1
|
Sun X, Chen R, Yan G, Chen Z, Yuan H, Huang W, Lu Y. Gender-specific associations between apolipoprotein A1 and arterial stiffness in patients with nonalcoholic fatty liver disease. PeerJ 2020; 8:e9757. [PMID: 32874784 PMCID: PMC7441919 DOI: 10.7717/peerj.9757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lipid metabolism factors may play an important role in the progression of nonalcoholic fatty liver disease (NAFLD) and its related cardiovascular dysfunctions. The study aims to assess whether Apolipoprotein A-1 (ApoA1) was associated with vascular stiffness in NAFLD patients. Methods From 2012 to 2013, we included 2,295 non-alcohol users with fatty liver disease (1,306 male patients) and completely excluded subjects who drank any alcohol ever to eliminate the effect of alcohol intake. The serum ApoA1 levels and the brachial-ankle pulse wave velocity (baPWV) were measured. Results The baPWV in men was much higher than in female patients (1,412.79 cm/s vs. 1,358.69 cm/s, P < 0.001). ApoA1 level was positively associated with baPWV odd ratio (OR), 4.18; 95% confidence interval (CI) [1.16-15.1], P < 0.05) in patients with AST/ALT < 1 and (OR, 4.70; 95% CI [1.36-16.23], P < 0.05) in patients with AST/ALT ≥ 1 respectively. Only arterial stiffness in men was associated with ApoA1 (OR, 3.96; 95% CI [1.29-12.30], P < 0.05) in logistics regression models adjusted for age, gender, body mass index, education attainment, physical activity, smoking, history of hypertension and high-density lipoprotein. The relationship between ApoA1 and baPWV in male NAFLD patients remained significant (confidence, 156.42; 95% CI [49.34-263.50], P < 0.05) in the fully adjusted linear regression model. Conclusion The serum ApoA1 was associated with arterial stiffness in male NAFLD patients. Increased ApoA1 level should be considered as an independent risk factor for arterial stiffness in male NAFLD patients, suggesting that NAFLD may alter arterial stiffness by "ApoA1-related" mechanism in men.
Collapse
Affiliation(s)
- Xulong Sun
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Chen
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guangyu Yan
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiheng Chen
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Huang
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Chen H, Shao Z, Gao Y, Yu X, Huang S, Zeng P. Are blood lipids risk factors for fracture? Integrative evidence from instrumental variable causal inference and mediation analysis using genetic data. Bone 2020; 131:115174. [PMID: 31785374 DOI: 10.1016/j.bone.2019.115174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND The relationship between lipids and the risk of fracture is currently controversial and whether such association is causal remains elusive. METHODS We performed two-sample inverse variance weighted (IVW) Mendelian randomization (MR) analyses to evaluate causal effects of four lipids (i.e. high-density lipoprotein cholesterol [HDL], low-density lipoprotein cholesterol [LDL], total cholesterol [TC] and triglyceride [TG]) on fracture or bone mineral density (BMD) with summary statistics from large scale genome-wide association studies (up to ~190,000 for lipids, ~66,628 for BMD and ~53,000 for fracture). We validated our MR results with extensive sensitive analyses including MR-PRESSO and MR-Egger regression. Multivariable analyses were implemented to investigate whether other lipids (i.e. LDL and TG) may confound the causal effect of HDL on fracture and mediation analyses were conducted to assess indirect effects of lipids on fracture mediated by BMD. RESULTS The IVW MR showed there existed a statistically significant association between HDL and fracture, with the odd ratio (OR) per standard deviation change of HDL on fracture being 1.12 (95% CI: 1.02-1.22, p = 1.20E-02). HDL was also detected to be causally associated with BMD (beta = -0.116; 95% CI: -0.182 ~ -0.050, p = 5.47E-04). These associations were further confirmed by the weighted median and maximum likelihood methods, with the MR-Egger regression removing the possibility of pleiotropy and the multivariable analysis excluding the confounding effect of other lipids on HDL. Negative associations of HDL with BMD among the elderly and with BMD at the lumbar spine were also discovered. However, no causal associations were detected between other lipids (OR = 0.87, 95% CI: 0.74-1.03, p = .107 for LDL; OR = 1.03; 95% CI: 0.88-1.21, p = .696 for TC and OR = 1.04; 95% CI: 0.90-1.20, p = .610 for TG) and fracture; whereas TG was positively associated BMD (beta = 0.184; 95% CI: 0.048-0.319, p = 7.93E-03). Finally, the mediation effect of BMD was estimated to be -0.116 (95% CI: -0.182 to -0.05, p = 5.47E-04) for HDL or 0.184 (95% CI: 0.048-0.319, p = 7.93E-03) for TG, implying HDL and TG could be indirectly associated with fracture risk via the pathway of BMD. CONCLUSION Our study is supportive of the causal relationship between HDL and fracture but offers little direct evidence for causal associations between other lipids and fracture, and further reveals HDL and TG may have an indirect influence on fracture mediated by BMD.
Collapse
Affiliation(s)
- Haimiao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yixin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinghao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Rodriguez‐Cuenca S, Carobbio S, Barceló‐Coblijn G, Prieur X, Relat J, Amat R, Campbell M, Dias AR, Bahri M, Gray SL, Vidal‐Puig A. P465L-PPARγ mutation confers partial resistance to the hypolipidaemic action of fibrates. Diabetes Obes Metab 2018; 20:2339-2350. [PMID: 29790245 PMCID: PMC6589924 DOI: 10.1111/dom.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPARγ. One of these mutations, the P467L, confers a dominant negative effect. We and others have previously investigated the pathophysiology associated with this mutation using a humanized mouse model that recapitulates most of the clinical symptoms observed in patients who have been phenotyped under different experimental conditions. One of the key clinical manifestations observed, both in humans and mouse models, is the ectopic accumulation of fat in the liver. With this study we aim to dissect the molecular mechanisms that contribute to the excessive accumulation of lipids in the liver and characterize the negative effect of this PPARγ mutation on the activity of PPARα in vivo when activated by fibrates. MATERIAL AND METHODS P465L-PPAR mutant and wild-type mice were divided into 8 experimental groups, 4 different conditions per genotype. Briefly, mice were fed a chow diet or a high-fat diet (HFD 45% Kcal from fat) for a period of 28 days and treated with WY14643 or vehicle for five days before culling. At the end of the experiment, tissues and plasma were collected. We performed extensive gene expression, fatty acid composition and histological analysis in the livers. The serum collected was used to measure several metabolites and to perform basic lipoprotein profile. RESULTS P465L mice showed increased levels of insulin and free fatty acids (FFA) as well as increased liver steatosis. They also exhibit decreased levels of very low density lipoproteins (VLDL) when fed an HFD. We also provide evidence of impaired expression of a number of well-established PPARα target genes in the P465L mutant livers. CONCLUSION Our data demonstrate that P465L confers partial resistance to the hypolipidemic action of fibrates. These results show that the fatty liver phenotype observed in P465L mutant mice is not only the consequence of dysfunctional adipose tissue, but also involves defective liver metabolism. All in all, the deleterious effects of P465L-PPARγ mutation may be magnified by their collateral negative effect on PPARα function.
Collapse
Affiliation(s)
- Sergio Rodriguez‐Cuenca
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Gwendolyn Barceló‐Coblijn
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Balearic Islands Health Research Institute)PalmaSpain
| | - Xavier Prieur
- Département des Sciences de la Vie, L'Institut du Thorax, INSERM, CNRSUniversité de NantesNantesFrance
| | - Joana Relat
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus. University of Barcelona (UB), Santa Coloma de Gramenet (Spain); INSA‐UB, Nutrition and Food Safety Research InstituteUniversity of BarcelonaBarcelonaSpain
| | - Ramon Amat
- Cell Signaling Unit, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Mark Campbell
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Ana Rita Dias
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Myriam Bahri
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Sarah L. Gray
- Northern Medical ProgramUniversity of Northern British ColumbiaPrince GeorgeCanada
| | - Antonio Vidal‐Puig
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| |
Collapse
|
4
|
Lek MT, Cruz S, Ibe NU, Beck WHJ, Bielicki JK, Weers PMM, Narayanaswami V. Swapping the N- and C-terminal domains of human apolipoprotein E3 and AI reveals insights into their structure/activity relationship. PLoS One 2017. [PMID: 28644829 PMCID: PMC5482431 DOI: 10.1371/journal.pone.0178346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein (apo) E3 and apoAI are exchangeable apolipoproteins that play a dominant role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues) is composed of an N-terminal (NT) domain bearing a 4-helix bundle and a C-terminal (CT) domain bearing a series of amphipathic α-helices. ApoAI (243 residues) also comprises a highly helical NT domain and a less structured CT tail. The objective of this study was to understand their structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affinity chromatography and their identity confirmed by immunoblotting and mass spectrometry. Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively unstructured state; its lipid binding ability improved dramatically compared to apoE3 indicative of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interaction and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant role for apoE CT domain in mediating this function. Together, these results indicate that the functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT domain interactions significantly modulate their structure and function.
Collapse
Affiliation(s)
- Mark T. Lek
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Siobanth Cruz
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Nnejiuwa U. Ibe
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Wendy H. J. Beck
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - John K. Bielicki
- Donner Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul M. M. Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Moradi H, Said HM, Vaziri ND. Post-transcriptional nature of uremia-induced downregulation of hepatic apolipoprotein A-I production. Transl Res 2013; 161:477-85. [PMID: 23219399 PMCID: PMC3609941 DOI: 10.1016/j.trsl.2012.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 01/17/2023]
Abstract
Chronic kidney disease is associated with premature death from cardiovascular disease, which is, in part, driven by high density lipoprotein deficiency and dysfunction. One of the main causes of high density lipoprotein deficiency in chronic kidney disease is diminished plasma apolipoprotein (Apo)A-I level. Plasma ApoA-I is reduced in dialysis patients and hepatic ApoA-I messenger RNA (mRNA) is decreased in the uremic rats. This study explored the mechanism of uremia-induced downregulation of ApoA-I. Human hepatoma derived cells were incubated in media containing whole plasma or plasma subfractionation from normal subjects and patients with end stage renal disease pre- and posthemodialysis. Cells and culture media were isolated to measure ApoA-I protein and mRNA. ApoA-I promoter activity was measured using transfection with a luciferase promoter construct containing the -2096 to +293 segment of ApoA-I gene. Finally, effect of uremic and control plasma was assessed on ApoA-I RNA stability. Exposure to uremic plasma significantly reduced ApoA-I mRNA expression and ApoA-I protein production. These effects were reversed by replacing uremic plasma with normal plasma. Although no difference in ApoA-I promoter activity was found between cells exposed to uremic and normal plasma, uremic plasma significantly reduced ApoA-I RNA stability. Experiments using plasma subfractions revealed that the inhibitory effect of uremic plasma on ApoA-I mRNA expression resides in fractions containing molecules larger but not smaller than 30 kd. The pre- and postdialysis plasma exerted an equally potent inhibitory effect on ApoA-I mRNA abundance. Uremia lowers ApoA-I production by reducing its RNA stability. The inhibitory effect of uremic milieu on ApoA-I mRNA expression is mediated by non-dialyzable molecule(s) larger than 30 kd.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
6
|
Hajhosseiny R, Khavandi K, Goldsmith DJ. Cardiovascular disease in chronic kidney disease: untying the Gordian knot. Int J Clin Pract 2013; 67:14-31. [PMID: 22780692 DOI: 10.1111/j.1742-1241.2012.02954.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic kidney disease (CKD) affects around 10-13% of the general population, with only a small proportion in end stage renal disease (ESRD), either on dialysis or awaiting renal transplantation. It is well documented that CKD patients have an extremely high risk of developing cardiovascular disease (CVD) compared with the general population, so much so that in the early stages of CKD patients are more likely to develop CVD than they are to progress to ESRD. Various pathophysiological pathways and explanations have been advanced and suggested to account for this, including endothelial dysfunction, dyslipidaemia, inflammation, left ventricular hypertrophy and cardiac autonomic dysfunction. In this review, we try to understand and further explore the link between CKD and CVD, as well as offering interventional advice where available, while exposing the current lack of RCT-based research and trial evidence in this area. We also suggest pragmatic Interim measures we could take while we wait for definitive RCTs.
Collapse
Affiliation(s)
- R Hajhosseiny
- MRC Centre for Transplantation and Renal Unit, Guy's & St. Thomas' NHS Foundation Trust, King's College Academic Health Partners, London, UK
| | | | | |
Collapse
|
7
|
Chan DC, Ng TWK, Watts GF. Apolipoprotein A-II: evaluating its significance in dyslipidaemia, insulin resistance, and atherosclerosis. Ann Med 2012; 44:313-24. [PMID: 21501035 DOI: 10.3109/07853890.2011.573498] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reduced HDL cholesterol, commonly found in subjects with obesity and type 2 diabetes, is associated with increased risk of cardiovascular disease (CVD). ApoA-II, a constituent apolipoprotein of certain HDL particles, plays an important role in the regulation of cholesterol efflux, HDL remodelling, and cholesteryl ester uptake via its interactions with lipid transfer proteins, lipases, and cellular HDL receptors. Recent studies have linked apoA-II directly with triglyceride and glucose metabolism. Most of the data are, however, derived from cellular systems and transgenic animal models. Direct evidence from human studies is scarce. Clinical studies demonstrate that apoA-II is a strong predictor of risk for CVD. There is no evidence, however, that selective therapeutic modification of apoA-II impacts on atherosclerosis and clinical outcomes. More research is required to investigate further the significance of apoA-II in clinical medicine.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
8
|
Chan DC, Watts GF, Ooi EMM, Chan DT, Wong ATY, Barrett PHR. Apolipoprotein A-II and adiponectin as determinants of very low-density lipoprotein apolipoprotein B-100 metabolism in nonobese men. Metabolism 2011; 60:1482-7. [PMID: 21550083 DOI: 10.1016/j.metabol.2011.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Data from cellular systems and transgenic animal models suggest a role of apolipoprotein (apo) A-II in the regulation of very low-density lipoprotein (VLDL) metabolism. However, the precise mechanism whereby apoA-II regulates VLDL metabolism remains to be elucidated in humans. In this study, we examined the associations between the kinetics of high-density lipoprotein (HDL)-apoA-II and VLDL-apoB-100 kinetics, and plasma adiponectin concentrations. The kinetics of HDL-apoA-II and VLDL-apoB-100 were measured in 37 nonobese men using stable isotope techniques. Plasma adiponectin concentration was measured using immunoassays. Total plasma apoA-II concentration was positively associated with HDL-apoA-II production rate (PR) (r = 0.734, P < .01); both were positively associated with plasma triglyceride concentration (r = 0.360 and 0.369, respectively) and VLDL-apoB-100 PR (r = 0.406 and 0.427, respectively), and inversely associated with plasma adiponectin concentration (r = -0.449 and -0.375, respectively). Plasma adiponectin was inversely associated with plasma triglyceride concentration (r = -0.327), VLDL-apoB-100 concentration (r = -0.337), and VLDL-apoB-100 PR (r = -0.373). In multiple regression models including waist circumference and plasma insulin, plasma adiponectin concentration was an independent determinant of total plasma apoA-II concentration (β-coefficient = -0.508, P = .001) and HDL-apoA-II PR (β-coefficient = -0.374, P = .03). Conversely, total plasma apoA-II concentration (β-coefficient = 0.348, P = .047) and HDL-apoA-II PR (β-coefficient = -0.350, P = .035) were both independent determinants of VLDL-apoB-100 PR. However, these associations were not independent of plasma adiponectin. Variation in HDL apoA-II production, and hence total plasma apoA-II concentration, may exert a major effect on VLDL-apoB-100 production. Plasma adiponectin may also contribute to the variation in VLDL-apoB-100 production partly by regulating apoA-II transport.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, WA6832, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Walldius G, Jungner I. Apolipoprotein A-I versus HDL cholesterol in the prediction of risk for myocardial infarction and stroke. Curr Opin Cardiol 2008; 22:359-67. [PMID: 17556890 DOI: 10.1097/hco.0b013e3281bd8849] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To compare the potential of high-density lipoprotein (HDL) cholesterol and apolipoprotein (apo) A-I, the major protein in HDL particles, in predicting cardiovascular risk. Pros and cons for using these risk markers are discussed. RECENT FINDINGS Both HDL cholesterol and apoA-I are in most clinical conditions antiatherogenic - the higher the values, the lower the cardiovascular risk. Methodological and physiological factors speak in favour of using apoA-I rather than HDL cholesterol as a marker of risk. In prospective risk studies and in lipid-lowering trials it has been shown that the apoB/A-I ratio, which reflects the cholesterol balance between all potentially atherogenic (apoB) and antiatherogenic lipoproteins (apoA-I), is a better risk marker than low-density lipoprotein cholesterol, HDL cholesterol and lipid ratios in predicting cardiovascular risk and response to lipid lowering induced by statins. Practical advantages speak in favour of using apoB and apoA-I - fasting is not needed to analyze and interpret the values of apoB and apoA-I. SUMMARY New guidelines should be developed in which target values for apoB and apoA-I are defined to enable the use of these new strong risk markers/factors in clinical practice.
Collapse
Affiliation(s)
- Göran Walldius
- King Gustaf V Research Institute, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Apolipoprotein M is a recently described apolipoprotein predominantly associated with high-density lipoprotein, but also found in chylomicrons, very low-density lipoproteins, and low-density lipoprotein. The purpose is to review recent information on the unusual structural properties of apolipoprotein M and its possible role in formation of pre-beta high-density lipoprotein and reverse cholesterol metabolism. RECENT FINDINGS Apolipoprotein M is a lipocalin having a coffee filter-like structure with a hydrophobic ligand-binding pocket. Mature apolipoprotein M retains its signal peptide, which serves as a hydrophobic anchor. In mice, silencing of expression in the liver with siRNA led to disappearance of pre-beta high-density lipoprotein and appearance of unusually large high-density lipoproteins. This suggests that apolipoprotein M is important for the formation of pre-beta high-density lipoprotein and reverse cholesterol transport. In accordance with this idea, hepatic overexpression of apolipoprotein M with an adenovirus in low-density lipoprotein-receptor deficient mice led to an approximately 70% reduction of atherosclerosis. In addition to the liver, apolipoprotein M is also expressed in the kidney. Kidney-derived apolipoprotein M binds to megalin, a member of the low-density lipoprotein-receptor family, which interacts with many lipocalins in renal tubuli. Apolipoprotein M is excreted in the urine of mice with a kidney-specific megalin deficiency but not in the urine of normal mice, suggesting megalin-mediated uptake of apolipoprotein M in the tubular epithelium of normal mice. SUMMARY Apolipoprotein M is a novel apolipoprotein with unusual structural features that appears to play important roles in high-density lipoprotein metabolism and prevention of atherosclerosis.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Laboratory Medicine, Clinical Chemistry, Lund University, Wallenberg Laboratory, University Hospital, Malmo, Sweden.
| | | |
Collapse
|
11
|
Táborský L, Adam P, Sobek O, Dostál M, Dvoráková J, Dubská L. Levels of apolipoprotein A-II in cerebrospinal fluid in patients with neuroborreliosis are associated with lipophagocytosis. Folia Microbiol (Praha) 2003; 48:849-55. [PMID: 15058201 DOI: 10.1007/bf02931523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Levels of most of the examined proteins in cerebrospinal fluid (CSF) of 107 patients with neuroborreliosis were associated with cytological findings, the status of hematoencephalic barrier as evaluated by Qalb (cerebrospinal fluid to serum quotient) and the intrathecal synthesis of immunoglobulins. Cytological findings consisted of normal cytology, or both oligocytosis and pleocytosis of monocytes or lymphocytes. The lipophagic elements were present in 20% of samples. Concentrations of apolipoproteins A-I and A-II in the CSF were correlated with the concentration of albumin without regard to the CSF cytology. The levels of apolipoprotein B were increased only in samples with lymphocytic pleocytosis and Qalb > 7.4. The presence of lipophages in the CSF was significantly associated with the CSF concentration of apolipoprotein A-II.
Collapse
Affiliation(s)
- L Táborský
- Department of Clinical Biochemistry, Hospital Homolka, 150 30 Prague, Czechia
| | | | | | | | | | | |
Collapse
|
12
|
Allayee H, Ghazalpour A, Lusis AJ. Using mice to dissect genetic factors in atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:1501-9. [PMID: 12920046 DOI: 10.1161/01.atv.0000090886.40027.dc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genes that contribute to common, complex forms of atherosclerosis remain largely unknown. Genetic studies in humans have, for the most part, focused on identifying genes that predispose to the traditional risk factors, such as lipid levels and blood pressure, but apart from rare, single-gene disorders, there have been few successes to date. The use of mice to dissect the complex genetic etiology of atherosclerosis offers a viable alternative to human studies, because experimental parameters, such as environment, breeding scheme, and detailed phenotyping, can be controlled. Herein we review how mouse genetics can lead to the identification of genes, some of which would otherwise not have been considered as candidates for atherosclerosis, and provide an overview of the prospects for successful gene discovery in the future.
Collapse
Affiliation(s)
- Hooman Allayee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, USA
| | | | | |
Collapse
|
13
|
Abstract
Accumulating evidence has suggested the protective role of HDL in cardiovascular disease processes. Calcification is a common feature of atherosclerotic lesions and contributes to cardiovascular complications due to the loss of aortic resilience and function. Recent studies have suggested that vascular calcification shares several features with skeletal bone formation at the cellular and molecular levels. These include the presence of osteoblast-like calcifying vascular cells in the artery wall that undergo osteoblastic differentiation and calcification in vitro. We hypothesized that HDL may also protect against vascular calcification by regulating the osteogenic activity of these calcifying vascular cells. When treated with HDL, alkaline phosphatase activity, a marker of osteogenic differentiation of osteoblastic cells, was significantly reduced in those cells. Prolonged treatment with HDL also inhibited calcification of these cells, further supporting the antiosteogenic differentiation property of HDL when applied to vascular cells. Furthermore, HDL inhibited the osteogenic activity that was induced by inflammatory cytokines interleukin (IL)-1beta and IL-6 as well as by minimally oxidized LDL. HDL also partially inhibited the IL-6-induced activation of signal transducer and activator of transcription 3 in calcifying vascular cells, suggesting that HDL may inhibit cytokine-induced signal transduction pathways. The inhibitory effects of HDL were mimicked by lipids extracted from HDL but not by HDL-associated apolipoproteins or reconstituted HDL. Furthermore, oxidation of HDL rendered it pro-osteogenic. Taken together, these results suggest that HDL regulates the osteoblastic differentiation and calcification of vascular cells and that vascular calcification may be another target of HDL action in the artery wall.
Collapse
Affiliation(s)
- Farhad Parhami
- Department of Medicine, University of California, Los Angeles 90095, USA.
| | | | | | | | | |
Collapse
|
14
|
Brown BG, Cheung MC, Lee AC, Zhao XQ, Chait A. Antioxidant vitamins and lipid therapy: end of a long romance? Arterioscler Thromb Vasc Biol 2002; 22:1535-46. [PMID: 12377728 DOI: 10.1161/01.atv.0000034706.24149.95] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During the past decade, the perception flourished that lipid and antioxidant therapy were 2 independent avenues for cardiovascular protection. However, studies have shown that commonly used antioxidant vitamin regimens do not prevent cardiovascular events. We found that the addition of antioxidant vitamins to simvastatin-niacin therapy substantially blunts the expected rise in the protective high density lipoprotein (HDL)2 cholesterol and lipoprotein(A-I) subfractions of HDL, with apparent adverse effects on the progression of coronary artery disease. To better understand this effect, 12 apolipoproteins, receptors, or enzymes that contribute to reverse cholesterol transport have been examined in terms of their relationship to HDL2 and lipoprotein(A-I) levels and the potential for antioxidant modulation of their gene expression. Three plausible candidate mechanisms are identified: (1) antioxidant stimulation of cholesteryl ester transfer protein expression/activity, (2) antioxidant suppression of macrophage ATP binding cassette transmembrane transporter A1 expression, and/or (3) antioxidant suppression of hepatic or intestinal apolipoprotein A-I synthesis or increase in apolipoprotein A-I catabolism. In summary, antioxidant vitamins E and C and beta-carotene, alone or in combination, do not protect against cardiovascular disease. Their use for this purpose may create a diversion away from proven therapies. Because these vitamins blunt the protective HDL2 cholesterol response to HDL cholesterol-targeted therapy, they are potentially harmful in this setting. We conclude that they should rarely, if ever, be recommended for cardiovascular protection.
Collapse
Affiliation(s)
- B Greg Brown
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, USA.
| | | | | | | | | |
Collapse
|