrest (CA)/cardiopulmonary resuscitation (CPR). We sought to evaluate the impact of edaravone on the survival and neurological outcomes after CA/CPR in rats. METHODS Rats were subjected to CA following CPR. For survival study, the rats with restoration of spontaneous circulation (ROSC) were randomly allocated to one of the two groups (edaravone and saline group, n=20/each group) to received Edaravone (3 mg/kg) or normal saline. Another 10 rats without experiencing CA and CPR served as the sham group. Survival was observed for 72 hours and the neurological deficit score (NDS) was calculated at 12, 24, 48, and 72 hours after ROSC. For the neurological biochemical analysis study, rats were subjected to the same experimental procedures. Then, edaravone group (n=24), saline group (n=24) and sham group (n=16) were further divided into 4 subgroups according to the different time intervals (12, 24, 48, and 72 hours following ROSC). Brain tissues were harvested at relative time intervals for evaluation of oxidative stress, TUNEL staining and apoptotic gene expression. RESULTS Edaravone improved postresuscitative survival time and neurological deficit, decreased brain malonylaldehyde level, increased superoxide dismutase activities, decreased proapoptotic gene expression of capase-8, capase-3, and Bax, and increased antiapoptotic Bcl-2 expression at 12, 24, 48, and 72 hours after ROSC. CONCLUSIONS Edaravone improves survival and neurological outcomes following CPR via antioxidative and antiapoptotic effects in rats.
Collapse
|
46
|
Solovieva EY, Farrahova KI, Karneev AN, Chipova DT. [Phospholipids metabolism disorders in acute stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:104-112. [PMID: 27045147 DOI: 10.17116/jnevro201611611104-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The disturbances of cerebral circulation results in the violation of phospholipid metabolism. Activation of lipid peroxidation and protein kinase C and release of intracellular calcium leads to disruption of the homeostasis of phosphatidylcholine. The use of cytidine-5-diphosphocholine, which is used as an intermediate compound in the biosynthesis of phospholipids of the cell membrane, helps to stabilize cell membranes, and reduce the formation of free radicals.
Collapse
Affiliation(s)
| | - K I Farrahova
- Rossijskij natsional'nyj issledovatel'skij meditsinskij universitet im. N.I. Pirogova', Moskva
| | | | - D T Chipova
- Rossijskij natsional'nyj issledovatel'skij meditsinskij universitet im. N.I. Pirogova', Moskva
| |
Collapse
|
47
|
Takizawa S, Nagata E, Nakayama T, Masuda H, Asahara T. Recent Progress in Endothelial Progenitor Cell Culture Systems: Potential for Stroke Therapy. Neurol Med Chir (Tokyo) 2016; 56:302-9. [PMID: 27041632 PMCID: PMC4908073 DOI: 10.2176/nmc.ra.2016-0027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial progenitor cells (EPCs) participate in endothelial repair and angiogenesis due to their abilities to differentiate into endothelial cells and to secrete protective cytokines and growth factors. Consequently, there is considerable interest in cell therapy with EPCs isolated from peripheral blood to treat various ischemic injuries. Quality and quantity-controlled culture systems to obtain mononuclear cells enriched in EPCs with well-defined angiogenic and anti-inflammatory phenotypes have recently been developed, and increasing evidence from animal models and clinical trials supports the idea that transplantation of EPCs contributes to the regenerative process in ischemic organs and is effective for the therapy of ischemic cerebral injury. Here, we briefly describe the general characteristics of EPCs, and we review recent developments in culture systems and applications of EPCs and EPC-enriched cell populations to treat ischemic stroke.
Collapse
Affiliation(s)
- Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine
| | | | | | | | | |
Collapse
|
48
|
Fujisawa A, Yamamoto Y. Edaravone, a potent free radical scavenger, reacts with peroxynitrite to produce predominantly 4-NO-edaravone. Redox Rep 2016. [PMID: 26196041 DOI: 10.1179/1351000215y.0000000025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES 3-Methyl-1-phenyl-2-pyrazolin-5-one (edaravone) is used in clinical treatment of acute brain infarction to rescue the penumbra, based on its ability to prevent lipid peroxidation by scavenging lipid peroxyl radicals. Here, we show that edaravone also reacts with peroxynitrite to yield 4-NO-edaravone as the major product and 4-NO2-edaravone as a minor product. RESULTS We observed little formation of 3-methyl-1-phenyl-2-pyrazolin-4,5-dione (4-oxoedaravone) and its hydrate, 2-oxo-3-(phenylhydrazono)butanoic acid, which are the major free radical-induced oxidation products of edaravone, suggesting that free radicals are not involved in the reaction with peroxynitrite. The reaction of peroxynitrite with edaravone is approximately 30-fold greater than with uric acid, a physiological peroxynitrite scavenger (reaction rate k = 1.5 × 10 (4) M(-1) s(-1) vs. 480 M(-1) s(-1)). DISCUSSION These results suggest that edaravone functions therapeutically as a scavenger of peroxynitrite as well as lipid peroxyl radicals, which is consistent with a report that edaravone treatment reduced levels of 3-nitrotyrosine in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Akio Fujisawa
- a School of Bioscience and Biotechnology , Tokyo University of Technology , 1404-1 Katakura-cho, Hachioji 192-0982 , Japan
| | - Yorihiro Yamamoto
- a School of Bioscience and Biotechnology , Tokyo University of Technology , 1404-1 Katakura-cho, Hachioji 192-0982 , Japan
| |
Collapse
|
49
|
Thrombolysis with Low-Dose Tissue Plasminogen Activator 3–4.5 h After Acute Ischemic Stroke in Five Hospital Groups in Japan. Transl Stroke Res 2016; 7:111-9. [DOI: 10.1007/s12975-016-0448-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
50
|
Nakamoto H, Aihara Y, Yamaguchi K, Kawamata T, Okada Y. Efficacy, safety, and outcomes in 17 pediatric cases treated with the free radical scavenger edaravone. Childs Nerv Syst 2015. [PMID: 26206114 DOI: 10.1007/s00381-015-2814-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
SUBJECTS Edaravone is a free radical scavenger with brain protection properties and is recommended by "The Japanese Guidelines for the Management of Stroke 2009" for administration to adult patients, in whom it has been shown to improve neurological deficits after cerebral infarction. However, its dosage and effects have not yet been established in children. METHODS Seventeen pediatric patients with cerebral ischemia were administered edaravone at a dose based on body weight from the standard dose given to adults. Functional outcomes were evaluated using mRS and PSOM (modified ranking scale and pediatric stroke outcome scale, respectively). RESULTS Immediate post-treatment results were mostly positive, with no liver or renal complications. In some cases, neurological symptoms markedly improved after the administration of edaravone. CONCLUSIONS The efficacy of edaravone has not yet been examined in pediatric patients. The results of the present study suggest that edaravone has potential in the treatment of children safely with promising results similar to those in adults.
Collapse
Affiliation(s)
- Hidetoshi Nakamoto
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|