1
|
Unekawa M, Tsukada N, Takizawa T, Tomita Y, Nakahara J, Izawa Y. Striatal Blood Flow Changes by Middle Cerebral Artery Occlusion and Its Effect on Neurological Deficits in Mice. Microcirculation 2024; 31:e12861. [PMID: 38762881 DOI: 10.1111/micc.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE We attempted to record the regional cerebral blood flow (CBF) simultaneously at various regions of the cerebral cortex and the striatum during middle cerebral artery (MCA) occlusion and to evaluate neurological deficits and infarct formation. METHODS In male C57BL/6J mice, CBF was recorded in three regions including the ipsilateral cerebral cortex and the striatum with laser Doppler flowmeters, and the origin of MCA was occluded with a monofilament suture for 15-90 min. After 48 h, neurological deficits were evaluated, and infarct was examined by triphenyltetrazolium chloride (TTC) staining. RESULTS CBF decrease in the striatum was approximately two-thirds of the MCA-dominant region of the cortex during MCA occlusion. The characteristic CBF fluctuation because of spontaneously occurred spreading depolarization observed throughout the cortex was not found in the striatum. Ischemic foci with slight lower staining to TTC were found in the ipsilateral striatum in MCA-occluded mice for longer than 30 min (n = 54). Twenty-nine among 64 MCA-occluded mice exhibited neurological deficits even in the absence of apparent infarct with minimum staining to TTC in the cortex, and the severity of neurological deficits was not correlated with the size of the cortical infarct. CONCLUSION Neurological deficits might be associated with the ischemic striatum rather than with cortical infarction.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Naoki Tsukada
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
2
|
Ruebhausen MR, Brozoski TJ, Bauer CA. A comparison of the effects of isoflurane and ketamine anesthesia on auditory brainstem response (ABR) thresholds in rats. Hear Res 2012; 287:25-9. [PMID: 22543090 DOI: 10.1016/j.heares.2012.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022]
Abstract
The auditory brainstem response (ABR) is an acoustically evoked potential commonly used to determine hearing sensitivity in laboratory animals. Both isoflurane and ketamine/xylazine anesthesia are commonly used to immobilize animals during ABR procedures. Hearing threshold determination is often the primary interest. Although a number of studies have examined the effect of different anesthetics on evoked potential waveforms and growth functions, none have directly compared their effect on ABR hearing threshold estimates. The present study used a within-subject comparison and typical threshold criteria, to examine the effect of isoflurane and ketamine/xylazine on ABR thresholds for clicks and pure-tone stimuli extending from 8 to 32 kHz. At comparable physiological doses, hearing thresholds obtained with isoflurane (1.7% in O(2)) were on average elevated across a broad frequency range by greater than 27 dB compared to ketamine/xylazine (ketamine HCl, 50mg/kg; xylazine, 9 mg/kg). This highly significant threshold effect (F(1,6) = 158.3403, p = 3.51 × 10(-22)) demonstrates a substantial difference between general anesthetics on auditory brainstem sensitivity. Potential mechanisms and implications for ABR threshold determination under anesthesia are discussed.
Collapse
Affiliation(s)
- M R Ruebhausen
- Southern Illinois University School of Medicine, Division of Otolaryngology Head and Neck Surgery, 801 N Rutledge, Rm 3205, Springfield, IL 62702, United States.
| | | | | |
Collapse
|
3
|
Ooboshi H, Ibayashi S, Takada J, Kumai Y, Iida M. Brain ischemia as a potential target of gene therapy. Exp Gerontol 2003; 38:183-7. [PMID: 12543276 DOI: 10.1016/s0531-5565(02)00150-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Brain infarction is one of the most important age-associated medical conditions, and the age-related neuronal vulnerability to brain ischemia is suggested to play an important role. Recent advancements in gene transfer techniques have provided promising approaches to the treatment of brain ischemia. In experimental studies, the ischemic penumbra area can be targeted by gene transfer even after ischemic insult, and post-ischemic gene therapy seems effective in attenuation of ischemic damage in both global and focal brain ischemia. Perivascular approaches of gene transfer to the cerebral blood vessels through the subarachnoid space may lead to prevention of brain ischemia caused by vasospasm after subarachnoid hemorrhage. Gene transfer to cerebral blood vessels and ischemic brain tissue may offer future therapeutic approaches to stroke.
Collapse
Affiliation(s)
- Hiroaki Ooboshi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
4
|
Dawson LA, Djali S, Gonzales C, Vinegra MA, Zaleska MM. Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 2000; 53:767-76. [PMID: 11179841 DOI: 10.1016/s0361-9230(00)00363-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using middle cerebral artery occlusion (MCAO) and in vivo microdialysis, we have evaluated the changes in extracellular concentrations of the excitatory amino acids (EAA) glutamate and aspartate during varying periods of MCAO (0, 30, 60 min) in the striatum of spontaneously hypertensive rats (SHR). A positive correlation between occlusion time-dependent elevations in EAAs and the resulting ischemic injury was observed. This is the first demonstration of the temporal profile of EAA efflux during transient focal ischemia in SHRs. Possible sources and mechanisms of ischemia-induced EAA efflux were examined during 60 min of MCAO. Removal of Ca(2+) from the microdialysis infusion media significantly attenuated ischemia-induced increases in both glutamate (from ischemic peak of 4892 +/- 1298 to 1144 +/- 666% of preischemic values) and aspartate (from 2703 +/- 682 to 2090 +/- 599% of preischemic values). Similarly, infusion of the voltage dependent Na(+) channel blocker tetrodotoxin (TTX; 10 microM) significantly attenuated MCAO-induced increases in glutamate (to 1313 +/- 648%) and aspartate (to 359 +/- 114%). Infusion of the GLT-1 selective nontransportable inhibitor, dihydrokainate (DHK; 1 mM) also significantly attenuated the ischemia-induced increases in both EAAs (1285 +/- 508 and 1366 +/- 741% of the preischemic levels, respectively). These results indicate that during transient focal ischemia the increase in extracellular EAAs originates from both the neuronal pool, via conventional exocytotic release, and glial sources via the reversal of the GLT-1 transporter.
Collapse
Affiliation(s)
- L A Dawson
- Neuroscience Research, Wyeth Ayerst, Princeton, NJ 08543-8000, USA.
| | | | | | | | | |
Collapse
|
5
|
Ooboshi H, Ibayashi S, Takano K, Sadoshima S, Kondo A, Uchimura H, Fujishima M. Hypothermia inhibits ischemia-induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 2000; 884:23-30. [PMID: 11082483 DOI: 10.1016/s0006-8993(00)02861-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain hypothermia has been reported to protect against ischemic damages in adult animals. Our goal in this study was to examine whether brain hypothermia attenuates ischemic neuronal damages in the hippocampus of aged animals. We also determined effects of hypothermia on ischemia-induced releases of amino acids in the hippocampus. Temperature in the hippocampus of aged rats (19-23 months) was maintained at 36 degrees C (normothermia), 33 degrees C (mild hypothermia) or 30 degrees C (moderately hypothermia) using a thermoregulator during 20 min of transient forebrain ischemia. Cerebral ischemia increased extracellular concentrations of glutamate and aspartate by 6- and 5-fold, respectively, in the normothermic group. Mild and moderate hypothermia, however, markedly inhibited the rise of these amino acids to less than 2-fold. Elevation of extracellular taurine, a putative inhibitory amino acid, was 16-fold in the normothermic rats. Mild hypothermia attenuated ischemia-induced increase in taurine (10-fold), and moderate hypothermia inhibited the increase. Ischemic damages, evaluated by histopathological grading of hippocampal CA1 area 7 days after ischemia, was significantly ameliorated in the mild (1.3+/-0.5, mean+/-S.E.M.) and moderate hypothermic rats (0.8+/-0.3) compared with the normothermic ones (3.4+/-0.4). These results suggest that brain hypothermia protects against ischemic neuronal damages even in the aged animals, and the protection is associated with inhibition of excessive effluxes of both excitatory and inhibitory amino acids.
Collapse
Affiliation(s)
- H Ooboshi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, 812-8582, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Fotheringham AP, Davies CA, Davies I. Oedema and glial cell involvement in the aged mouse brain after permanent focal ischaemia. Neuropathol Appl Neurobiol 2000; 26:412-23. [PMID: 11054181 DOI: 10.1046/j.1365-2990.2000.00265.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examines the effect of age on oedema and brain swelling, and associated glial cell involvement on the size of the lesion in two models of permanent, focal cerebral ischaemia. Ischaemia was induced in male C57BL/Icrfat mice (4-6 and 26-31-month-old) by middle cerebral artery (MCA) occlusion using either electrocoagulation after craniotomy (MCA/craniotomy), or by an intraluminal filament through the carotid artery (MCA/icf). Twenty-four hours after inducing ischaemia, brain swelling and lesion size were measured in young and aged mice, and cerebral oedema by wet/dry brain weights. Histopathology and immunocytochemistry were performed on a separate set of perfusion fixed brains. The MCA/icf technique produced a significantly larger lesion than MCA/craniotomy in both age groups. The percentage of water taken into the brain was significantly greater after MCA/icf, with aged mice showing the greatest increase. When lesion size was corrected for brain swelling there was no age-related increase in the size of the lesion. The numbers of microglia and astroglia increased significantly in the parietal cortex of aged control animals, and there were qualitative differences in the glial response between the two stroke models. This study emphasizes the importance of age in models of permanent focal ischaemia, with oedema clearly being a significant factor. Differ-ences in the responsiveness of the glial cell population with age may be of fundamental importance in the progress of ischaemic brain damage.
Collapse
Affiliation(s)
- A P Fotheringham
- The University of Manchester, Schools of Medicine and Biological Sciences, Manchester, UK
| | | | | |
Collapse
|
7
|
Kharlamov A, Kharlamov E, Armstrong DM. Age-dependent increase in infarct volume following photochemically induced cerebral infarction: putative role of astroglia. J Gerontol A Biol Sci Med Sci 2000; 55:B135-41; discussion B142-3. [PMID: 10795717 DOI: 10.1093/gerona/55.3.b135] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study demonstrates that the photochemically induced model of stroke is an extremely viable method of inducing cerebral infarction in old animals. The lesions are reproducible both in terms of location and size and compatible with long-term survival of the animal. With this model we demonstrated, one week following surgery, a significantly larger infarct in rats 20 and 24 months of age compared to 4-month-old rats. The older rats also sustained greater neurologic deficits as assessed on a rotarod task. Older rats also were characterized by a glial response that was far less intense than in young animals. While the precise relationship between glia activation and cerebral damage remains to be determined, it would appear that a better understanding of those factors that contribute to the astrocytic response in the aged rat may be of particular benefit in designing therapeutic strategies aimed at reducing the pathologic consequences of cerebral infarction in elderly humans.
Collapse
Affiliation(s)
- A Kharlamov
- Allegheny University of the Health Sciences, Neurosciences Research Center, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
8
|
Nakane H, Yao H, Ibayashi S, Kitazono T, Ooboshi H, Uchimura H, Fujishima M. Protein kinase C modulates ischemia-induced amino acids release in the striatum of hypertensive rats. Brain Res 1998; 782:290-6. [PMID: 9519275 DOI: 10.1016/s0006-8993(97)01331-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of protein kinase C (PKC) in mediating the ischemia-induced release of amino acids in the striatum was studied using an in vivo brain dialysis technique in the striatum of spontaneously hypertensive rats (SHRs). Using HPLC combined with fluorescence detection methods, we investigated the concentrations of amino acids in the dialysates produced by 20 min of transient forebrain ischemia. We studied the effects of an inhibitor of PKC, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and another isoquinoline analog (HA1004) with less inhibitory effect on the C kinase in ischemia-induced amino acids release. Bilateral carotid artery occlusion caused a marked reduction in the striatal blood flow by 91 +/- 6%. The extent of the cerebral blood flow (CBF) reduction were essentially the same among H7-, HA1004-, and the vehicle-treated groups. Forebrain ischemia produced a marked increase in glutamate (21-fold of the basal concentration), aspartate (19-fold) and taurine (16-fold). Pretreatment with H7 markedly attenuated the ischemia-in-duced release of these three amino acids to 3, 3 and 4-fold of the basal values, respectively. Increase of gamma-aminobutyric acid (GABA) was also attenuated by H7 (vehicle; 2.46 +/- 1.26 microM, H7; 0.62 +/- 0.75 mM). HA1004 did not affect the release of glutamate, aspartate or GABA during ischemia. The ischemia-induced release of taurine was significantly inhibited by HA1004 but the effect was much smaller than that of H7. These results thus indicate that PKC plays a major role in the ischemia-induced release of amino acids in the striatum of SHR.
Collapse
Affiliation(s)
- H Nakane
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 1997; 14:171-201. [PMID: 9294862 DOI: 10.1007/bf02740655] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of hypothermia to mitigate cerebral ischemic injury is not new. From early studies, it has been clear that cooling is remarkably neuroprotective when applied during global or focal ischemia. In contrast, the value of postischemic cooling is typically viewed with skepticism because of early clinical difficulties and conflicting animal data. However, more recent rodent experiments have shown that a protracted reduction in temperature of only a few degrees Celsius can provide sustained behavioral and histological neuroprotection. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute clinical stroke. A thorough mechanistic understanding of postischemic hypothermia would lead to a more selective and effective therapy. Unfortunately, few studies have investigated the mechanisms by which postischemic cooling conveys its beneficial effect. The purpose of this article is to evaluate critically the effects of postischemic temperature changes with a comparison to some current drug therapies. This article will stimulate new research into the mechanisms of lengthy postischemic hypothermia and its potential as a therapy for stroke patients.
Collapse
Affiliation(s)
- F Colbourne
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
10
|
Nakane H, Ooboshi H, Ibayashi S, Yao H, Sadoshima S, Fujishima M. Isradipine, a calcium channel blocker, attenuates the ischemia-induced release of dopamine but not glutamate in rats. Neurosci Lett 1995; 188:151-4. [PMID: 7609897 DOI: 10.1016/0304-3940(95)11417-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was designed to investigate the role of the L-type voltage sensitive calcium channel blocker, isradipine, in the ischemia-induced release of neurotransmitters. Male spontaneously hypertensive rats were subjected to cerebral ischemia for 60 min by bilateral carotid artery occlusion, and recirculated for 120 min. Isradipine (0.25 mg/kg n = 6) or vehicle (n = 6) was administered subcutaneously at 20 min before ischemia. In the striatum, cerebral blood flow was determined by the hydrogen clearance method and concentrations of extracellular dopamine and glutamate were measured by in vivo brain dialysis technique. Extracellular dopamine in the vehicle-treated group increased by 180-fold from the basal level, and glutamate by 24-fold during cerebral ischemia. Isradipine significantly attenuated the ischemic release of dopamine to 33-34% (P < 0.05) of the vehicle group, while it did not affect glutamate release. It is suggested that the release mechanism of dopamine and glutamate during cerebral ischemia may be different, especially in the dependence on the L-type calcium channels.
Collapse
Affiliation(s)
- H Nakane
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Ooboshi H, Sadoshima S, Yao H, Ibayashi S, Matsumoto T, Uchimura H, Fujishima M. Ischemia-induced release of amino acids in the hippocampus of aged hypertensive rats. J Cereb Blood Flow Metab 1995; 15:227-34. [PMID: 7860656 DOI: 10.1038/jcbfm.1995.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently demonstrated the age-related vulnerability of hippocampal neurons to 20-min forebrain ischemia in spontaneously hypertensive rats (SHR). In the present study, we investigated the effect of aging on the release of amino acids in the hippocampus during transient cerebral ischemia for 20 min. Concentrations of extracellular amino acids and cerebral blood flow in the CA1 subfield were examined by an in vivo brain dialysis technique and a hydrogen clearance method, respectively, in adult (5-7 month) and aged (19-23 month) female SHR. During cerebral ischemia by bilateral carotid artery occlusion, cerebral blood flow to the hippocampus decreased to 20% of the resting values in both groups. After recirculation, both groups showed delayed hypoperfusion which was more prominent in the aged SHR. In the adult rats, concentrations of both aspartate and glutamate increased to approximately 8-fold of the resting values during ischemia. The elevation of these excitatory amino acids in the adult SHR was not significantly different from that in the aged rats. In contrast, the concentration of taurine increased 26-fold in the adult SHR but only 16-fold in the aged rats. Changes in other amino acids were not different between the two groups. These results indicate that an imbalance of excitatory and inhibitory amino acids, e.g., smaller release of taurine, during ischemia may, at least in part, contribute to the age-related vulnerability of hippocampal neurons to transient cerebral ischemia in SHR.
Collapse
Affiliation(s)
- H Ooboshi
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Auer RN, Coulter KC. The nature and time course of neuronal vacuolation induced by the N-methyl-D-aspartate antagonist MK-801. Acta Neuropathol 1994; 87:1-7. [PMID: 8140890 DOI: 10.1007/bf00386248] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
N-Methyl-D-aspartate (NMDA) antagonists cause neuronal vacuolation in the posterior cingulate and retrosplenial cortex of the rat. Because the nature of neuronal pathologic changes due to NMDA antagonists may affect the potential clinical use of this class of drugs, we undertook experiments to define the nature and time course of the vacuolation caused by high-dose (5 mg/kg) MK-801 (dizocilpine, 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine). Ultrastructural examination revealed the vacuoles to be not a form of hydropic cellular degeneration, but rather a dilatation of several intracellular compartments, chiefly endoplasmic reticulum and mitochondria. Study of the time course of the alterations revealed no light or ultrastructural features of neuronal necrosis in over 1 thousand neurons examined in layers 3 and 4 of the cingulate and retrosplenial cortex, 153 of which were vacuolated. The vacuoles resolved over time by decreasing in magnitude. Oxalate-pyroantimonate methodology revealed no redistribution of cell calcium in either vacuolated or non-vacuolated neurons. At 6 h, when vacuoles were consistently prominent in glutaraldehyde-fixed plastic-embedded tissue, a separate series of experiments was undertaken to vary methods of tissue preparation, and determine conditions under which vacuolation occurs. Frozen sections revealed no vacuoles. Subsequent paraffin embedding of the previously frozen tissue revealed no vacuoles, but vacuoles were seen in paraffin after perfusion fixation. Immersion fixation with brain refrigeration for 12 h prior to fixation revealed no vacuoles. Alcohol fixation also led to no visible vacuoles.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R N Auer
- Department of Pathology, University of Calgary, Alberta, Canada
| | | |
Collapse
|