1
|
Wang Y, Chen Y, Li Z, Tang L, Wen D, Wu Y, Guo Z. Electroacupuncture enhances cerebral blood perfusion by inhibiting HIF-1α in rat subarachnoid hemorrhage. Brain Res 2024; 1839:149010. [PMID: 38763503 DOI: 10.1016/j.brainres.2024.149010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Cerebral blood perfusion (CBP) reduction is a prevalent complication following subarachnoid hemorrhage (SAH) in clinical practice, often associated with long-term cognitive impairment and prognosis. Electroacupuncture (EA), a widely utilized traditional Chinese therapy for central nervous system disorders, has demonstrated promising therapeutic effects. This study aims to investigate the therapeutic potential of EA in restoring CBP in SAH rats and to explore the mechanisms involving HIF-1α in this process. METHODS Rats were randomly assigned to one of five groups, including Sham, SAH, EA, EA + Saline, and EA + dimethyloxallyl glycine (DMOG) groups. EA treatment was administered for 10 min daily, while DMOG were intraperitoneally injected. Behavioral tests, cerebral blood flow monitoring, vascular thickness measurement, western blotting, and immunofluorescence staining were conducted to assess the therapeutic effects of EA on cerebral blood flow. RESULTS SAH resulted in elevated levels of HIF-1α, endothelin (ET), ICAM-1, P-SELECTIN, E-SELECTIN, and decreased level of eNOS in the brain. This led to cerebral vasospasm, decreased CBF, and cognitive deficits in the rat SAH model. EA intervention downregulated the expression of HIF-1α, ET, ICAM-1, P-SELECTIN, and E-SELECTIN, while increasing eNOS expression. This alleviated cerebral vasospasm, restored CBF, and improved cognitive function. However, the administration of the HIF-1α stabilizer (DMOG) counteracted the therapeutic effects of EA. CONCLUSION EA promotes the recovery of cerebral blood flow after SAH injury, attenuates cerebral vasospasm, and accelerates the recovery of cognitive dysfunction, and its mechanism of action may be related to the inhibition of the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Li
- Emergency Department, Chengdu First People's Hospital, Chengdu, Sichuan Province, China.
| | - Liuyang Tang
- Department of Neurosurgery, The People's Hospital of Qijiang District, 401420, China
| | - Daochen Wen
- Department of Neurosurgery, Xuanhan County People's Hospital, Dazhou, China.
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Tudor T, Spinazzi EF, Alexander JE, Mandigo GK, Lavine SD, Grinband J, Connolly ES. Progressive microvascular failure in acute ischemic stroke: A systematic review, meta-analysis, and time-course analysis. J Cereb Blood Flow Metab 2024; 44:192-208. [PMID: 38016953 PMCID: PMC10993872 DOI: 10.1177/0271678x231216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/30/2023]
Abstract
This systematic review, meta-analysis, and novel time course analysis examines microvascular failure in the treatment of acute ischemic stroke (AIS) patients undergoing endovascular therapy (EVT) and/or thrombolytic administration for stroke management. A systematic review and meta-analysis following PRIMSA-2020 guidelines was conducted along with a novel curve-of-best fit analysis to elucidate the time-course of microvascular failure. Scopus and PubMed were searched using relevant keywords to identify studies that examine recanalization and reperfusion assessment of AIS patients following large vessel occlusion. Meta-analysis was conducted using a random-effects model. Curve-of-best-fit analysis of microvascular failure rate was performed with a negative exponential model. Twenty-seven studies with 1151 patients were included. Fourteen studies evaluated patients within a standard stroke onset-to-treatment time window (≤6 hours after last known normal) and thirteen studies had an extended time window (>6 hours). Our analysis yields a 22% event rate of microvascular failure following successful recanalization (95% CI: 16-30%). A negative exponential curve modeled a microvascular failure rate asymptote of 28.5% for standard time window studies, with no convergence of the model for extended time window studies. Progressive microvascular failure is a phenomenon that is increasingly identified in clinical studies of AIS patients undergoing revascularization treatment.
Collapse
Affiliation(s)
- Thilan Tudor
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia E Alexander
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace K Mandigo
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sean D Lavine
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Departments of Psychiatry and Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Maglinger B, Frank JA, Fraser JF, Pennypacker KR. Reverse Translation to Develop Post-stroke Therapeutic Interventions during Mechanical Thrombectomy: Lessons from the BACTRAC Trial. Methods Mol Biol 2023; 2616:391-402. [PMID: 36715948 DOI: 10.1007/978-1-0716-2926-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The majority of strokes, approximately 87%, are ischemic in etiology with the remaining hemorrhagic in origin. Emergent large vessel occlusions (ELVOs) are a subtype of ischemic stroke accounting for approximately 30-40% of acute large vessel blockages. Treatment for ELVOs focuses on recanalization of the occluded vessel by time-sensitive administration of tissue plasminogen activator (tPA) or thrombus removal using mechanical thrombectomy. Although a great deal of time and resources have focused on translational stroke research, little progress has been made in the area of identifying additional new treatments for stroke. Translational limitations include difficulty simulating human comorbid conditions in animal models, as well as the temporal nature of stroke pathology. The Blood And Clot Thrombectomy Registry And Collaboration represents an ongoing tissue registry for thrombectomy patients and includes collection of intracranial arterial blood, systemic arterial blood, thrombi, as well as a series of clinical and radiographic data points for analysis. This chapter will explore the methodologies employed and results obtained from studying BACTRAC-derived human biological specimens and how they can inform translational experimental design in animal studies.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
del Zoppo GJ, Moskowitz MA, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Maglinger B, Sands M, Frank JA, McLouth CJ, Trout AL, Roberts JM, Grupke S, Turchan-Cholewo J, Stowe AM, Fraser JF, Pennypacker KR. Intracranial VCAM1 at time of mechanical thrombectomy predicts ischemic stroke severity. J Neuroinflammation 2021; 18:109. [PMID: 33971895 PMCID: PMC8111916 DOI: 10.1186/s12974-021-02157-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Emergent large vessel occlusion (ELVO) strokes are devastating ischemic vascular events for which novel treatment options are needed. Using vascular cell adhesion molecule 1 (VCAM1) as a prototype, the objective of this study was to identify proteomic biomarkers and network signaling functions that are potential therapeutic targets for adjuvant treatment for mechanical thrombectomy. Methods The blood and clot thrombectomy and collaboration (BACTRAC) study is a continually enrolling tissue bank and registry from stroke patients undergoing mechanical thrombectomy. Plasma proteins from intracranial (distal to clot) and systemic arterial blood (carotid) were analyzed by Olink Proteomics for N=42 subjects. Statistical analysis of plasma proteomics used independent sample t tests, correlations, linear regression, and robust regression models to determine network signaling and predictors of clinical outcomes. Data and network analyses were performed using IBM SPSS Statistics, SAS v 9.4, and STRING V11. Results Increased systemic (p<0.001) and intracranial (p=0.013) levels of VCAM1 were associated with the presence of hypertension. Intracranial VCAM1 was positively correlated to both infarct volume (p=0.032; r=0.34) and edema volume (p=0.026; r=0.35). The %∆ in NIHSS from admittance to discharge was found to be significantly correlated to both systemic (p=0.013; r = −0.409) and intracranial (p=0.011; r = −0.421) VCAM1 levels indicating elevated levels of systemic and intracranial VCAM1 are associated with reduced improvement of stroke severity based on NIHSS from admittance to discharge. STRING-generated analyses identified biologic functional descriptions as well as function-associated proteins from the predictive models of infarct and edema volume. Conclusions The current study provides novel data on systemic and intracranial VCAM1 in relation to stroke comorbidities, stroke severity, functional outcomes, and the role VCAM1 plays in complex protein-protein signaling pathways. These data will allow future studies to develop predictive biomarkers and proteomic targets for drug development to improve our ability to treat a devastating pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02157-4.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Madison Sands
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Jill M Roberts
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Stephen Grupke
- Department of Neurosurgery and Neuroendovascular Surgery, Covenant Medical Center, Lubbock, TX, USA
| | - Jadwiga Turchan-Cholewo
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA.,Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA. .,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Liu S, Wei C, Kang N, He Q, Liang J, Wang H, Chang L, Chen D, Zhang Q, Chang C, Zhang J, Ren H, Wu Y. Chinese medicine Tongxinluo capsule alleviates cerebral microcirculatory disturbances in ischemic stroke by modulating vascular endothelial function and inhibiting leukocyte-endothelial cell interactions in mice: A two-photon laser scanning microscopy stu. Microcirculation 2018; 25. [DOI: 10.1111/micc.12437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Shen Liu
- Dongzhimen Hospital; Beijing University of Chinese Medicine; Beijing China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Ning Kang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Qilong He
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Junqing Liang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Hongtao Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Liping Chang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Daohong Chen
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Qiuyan Zhang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Chengcheng Chang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Junfang Zhang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| | - Hong Ren
- Graduate School; Hebei Medical University; Shijiazhuang China
| | - Yiling Wu
- Dongzhimen Hospital; Beijing University of Chinese Medicine; Beijing China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine; Hebei Yiling Chinese Medicine Research Institute; Shijiazhuang China
| |
Collapse
|
7
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
8
|
del Zoppo GJ, Moskowitz M, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Gounis MJ, van der Marel K, Marosfoi M, Mazzanti ML, Clarençon F, Chueh JY, Puri AS, Bogdanov AA. Imaging Inflammation in Cerebrovascular Disease. Stroke 2015; 46:2991-7. [PMID: 26351362 DOI: 10.1161/strokeaha.115.008229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 02/01/2023]
Abstract
Imaging inflammation in large intracranial artery pathology may play an important role in the diagnosis of and risk stratification for a variety of cerebrovascular diseases. Looking beyond the lumen has already generated widespread excitement in the stroke community, and the potential to unveil molecular processes in the vessel wall is a natural evolution to develop a more comprehensive understanding of the pathogenesis of diseases, such as ICAD and brain aneurysms.
Collapse
Affiliation(s)
- Matthew J Gounis
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester.
| | - Kajo van der Marel
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Miklos Marosfoi
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Mary L Mazzanti
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Frédéric Clarençon
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Ju-Yu Chueh
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Ajit S Puri
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Alexei A Bogdanov
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| |
Collapse
|
10
|
Roy S, Das S, Danaboina R, Sharma V, Kaul S, Jyothy A, Munshi A. Association of E-selectin gene polymorphism (S128R) with ischemic stroke and stroke subtypes. Inflammation 2014; 37:599-603. [PMID: 24249306 DOI: 10.1007/s10753-013-9774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
E-selectin is an important inflammatory cytokine involved in the pathogenesis of various diseases such as atherosclerosis and stroke. We investigated the association of E-selectin gene polymorphism (S128R) with ischemic stroke and its subtypes. We studied 610 patients with ischemic stroke and 610 age- and sex-matched healthy controls. The ischemic stroke was classified according to Trial of Org10172 in Acute Stroke Treatment (TOAST). E-selectin gene polymorphism (S128R) was determined by polymerase chain reaction-restriction fragment length polymorphism technique. We found statistically significant difference in the genotypic distribution between patients and controls (for AC vs. AA, χ(2) = 49.5; p < 0.001, odds ratio = 5.47(95 % CI, 3.25-9.21). A significant difference was observed in the frequency of C and A alleles in patients and controls (for C vs. A, χ(2) = 47.4; p < 0.001, odds ratio = 5.13 (95 % CI, 3.06-8.57). Multiple logistic regression analysis revealed that the most predictive risk factor for stroke was AC genotype (adjusted odds ratio = 1.450 (95 % CI, 1.23-2.75) and p = 0.001), hypertension, smoking, and diabetes (p = 0.001 in each case). We also found a significant association of AC genotype with intracranial large artery atherosclerosis (p < 0.01, odds ratio = 9.37, (95 % CI, 5.31-16.5) and small artery occlusion (p < 0.0001, odds ratio = 9.81 (95 % CI, 4.94-19.4). Our results indicate that the individuals bearing AC genotype of E-selectin gene polymorphism (S128R) are more prone to stroke than AA genotype.
Collapse
Affiliation(s)
- Sitara Roy
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, 500016, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Ding G, Zhang Z, Chopp M, Li L, Zhang L, Li Q, Wei M, Jiang Q. MRI evaluation of BBB disruption after adjuvant AcSDKP treatment of stroke with tPA in rat. Neuroscience 2014; 271:1-8. [PMID: 24769225 DOI: 10.1016/j.neuroscience.2014.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022]
Abstract
The primary limitation of thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is the hemorrhagic risk. We tested AcSDKP (N-acetyl-seryl-aspartyl-lysyl-proline), as an auxiliary therapeutic agent, to reduce blood-brain barrier (BBB) disruption in a combination tPA thrombolytic treatment of stroke. Wistar rats subjected to embolic stroke were randomly assigned to either the tPA monotherapy group (n=9) or combination of tPA and AcSDKP treatment group (n=9) initiated at 4 h after ischemia. Magnetic resonance imaging (MRI) measurements were performed before and after the treatments. Immunohistochemical staining and measurements were performed to confirm MRI findings. Longitudinal MRI permeability measurements with gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) demonstrated that combination treatment of acute embolic stroke with AcSDKP and tPA significantly reduced BBB leakage, compared to tPA monotherapy, at 3 and 6 days (18.3±9.8 mm3 vs. 65.0±21.0 mm3, p<0.001) after the onset of stroke, although BBB leakage was comparable between the two groups prior to the treatments (6.8±4.4 mm3 vs. 4.3±3.3 mm3, p>0.18). The substantial reduction of BBB leakage observed in the combination treatment group was closely associated with reduced ischemic lesions measured by T2 maps (113.6±24.9 mm3 vs. 188.1±60.8 mm3, p<0.04 at 6 days). Histopathological analysis of the same population of rats showed that the combination treatment significantly reduced parenchymal fibrin deposition (0.063±0.059 mm2 vs. 0.172±0.103 mm2, p<0.03) and infarct volume (146.7±35.9 mm3 vs. 199.3±60.4 mm3, p<0.05) compared to the tPA monotherapy at 6days after stroke. MRI provides biological insight into the therapeutic benefit of combination treatment of stroke with tPA and AcSDKP 4h after onset, and demonstrates significantly improved cerebrovascular integrity with neuroprotective effects compared with tPA monotherapy.
Collapse
Affiliation(s)
- G Ding
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Z Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - M Chopp
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - L Li
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - L Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Q Li
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - M Wei
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Q Jiang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Yin KJ, Hamblin M, Chen YE. Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int 2014; 77:9-16. [PMID: 24704794 DOI: 10.1016/j.neuint.2014.03.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
Cerebral vascular endothelial cells form the major element of the blood-brain barrier (BBB) and constitute the primary interface between circulating blood and brain parenchyma. The structural and functional changes in cerebral endothelium during cerebral ischemia are well known to result in BBB disruption, vascular inflammation, edema, and angiogenesis. These complex pathological processes directly contribute to brain infarction, neurological deficits, and post-stroke neurovascular remodeling. Ischemic endothelial dysfunction appears to be tightly controlled by multiple gene signaling networks. Non-coding RNAs (ncRNAs) are functional RNA molecules that are generally not translated into proteins but can actively regulate the expression and function of many thousands of protein-coding genes by different mechanisms. Various classes of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), small nucleolar RNAs (snoRNAs) and piwi-interacting RNAs (piRNAs), are highly expressed in the cerebrovascular endothelium where they serve as critical mediators to maintain normal cerebral vascular functions. Dysregulation of ncRNA activities has been closely linked to the pathophysiology of cerebral vascular endothelium and neurologic functional disorders in the brain's response to ischemic stimuli. In this review, we summarize recent advancements of these ncRNA mediators in the brain vasculature, highlighting the specific roles of endothelial miRNAs in stroke.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Milton Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL83, New Orleans, LA 70112, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Farr TD, Lai CH, Grünstein D, Orts-Gil G, Wang CC, Boehm-Sturm P, Seeberger PH, Harms C. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin. NANO LETTERS 2014; 14:2130-4. [PMID: 24564342 DOI: 10.1021/nl500388h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Activation of the endothelium is a pivotal first step for leukocyte migration into the diseased brain. Consequently, imaging this activation process is highly desirable. We synthesized carbohydrate-functionalized magnetic nanoparticles that bind specifically to the endothelial transmembrane inflammatory proteins E and P selectin. Magnetic resonance imaging revealed that the targeted nanoparticles accumulated in the brain vasculature following acute administration into a clinically relevant animal model of stroke, though increases in selectin expression were observed in both brain hemispheres. Nonfunctionalized naked particles also appear to be a plausible agent to target the ischemic vasculature. The importance of these findings is discussed regarding the potential for translation into the clinic.
Collapse
Affiliation(s)
- Tracy D Farr
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité University Medicine , Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Townsend D, D'Aiuto F, Deanfield J. Preliminary study of video imaging of blood vessels in tissues lining the gingival sulcus in periodontally healthy individuals. J Periodontal Res 2013; 49:670-9. [DOI: 10.1111/jre.12150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2013] [Indexed: 12/23/2022]
Affiliation(s)
- D. Townsend
- Vascular Physiology Unit; University College London Institute of Cardiovascular Science; London UK
| | - F. D'Aiuto
- Periodontology Unit, Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - J. Deanfield
- Vascular Physiology Unit; University College London Institute of Cardiovascular Science; London UK
| |
Collapse
|
15
|
Abstract
Modulation of coagulation has been successfully applied to ischemic disorders of the central nervous system (CNS). Some components of the coagulation system have been identified in the CNS, yet with limited exception their functions have not been clearly defined. Little is known about how events within the cerebral tissues affect hemostasis. Nonetheless, the interaction between cerebral cells and vascular hemostasis and the possibility that endogenous coagulation factors can participate in functions within the neurovascular unit provide intriguing possibilities for deeper insight into CNS functions and the potential for treatment of CNS injuries. Here, we consider the expression of coagulation factors in the CNS, the coagulopathy associated with focal cerebral ischemia (and its relationship to hemorrhagic transformation), the use of recombinant tissue plasminogen activator (rt-PA) in ischemic stroke and its study in animal models, the impact of rt-PA on neuron and CNS structure and function, and matrix protease generation and matrix degradation and hemostasis. Interwoven among these topics is evidence for interactions of coagulation factors with and within the CNS. How activation of hemostasis occurs in the cerebral tissues and how the brain responds are difficult questions that offer many research possibilities.
Collapse
Affiliation(s)
- Gregory J. del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Yoshikane Izawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Brian T. Hawkins
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
16
|
Angiari S, Constantin G. Selectins and their ligands as potential immunotherapeutic targets in neurological diseases. Immunotherapy 2013; 5:1207-20. [DOI: 10.2217/imt.13.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Selectins are a family of adhesion receptors that bind to highly glycosylated molecules expressed on the surface of leukocytes and endothelial cells. The interactions between selectins and their ligands control tethering and rolling of leukocytes on the vascular wall during the process of leukocyte migration into the tissues under physiological and pathological conditions. In recent years, it has been shown that leukocyte recruitment in the CNS plays a pivotal role in diseases such as multiple sclerosis, ischemic stroke, epilepsy and traumatic brain injury. In this review, we discuss the role of selectins in leukocyte–endothelial interactions in the pathogenesis of neurological diseases, highlighting new findings suggesting that selectins and their ligands may represent novel potential therapeutic targets for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Stefano Angiari
- Department of Pathology & Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy
| | - Gabriela Constantin
- Department of Pathology & Diagnostics, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy
| |
Collapse
|
17
|
Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 2012; 71:1018-39. [PMID: 21780303 DOI: 10.1002/dneu.20954] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is formed primarily to protect the brain microenvironment from the influx of plasma components, which may disturb neuronal functions. The BBB is a functional unit that consists mainly of specialized endothelial cells (ECs) lining the cerebral blood vessels, astrocytes, and pericytes. The BBB is a dynamic structure that is altered in neurologic diseases, such as stroke. ECs and astrocytes secrete extracellular matrix (ECM) proteins to generate and maintain the basement membranes (BMs). ECM receptors, such as integrins and dystroglycan, are also expressed at the brain microvasculature and mediate the connections between cellular and matrix components in physiology and disease. ECM proteins and receptors elicit diverse molecular signals that allow cell adaptation to environmental changes and regulate growth and cell motility. The composition of the ECM is altered upon BBB disruption and directly affects the progression of neurologic disease. The purpose of this review is to discuss the dynamic changes of ECM composition and integrin receptor expression that control BBB functions in physiology and pathology.
Collapse
Affiliation(s)
- Kim M Baeten
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
18
|
Zhao DX, Feng J, Cong SY, Zhang W. Association of E-selectin gene polymorphisms with ischemic stroke in a Chinese Han population. J Neurosci Res 2012; 90:1782-7. [PMID: 22589243 DOI: 10.1002/jnr.23075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/18/2011] [Accepted: 04/03/2012] [Indexed: 02/06/2023]
Abstract
The E-selectin gene, a member of the selectin superfamily of adhesion molecules, plays an important role in the pathogenesis of thrombovascular diseases. The present study was designed to investigate the potential relationship between E-selectin gene polymorphisms and ischemic stroke in a Chinese Han population. Three hundred fourteen ischemic stroke patients and 389 unrelated healthy controls were recruited for the study. Three single-nucleotide polymorphisms (SNPs)-rs1805193(G98T), rs5361(A561C), and rs5355(C1839T)-in the exon region of the E-selectin gene, were genotyped using a Multiplex SNaPshot sequencing assay. The data showed that the genotype and allele frequencies of G98T and C1839T SNP were similar in both ischemic stroke patients and the controls. In contrast, the frequency of both the AC genotype and the C allele of A561C was significantly higher in ischemic stroke patients than in healthy controls (P = 0.001, P < 0.001, respectively). After adjusting for other risk factors (such as hypertension, diabetes, tobacco smoking, and alcohol consumption), the E-selectin gene AC genotype and C allele of A561C were still associated with a risk of ischemic stroke (odds ratio [OR] = 2.73, 95% confidence interval (CI): 1.29-5.76, P = 0.008; OR = 2.80, 95% CI: 1.58-4.94, P < 0.001, respectively). Our current study demonstrates that the E-selectin SNP A561C is associated with increased risk for the development of ischemic stroke in this subset of the Han Chinese population.
Collapse
Affiliation(s)
- Dong-Xue Zhao
- Department of Neurology, Sheng- Jing Hospital of China Medical University, Shenyang, China.
| | | | | | | |
Collapse
|
19
|
Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1β-induced E-selectin expression in human endothelial cells. PLoS One 2012; 7:e31874. [PMID: 22384091 PMCID: PMC3286450 DOI: 10.1371/journal.pone.0031874] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/13/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated. METHODOLOGY We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber. RESULTS AND CONCLUSION Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8-12 hr of continuous shear-cytokine activation contrary to the commonly observed 4-6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation.
Collapse
Affiliation(s)
- Ryan B. Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
The Cerebral Microvasculature and Responses to Ischemia. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
Abstract
In preparation for designing and undertaking trials of strategies that can modulate "innate inflammation" to improve outcomes of ischemic injury, consideration of approaches that have managed cellular inflammation in ischemic stroke are instructive. Robust experimental work has demonstrated the efficacy (and apparent safety) of targeting PMN leukocyte-endothelial cell interactions in the early moments following focal ischemia onset in model systems. Four clinical trial programs were undertaken to assess the safety and efficacy of inhibitors to PMN leukocyte interactions with the endothelial cell during ischemic stroke. Experiences in those clinical trial programs indicate specific limitations that halted progress in this line of investigation before an adequate hypothesis test could be achieved. Although innate inflammation is a central part of injury evolution following focal ischemia, great care in the translation from experimental studies to Phase I/II clinical safety assessments and to the design and conduct of Phase III trials is needed.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
22
|
Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation 2010; 7:74. [PMID: 21040547 PMCID: PMC2988764 DOI: 10.1186/1742-2094-7-74] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/01/2010] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a key element in the ischemic cascade after cerebral ischemia that results in cell damage and death in the subacute phase. However, anti-inflammatory drugs do not improve outcome in clinical settings suggesting that the neuroinflammatory response after an ischemic stroke is not entirely detrimental. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. Because of its inhibitory influence on several pathways of the ischemic cascade, hypothermia has been introduced as a promising neuroprotective strategy. This review also discusses the influence of hypothermia on the neuroinflammatory response. We conclude that hypothermia exerts both stimulating and inhibiting effects on different aspects of neuroinflammation and hypothesize that these effects are key to neuroprotection.
Collapse
Affiliation(s)
- An-Gaëlle Ceulemans
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Neuropharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Bleecker JD, Coulier I, Fleurinck C, Reuck JD. Circulating intercellular adhesion molecule-1 and E-selectin in acute ischemic stroke. J Stroke Cerebrovasc Dis 2009; 7:192-5. [PMID: 17895080 DOI: 10.1016/s1052-3057(98)80006-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Exposure of endothelia to hypoxia followed by reperfusion, results in increased leukocyte activation and extravasation. These leukocytes potentiate ischemic neuronal damage. Extravasation of leukocytes is guided by adhesion molecule interactions on inflammatory and endothelial cells. Circulating adhesion molecules rapidly appear in peripheral blood. Commercially available ELISA kits were used to determine serum levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) in 36 patients at 1, 3, and 14 days after acute ischemic stroke. E-selectin levels were nonsignificantly increased at day 1, and decreased thereafter, reaching significantly lower values at day 14 in the stroke patients. ICAM-1 levels were similar in stroke patients at each sampling period, and did not differ from those of controls. Our data on ICAM-1 are in line with those of a recently published study. The decreasing circulating E-selectin may stem from endothelial cell damage, alterations in cytokine interactions, or unknown factors.
Collapse
Affiliation(s)
- J D Bleecker
- Department of Neurology, University Hospital, Gent, Belgium
| | | | | | | |
Collapse
|
24
|
Abstract
Stroke is the major cause of disability in the Western world and is the third greatest cause of death, but there are no widely effective treatments to prevent the devastating effects of stroke. Extensive and growing evidence implicates inflammatory and immune processes in the occurrence of stroke and particularly in the subsequent injury. Several inflammatory mediators have been identified in the pathogenesis of stroke including specific cytokines, adhesion molecules, matrix metalloproteinases, and eicosanoids. An early clinical trial suggests that inhibiting interleukin-1 may be of benefit in the treatment of acute stroke.
Collapse
|
25
|
Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 2009; 111:483-95. [PMID: 19446389 DOI: 10.1016/j.clineuro.2009.04.001] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 01/24/2023]
Abstract
There is an urgent need for improved diagnostics and therapeutics for acute ischemic stroke. This is the focus of numerous research projects involving in vitro studies, animal models and clinical trials, all of which are based on current knowledge of disease mechanisms underlying acute focal cerebral ischemia. Insight in the chain of events occurring during acute ischemic injury is essential for understanding current and future diagnostic and therapeutic approaches. In this review, we summarize the actual knowledge on the pathophysiology of acute ischemic stroke. We focus on the ischemic cascade, which is a complex series of neurochemical processes that are unleashed by transient or permanent focal cerebral ischemia and involves cellular bioenergetic failure, excitotoxicity, oxidative stress, blood-brain barrier dysfunction, microvascular injury, hemostatic activation, post-ischemic inflammation and finally cell death of neurons, glial and endothelial cells.
Collapse
Affiliation(s)
- R Brouns
- Department of Neurology and Memory Clinic, Middelheim General Hospital, Antwerp, Belgium
| | | |
Collapse
|
26
|
Celebi M, Paul AGA. Blocking E-selectin inhibits ischaemia-reperfusion-induced neutrophil recruitment to the murine testis. Andrologia 2008; 40:235-9. [PMID: 18727733 DOI: 10.1111/j.1439-0272.2008.00849.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Germ cell-specific apoptosis that occurs after ischaemia-reperfusion (IR) of the murine testis is dependent on neutrophil recruitment to the testis and is dependent upon the cell adhesion molecule E-selectin. In this study, we aimed to inhibit neutrophil recruitment to the IR-induced testis. Mice were subjected to a 2-h period of testicular torsion (ischaemia) followed by detorsion (reperfusion). Shortly after onset of reperfusion, mice received either a function-blocking monoclonal anti-mouse E-selectin antibody (FBmAb) or isotype-matched control antibody. Mice were killed 24 h after reperfusion and cells isolated from the testis were analysed for the presence of neutrophil infiltration by flow cytometry. Administration of FBmAb inhibited neutrophil recruitment to the IR-induced testis dramatically. Therefore, blockage of E-selectin may be a strategy to treat post-ischaemic testis.
Collapse
Affiliation(s)
- M Celebi
- Cardiovascular Division, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | |
Collapse
|
27
|
del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2008; 158:972-82. [PMID: 18824084 DOI: 10.1016/j.neuroscience.2008.08.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Responses to focal cerebral ischemia by neurons and adjacent microvessels are rapid, simultaneous, and topographically related. Recent observations indicate the simultaneous appearance of proteases by components of nearby microvessels that are also expressed by neurons in the ischemic territory, implying that the events could be coordinated. The structural relationship of neurons to their microvascular supply, the direct functional participation of glial cells, and the observation of a highly ordered microvessel-neuron response to ischemia suggest that these elements are arranged in and behave in a unitary fashion, the neurovascular unit. Their roles as a unit in the stimulation of cellular inflammation and the generation of inflammatory mediators during focal cerebral ischemia have not been explored yet. However, components of the neurovascular unit both generate and respond to these influences under the conditions of ischemia. Here we briefly explore the potential inter-relationships of the components of the neurovascular unit with respect to their potential roles in ischemia-induced inflammatory responses.
Collapse
Affiliation(s)
- G J del Zoppo
- Department of Medicine, University of Washington, Box 359756, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| |
Collapse
|
28
|
Emsley HCA, Smith CJ, Tyrrell PJ, Hopkins SJ. Inflammation in Acute Ischemic Stroke and its Relevance to Stroke Critical Care. Neurocrit Care 2007; 9:125-38. [DOI: 10.1007/s12028-007-9035-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184:53-68. [PMID: 17188755 PMCID: PMC1868538 DOI: 10.1016/j.jneuroim.2006.11.014] [Citation(s) in RCA: 898] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 12/17/2022]
Abstract
Recent works in the area of stroke and brain ischemia has demonstrated the significance of the inflammatory response accompanying necrotic brain injury. Acutely, this response appears to contribute to ischemic pathology, and anti-inflammatory strategies have become popular. This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in experimental stroke. It will review the role of specific cell types including leukocytes, endothelium, glia, microglia, the extracellular matrix and neurons. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Xian Nan Tang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
30
|
Del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Koziol JA. Vascular matrix adhesion and the blood-brain barrier. Biochem Soc Trans 2007; 34:1261-6. [PMID: 17073798 DOI: 10.1042/bst0341261] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The integrity of the cerebral microvasculature depends on the interaction between its component cells and the extracellular matrix, as well as reorganized cell-cell interactions. In the central nervous system, matrix adhesion receptors are expressed in the microvasculature and by neurons and their supporting glial cells. Cells within cerebral microvessels express both the integrin and dystroglycan families of matrix adhesion receptors. However, the functional significance of these receptors is only now being explored. Endothelial cells and astrocytes within cerebral capillaries co-operate to generate and maintain the basal lamina and the unique barrier functions of the endothelium. Integrins and the dystroglycan complex are found on the matrix-proximate faces of both endothelial cells and astrocyte end-feet. Pericytes rest against the basal lamina. In the extravascular compartment, select integrins are expressed on neurons, microglial cells and oligodendroglia. Significant alterations in both cellular adhesion receptors and their matrix ligands occur during focal cerebral ischaemia, which support their functional significance in the normal state. We propose that matrix adhesion receptors are essential for the maintenance of the integrity of the blood-brain permeability barrier and that modulation of these receptors contributes to alterations in the barrier during brain injury.
Collapse
Affiliation(s)
- G J Del Zoppo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 132, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
31
|
DiNapoli VA, Huber JD, Houser K, Li X, Rosen CL. Early disruptions of the blood-brain barrier may contribute to exacerbated neuronal damage and prolonged functional recovery following stroke in aged rats. Neurobiol Aging 2007; 29:753-64. [PMID: 17241702 PMCID: PMC2683361 DOI: 10.1016/j.neurobiolaging.2006.12.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/20/2022]
Abstract
We examined the effects of age on stroke progression and outcome in order to explore the association between blood-brain barrier (BBB) disruption, neuronal damage, and functional recovery. Using middle cerebral artery occlusion (MCAO), young (3 months) and aged (18 months) rats were assessed for BBB disruption at 20min post-MCAO, and 24h post-MCAO with tissue plasminogen activator induced reperfusion at 120min. Results showed that BBB disruptions in aged rats occurred early and increased nearly two-fold at both the 20min and 24h time points when compared to young animals. Neuronal damage in aged rats was increased two-fold as compared to young rats at 24h, while no neuronal damage was observed at 20min. Young and aged rats exhibited neurological deficits when compared to sham-controls out to 14 days following MCAO and reperfusion; however, aged rats exhibited more severe onset of deficits and prolonged recovery. Results indicate that aged rats suffer larger infarctions, reduced functional recovery and increased BBB disruption preceding observable neuronal injury.
Collapse
Affiliation(s)
- Vincent A DiNapoli
- Department of Neurosurgery, West Virginia University, School of Medicine, Morgantown, WV 26506-9183, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
There is now considerable evidence from both experimental and clinical studies that immune and inflammatory processes can contribute to the onset of stroke and the neurologic and psychologic outcomes. Several specific therapeutic targets have been identified that may significantly improve the devastating impact of stroke.
Collapse
Affiliation(s)
- Robert Skinner
- Faculty of Life Sciences, Michael Smith Building (C2210), University of Manchester, Acker Street, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
33
|
Abstract
This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in acute and sub-chronic stages of experimental stroke in both the adult and neonate. It will review the role of specific cell types and interactions among blood cells, endothelium, glia, microglia, the extracellular matrix and neurons - cumulatively called "neurovascular unit" - in stroke induction and evolution. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites, as well as the modifying role of age on these mechanisms, will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
|
34
|
Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. ACTA ACUST UNITED AC 2006; 66:232-45. [PMID: 16935624 DOI: 10.1016/j.surneu.2005.12.028] [Citation(s) in RCA: 480] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 12/26/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND A growing number of recent investigations have established a critical role for leukocytes in propagating tissue damage after ischemia and reperfusion in stroke. Experimental data obtained from animal models of middle cerebral artery occlusion implicate inflammatory cell adhesion molecules, chemokines, and cytokines in the pathogenesis of this ischemic damage. METHODS Data from recent animal and human studies were reviewed to demonstrate that inflammatory events occurring at the blood-endothelium interface of the cerebral capillaries underlie the resultant ischemic tissue damage. RESULTS After arterial occlusion, the up-regulated expression of cytokines including IL-1, and IL-6 act upon the vascular endothelium to increase the expression of intercellular adhesion molecule-1, P-selectin, and E-selectin, which promote leukocyte adherence and accumulation. Integrins then serve to structurally modify the basal lamina and extracellular matrix. These inflammatory signals then promote leukocyte transmigration across the endothelium and mediate inflammatory cascades leading to further cerebral infarction. CONCLUSIONS Inflammatory interactions that occur at the blood-endothelium interface, involving cytokines, adhesion molecules, chemokines and leukocytes, are critical to the pathogenesis of tissue damage in cerebral infarction. Exploring these pathophysiological mechanisms underlying ischemic tissue damage may direct rational drug design in the therapeutic treatment of stroke.
Collapse
Affiliation(s)
- Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
35
|
Ding G, Jiang Q, Li L, Zhang L, Gang Zhang Z, Ledbetter KA, Ewing JR, Li Q, Chopp M. Detection of BBB disruption and hemorrhage by Gd-DTPA enhanced MRI after embolic stroke in rat. Brain Res 2006; 1114:195-203. [PMID: 16950236 DOI: 10.1016/j.brainres.2006.07.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 07/10/2006] [Accepted: 07/13/2006] [Indexed: 11/21/2022]
Abstract
Thrombolytic therapy with rtPA increases the risk of hemorrhagic transformation (HT) after cerebral ischemia. We employed contrast enhancement MRI with Gd-DTPA to detect HT in a rat model of embolic stroke treated with rtPA and a glycoprotein IIb/IIIa receptor antagonist, 7E3 F(ab')2, at 4 h after embolic stroke. Male Wistar rats were subjected to embolic stroke and treated with the combination of rtPA and 7E3 F(ab')2 (n=12) or with saline (n=10) at 4 h after onset of stroke. MRI studies were performed immediately and at 24 h after embolization using a 7-T system. Histological measurements were obtained at 48 h. With Gd-DTPA, T1WI images and permeability related MRI parameters (the blood-to-brain transfer constant, Ki, and the distribution volume of mobile protons, Vp) of 15 out of 18 animals showed hyperintensity regions in gross or microscopic HT areas at 24 h, confirmed histologically at 48 h post stroke. Contrast enhancement MRI detected six of seven (86%) animals with gross HT and nine of eleven (82%) animals with microscopic HT at 24 h after ischemia. Two of eighteen animals with HT, had MRI indices of hemorrhage at 3 h post stroke. However, compared to HT data measured histologically at 48 h in embolic stroke rats, the enhanced areas by Gd-DTPA at 24 h were larger, and the patterns (time, intensity and region) did not directly correlate to the subtypes of HT, i.e., gross or microscopic hemorrhage. Contrast enhancement MRI using Gd-DTPA provides a method to detect gross and microscopic HT after stroke in rats.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Health Sciences Center, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hattori H, Sato H, Ito D, Tanahashi N, Murata M, Saito I, Watanabe K, Suzuki N. A561C polymorphism of E-selectin is associated with ischemic cerebrovascular disease in the Japanese population without diabetes mellitus and hypercholesterolemia. Brain Res 2006; 1108:221-3. [PMID: 16843446 DOI: 10.1016/j.brainres.2006.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/09/2006] [Accepted: 06/10/2006] [Indexed: 11/29/2022]
Abstract
E-selectin, which is a member of the selectin superfamily of adhesion molecules, contributes to the leukocyte-endothelial cell attachments and is involved in the pathogenesis of thrombovascular diseases as a consequence. We investigated the A561C mutation in the E-selectin gene in 235 Japanese patients with ischemic cerebrovascular disease (CVD) and 301 age- and sex-matched healthy controls. Excluding the subjects with diabetes mellitus and hypercholesterolemia, the AC genotype frequencies of patients with ischemic CVD were higher than those of controls: 12.7% vs. 5.8% (P=0.04). Our results show that E-selectin gene polymorphisms represent an increased risk for ischemic CVD in the Japanese population without diabetes mellitus and hypercholesterolemia.
Collapse
Affiliation(s)
- Hidenori Hattori
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakata N, Takaoka K. Use of glycyrrhizin in prevention of tissue damage caused by ischemia-reperfusion in rabbit hind limbs. J Orthop Sci 2006; 11:375-9. [PMID: 16897202 DOI: 10.1007/s00776-006-1027-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Glycyrrhizin, an agent that can bind to selectins and inhibit their ability to bind neutrophils, was found to be effective in preventing tissue edema caused by ischemia-reperfusion in a rabbit model. METHODS Complete ischemia was produced by applying a tight Esmarch tourniquet to the hind limbs of 24 Japanese white rabbits. Immediately before and 1 h after release of the tourniquet, 12 animals were given glycyrrhizin intravenously; 12 controls received saline. RESULTS The mean relative increase in the circumference of the shins before and after ischemia-reperfusion with or without glycyrrhizin treatment was 4.6% +/- 2.4% and 9.6% +/- 4.2%, respectively, indicating that tissue edema caused by the ischemia-reperfusion was significantly attenuated by glycyrrhizin. Histological studies of cross sections of the anterior tibial muscle 24 h after reperfusion showed a significant reduction in the incidence of necrotic muscle fibers in the glycyrrhizin-treated animals compared with the controls that did not receive glycyrrhizin. The mRNA levels of P- and E-selectin 24 h after reperfusion were significantly higher in the ischemic anterior tibial muscle than in the nonischemic normal muscle. After 24 h of reperfusion, the mean activity of myeloperoxidase, a neutrophil-specific enzyme, in the anterior tibial muscles of the group given glycyrrhizin (0.0022 +/- 0.0013 absorbance units) was lower than that of the untreated group (0.027 +/- 0.026 absorbance units). CONCLUSIONS These data suggest that glycyrrhizin treatment is effective in suppressing the acute inflammatory reaction or edema following ischemia-reperfusion and might be potentially useful in clinical practice for preventing ischemia-reperfusion injuries to the extremities.
Collapse
Affiliation(s)
- Nobuaki Nakata
- Department of Orthopaedic Surgery, Osaka City University Medical School, 1-5-7 Asahimachi, Abeno-ku, Osaka 545-0051, Japan
| | | |
Collapse
|
38
|
Tanriverdi T, Sanus GZ, Ulu MO, Tureci E, Uzun H, Aydin S, Kaynar MY. Serum and cerebrospinal fluid concentrations of E-selectin in patients with aneurysmal subarachnoid hemorrhage. Braz J Med Biol Res 2005; 38:1703-10. [PMID: 16258642 DOI: 10.1590/s0100-879x2005001100020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The goal of the present study was to determine concentrations of E-selectin in both cerebrospinal fluid (CSF) and serum of patients with aneurysmal subarachnoid hemorrhage (SAH) and to evaluate the correlation between the clinical parameters and E-selectin levels. Both CSF and serum samples obtained from 12 patients with aneurysmal SAH and 8 patients with hydrocephalus (control group) without any other known central nervous system disease were assayed for E-selectin by quantitative enzyme-linked immunosorbent assay and the results were compared between the two groups. Mean levels of soluble forms of E-selectin within the first 3 days and on the 5th and 7th days of SAH were 4.0 +/- 7.9, 2.8 +/- 5.2, and 3.1 +/- 4.9 ng/ml in the patient's CSF, and 33.7 +/- 9.2, 35.1 +/- 7.0, and 35.2 +/- 8.7 ng/ml in serum, respectively. In contrast, mean E-selectin levels were 0.1 +/- 0.2 ng/ml in CSF and 8.7 +/- 5.0 ng/ml in serum of control patients. The difference between groups was statistically significant regarding both CSF and serum E-selectin levels (P < 0.05). Thus, we have demonstrated a marked increase of E-selectin concentration in both CSF and serum of patients with aneurysmal SAH compared with control and suggest that blocking the interaction between E-selectin and vascular endothelium may have a beneficial effect on vasospasms.
Collapse
Affiliation(s)
- T Tanriverdi
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lehmberg J, Beck J, Baethmann A, Uhl E. Effect of P–selectin inhibition on leukocyteendothelium interaction and survival after global cerebral ischemia. J Neurol 2005; 253:357-63. [PMID: 16215846 DOI: 10.1007/s00415-005-0996-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 07/06/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Cerebral ischemia induces activation of leukocyte-endothelium interactions requiring upregulation of specific adhesion molecules including the selectins. The aim of the current study was to elucidate the therapeutic potency of P-selectin blockade on microcirculatory disturbances and secondary brain damage after global cerebral ischemia. Global cerebral ischemia for 15 minutes was induced in Mongolian gerbils. Functional blockade of P-selectin was achieved by pretreatment with the antibody RB 40.34 (2 mg/kg, n = 7). In vivo observation of brain microcirculation was performed by epifluorescence microscopy of a cranial window. Survival was assessed daily up to 4 days after ischemia. In the control group leukocyte rolling increased during reperfusion with a maximum at 3 h (28 +/- 14 x 100 microm(-1) x min(-1)) and was significantly reduced by the P-selectin antibody (13 +/- 9 x 100 microm(-1) x min(-1), p < 0.05). No effect on firm leukocyte adhesion was observed (4 +/- 3 vs. 2 +/- 1 x 100 microm(-1) x min(-1)). The survival of animals that received the Pselectin antibody (28 %) was significantly reduced compared with controls (71 %). Anti-P-selectin antibody reduces leukocyte rolling but has no positive effect on survival. Our data question the role of the inflammatory response in the development of secondary brain damage and do not support this kind of therapeutical approach in global cerebral ischemia.
Collapse
Affiliation(s)
- Jens Lehmberg
- Department of Neurosurgery, Breisacher Str. 64, 79106 Freiburg, Germany.
| | | | | | | |
Collapse
|
40
|
Jiang Q, Ewing JR, Ding GL, Zhang L, Zhang ZG, Li L, Whitton P, Lu M, Hu J, Li QJ, Knight RA, Chopp M. Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI. J Cereb Blood Flow Metab 2005; 25:583-92. [PMID: 15716859 DOI: 10.1038/sj.jcbfm.9600053] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We sought to identify magnetic resonance imaging (MRI) parameters that can identify as well as predict disruption of the blood-brain barrier (BBB) after embolic stroke in the rat. Rats subjected to embolic stroke with (n=13) and without (n=13) rt-PA treatment were followed with MRI using quantitative permeability-related parameters, consisting of: transfer constant (K(i)) of Gd- DTPA, the distribution volume (V(p)) of the mobile protons, and the inverse of the apparent forward transfer rate for magnetization transfer (k(inv)), as well as the apparent diffusion coefficient of water (ADC(w)), T2, and cerebral cerebral blood flow (CBF). Tissue progressing to fibrin leakage resulting from BBB disruption and adjacent tissue were then analyzed to identify MRI markers that characterize BBB disruption. Animals were killed after final MRI measurements at 24 h after induction of embolic stroke and cerebral tissues were perfused and stained to detect fibrin leakage. K(i), V(p), and k(inv) were the most sensitive early (2 to 3 h) indices of the cerebral tissue that progresses to fibrin leakage. Cerebral blood flow was not significantly different between ischemic tissue with a compromised and an intact BBB. Our data indicate that compromise of the BBB can be sensitively predicted using a select set of MR parameters.
Collapse
Affiliation(s)
- Quan Jiang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sibson NR, Blamire AM, Bernades-Silva M, Laurent S, Boutry S, Muller RN, Styles P, Anthony DC. MRI detection of early endothelial activation in brain inflammation. Magn Reson Med 2004; 51:248-52. [PMID: 14755648 DOI: 10.1002/mrm.10723] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MRI is an increasingly important clinical tool, but it is clear that conventional imaging fails to identify the full extent of lesion load in certain conditions, such as multiple sclerosis. The aim of this study was to determine whether a novel contrast agent (Gd-DTPA-B(sLeX)A, which contains an sLeX mimetic moiety that enables it to bind to the adhesion molecule E-selectin) can be used to identify endothelial activation in the brain. Microinjection of the proinflammatory cytokines IL-1beta or TNF-alpha into the striatum of Wistar rats rapidly induces focal adhesion molecule expression on the endothelium in the absence of MRI-visible changes. This phenomenon was used to investigate the potential of Gd-DTPA-B(sLeX)A to reveal MRI-invisible brain pathology. T1-weighted serial images were acquired in anesthetized animals before and after administration of Gd-DTPA-B(sLeX)A, 3-4 hr after cytokine was injected intracerebrally. Both TNF-alpha and IL-1beta up-regulated E-selectin on the brain endothelium, which correlated with increased signal intensity observed after administration of the novel contrast agent. No enhancement was visible with the nonselective contrast agent Gd-DTPA-BMA, indicating that there was no leakage of the agent across the blood-brain barrier (BBB) or nonselective binding to the endothelium. These data demonstrate the potential of such contrast agents for the early detection of brain injury and inflammation.
Collapse
Affiliation(s)
- Nicola R Sibson
- MRC Biochemical and Clinical Magnetic Resonance Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 2004; 24:351-71. [PMID: 15087705 DOI: 10.1097/00004647-200404000-00001] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ischemic penumbra has been documented in the laboratory animal as severely hypoperfused, nonfunctional, but still viable brain tissue surrounding the irreversibly damaged ischemic core. Saving the penumbra is the main target of acute stroke therapy, and is the theoretical basis behind the reperfusion concept. In experimental focal ischemia, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called reperfusion injury). Activated neutrophils contribute to vascular reperfusion damage, yet posthypoxic cellular injury occurs in the absence of inflammatory species. Protein synthesis inhibition occurs in neurons during reperfusion after ischemia, underlying the role that these pathways play in prosurvival and proapoptotic processes that may be differentially expressed in vulnerable and resistant regions of the reperfused brain tissue. Ischemia-induced decreases in the mitochondrial capacity for respiratory activity probably contribute to the ongoing impairment of energy metabolism during reperfusion and possibly also the magnitude of changes seen during ischemia. From these experimental data, the concept of single-drug intervention cannot be effective. Further experimental research is needed, especially of the study of biochemical markers of the injury process to establish the role of several drugs.
Collapse
|
43
|
del Zoppo GJ. Lessons from stroke trials using anti-inflammatory approaches that have failed. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:155-84. [PMID: 15032059 DOI: 10.1007/978-3-662-05426-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- G J del Zoppo
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Hamann G, del Zoppo GJ. The Cerebral Microvasculature and Responses to Ischemia. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Furuichi Y, Maeda M, Moriguchi A, Sawamoto T, Kawamura A, Matsuoka N, Mutoh S, Yanagihara T. Tacrolimus, a potential neuroprotective agent, ameliorates ischemic brain damage and neurologic deficits after focal cerebral ischemia in nonhuman primates. J Cereb Blood Flow Metab 2003; 23:1183-94. [PMID: 14526229 DOI: 10.1097/01.wcb.0000088761.02615.eb] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tacrolimus (FK506), an immunosuppressive drug, is known to have potent neuroprotective activity and attenuate cerebral infarction in experimental models of stroke. Here we assess the neuroprotective efficacy of tacrolimus in a nonhuman primate model of stroke, photochemically induced thrombotic occlusion of the middle cerebral artery (MCA) in cynomolgus monkeys. In the first experiment, tacrolimus (0.01, 0.032, or 0.1 mg/kg) was intravenously administered immediately after MCA occlusion, and neurologic deficits and cerebral infarction volumes were assessed 24 hours after the ischemic insult. Tacrolimus dose-dependently reduced neurologic deficits and infarction volume in the cerebral cortex, with statistically significant amelioration of neurologic deficits at 0.032 and 0.1 mg/kg and significant reduction of infarction at 0.1 mg/kg. In the second experiment, the long-term efficacy of tacrolimus on neurologic deficits and cerebral infarction was assessed. Vehicle-treated monkeys exhibited persistent and severe deficits in motor and sensory function for up to 28 days. A single intravenous bolus injection of tacrolimus (0.1 or 0.2 mg/kg) produced long-lasting amelioration of neurologic deficits and significant reduction of infarction volume. In conclusion, we have provided compelling evidence that a single dose of tacrolimus not only reduces brain infarction but also ameliorates long-term neurologic deficits in a nonhuman primate model of stroke, strengthening the view that tacrolimus might be beneficial in treating stroke patients.
Collapse
Affiliation(s)
- Yasuhisa Furuichi
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cerebral microvessels have a unique ultrastructure form, which allows for the close relationship of the endothelium and blood elements to the neurons they serve, via intervening astrocytes. To focal ischemia, the cerebral microvasculature rapidly displays multiple dynamic responses. Immediate events include breakdown of the primary endothelial cell permeability barrier, with transudation of plasma, expression of endothelial cell-leukocyte adhesion receptors, loss of endothelial cell and astrocyte integrin receptors, loss of their matrix ligands, expression of members of several matrix-degrading protease families, and the appearance of receptors associated with angiogenesis and neovascularization. These events occur pari passu with neuron injury. Alterations in the microvessel matrix after the onset of ischemia also suggest links to changes in nonvascular cell viability. Microvascular obstruction within the ischemic territory occurs after occlusion and reperfusion of the feeding arteries ("focal no-reflow" phenomenon). This can result from extrinsic compression and intravascular events, including leukocyte(-platelet) adhesion, platelet-fibrin interactions, and activation of coagulation. All of these events occur in microvessels heterogeneously distributed within the ischemic core. The panorama of acute microvessel responses to focal cerebral ischemia provide opportunities to understand interrelationships between neurons and their microvascular supply and changes that underlie a number of central nervous system neurodegenerative disorders.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 132, La Jolla, CA 92037, U.S.A.
| | | |
Collapse
|
47
|
Abstract
Cell death following cerebral ischemia is mediated by a complex pathophysiologic interaction of different mechanisms. In this Chapter we will outline the basic principles as well as introduce in vitro and in vivo models of cerebral ischemia. Mechanistically, excitotoxicity, peri-infarct depolarization, inflammation and apoptosis seem to be the most relevant mediators of damage and are promising targets for neuroprotective strategies.
Collapse
Affiliation(s)
- Matthias Endres
- Experimental Neurology, Charit, Humboldt-University of Berlin, D-10098 Berlin, Germany
| | | |
Collapse
|
48
|
Akita N, Nakase H, Kaido T, Kanemoto Y, Sakaki T. Protective effect of C1 esterase inhibitor on reperfusion injury in the rat middle cerebral artery occlusion model. Neurosurgery 2003; 52:395-400; discussion 400-1. [PMID: 12535370 DOI: 10.1227/01.neu.0000043710.61233.b4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 07/23/2002] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The complement system is thought to play a major role in initiating some of the inflammatory events that occur during reperfusion injury. The aim of this study was to assess the effects of C1 esterase inhibitor (C1-INH) on ischemic injury in the rat model of middle cerebral artery suture occlusion and reperfusion. METHODS Thirty-six male Wistar rats were used. Intraluminal middle cerebral artery occlusion was performed for 60 minutes. Just before reperfusion, C1-INH (50 international units/kg) (C1-INH group, n = 19) or saline solution (control group, n = 17) was administered. Physiological parameters (arterial blood gas values, mean arterial blood pressure, and heart rate) and local cerebral blood flow were recorded during the experiment. Forty-eight hours after reperfusion, all rats were killed, and assessments of leukocyte infiltration with a myeloperoxidase activity assay and histological analyses with 2,3,5-triphenyl tetrazolium chloride staining were performed. RESULTS The physiological parameters and local cerebral blood flow values were not significantly different in the two groups. The infarction volume was significantly smaller and the myeloperoxidase activity was significantly lower in the C1-INH group (84.9 +/- 69.1 mm(3) and 0.40 +/- 0.29 units/g, respectively) than in the control group (202.3 +/- 98.3 mm(3) and 1.41 +/- 0.44 units/g, respectively) (P < 0.01). Myeloperoxidase activities were strongly correlated with infarction volumes (r = 0.73, P < 0.01). CONCLUSION The results of this study indicated that C1-INH reduced polymorphonuclear leukocyte accumulation and neuronal damage in focal ischemia and reperfusion.
Collapse
Affiliation(s)
- Nobuhisa Akita
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | |
Collapse
|
49
|
Priller J, Dirnagl U. Inflammation in stroke--a potential target for neuroprotection? ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:133-57. [PMID: 12066410 DOI: 10.1007/978-3-662-05073-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Priller
- Department of Neurology, Charité, Humboldt-University, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | |
Collapse
|
50
|
Petty MA, Lo EH. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 2002; 68:311-23. [PMID: 12531232 DOI: 10.1016/s0301-0082(02)00128-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A wide range of central nervous system (CNS) disorders include neuroinflammatory events that perturb blood-brain barrier (BBB) integrity. Mechanisms by which the BBB responds to physiological and pathological stimuli involve signaling systems in the tight and adherens junctions of the cerebral endothelium. In this review, we examine the molecular composition and regulatory mediators that control BBB permeability and assess how these mediators may be dysregulated in stroke, multiple sclerosis, brain tumors, and meningioencephalitis. An understanding of these molecular substrates in BBB regulation may lead to new approaches for enhancing CNS drug delivery and ameliorating brain edema after injury and inflammation.
Collapse
Affiliation(s)
- Margaret A Petty
- CNS Pharmacology, Aventis Pharmaceuticals Inc., Route 202-206, P.O. Box 6800, Bridgewater, NJ 08807, USA.
| | | |
Collapse
|