1
|
Urbanowicz T, Hanć A, Tomczak J, Michalak M, Olasińska-Wiśniewska A, Rzesoś P, Szot M, Filipiak KJ, Krasińska B, Krasiński Z, Tykarski A, Jemielity M. The Protective Effect of the Crosstalk between Zinc Hair Concentration and Lymphocyte Count-Preliminary Report. Life (Basel) 2024; 14:571. [PMID: 38792593 PMCID: PMC11122497 DOI: 10.3390/life14050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND An imbalance between pro- and anti-inflammatory mechanisms is indicated in the pathophysiology of atherosclerotic plaque. The coronary artery and carotid disease, despite sharing similar risk factors, are developed separately. The aim of this study was to analyze possible mechanisms between trace element hair-scalp concentrations and whole blood counts that favor atherosclerotic plaque progression in certain locations. METHODS There were 65 (36 (55%) males and 29 (45%) females) patients with a median age of 68 (61-73) years enrolled in a prospective, preliminary, multicenter analysis. The study group was composed of 13 patients with stable coronary artery disease (CAD group) referred for surgical revascularization due to multivessel coronary disease, 34 patients with carotid artery disease (carotid group) admitted for vascular procedure, and 18 patients in a control group (control group). RESULTS There was a significant difference between the CAD and carotid groups regarding lymphocyte (p = 0.004) counts. The biochemical comparison between the coronary and carotid groups revealed significant differences regarding chromium (Cr) (p = 0.002), copper (Cu) (p < 0.001), and zinc (Zn) (p < 0.001) concentrations. Spearman Rank Order Correlations between lymphocyte counts and trace elements in the analyzed groups were performed, revealing a strong correlation with zinc (R = 0.733, p < 0.001) in the control group (non-CAD, non-carotid). CONCLUSION Significant differences in hair-scalp concentrations related to atherosclerosis location were observed in our analysis. The interplay between zinc concentration and lymphocyte count may play a pivotal role in cardiovascular disease development.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jolanta Tomczak
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, Dluga 1/2, 61-848 Poznan, Poland; (J.T.)
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Rokietnicka 7, 60-806 Poznan, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| | - Patrycja Rzesoś
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.R.); (M.S.)
| | - Mateusz Szot
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.R.); (M.S.)
| | - Krzysztof J. Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland;
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Beata Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, Dluga 1/2, 61-848 Poznan, Poland; (J.T.)
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| |
Collapse
|
2
|
Olasińska-Wiśniewska A, Urbanowicz T, Hanć A, Tomczak J, Begier-Krasińska B, Tykarski A, Filipiak KJ, Rzesoś P, Jemielity M, Krasiński Z. The Diagnostic Value of Trace Metal Concentrations in Hair in Carotid Artery Disease. J Clin Med 2023; 12:6794. [PMID: 37959259 PMCID: PMC10649577 DOI: 10.3390/jcm12216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Several studies showed the role of trace elements in the increase in human susceptibility to cardiovascular diseases. Carotid artery stenosis is a leading cause of ischemic neurological events. We aimed to analyze the potential role of trace elements in hair as biomarkers of atherosclerotic carotid artery disease. Materials and Methods: Fifty-seven (n = 31 (54%) men and n = 26 (46%) women) individuals with a mean age of 67.7 ± 7.7 years who were white, European, non-Hispanic, and non-Latino were diagnosed and treated in hypertensiology/internal medicine and surgical departments over three consecutive months. Of these patients, forty were diagnosed with advanced carotid artery disease, and seventeen comprised a group of healthy controls. Inflammatory and oncological diseases were exclusion criteria. Hair samples were collected, and 14 trace elements were analyzed. Clinical and laboratory data were compared and revealed differences in the co-existence of diabetes (p = 0.036) and smoking history (p = 0.041). In the multivariable analysis, zinc, chrome, and copper revealed predictive value for the occurrence of carotid artery disease, and their combined receiver operating curve showed area under the curve of 0.935, with a sensitivity of 95% and a specificity of 82.4%. Conclusion: Our report shows the significance of trace elements analyses in patients with advanced carotid artery disease. We revealed that zinc, copper, and chrome concentrations are of particular importance in differentiating atherosclerotic disease and may serve as biomarkers of carotid atherosclerosis. Hair samples represent an easily obtained and beneficial biomatrix for the assessment of biomarkers.
Collapse
Affiliation(s)
- Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (T.U.)
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (T.U.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jolanta Tomczak
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Beata Begier-Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznan, Poland
| | - Krzysztof J. Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznan, Poland
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Patrycja Rzesoś
- Poznań University of Medical Sciences, 61-848 Poznan, Poland
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (T.U.)
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| |
Collapse
|
3
|
Kuravi SJ, Ahmed NS, Taylor KA, Capes EM, Bye A, Unsworth AJ, Gibbins JM, Pugh N. Delineating Zinc Influx Mechanisms during Platelet Activation. Int J Mol Sci 2023; 24:11689. [PMID: 37511448 PMCID: PMC10380784 DOI: 10.3390/ijms241411689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Zinc (Zn2+) is released by platelets during a hemostatic response to injury. Extracellular zinc ([Zn2+]o) initiates platelet activation following influx into the platelet cytosol. However, the mechanisms that permit Zn2+ influx are unknown. Fluctuations in intracellular zinc ([Zn2+]i) were measured in fluozin-3-loaded platelets using fluorometry and flow cytometry. Platelet activation was assessed using light transmission aggregometry. The detection of phosphoproteins was performed by Western blotting. [Zn2+]o influx and subsequent platelet activation were abrogated by blocking the sodium/calcium exchanged, TRP channels, and ZIP7. Cation store depletion regulated Zn2+ influx. [Zn2+]o stimulation resulted in the phosphorylation of PKC substates, MLC, and β3 integrin. Platelet activation via GPVI or Zn2+ resulted in ZIP7 phosphorylation in a casein kinase 2-dependent manner and initiated elevations of [Zn2+]i that were sensitive to the inhibition of Orai1, ZIP7, or IP3R-mediated pathways. These data indicate that platelets detect and respond to changes in [Zn2+]o via influx into the cytosol through TRP channels and the NCX exchanger. Platelet activation results in the externalization of ZIP7, which further regulates Zn2+ influx. Increases in [Zn2+]i contribute to the activation of cation-dependent enzymes. Sensitivity of Zn2+ influx to thapsigargin indicates a store-operated pathway that we term store-operated Zn2+ entry (SOZE). These mechanisms may affect platelet behavior during thrombosis and hemostasis.
Collapse
Affiliation(s)
- Sahithi J. Kuravi
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Niaz S. Ahmed
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Kirk A. Taylor
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Emily M. Capes
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| | - Alex Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK (J.M.G.)
| | - Nicholas Pugh
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (E.M.C.)
| |
Collapse
|
4
|
Cetin-Atalay R, Meliton AY, Sun KA, Glass ME, Woods PS, Peng YJ, Fang Y, Hamanaka RB, Prabhakar NR, Mutlu GM. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep 2022; 12:17167. [PMID: 36229484 PMCID: PMC9561121 DOI: 10.1038/s41598-022-21614-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Mariel E. Glass
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Parker S. Woods
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Ying-Jie Peng
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Yun Fang
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Robert B. Hamanaka
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Nanduri R. Prabhakar
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Gökhan M. Mutlu
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| |
Collapse
|
5
|
Wang N, Xu X, Li H, Feng Q, Wang H, Kang YJ. Atherosclerotic lesion-specific copper delivery suppresses atherosclerosis in high-cholesterol-fed rabbits. Exp Biol Med (Maywood) 2021; 246:2671-2678. [PMID: 34525859 DOI: 10.1177/15353702211046541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dietary cholesterol supplements cause hypercholesterolemia and atherosclerosis along with a reduction of copper concentrations in the atherosclerotic wall in animal models. This study was to determine if target-specific copper delivery to the copper-deficient atherosclerotic wall can block the pathogenesis of atherosclerosis. Male New Zealand white rabbits, 10-weeks-old and averaged 2.0 kg, were fed a diet containing 1% (w/w) cholesterol or the same diet without cholesterol as control. Twelve weeks after the feeding, the animals were injected with copper-albumin microbubbles and subjected to ultrasound sonication specifically directed at the atherosclerotic lesions (Cu-MB-US) for target-specific copper delivery, twice a week for four weeks. This regiment was repeated 3 times with a gap of two weeks in between. Two weeks after the last treatment, the animals were harvested for analyses of serum and aortic pathological changes. Compared to controls, rabbits fed cholesterol-rich diet developed atherosclerotic lesion with a reduction in copper concentrations in the lesion tissue. Cu-MB-US treatment significantly increased copper concentrations in the lesion, and reduced the size of the lesion. Furthermore, copper repletion reduced the number of apoptotic cells as well as the content of cholesterol and phospholipids in the atherosclerotic lesion without a disturbance of the stability of the lesion. The results thus demonstrate that target-specific copper supplementation suppresses the progression of atherosclerosis at least in part through preventing endothelial cell death, thus reducing lipid infiltration in the atherosclerotic lesion.
Collapse
Affiliation(s)
- Na Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinwen Xu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualin Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qipu Feng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongge Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tennessee Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Kuzan A, Wujczyk M, Wiglusz RJ. The Study of the Aorta Metallomics in the Context of Atherosclerosis. Biomolecules 2021; 11:biom11070946. [PMID: 34202347 PMCID: PMC8301911 DOI: 10.3390/biom11070946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a multifactorial disease, for which the etiology is so complex that we are currently unable to prevent it and effectively lower the statistics on mortality from cardiovascular diseases. Parallel to modern analyses in molecular biology and biochemistry, we want to carry out analyses at the level of micro- and macroelements in order to discover the interdependencies between elements during atherogenesis. In this work, we used the Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) to determine the content of calcium, magnesium, iron, copper, chromium, zinc, manganese, cadmium, lead, and zinc in the aorta sections of people who died a sudden death. We also estimated the content of metalloenzymes MMP-9, NOS-3, and SOD-2 using the immunohistochemical method. It was observed that with the age of the patient, the calcium content of the artery increased, while the content of copper and iron decreased. Very high correlations (correlation coefficient above 0.8) were observed for pairs of parameters in women: Mn–Ca, Fe–Cu, and Ca–Cd, and in men: Mn–Zn. The degree of atherosclerosis negatively correlated with magnesium and with cadmium. Chromium inhibited absorption of essential trace elements such as Cu and Fe due to its content being above the quantification threshold only if Cu and Fe were lower. Moreover, we discussed how to design research for the future in order to learn more about the pathomechanism of atherosclerosis and the effect of taking dietary supplements on the prevalence of cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-7841-379
| | - Marta Wujczyk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland; (M.W.); (R.J.W.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland; (M.W.); (R.J.W.)
| |
Collapse
|
7
|
Yuan Y, Liu T, Huang X, Chen Y, Zhang W, Li T, Yang L, Chen Q, Wang Y, Wei A, Li W. A zinc transporter, transmembrane protein 163, is critical for the biogenesis of platelet dense granules. Blood 2021; 137:1804-1817. [PMID: 33513603 PMCID: PMC8020268 DOI: 10.1182/blood.2020007389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/03/2021] [Indexed: 11/20/2022] Open
Abstract
Lysosome-related organelles (LROs) are a category of secretory organelles enriched with ions such as calcium, which are maintained by ion transporters or channels. Homeostasis of these ions is important for LRO biogenesis and secretion. Hermansky-Pudlak syndrome (HPS) is a recessive disorder with defects in multiple LROs, typically platelet dense granules (DGs) and melanosomes. However, the underlying mechanism of DG deficiency is largely unknown. Using quantitative proteomics, we identified a previously unreported platelet zinc transporter, transmembrane protein 163 (TMEM163), which was significantly reduced in BLOC-1 (Dtnbp1sdy and Pldnpa)-, BLOC-2 (Hps6ru)-, or AP-3 (Ap3b1pe)-deficient mice and HPS patients (HPS2, HPS3, HPS5, HPS6, or HPS9). We observed similar platelet DG defects and higher intracellular zinc accumulation in platelets of mice deficient in either TMEM163 or dysbindin (a BLOC-1 subunit). In addition, we discovered that BLOC-1 was required for the trafficking of TMEM163 to perinuclear DG and late endosome marker-positive compartments (likely DG precursors) in MEG-01 cells. Our results suggest that TMEM163 is critical for DG biogenesis and that BLOC-1 is required for the trafficking of TMEM163 to putative DG precursors. These new findings suggest that loss of TMEM163 function results in disruption of intracellular zinc homeostasis and provide insights into the pathogenesis of HPS or platelet storage pool deficiency.
Collapse
Affiliation(s)
- Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects/Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center/National Center for Children's Health, and Beijing Children's Hospital/Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Teng Liu
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Xiahe Huang
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanying Chen
- Beijing Key Laboratory for Genetics of Birth Defects/Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center/National Center for Children's Health, and Beijing Children's Hospital/Capital Medical University, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; and
| | - Ting Li
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lin Yang
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; and
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingchun Wang
- University of Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects/Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center/National Center for Children's Health, and Beijing Children's Hospital/Capital Medical University, Beijing, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing, China
| |
Collapse
|
8
|
Ahmed NS, Lopes-Pires M, Pugh N. Zinc: an endogenous and exogenous regulator of platelet function during hemostasis and thrombosis. Platelets 2020; 32:880-887. [DOI: 10.1080/09537104.2020.1840540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Niaz Shahed Ahmed
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Nicholas Pugh
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
9
|
Lu R, Ishikawa T, Tanaka M, Tsuboi T, Yokoyama S. Zinc Increases ABCA1 by Attenuating Its Clearance Through the Modulation of Calmodulin Activity. J Atheroscler Thromb 2020; 28:261-270. [PMID: 32581187 PMCID: PMC8049148 DOI: 10.5551/jat.55384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: We previously revealed that Ca++-activated calmodulin binds to ABCA1 by the region near the PEST sequence and retards its calpain-mediated degradation to increase HDL biogenesis. Calmodulin activity is reportedly modulated also by other nutritional divalent cations; thus, we attempted to determine whether Zn++ is involved in the regulation of ABCA1 stability through the modulation of calmodulin activity. Methods: The effects of Zn++ on ABCA1 expression was investigated in J774 mouse macrophage cell-line cells and HepG2 human hepatoma cell-line cells. Results: Zn++ increased ABCA1 expression, not by increasing the mRNA but by attenuating its decay rate, more prominently in the presence of cAMP. Accordingly, it enhanced cell cholesterol release with extracellular apolipo-protein A-I. Calmodulin binding to ABCA1 was increased by Zn++ and Ca++. Zn++ suppressed calpain-mediated hydrolysis of the peptide of ABCA1 cytosolic loop, including the PEST sequence and the calmodulin-binding site, in a calmodulin-dependent fashion, in the presence of the minimum amount of Ca++ to activate calpain, but not calmodulin. Calpain activity was not directly inhibited by Zn++ at the concentration for enhancing calmodulin binding to ABCA1. Conclusion: Nutritional divalent cation Zn++ is involved in the regulation of ABCA1 activity and biogenesis of HDL through the modulation of calmodulin activity. The results were consistent with previous clinical findings that Zn++ increased plasma HDL in the conditions of sympathetic activation, such as type 2 diabetes and chronic hemodialysis.
Collapse
Affiliation(s)
- Rui Lu
- Food and Nutritional Sciences,Chubu University
| | | | | | | | | |
Collapse
|
10
|
Karış D, Tarhan D, Boyacıoğlu K, Köksal C, Ercan AM. The comparison of zinc, copper and iron levels in serum, aorta and left internal mammarian artery tissues in coronary by-pass graft surgery patients. J Trace Elem Med Biol 2019; 51:86-90. [PMID: 30466943 DOI: 10.1016/j.jtemb.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023]
Abstract
Trace elements are crucial for vital enzymatic reactions in all metabolic processes. Zinc (Zn) acts as a co-factor for many enzymes. Copper (Cu) and iron (Fe) have pro-atherogenic effects resulting in atherosclerosis. Aorta exposing high pulsatile pressure is sensitive for atherosclerosis because of its fast metabolism and poor nutrition by diffusion from vasa vasorum. We aimed to determine the relationship between serum Zn, Cu and Fe levels with aortic and left internal mammary artery (LIMA) tissues in 33 atherosclerotic individuals who inevitably underwent coronary artery by-pass graft (CBAG) surgery that is an end-point treatment for atherosclerosis. Trace elements in serum and tissues were measured using inductively coupled plasma-optical emission spectrophotometer. Pre-operative (Pre-op) serum Fe levels were statistically 46% higher than post-operative (Post-op) values (p = 0.009). Aortic Fe level was 49.8% higher than LIMA Fe (p = 0.0001). Our study points out the tendency of aortic tissue to atherosclerosis via pro- atherogenic effect of Fe. LIMA, being a potential graft for CBAG, is resistant to atherosclerosis with its intimal specialty of graft patency. In conclusion, serum Zn, Cu and Fe levels in atherosclerotic CBAG patients might be monitored to reveal minor alterations pre-operatively and post-operatively for ameliorating the treatment and life quality.
Collapse
Affiliation(s)
- Denizhan Karış
- Biophysics Department, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbul, Turkey.
| | - Duygu Tarhan
- Biophysics Department, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbul, Turkey.
| | - Kamil Boyacıoğlu
- Cardiovascular Surgery Department, Bağcılar Training and Research Hospital, Turkish Government Ministry of Health, İstanbul, Turkey.
| | - Cengiz Köksal
- Cardiovascular Surgery Department, Bezmialem Medical Faculty, Bezmialem University, İstanbul, Turkey.
| | - Alev Meltem Ercan
- Biophysics Department, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbul, Turkey.
| |
Collapse
|
11
|
Sobczak AIS, Pitt SJ, Stewart AJ. Influence of zinc on glycosaminoglycan neutralisation during coagulation. Metallomics 2018; 10:1180-1190. [PMID: 30132486 PMCID: PMC6148461 DOI: 10.1039/c8mt00159f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS), dermatan sulfate (DS) and heparin are glycosaminoglycans (GAGs) that serve as key natural and pharmacological anticoagulants. During normal clotting such agents require to be inactivated or neutralised. Several proteins have been reported to facilitate their neutralisation, which reside in platelet α-granules and are released following platelet activation. These include histidine-rich-glycoprotein (HRG), fibrinogen and high-molecular-weight kininogen (HMWK). Zinc ions (Zn2+) are also present in α-granules at a high concentration and participate in the propagation of coagulation by influencing the binding of neutralising proteins to GAGs. Zn2+ in many cases increases the affinity of these proteins to GAGs, and is thus an important regulator of GAG neutralisation and haemostasis. Binding of Zn2+ to HRG, HMWK and fibrinogen is mediated predominantly through coordination to histidine residues but the mechanisms by which Zn2+ increases the affinity of the proteins for GAGs are not yet completely clear. Here we will review current knowledge of how Zn2+ binds to and influences the neutralisation of GAGs and describe the importance of this process in both normal and pathogenic clotting.
Collapse
Affiliation(s)
- Amélie I. S. Sobczak
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| | - Samantha J. Pitt
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| | - Alan J. Stewart
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| |
Collapse
|
12
|
Zalewski PD, Beltrame JF, Wawer AA, Abdo AI, Murgia C. Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit Rev Food Sci Nutr 2018; 59:3511-3525. [PMID: 29999409 DOI: 10.1080/10408398.2018.1495614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of the roles of nitric oxide (NO) in cardiovascular signaling has led to a revolution in the understanding of cardiovascular disease. A new perspective to this story involving zinc (Zn) is emerging. Zn and its associated Zn transporter proteins are important for the integrity and functions of both the large conduit vessels and the microvascular resistance vessels. The Zn and NO pathways are tightly coordinated. Zn ions are required for the dimerization of endothelial nitric oxide synthase and subsequent generation of NO while generation of NO leads to a rapid mobilization of endothelial Zn stores. Labile Zn may mediate important downstream actions of NO including vascular cytoprotection and vasodilation. Several vascular disease risk factors (including aging, smoking and diabetes) interfere with Zn homeostatic mechanisms and both hypozincaemia and Zn transporter protein abnormalities are linked to atherosclerosis and microvascular disease. Some vegetarian diets and long-term use of certain anti-hypertensives may also impact on Zn status. The available evidence supports the existence of a Zn regulatory pathway in the vascular wall that is coupled to the generation and actions of NO and which is compromised in Zn deficiency with consequent implications for the pathogenesis and therapy of vascular disease.
Collapse
Affiliation(s)
- P D Zalewski
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - J F Beltrame
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - A A Wawer
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - A I Abdo
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - C Murgia
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Jiao N, Qi Y, Lv C, Li H, Yang F. Identification of protein complexes associated with myocardial infarction using a bioinformatics approach. Mol Med Rep 2018; 18:3569-3576. [PMID: 30132549 PMCID: PMC6131540 DOI: 10.3892/mmr.2018.9414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality and disability worldwide. Determination of the molecular mechanisms underlying the disease is crucial for identifying possible therapeutic targets and designing effective treatments. On the basis that MI may be caused by dysfunctional protein complexes rather than single genes, the present study aimed to use a bioinformatics approach to identifying complexes that may serve important roles in the development of MI. By investigating the proteins involved in these identified complexes, numerous proteins have been reported that are related to MI, whereas other proteins interacted with MI-related proteins, which implied that these protein complexes may indeed be related to the development of MI. The protein complexes detected in the present study may aid in our understanding of the molecular mechanisms that underlie MI pathogenesis.
Collapse
Affiliation(s)
- Nianhui Jiao
- Intensive Care Unit, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Yongjie Qi
- Intensive Care Unit, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Changli Lv
- Emergency Department, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| | - Hongjun Li
- Emergency Department, The Central Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China
| | - Fengyong Yang
- Intensive Care Unit, Laiwu People's Hospital, Laiwu, Shandong 271199, P.R. China
| |
Collapse
|
14
|
Taylor KA, Pugh N. The contribution of zinc to platelet behaviour during haemostasis and thrombosis. Metallomics 2016; 8:144-55. [PMID: 26727074 DOI: 10.1039/c5mt00251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets are the primary cellular determinants of haemostasis and pathological thrombus formation leading to myocardial infarction and stroke. Following vascular injury or atherosclerotic plaque rupture, platelets are recruited to sites of damage and undergo activation induced by a variety of soluble and/or insoluble agonists. Platelet activation is a multi-step process culminating in the formation of thrombi, which contribute to the haemostatic process. Zinc (Zn(2+)) is acknowledged as an important signalling molecule in a diverse range of cellular systems, however there is limited understanding of the influence of Zn(2+) on platelet behaviour during thrombus formation. This review evaluates the contributions of exogenous and intracellular Zn(2+) to platelet function and assesses the potential pathophysiological implications of Zn(2+) signalling. We also provide a speculative assessment of the mechanisms by which platelets could respond to changes in extracellular and intracellular Zn(2+) concentration.
Collapse
Affiliation(s)
- K A Taylor
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - N Pugh
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| |
Collapse
|
15
|
Watson BR, White NA, Taylor KA, Howes JM, Malcor JDM, Bihan D, Sage SO, Farndale RW, Pugh N. Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner. Metallomics 2016; 8:91-100. [PMID: 26434726 DOI: 10.1039/c5mt00064e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following platelet adhesion and primary activation at sites of vascular injury, secondary platelet activation is induced by soluble platelet agonists, such as ADP, ATP, thrombin and thromboxane. Zinc ions are also released from platelets and damaged cells and have been shown to act as a platelet agonist. However, the mechanism of zinc-induced platelet activation is not well understood. Here we show that exogenous zinc gains access to the platelet cytosol and induces full platelet aggregation that is dependent on platelet protein tyrosine phosphorylation, PKC and integrin αIIbβ3 activity and is mediated by granule release and secondary signalling. ZnSO4 increased the binding affinity of GpVI, but not integrin α2β1. Low concentrations of ZnSO4 potentiated platelet aggregation by collagen-related peptide (CRP-XL), thrombin and adrenaline. Chelation of intracellular zinc reduced platelet aggregation induced by a number of different agonists, inhibited zinc-induced tyrosine phosphorylation and inhibited platelet activation in whole blood under physiologically relevant flow conditions. Our data are consistent with a transmembrane signalling role for zinc in platelet activation during thrombus formation.
Collapse
Affiliation(s)
- Ben R Watson
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, UK
| | - Nathan A White
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Road, Cambridge, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Road, Cambridge, UK.
| | - Joanna-Marie Howes
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, UK
| | - Jean-Daniel M Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, UK
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, UK
| | - Stewart O Sage
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, UK
| | - Nicholas Pugh
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, UK and Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Road, Cambridge, UK.
| |
Collapse
|
16
|
Kopriva D, Kisheev A, Meena D, Pelle S, Karnitsky M, Lavoie A, Buttigieg J. The Nature of Iron Deposits Differs between Symptomatic and Asymptomatic Carotid Atherosclerotic Plaques. PLoS One 2015; 10:e0143138. [PMID: 26606178 PMCID: PMC4659551 DOI: 10.1371/journal.pone.0143138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/31/2015] [Indexed: 11/18/2022] Open
Abstract
Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophages with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. The abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.
Collapse
Affiliation(s)
- David Kopriva
- Department of Surgery (Vascular Surgery), Regina Qu’Appelle Health Region, College of Medicine, University of Saskatchewan, Regina, Canada
| | | | - Deiter Meena
- College of Medicine, University of Saskatchewan, Regina, Canada
| | - Shaneen Pelle
- Department of Biology, University of Regina, Regina, Canada
| | - Max Karnitsky
- Department of Biology, University of Regina, Regina, Canada
| | - Andrea Lavoie
- Department of Medicine (Cardiology), Regina Qu’Appelle Health Region, College of medicine, University of Saskatchewan, Regina, Canada
| | - Josef Buttigieg
- Department of Biology, University of Regina, Regina, Canada
- * E-mail:
| |
Collapse
|
17
|
Ziaja D, Chudek J, Sznapka M, Kita A, Biolik G, Sieroń-Stołtny K, Pawlicki K, Domalik J, Ziaja K. Trace elements in the wall of abdominal aortic aneurysms with and without coexisting iliac artery aneurysms. Biol Trace Elem Res 2015; 165:119-22. [PMID: 25637566 DOI: 10.1007/s12011-015-0240-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
Abstract
Iliac artery aneurysms (IAA) and abdominal aortic aneurysms (AAA) frequently coexist. It remains unknown whether the content of trace elements in AAA walls depends on the coexistence of IAAs. The aim of this study was to compare the content of selected trace elements in AAA walls depending on the coexistence of IAAs. The content of trace elements was assessed in samples of AAA walls harvested intraoperatively in 19 consecutive patients. In the studied group, coexisting IAAs were diagnosed in 11 out of the 19 patients with AAA. The coexistence of IAAs was associated with a slightly lower content of nickel (0.28 (0.15-0.40) vs. 0.32 (0-0.85) mg/g; p = 0.09) and a significantly higher content of cadmium (0.71 (0.26-1.17) vs. 0.25 (0.20-0.31) mg/g; p = 0.04) in AAA walls. The levels of the remaining studied elements, copper, zinc, manganese, magnesium and calcium, were comparable. The elevated levels of cadmium in the walls of AAA coexisting with IAAs may suggest an impact of the accumulation of this trace element on the greater damage of the iliac artery wall.
Collapse
Affiliation(s)
- Damian Ziaja
- Physiotherapy Unit, Department of Physiotherapy, Faculty of Health Sciences, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lozhkin AP, Biktagirov TB, Abdul'ianov VA, Gorshkov OV, Timonina EV, Mamin GV, Orlinskiĭ SB, Silkin NI, Chernov VM, Khaĭrullin RN, Salakhov MK, Il'inskaia ON. [Manganese in atherogenesis: detection, origin, and role]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:291-9. [PMID: 22856134 DOI: 10.18097/pbmc20125803291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of transition metal ions in atherogenesis is controversial; they can participate in the hydroxyl radical generation and catalyze the reactive oxygen species neutralization reaction as cofactors of antioxidant enzymes. Using EPR spectroscopy, we revealed that 70% of the samples of aorta with atherosclerotic lesions possessed superoxide dismutase activity, 100% of the samples initiated Fenton reaction and demonstrated the presence of manganese paramagnetic centers. The sodA gene encoding manganese-dependent bacterial superoxide dismutase was not found in the samples of atherosclerotic plaques by PCR using degenerate primers. The data obtained indicates the perspectives of manganese analysis as a marker element in the express diagnostics of atherosclerosis.
Collapse
|
19
|
Stadler N, Heeneman S, Vöö S, Stanley N, Giles GI, Gang BP, Croft KD, Mori TA, Vacata V, Daemen MJAP, Waltenberger J, Davies MJ. Reduced metal ion concentrations in atherosclerotic plaques from subjects with type 2 diabetes mellitus. Atherosclerosis 2012; 222:512-8. [PMID: 22521900 DOI: 10.1016/j.atherosclerosis.2012.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/28/2012] [Accepted: 03/12/2012] [Indexed: 01/07/2023]
Abstract
AIMS Transition metal ions have been implicated in atherosclerosis. The goal of this study was to investigate whether metal ion levels were higher in people with diabetes, in view of their increased risk of aggravated atherosclerosis. METHODS AND RESULTS Absolute concentrations of iron, copper, zinc and calcium, and products of protein and lipid oxidation were quantified in atherosclerotic lesions from subjects with (T2DM, n=27), without Type 2 diabetes (nonDM, n=22), or hyperglycaemia (HG, n=17). Iron (P<0.05), zinc (P<0.01) and calcium (P=0.01) were lower in T2DM compared to nonDM subjects. Copper levels were comparable. A strong correlation (r=0.618; P<0.001) between EPR-detectable and total iron in nonDM patients was not seen in T2DM. X-ray fluorescence microscopy revealed "hot spots" of iron in both T2DM and nonDM. Calcium and zinc co-localised and levels correlated strongly. F(2)-isoprostanes (P<0.05) and di-Tyr/Tyr ratio (P<0.025), oxidative damage markers were decreased in T2DM compared to nonDM, or HG. CONCLUSION Advanced atherosclerotic lesions from T2DM subjects unexpectedly contained lower levels of transition metal ions, and protein and lipid oxidation products, compared to nonDM and HG. These data do not support the hypothesis that elevated metal ion levels may be a major causative factor in the aggravated atherosclerosis observed in T2DM patients.
Collapse
Affiliation(s)
- Nadina Stadler
- The Heart Research Institute, Newtown, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tavori H, Aviram M, Khatib S, Musa R, Mannheim D, Karmeli R, Vaya J. Paraoxonase 1 protects macrophages from atherogenicity of a specific triglyceride isolated from human carotid lesion. Free Radic Biol Med 2011; 51:234-42. [PMID: 21530644 DOI: 10.1016/j.freeradbiomed.2011.03.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/26/2022]
Abstract
Human atherosclerotic lesions contain oxidized lipids that facilitate further oxidation of macrophages, LDLs, and oxidative stress (OS)-sensitive markers and inhibit the antiatherogenic enzyme paraoxonase 1 (PON1). Our aim was to isolate and identify the oxidizing agent in a human atherosclerotic lesion lipid extract (LLE) and to explore the mechanisms of oxidation and of PON1's effect on the oxidizing agent. Of the five main fractions separated from the LLE, only fraction 2 (F2) promoted macrophage reactive oxygen species (ROS) production via a mechanism requiring mitochondrial involvement, whereas the NADPH oxidase system was not involved. Incubation of F2 with PON1 abridged the former's peroxide value and reduced its capacity to oxidize OS markers. The active agent was a triglyceride composed of palmitic, oleic, and linoleic acids, with 0.3% of its linoleic moiety in oxidized form. Incubation of either F2 or an identical synthetic triglyceride with PON1 reduced their ability to oxidize macrophages, without affecting cellular accumulation of triglycerides. We conclude that macrophage ROS production by LLE occurs in the presence of a specific triglyceride and requires mitochondrial involvement. Lipid peroxide in the triglyceride can also facilitate lipid autoxidation. Both atherogenic pathways are suppressed by PON1, which acts as an antiatherogenic element.
Collapse
Affiliation(s)
- Hagai Tavori
- Oxidative Stress Research Laboratory, MIGAL-Galilee Technology Center, Kiryat Shmona 11016, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Lozhkin AP, Biktagirov TB, Abdul’yanov VA, Gorshkov OV, Timonina EV, Mamin GV, Orlinskii SB, Silkin NI, Chernov VM, Khairullin RN, Salakhov MK, Ilinskaya ON. Manganese in atherogenesis: Detection, origin, and a role. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hanć A, Komorowicz I, Iskra M, Majewski W, Barałkiewicz D. Application of spectroscopic techniques: ICP-OES, LA-ICP-MS and chemometric methods for studying the relationships between trace elements in clinical samples from patients with atherosclerosis obliterans. Anal Bioanal Chem 2011; 399:3221-31. [PMID: 21318248 PMCID: PMC3044238 DOI: 10.1007/s00216-011-4729-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
The study was aimed to evaluate the influence of the vascular disease, atherosclerotic obliterans (AO), on the location and concentration of elements in the arterial wall and serum. Use of a modern method for studying element's concentration and distribution in samples of clinical material, i.e. laser ablation inductively coupled plasma mass spectrometry, is presented. Elements are not equally distributed between the inner (intima) and the outer (media + adventitia) layer of the arterial wall. Among the studied elements, calcium was found to have an unquestionable role in the calcification of the wall. Increased concentration of calcium found in the inner part of the atherosclerotic arterial wall and in the plaque, as compared to the control arterial wall samples, demonstrates the unquestionable role of this element in the calcification of the wall observed in AO. Applied chemometric methods were useful for demonstrating the differences in the element's concentration in blood serum and the arterial wall samples between AO and the control group.
Collapse
Affiliation(s)
- A Hanć
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | | | | | | | | |
Collapse
|
23
|
Tavori H, Aviram M, Khatib S, Musa R, Mannheim D, Karmeli R, Vaya J. Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cysteine 284. Free Radic Biol Med 2011; 50:148-56. [PMID: 21044882 DOI: 10.1016/j.freeradbiomed.2010.10.708] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/01/2010] [Accepted: 10/20/2010] [Indexed: 11/17/2022]
Abstract
Paraoxonase 1 (PON1) is an HDL-associated lactonase with antiatherogenic properties. These include dampening the oxidation properties of human carotid lesion lipid extract (LLE), which in turn inactivates the enzyme. The aims of this study were to identify the PON1 inhibitor in LLE and explore the mechanism of inhibition. LLE inhibited both recombinant PON1 and HDL-PON1 lactonase activity in a dose- and time-dependent manner. Addition of antioxidants or electrophiles to LLE did not prevent PON1 inhibition. LLE was unable to inhibit a PON1 mutant lacking Cys284, whereas it did inhibit all other PON1 mutants tested. The inhibitor in the LLE was identified as linoleic acid hydroperoxide (LA-OOH) and inhibition was specific to this hydroperoxide. During its inhibition, PON1 acted like a peroxidase enzyme, reducing LA-OOH to LA-hydroxide via its Cys284. A similar reaction occurred with external thiols, such as DDT or cysteine, which also prevented PON1 inhibition and restored enzyme activity after inhibition. Thus, the antiatherogenic properties of HDL could be, at least in part, related to the sulfhydryl-reducing characteristics of its associated PON1, which are further protected and recycled by the sulfhydryl amino acid cysteine.
Collapse
Affiliation(s)
- Hagai Tavori
- Oxidative Stress Research Laboratory, MIGAL-Galilee Technology Center, Kiryat Shmona 11016, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
25
|
Lozhkin AP, Biktagirov TB, Abdul’yanov VA, Voloshin AV, Silkin NI, Khairullin RN, Salakhov MK, Ilinskaya ON. Manganese as a potential marker of atherogenesis. DOKL BIOCHEM BIOPHYS 2010; 434:254-6. [DOI: 10.1134/s1607672910050091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 11/23/2022]
|
26
|
Conway DE, Lee S, Eskin SG, Shah AK, Jo H, McIntire LV. Endothelial metallothionein expression and intracellular free zinc levels are regulated by shear stress. Am J Physiol Cell Physiol 2010; 299:C1461-7. [PMID: 20861469 DOI: 10.1152/ajpcell.00570.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the effects of fluid shear stress on metallothionein (MT) gene and protein expression and intracellular free zinc in mouse aorta and in human umbilical vein endothelial cells (HUVECs). Immunostaining of the endothelial surface of mouse aorta revealed increased expression of MT protein in the lesser curvature of the aorta relative to the descending thoracic aorta. HUVECs were exposed to high steady shear stress (15 dyn/cm(2)), low steady shear stress (1 dyn/cm(2)), or reversing shear stress (mean of 1 dyn/cm(2), 1 Hz) for 24 h. Gene expression of three MT-1 isoforms, MT-2A, and zinc transporter-1 was upregulated by low steady shear stress and reversing shear stress. HUVECs exposed to 15 dyn/cm(2) had increased levels of free zinc compared with cells under other shear stress regimes and static conditions. The increase in free zinc was partially blocked with an inhibitor of nitric oxide synthesis, suggesting a role for shear stress-induced endothelial nitric oxide synthase activity. Cells subjected to reversing shear stress in zinc-supplemented media (50 μM ZnSO(4)) had increased intracellular free zinc, reduced surface intercellular adhesion molecule-1 expression, and reduced monocyte adhesion compared with cells exposed to reversing shear stress in normal media. The sensitivity of intracellular free zinc to differences in shear stress suggests that intracellular zinc levels are important in the regulation of the endothelium and in the progression of vascular disease.
Collapse
Affiliation(s)
- Daniel E Conway
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332-0535, USA
| | | | | | | | | | | |
Collapse
|
27
|
Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism. J Cardiovasc Pharmacol 2010; 55:248-54. [PMID: 20051880 DOI: 10.1097/fjc.0b013e3181cf0090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracellular [Ca2+]i overloading in cardiomyocytes is a fundamental pathogenic event associated with chronic aldosterone/salt treatment (ALDOST) and accounts for an induction of oxidative stress that leads to necrotic cell death and consequent myocardial scarring. This prooxidant response to Ca2+ overloading in cardiac myocytes and mitochondria is intrinsically coupled to simultaneous increased Zn2+ entry serving as an antioxidant. Herein, we investigated whether Ca2+ and Zn2+ dyshomeostasis and prooxidant to antioxidant dysequilibrium seen at 4 weeks, the pathologic stage of ALDOST, could be uncoupled in favor of antioxidants, using cotreatment with a ZnSO4 supplement; pyrrolidine dithiocarbamate (PDTC), a Zn2+ ionophore; or ZnSO4 in combination with amlodipine (Amlod), a Ca2+ channel blocker. We monitored and compared responses in cardiomyocyte free [Ca2+]i and [Zn2+]i together with biomarkers of oxidative stress in cardiac myocytes and mitochondria. At week 4 of ALDOST and compared with controls, we found (1) an elevation in [Ca2+]i coupled with [Zn2+]i and (2) increased mitochondrial H2O2 production and increased mitochondrial and cardiac 8-isoprostane levels. Cotreatment with the ZnSO4 supplement alone, PDTC, or ZnSO4+Amlod augmented the rise in cardiomyocyte [Zn2+]i beyond that seen with ALDOST alone, whereas attenuating the rise in [Ca2+]i, which together served to reduce oxidative stress. Thus, a coupled dyshomeostasis of intracellular Ca2+ and Zn2+ was demonstrated in cardiac myocytes and mitochondria during 4-week ALDOST, where prooxidants overwhelm antioxidant defenses. This intrinsically coupled Ca2+ and Zn2+ dyshomeostasis could be uncoupled in favor of antioxidant defenses by selectively increasing free [Zn2+]i and/or reducing [Ca2+]i using cotreatment with ZnSO4 or PDTC alone or ZnSO4+Amlod in combination.
Collapse
|
28
|
Paraoxonase 1 Attenuates Human Plaque Atherogenicity: Relevance to the Enzyme Lactonase Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 660:99-111. [DOI: 10.1007/978-1-60761-350-3_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
29
|
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Pritha Bagchi
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - S. Sumalekshmy
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
30
|
Tavori H, Aviram M, Khatib S, Musa R, Nitecki S, Hoffman A, Vaya J. Human carotid atherosclerotic plaque increases oxidative state of macrophages and low-density lipoproteins, whereas paraoxonase 1 (PON1) decreases such atherogenic effects. Free Radic Biol Med 2009; 46:607-15. [PMID: 19103284 DOI: 10.1016/j.freeradbiomed.2008.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 02/06/2023]
Abstract
Human atherosclerotic plaque contains a variety of oxidized lipids, which can facilitate further oxidation. Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated esterase (lipolactonase), exhibiting antiatherogenic properties. The aims of the present study were to examine the oxidizing potency of the human carotid plaque lipid extract (LE), and the antiatherogenic role of PON1 on LE oxidation competence. Human carotid plaques were extracted by organic solvent, and the extract was incubated with lipoprotein particles, with macrophages, or with probes sensitive to oxidative stress, with or without preincubation with PON1, followed by oxidative-stress assessment. Our findings imply that the LE oxidized LDL, macrophages, and exogenous probes and decreases HDL-mediated cholesterol efflux from macrophages, in a dose-dependent manner. Incubation of PON1 with LE significantly affects LE composition, reduces LE atherogenic properties, and decreases the extract's total peroxide concentration by 44%, macrophage oxidation by 25%, and probe oxidation by up to 52%. We conclude that these results expand our understanding of how the plaque itself accelerates atherogenesis and provides an important mechanism for attenuation of atherosclerosis development by the antioxidant action of PON1 on the atherosclerotic plaque.
Collapse
Affiliation(s)
- Hagai Tavori
- MIGAL - Galilee Technology Center, Kiryat Shmona, Tel Hai College, Israel
| | | | | | | | | | | | | |
Collapse
|