1
|
Morais A, Imai T, Jin X, Locascio JJ, Boisserand L, Herman AL, Chauhan A, Lamb J, Nagarkatti K, Diniz MA, Kumskova M, Dhanesha N, Kamat PK, Khan MB, Dhandapani KM, Patel RB, Sutariya B, Shi Y, van Leyen K, Kimberly WT, Hess DC, Aronowski J, Leira EC, Koehler RC, Chauhan AK, Sansing LH, Lyden PD, Ayata C. Biological and Procedural Predictors of Outcome in the Stroke Preclinical Assessment Network (SPAN) Trial. Circ Res 2024; 135:575-592. [PMID: 39034919 PMCID: PMC11428171 DOI: 10.1161/circresaha.123.324139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The SPAN trial (Stroke Preclinical Assessment Network) is the largest preclinical study testing acute stroke interventions in experimental focal cerebral ischemia using endovascular filament middle cerebral artery occlusion (MCAo). Besides testing interventions against controls, the prospective design captured numerous biological and procedural variables, highlighting the enormous heterogeneity introduced by the multicenter structure that might influence stroke outcomes. Here, we leveraged the unprecedented sample size achieved by the SPAN trial and the prospective design to identify the biological and procedural variables that affect experimental stroke outcomes in transient endovascular filament MCAo. METHODS The study cohort included all mice enrolled and randomized in the SPAN trial (N=1789). Mice were subjected to 60-minute MCAo and followed for a month. Thirteen biological and procedural independent variables and 4 functional (weight loss and 4-point neuroscore on days 1 and 2, corner test on days 7 and 28, and mortality) and 3 tissue (day 2, magnetic resonance imaging infarct volumes and swelling; day 30, magnetic resonance imaging tissue loss) outcome variables were prospectively captured. Multivariable regression with stepwise elimination was used to identify the predictors and their effect sizes. RESULTS Older age, active circadian stage at MCAo, and thinner and longer filament silicone tips predicted higher mortality. Older age, larger body weight, longer anesthesia duration, and longer filament tips predicted worse neuroscores, while high-fat diet and blood flow monitoring predicted milder neuroscores. Older age and a high-fat diet predicted worse corner test performance. While shorter filament tips predicted more ipsiversive turning, longer filament tips appeared to predict contraversive turning. Age, sex, and weight interacted when predicting the infarct volume. Older age was associated with smaller infarcts on day 2 magnetic resonance imaging, especially in animals with larger body weights; this association was most conspicuous in females. High-fat diet also predicted smaller infarcts. In contrast, the use of cerebral blood flow monitoring and more severe cerebral blood flow drop during MCAo, longer anesthesia, and longer filament tips all predicted larger infarcts. Bivariate analyses among the dependent variables highlighted a disconnect between tissue and functional outcomes. CONCLUSIONS Our analyses identified variables affecting endovascular filament MCAo outcome, an experimental stroke model used worldwide. Multiple regression refuted some commonly reported predictors and revealed previously unrecognized associations. Given the multicenter prospective design that represents a sampling of real-world conditions, the degree of heterogeneity mimicking clinical trials, the large number of predictors adjusted for in the multivariable model, and the large sample size, we think this is the most definitive analysis of the predictors of preclinical stroke outcome to date. Future multicenter experimental stroke trials should standardize or at least ensure a balanced representation of the biological and procedural variables identified herein as potential confounders.
Collapse
Affiliation(s)
- Andreia Morais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Takahiko Imai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xuyan Jin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Department of Biostatistics, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| | - Ligia Boisserand
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Alison L. Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Karisma Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Marcio A. Diniz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Pradip K. Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | | | | | - Rakesh B. Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Klaus van Leyen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W. Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX, USA
| | - Enrique C. Leira
- Departments of Neurology, Neurosurgery, Carver College of Medicine, and Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Anil K. Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Patrick D. Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| |
Collapse
|
2
|
Aliena-Valero A, Hernández-Jiménez M, López-Morales MA, Tamayo-Torres E, Castelló-Ruiz M, Piñeiro D, Ribó M, Salom JB. Cerebroprotective Effects of the TLR4-Binding DNA Aptamer ApTOLL in a Rat Model of Ischemic Stroke and Thrombectomy Recanalization. Pharmaceutics 2024; 16:741. [PMID: 38931862 PMCID: PMC11206667 DOI: 10.3390/pharmaceutics16060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
ApTOLL, a TLR4 modulator aptamer, has demonstrated cerebroprotective effects in a permanent ischemic stroke mouse model, as well as safety and efficacy in early phase clinical trials. We carried out reverse translation research according to STAIR recommendations to further characterize the effects and mechanisms of ApTOLL after transient ischemic stroke in rats and to better inform the design of pivotal clinical trials. Adult male rats subjected to transient middle cerebral artery occlusion were treated either with ApTOLL or the vehicle intravenously at different doses and time-points. ApTOLL was compared with TAK-242 (a TLR4 inhibitor). Female rats were also studied. After neurofunctional evaluation, brains were removed for infarct/edema volume, hemorrhagic transformation, and histologic determinations. Peripheral leukocyte populations were assessed via flow cytometry. ApTOLL showed U-shaped dose-dependent cerebroprotective effects. The maximum effective dose (0.45 mg/kg) was cerebroprotective when given both before reperfusion and up to 12 h after reperfusion and reduced the hemorrhagic risk. Similar effects occurred in female rats. Both research and clinical ApTOLL batches induced slightly superior cerebroprotection when compared with TAK-242. Finally, ApTOLL modulated circulating leukocyte levels, reached the brain ischemic tissue to bind resident and infiltrated cell types, and reduced the neutrophil density. These results show the cerebroprotective effects of ApTOLL in ischemic stroke by reducing the infarct/edema volume, neurofunctional impairment, and hemorrhagic risk, as well as the peripheral and local immune response. They provide information about ApTOLL dose effects and its therapeutic time window and target population, as well as its mode of action, which should be considered in the design of pivotal clinical trials.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
| | - Macarena Hernández-Jiménez
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mikahela A. López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Fisioterapia, Universidad de Valencia, 46010 Valencia, Spain
| | - Eva Tamayo-Torres
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain;
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Valencia, Spain
| | - David Piñeiro
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
| | - Marc Ribó
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
- Unidad de Ictus, Departamento de Neurología, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Juan B. Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain;
| |
Collapse
|
3
|
Optimizing intraluminal monofilament model of ischemic stroke in middle-aged Sprague-Dawley rats. BMC Neurosci 2022; 23:75. [PMID: 36494808 PMCID: PMC9733327 DOI: 10.1186/s12868-022-00764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Intraluminal monofilament model of middle cerebral artery occlusion (MCAO) is widely adopted for ischemic stroke; and Sprague-Dawley (SD) rats are commonly used rodents for preclinical research. Due to the paucity of information on the appropriate monofilament size for inducing MCAO in SD rats and the importance of including middle-aged models in ischemic stroke studies, we aimed to: (i). determine an appropriate Doccol® monofilament size for middle-aged male SD rats which weighed > 500 g following 24-h transient MCAO survival as well as (ii). demonstrate the optimal Doccol® filament size for middle-aged males (≤ 500 g) and females (273-300 g) while using young adult male SD rats (372-472 g) as control for severity of infarct volume following 7-days post-MCAO. All rats were subjected to 90-min transient MCAO. We show that 0.43 mm Doccol® monofilament size is more appropriate to induce large infarct lesion and optimal functional deficit when compared to 0.45 mm and 0.47 mm at 24 h post-MCAO. Our data on infarct volumes at 7 days post-MCAO as well as the observed weight loss and functional deficits at post-MCAO days 1, 3 and 7 demonstrate that 0.41 mm, 0.37 mm and 0.39 mm are optimal Doccol® filament sizes for middle-aged male (477.3 ± 39.61 g) and female (302.6 ± 26.28 g) as well as young-adult male (362.2 ± 28.38 g) SD rats, respectively.
Collapse
|
4
|
Abstract
In both acute and chronic diseases, functional differences in host immune responses arise from a multitude of intrinsic and extrinsic factors. Two of the most important factors affecting the immune response are biological sex and aging. Ischemic stroke is a debilitating disease that predominately affects older individuals. Epidemiological studies have shown that older women have poorer functional outcomes compared with men, in part due to the older age at which they experience their first stroke and the increased comorbidities seen with aging. The immune response also differs in men and women, which could lead to altered inflammatory events that contribute to sex differences in poststroke recovery. Intrinsic factors including host genetics and chromosomal sex play a crucial role both in shaping the host immune system and in the neuroimmune response to brain injury. Ischemic stroke leads to altered intracellular communication between astrocytes, neurons, and resident immune cells in the central nervous system. Increased production of cytokines and chemokines orchestrate the infiltration of peripheral immune cells and promote neuroinflammation. To maintain immunosurveillance, the host immune and central nervous system are highly regulated by a diverse population of immune cells which are strategically distributed within the neurovascular unit and become activated with injury. In this review, we provide a comprehensive overview of sex-specific host immune responses in ischemic stroke.
Collapse
Affiliation(s)
- Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.).,UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston (A.B.)
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.)
| |
Collapse
|
5
|
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. Females are protected against stroke before the onset of menopause. Menopause results in increased incidence of stroke when compared to men. The mechanisms of these differences remain to be elucidated. Considering that there is a postmenopausal phenomenon and females in general, are living longer sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the premenopausal protection from stroke and later to be responsible for the higher incidence and increased the severity of stroke after menopause. Animal studies suggest that administration of estrogen and progesterone is neuroprotective and decreases the incidence of stroke. However, the real-world outcomes of hormone replacement therapy have failed to decrease the stroke risk. Despite the multifactorial nature of sex differences in stroke, here, we briefly discuss the pathophysiology of sex steroid hormones, the molecular mechanisms of estrogen receptor-dependent signaling pathways in stroke, and the potential factors that determine the discrepant effects of hormone replacement therapy in stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, USA.,Institute of Clinical Medicine, University of Turku, Finland
| | - Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, USA
| |
Collapse
|
6
|
Pizov NA, Pizova NV. [Sex differences in acute disturbances of cerebral blood circulation]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:70-74. [PMID: 28514337 DOI: 10.17116/jnevro20171171270-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is shown that in the development of stroke observed sex differences, which manifest themselves both clinically and by laboratory parameters. While men have a higher incidence of stroke for most of his life, a woman in a more advanced age have a higher risk for stroke. Sex differences in the development of stroke depend on several factors, including genetic and hormonal changes throughout life. Studies sex differences in the risk of stroke is only in the initial stage, but the first results show that there are differences in neuronal cell death in males and females after experimental ischemic stroke. A better understanding of the mechanisms underlying the development of stroke in men and women will lead to more appropriate treatment strategies for patients of both sexes.
Collapse
Affiliation(s)
- N A Pizov
- Jaroslavl State Medical University, Jaroslavl, Russia
| | - N V Pizova
- Jaroslavl State Medical University, Jaroslavl, Russia
| |
Collapse
|
7
|
Kim TH, Vemuganti R. Effect of sex and age interactions on functional outcome after stroke. CNS Neurosci Ther 2015; 21:327-36. [PMID: 25404174 PMCID: PMC6495347 DOI: 10.1111/cns.12346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/18/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Experimental and clinical studies showed that sex and age play an important role in deciding the outcome after stroke. At younger ages, males were shown to have a higher risk for stroke than females. However, this trend reverses in older ages particularly when females reach menopause. Many preclinical studies indicate that steroid hormones modulate the age-dependent differential stroke outcome. In addition, patterns of cell death pathways activated following cerebral ischemia are distinct between males and females, but independent of steroid hormones. Recent studies also indicate that microRNAs play important roles in mediating sex-specific stroke outcome by regulating stroke-related genes. This review discusses the contribution of sex and age to outcome after stroke with particular emphasis on the experimental studies that examined the effects of steroid hormones, differential cell death pathways, and involvement of sex-specific microRNAs following cerebral ischemia. Current understanding of the role of thrombolytic agents in stroke therapy is also discussed.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
8
|
Wilson ME. Stroke: understanding the differences between males and females. Pflugers Arch 2013; 465:595-600. [PMID: 23503729 DOI: 10.1007/s00424-013-1260-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 01/09/2023]
Abstract
Stroke is a significant cause of death and long-term disability in the USA. The incidence, mortality, and outcomes of stroke are significantly different between men and women. As with many diseases that affect men and women differently, an understanding on the reasons underlying those differences is critical to effective diagnosis and treatment. This review will examine the sex differences in stroke in both humans and animal models of stroke and review what is known about potential mechanisms underlying these differences. It is clear that there is a complex interaction between hormonal, genetic, and unknown factors at play in generating the sex differences in stroke.
Collapse
Affiliation(s)
- Melinda E Wilson
- Department of Physiology, University of Kentucky, MS508 800 Rose St., Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Lewis DK, Thomas KT, Selvamani A, Sohrabji F. Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol Aging 2012; 33:1123.e1-16. [PMID: 22154819 PMCID: PMC5636220 DOI: 10.1016/j.neurobiolaging.2011.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/07/2023]
Abstract
In middle-aged female rats, focal ischemia leads to a larger cortical infarction as compared with younger females. To determine if stroke-induced cytotoxicity in middle-aged females was associated with impaired astrocyte function, astrocytes were harvested and cultured from the ischemic cortex of young and middle-aged female rats. Middle-aged astrocytes cleared significantly less glutamate from media as compared with young female astrocytes. Furthermore, astrocyte-conditioned media from middle-aged female astrocytes induced greater migration of peripheral blood monocyte cells (PBMCs) and expressed higher levels of the chemoattractant macrophage inflammatory protein-1 (MIP-1). Middle-aged astrocytes also induced greater migration of neural progenitor cells (NPCs), however, their ability to promote neuronal differentiation of neural progenitor cells was similar to young astrocytes. In males, where cortical infarct volume is similar in young and middle-aged animals, no age-related impairment was observed in astrocyte function. These studies show that the aging astrocyte may directly contribute to infarct severity by inefficient glutamate clearance and enhanced cytokine production and suggest a cellular target for improved stroke therapy among older females.
Collapse
Affiliation(s)
- Danielle K. Lewis
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Kristen T. Thomas
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Amutha Selvamani
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| |
Collapse
|
10
|
Estrogen receptor α genetic variants and the risk of stroke in a South Indian population from Andhra Pradesh. Clin Chim Acta 2010; 411:1817-21. [PMID: 20699091 DOI: 10.1016/j.cca.2010.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Stroke is a complex disease caused by combination of multiple risk factors. Recent findings have suggested that stroke has a strong genetic component. Evidence suggests that variations in the estrogen receptor α (ESR1) gene may influence stroke risk. AIMS The present study was carried out to investigate the role of ESR1 gene polymorphisms [PvuII (rs 2234693) and XbaI (rs 9340799)] with stroke in a South Indian population from Andhra Pradesh. The relationship between ESR1 genotypes with estradiol levels was also investigated in pre- and postmenopausal women. METHODS Four hundred patients with ischemic stroke and three hundred and eighty subjects were enrolled in this case-control study. Ischemic stroke subtypes were classified according to TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification. The ESR1 PvuII and XbaI genotypes were determined by PCR-RFLP method. Serum estradiol was measured by ELISA. RESULTS In case of PvuII polymorphism statistically significant difference was observed in the genotypic and allelic frequencies between patients and controls (joint analysis of men and women) (p=0.003 and 0.004 respectively). However, the XbaI genotypes and alleles did not show an association with stroke in the study population. When the analysis was carried out separately for men and women, the PvuII polymorphism did not show significant association with stroke in men; women showed a significant association. Further when women were grouped in to premenopausal and postmenopausal, the premenopausal group did not show a significant association with the polymorphism but significant association with stroke was found in postmenopausal women. A stepwise multiple logistic regression analysis confirmed these findings. Women with pp genotype had low estradiol levels in comparison with PP genotypic individuals (p<0.05). Further evaluating the association of this polymorphism with stroke subtypes, we found significant association of PvuII polymorphism with extracranial atherosclerosis, lacunar and cardioembolic stroke. CONCLUSION In conclusion our results suggest the PvuII gene polymorphism is significantly associated with stroke in postmenopausal women in a South Indian population from Andhra Pradesh. The pp genotypes have average 17β estradiol levels which are significantly low in comparison with PP genotypes. Therefore postmenopausal women with a high frequency of pp genotype are more predisposed to ischemic stroke. However, this is a preliminary study and the results need to be confirmed in a larger cohort.
Collapse
|
11
|
Braeuninger S, Kleinschnitz C. Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2009; 1:8. [PMID: 20150986 PMCID: PMC2820446 DOI: 10.1186/2040-7378-1-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 11/25/2009] [Indexed: 11/10/2022]
Abstract
Rodent models of focal cerebral ischemia are essential tools in experimental stroke research. They have added tremendously to our understanding of injury mechanisms in stroke and have helped to identify potential therapeutic targets. A plethora of substances, however, in particular an overwhelming number of putative neuroprotective agents, have been shown to be effective in preclinical stroke research, but have failed in clinical trials. A lot of factors may have contributed to this failure of translation from bench to bedside. Often, deficits in the quality of experimental stroke research seem to be involved. In this article, we review the commonest rodent models of focal cerebral ischemia - middle cerebral artery occlusion, photothrombosis, and embolic stroke models - with their respective advantages and problems, and we address the issue of quality in preclinical stroke modeling as well as potential reasons for translational failure.
Collapse
Affiliation(s)
- Stefan Braeuninger
- Department of Neurology, Julius-Maximilians-Universitaet Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany.
| | | |
Collapse
|
12
|
Liu M, Dziennis S, Hurn PD, Alkayed NJ. Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci 2009; 27:163-79. [PMID: 19531872 DOI: 10.3233/rnn-2009-0467] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHS-2, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
13
|
Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab 2009; 29:1454-62. [PMID: 19436313 PMCID: PMC2821811 DOI: 10.1038/jcbfm.2009.60] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Males exhibit greater histologic and behavioral impairment after stroke than do age-matched females. However, the contribution of androgens to stroke outcome remains unclear. We compared outcomes from middle cerebral artery occlusion (MCAO) in castrated mice with those in testosterone- or dihydrotestosterone (DHT)-replaced castrated mice. Castrates treated with 1.5 mg testosterone or 0.5 mg DHT before MCAO showed smaller infarct volumes (hemisphere: 27 or 26%) at 24 h after 90 mins MCAO than did untreated castrates (37%), whereas 5 mg testosterone or 1.5 mg DHT exacerbated infarcts (53 or 51%). These outcomes were blocked by the androgen receptor antagonist, flutamide, suggesting that androgen receptors mediate these responses to ischemia. We further evaluated long-term outcomes with a milder 60-min MCAO in castrates treated with the protective 1.5 mg testosterone dose. Consistent with data obtained at 24 h reperfusion, the infarct volume was decreased at 9 days reperfusion. Neurobehavioral analysis showed that motor functional recovery was improved during the first 3 days of reperfusion, but not improved at 7 days. We conclude that testosterone exhibits dose-dependent and time-sensitive effects after ischemia and that testosterone is likely to be an important factor in sex-linked differences in cerebrovascular disease.
Collapse
|
14
|
Lang JT, McCullough LD. Pathways to ischemic neuronal cell death: are sex differences relevant? J Transl Med 2008; 6:33. [PMID: 18573200 PMCID: PMC2459157 DOI: 10.1186/1479-5876-6-33] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/23/2008] [Indexed: 11/24/2022] Open
Abstract
We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2) is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients.
Collapse
Affiliation(s)
- Jesse T Lang
- Department of Neurology, The University of Connecticut Health Center, Farmington, CT, USA.
| | | |
Collapse
|
15
|
Li Y, McIntosh K, Chen J, Zhang C, Gao Q, Borneman J, Raginski K, Mitchell J, Shen L, Zhang J, Lu D, Chopp M. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Exp Neurol 2006; 198:313-25. [PMID: 16455080 DOI: 10.1016/j.expneurol.2005.11.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 01/01/2023]
Abstract
We evaluated the effects of allogeneic bone marrow stromal cell treatment of stroke on functional outcome, glial-axonal architecture, and immune reaction. Female Wistar rats were subjected to 2 h of middle cerebral artery occlusion. Rats were injected intravenously with PBS, male allogeneic ACI--or syngeneic Wistar--bone marrow stromal cells at 24 h after ischemia and sacrificed at 28 days. Significant functional recovery was found in both cell-treated groups compared to stroke rats that did not receive BMSCs, but no difference was detected between allogeneic and syngeneic cell-treated rats. No evidence of T cell priming or humoral antibody production to marrow stromal cells was found in recipient rats after treatment with allogeneic cells. Similar numbers of Y-chromosome+ cells were detected in the female rat brains in both groups. Significantly increased thickness of individual axons and myelin, and areas of the corpus callosum and the numbers of white matter bundles in the striatum were detected in the ischemic boundary zone of cell-treated rats compared to stroked rats. The areas of the contralateral corpus callosum significantly increased after cell treatment compared to normal rats. Processes of astrocytes remodeled from hypertrophic star-like to tadpole-like shape and oriented parallel to the ischemic regions after cell treatment. Axonal projections emanating from individual parenchymal neurons exhibited an overall orientation parallel to elongated radial processes of reactive astrocytes of the cell-treated rats. Allogeneic and syngeneic bone marrow stromal cell treatment after stroke in rats improved neurological recovery and enhanced reactive oligodendrocyte and astrocyte related axonal remodeling with no indication of immunologic sensitization in adult rat brain.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Soustiel JF, Palzur E, Nevo O, Thaler I, Vlodavsky E. Neuroprotective Anti-Apoptosis Effect of Estrogens in Traumatic Brain Injury. J Neurotrauma 2005; 22:345-52. [PMID: 15785230 DOI: 10.1089/neu.2005.22.345] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and functional disability in western countries, affecting mostly young patients. Despite intense and sustained efforts deployed for the development of new therapeutic strategies, no clinical benefit has been shown by any of the investigated compounds. Increasing attention has been drawn during the past two decades to the neuroprotective effects of estrogens, although most of the available data relate to ischemic brain injury. The purpose of the present study was to investigate the potential neuroprotective value of estrogens in TBI as a therapeutic modality. For this purpose, a contusion was created in the parietal cortex by dynamic cortical deformation in two groups of 10 Sprague-Dawley male rats. Following the injury, treated animals received conjugated estrogens for 3 days, using a subcutaneously implanted osmotic pump. Animals were then sacrificed, and TUNEL, anti-active Caspase 3, bcl-2, and bax labeling were performed in paraffin-embedded brain sections, allowing for comparative and quantitative analysis. In estrogen-treated animals, there was a marked and significant reduction of apoptosis in comparison with non-treated animals. The reduction in TUNEL and active Caspase 3 staining was similar and close to 50%. Optical analysis of histological slides prepared by bcl-2 labeling showed a significant increase in bcl-2 expression in estrogen-treated animals compared to non-treated animals. On the contrary, bax expression was not influenced by hormonal treatment, and no difference could be noticed between the two groups. These results support the potential therapeutic value of estrogens in TBI and further clarify their mode of action.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion, Israel.
| | | | | | | | | |
Collapse
|
17
|
Feng Y, Fratkins JD, LeBlanc MH. Estrogen attenuates hypoxic-ischemic brain injury in neonatal rats. Eur J Pharmacol 2004; 507:77-86. [PMID: 15659297 DOI: 10.1016/j.ejphar.2004.11.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 11/12/2004] [Indexed: 11/27/2022]
Abstract
Estrogen is neuroprotective in adult animals. We wished to determine if estrogen protects against brain injury in the newborn. Four-day-old rat pups were treated with subcutaneously implanted pellets containing 0.05 mg (2.4 microg/day) of 17beta-estradiol or vehicle, designed to release the estrogen over 21 days. At 7 days old the pups had the right carotid artery ligated followed by 2.5 h of 8% oxygen. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Estradiol treatments reduced brain weight loss from -17.4+/-2.8% S.E.M. in the vehicle group (n=32) to -9.3+/-2.7% in the treated group (n=32, P<0.05). Brain cortex thiobarbituric acid reacting substances and caspase activities were assessed 24 h after reoxygenation. Estradiol significantly reduced a hypoxia-induced increase in brain thiobarbituric acid reactive substances (P<0.05). Levels of caspase-3, -8 and -9 activity increased due to hypoxia-ischemia. Estradiol had no effect on caspase activity. Estradiol reduced brain injury in the neonatal rat.
Collapse
Affiliation(s)
- Yangzheng Feng
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
18
|
Abstract
Women are protected from stroke relative to men until the years of menopause. Because stroke is the leading cause of serious, long-term disability in the United States, modeling sex-specific mechanisms and outcomes in animals is vital to research. Important research questions are focused on the effects of hormone replacement therapy, age, reproductive status, and identification of sex-specific risk factors. Available research relevant to stroke in the female has almost exclusively utilized rodent models. Gender-linked stroke outcomes are more detectable in experimental studies than in clinical trials and observational studies. Various estrogens have been extensively studied as neuroprotective agents in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data in animal and cell models are based on 17 beta estradiol and suggest that this steroid is neuroprotective in injury from ischemia/reperfusion. However, current evidence for the clinical benefits of hormone replacement therapy is unclear. Future research in this area will need to expand into stroke models utilizing higher order, gyrencephalic animals such as nonhuman primates if we are to improve extrapolation to the human scenario and to direct and enhance the design of ongoing and future clinical studies and trials.
Collapse
Affiliation(s)
- Stephanie J Murphy
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | | |
Collapse
|
19
|
Kovacic U, Sketelj J, Bajrović FF. Sex-related difference in collateral sprouting of nociceptive axons after peripheral nerve injury in the rat. Exp Neurol 2004; 184:479-88. [PMID: 14637117 DOI: 10.1016/s0014-4886(03)00269-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Possible sex-related differences in the extent of collateral sprouting of noninjured nociceptive axons after peripheral nerve injury were examined. In the first experiment, peroneal, tibial, and saphenous nerves were transected and ligated in female and male rats. Eight weeks after nerve injury, skin pinch tests revealed that the nociceptive area of the noninjured sural nerve in the instep skin expanded faster in females; the final result was a 30% larger increase in females than in males. In the second experiment, the end-to-side nerve anastomosis was used as a model for axon sprouting. In addition to the previous procedure, the end of an excised peroneal nerve segment was sutured to the side of the intact sural nerve. Eight weeks later, collateral sprouting of nociceptive axons into the anastomosed peroneal nerve segment was assessed by the nerve pinch test and axon counting. There was no significant difference with respect to the percentages of male and female rats with a positive nerve pinch test. The number of myelinated axons in the anastomosed nerve segment was significantly larger in female (456 +/- 217) than in male (202 +/- 150) rats, but the numbers of unmyelinated axons were not significantly different. In normal sural nerves, the numbers of either all myelinated axons or thin myelinated axons did not significantly differ between the two sexes. Therefore, the more extensive collateral axon sprouting observed in female than in male rats is probably due to the higher sprouting capacity of thin myelinated sensory axons in females.
Collapse
Affiliation(s)
- U Kovacic
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zalosbreve;ka 4, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
20
|
Murphy S, McCullough L, Littleton-Kearney M, Hurn P. Estrogen and selective estrogen receptor modulators: neuroprotection in the Women's Health Initiative era. Endocrine 2003; 21:17-26. [PMID: 12777699 DOI: 10.1385/endo:21:1:17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/04/2003] [Accepted: 02/11/2003] [Indexed: 11/11/2022]
Abstract
Estrogen has been comprehensively studied as a neuroprotective agent in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data suggest that estrogen can benefit the ischemic brain and reduce cell death. However, recent data from the Women's Health Initiative have raised concerns about the utility and safety of chronic estrogen use in women. While estrogen is a potent and reproducible neuroprotectant in animals and in vitro, its current administration in women has had unanticipated and paradoxical effects. Nonetheless, estrogen's diverse actions make it an ideal prototype for developing new neuroprotectants such as selective estrogen receptor modulators (SERMs). SERMs represent a class of drugs with mixed estrogen agonistic and antagonistic activity. Experimental and clinical data suggest a neuroprotective role for SERMs in normal and injured brain. The discrepancy among observational studies, preclinical data, and clinical trials emphasizes the need for further study of the mechanisms leading to the increased incidence of stroke observed in postmenopausal women. Research is still needed to optimize combined or estrogen alone hormone replacement therapy options as well as the prevention/management of cerebrovascular/ central nervous system disorders. This review critiques estrogen and SERMs' neuroprotective potential in experimental and clinical studies of stroke and cerebrovascular disease.
Collapse
Affiliation(s)
- Stephanie Murphy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
This review highlights recent evidence from clinical and basic science studies supporting a role for estrogen in neuroprotection. Accumulated clinical evidence suggests that estrogen exposure decreases the risk and delays the onset and progression of Alzheimer's disease and schizophrenia, and may also enhance recovery from traumatic neurological injury such as stroke. Recent basic science studies show that not only does exogenous estradiol decrease the response to various forms of insult, but the brain itself upregulates both estrogen synthesis and estrogen receptor expression at sites of injury. Thus, our view of the role of estrogen in neural function must be broadened to include not only its function in neuroendocrine regulation and reproductive behaviors, but also to include a direct protective role in response to degenerative disease or injury. Estrogen may play this protective role through several routes. Key among these are estrogen dependent alterations in cell survival, axonal sprouting, regenerative responses, enhanced synaptic transmission and enhanced neurogenesis. Some of the mechanisms underlying these effects are independent of the classically defined nuclear estrogen receptors and involve unidentified membrane receptors, direct modulation of neurotransmitter receptor function, or the known anti-oxidant activities of estrogen. Other neuroprotective effects of estrogen do depend on the classical nuclear estrogen receptor, through which estrogen alters expression of estrogen responsive genes that play a role in apoptosis, axonal regeneration, or general trophic support. Yet another possibility is that estrogen receptors in the membrane or cytoplasm alter phosphorylation cascades through direct interactions with protein kinases or that estrogen receptor signaling may converge with signaling by other trophic molecules to confer resistance to injury. Although there is clear evidence that estradiol exposure can be deleterious to some neuronal populations, the potential clinical benefits of estrogen treatment for enhancing cognitive function may outweigh the associated central and peripheral risks. Exciting and important avenues for future investigation into the protective effects of estrogen include the optimal ligand and doses that can be used clinically to confer benefit without undue risk, modulation of neurotrophin and neurotrophin receptor expression, interaction of estrogen with regulated cofactors and coactivators that couple estrogen receptors to basal transcriptional machinery, interactions of estrogen with other survival and regeneration promoting factors, potential estrogenic effects on neuronal replenishment, and modulation of phenotypic choices by neural stem cells.
Collapse
|
22
|
Vergouwen MD, Anderson RE, Meyer FB. Gender differences and the effects of synthetic exogenous and non-synthetic estrogens in focal cerebral ischemia. Brain Res 2000; 878:88-97. [PMID: 10996139 DOI: 10.1016/s0006-8993(00)02713-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of gender difference and estrogen in ischemic cerebrovascular events is controversial. Evidence is lacking as to whether or not there are significant gender differences in the incidence and outcome of stroke in the clinical setting. Recent clinical epidemiological studies have demonstrated that there is no significant association between the use of hormonal replacement therapy and the risk of stroke. However, several animal studies have shown that there are gender differences in stroke outcome and that exogenous administered estrogens are neuroprotective. In this study, the influence of gender differences and the effects of synthetic and non-synthetic estrogens were examined in a model of focal cerebral ischemia using 210 male, intact female, and ovariectomized female rats. All animals underwent 3 h of middle cerebral artery and bilateral common carotid artery occlusion. After 72 h, the rats were sacrificed and stained for histological assessment of infarction. There were no gender differences in infarction volume. Intravenous administration of either low or high dose 17 beta-estradiol or tibolone did not alter infarct volume. Subcutaneous administration of low and high dose 17beta-estradiol using 7-day release pellets did not alter infarct volume. Low dose tibolone using implanted 7-day release pellets did not alter infarct volume. However, high dose tibolone using implanted 7-day release pellets significantly (P<0.05) reduced infarct volume only in ovariectomized female rats. These results demonstrate that estrogen therapy has no effect on infarction volume following severe focal cerebral ischemia.
Collapse
Affiliation(s)
- M D Vergouwen
- Thoralf M. Sundt Jr. Neurosurgical Research Laboratory, Mayo Clinic and Mayo Graduate School of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
23
|
Abstract
Recent literature has identified many of the important factors helpful in predicting outcome even at the very acute stage of stroke. Demographic factors, risk factors, clinical exam findings, clinical scales laboratory tests, and neuroimaging all provide important information that can assist the clinician in predicting outcome. Specific factors seem to influence the effect of stroke treatments such as thrombolysis. Consideration of these factors is important when treatment decisions such as thrombolysis are being contemplated. New techniques such as eco-planar MR Imaging are now being developed that seem extremely accurate in predicting outcome. These techniques represent the "crystal ball" of predicting stroke outcome.
Collapse
Affiliation(s)
- A M Demchuk
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
24
|
Abstract
Recent evidence suggests that reproductive steroids are important players in shaping stroke outcome and cerebrovascular pathophysiologic features. Although women are at lower risk for stroke than men, this native protection is lost in the postmenopausal years. Therefore, aging women sustain a large burden for stroke, contrary to a popular misconception that cancer is the main killer of women. Further, the value of hormone replacement therapy in stroke prevention or in improving outcome remains controversial. Estrogen has been the best studied of the sex steroids in both laboratory and clinical settings and is considered increasingly to be an endogenous neuroprotective agent. A growing number of studies demonstrate that exogenous estradiol reduces tissue damage resulting from experimental ischemic stroke in both sexes. This new concept suggests that dissecting interactions between estrogen and cerebral ischemia will yield novel insights into generalized cellular mechanisms of injury. Less is known about estrogen's undesirable effects in brain, for example, the potential for increasing seizure susceptibility and migraine. This review summarizes gender-specific aspects of clinical and experimental stroke and results of estrogen treatment on outcome in animal models of cerebral ischemia, and briefly discusses potential vascular and parenchymal mechanisms by which estrogen salvages brain.
Collapse
Affiliation(s)
- P D Hurn
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
25
|
Sawada M, Alkayed NJ, Goto S, Crain BJ, Traystman RJ, Shaivitz A, Nelson RJ, Hurn PD. Estrogen receptor antagonist ICI182,780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab 2000; 20:112-8. [PMID: 10616799 DOI: 10.1097/00004647-200001000-00015] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent findings in animals emphasize that experimental ischemic brain damage can be strikingly reduced by estrogen: however, the neuroprotective mechanisms are not well understood. It was hypothesized that estrogen signaling via cognate estrogen receptors (ERs) within the vasculature is an important aspect of cerebral ischemic protection in the female brain, in part by amplifying intraischemic cerebral blood flow (CBF). In the present study, the hypothesis that chronic treatment with the pure ER antagonist ICI182,780 (ICI) would increase ischemic brain damage by a blood flow-mediated mechanism was investigated. Adult C57B1/6J mice were pretreated with either subcutaneous ICI (100 microg/day) or oil/ethanol vehicle for 1 week before 2 hours of middle cerebral artery occlusion (MCAO) and 22 hours of reperfusion. End-ischemic regional CBF was evaluated in additional cohorts using [14C]iodoantipyrine autoradiography. Infarction volume as measured by cresyl violet histology was greater in the striatum of ICI-treated females (70 +/- 3% of contralateral striatum vs. 40 +/- 12% in vehicle-treated females). Cortical injury was not enhanced relative to control animals (39 +/- 6% of contralateral cortex in ICI group vs. 27 +/- 8% in vehicle-treated group). Physiologic variables and ischemic reduction of the ipsilateral cortical laser-Doppler flow signal were similar between groups. Further, ICI treatment did not alter end-ischemic cortical or striatal CBF. The deleterious effect of ICI was limited to females, as there were no differences in stroke damage or CBF between male treatment groups. These data suggest that estrogen inhibits ischemic brain injury in striatum of the female by receptor-mediated mechanisms that are not linked to preservation of intraischemic CBF.
Collapse
Affiliation(s)
- M Sawada
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
There are now overwhelming data suggesting that inflammation contributes to cerebral ischemic injury. The mechanisms that lead to the inflammatory response which follows stroke, however, are not fully understood. This review will highlight the most recent advances in our knowledge as well as the early experience of using anti-inflammatory strategies to treat acute stroke.
Collapse
Affiliation(s)
- K J Becker
- Harborview Medical Center, Seattle, WA 98104-2499, USA.
| |
Collapse
|
27
|
Gender Based Medicine. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1998. [DOI: 10.1016/s0065-7743(08)61098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
28
|
Wyller TB, Sødring KM, Sveen U, Ljunggren AE, Bautz-Holter E. Are there gender differences in functional outcome after stroke? Clin Rehabil 1997; 11:171-9. [PMID: 9199870 DOI: 10.1177/026921559701100211] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To study gender differences in functional outcome unexpectedly observed in a follow-up study of stroke patients. DESIGN Prospective study of hospitalized stroke patients, with evaluations in the subacute phase and after one year. SETTING Geriatric and general medical wards, and geriatric outpatient clinic of a university hospital serving as general hospital for a defined population. SUBJECTS All stroke patients admitted during a six-month period (n = 165) were considered for inclusion, of whom 87 could be assessed in the subacute phase and 65 after one year. MAIN OUTCOME MEASURES Motor function assessed by the Sødring Motor Evaluation of Stroke Patients; cognitive function by the Assessment of Stroke and other Brain Damage; and activities of daily living (ADL) function by the Barthel Index. Nursing-home residency registered after one year. RESULTS Men achieved a significantly better score than women on most of the scales used. The age-adjusted odds for a man to have a higher Barthel score than a woman was 3.1 (95% confidence interval (CI) 1.3-7.0) in the subacute phase and 3.3 (95% CI 1.2-9.0) after one year. Differences of the same magnitude were seen on the subscales of the motor and cognitive tests. The same trend was observed on all items of the Barthel Index. The males had a lower likelihood to be permanent nursing-home residents after one year, the age-adjusted odds ratio for nursing-home residency for females versus males being 6.3 (95% CI 1.2-65.3). CONCLUSION Women seem to be functionally more impaired by stroke than men.
Collapse
Affiliation(s)
- T B Wyller
- Department of Geriatric Medicine, Ullevaal University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|